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Abstract

Background: The present study investigated the relationships between thyroid hormone serum levels or
thyroid-stimulating hormone (TSH) and two Alzheimer’s disease (AD)-specific biomarkers, cerebral amyloid beta
(Aβ) burden and glucose metabolism, in AD-signature brain regions in cognitively normal (CN) middle-aged
and older individuals.

Methods: This study assessed 148 CN individuals who received comprehensive clinical and neuropsychological
assessments that included 11C-Pittsburgh Compound B (PiB)-positron emission tomography (PET) scans,
18F-deoxyglucose (FDG)-PET scans, and the quantification of serum triiodothyronine (T3), free T3, free thyroxine
(fT4), and TSH levels.

Results: All participants were clinically euthyroid. Independent negative associations were found between
serum fT4 levels and global cerebral Aβ deposition after controlling for the effects of age, gender, and the
apolipoprotein E ε4 (APOEε4) genotype. Although serum TSH levels were not associated with global cerebral
Aβ deposition, they had a significant negative association with glucose metabolism in the precuneus/posterior
cingulate cortex after controlling for age, gender, and the APOEε4 genotype. No other thyroid hormones
exhibited relationships with either brain Aβ burden or glucose metabolism.

Conclusions: Even in a clinical euthyroid state, low serum fT4 and high serum TSH levels appear to be differentially
associated with AD-specific brain changes.
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Background
Several studies have identified an association between
dysregulation of thyroid hormones and Alzheimer’s
disease (AD) dementia [1–5]. However, whether serum
levels of thyroid hormones are associated with AD
pathologies, such as cerebral amyloid beta protein (Aβ)
deposition and neurodegeneration, in the living human
brain remains unclear.

Preclinical studies have repeatedly found an association
between thyroid hormones and brain Aβ deposition in
mice [6–9] and in human brain-derived neuroblastoma
cells [9]. Additionally, two pathological studies of post-
mortem human brain tissues showed that thyroid hor-
mone levels and Aβ deposition are related [5, 10].
Cerebral Aβ deposition begins 10–20 years before devel-
opment of AD dementia [11] and reaches a state of near
saturation in the stages of dementia or mild cognitive
impairment [12, 13]. Consequently, detection of an as-
sociation between thyroid hormone serum levels and
cerebral Aβ deposition may be difficult in cognitively
impaired individuals. Therefore, it is important to investi-
gate the relationships of thyroid hormones in serum with
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in-vivo cerebral Aβ deposition in cognitively normal (CN)
individuals. Furthermore, region-specific neurodegenera-
tion is another important pathological change to consider
in the AD brain. 18F-Deoxyglucose (FDG)-positron emis-
sion tomography (PET) has been used to measure regional
cerebral glucose metabolism (rCMglu), and the specific
pattern of rCMglu reduction in FDG-PET is regarded
as a presymptomatic biomarker for AD [14]. However,
few studies have investigated the association between
thyroid hormone serum levels and the AD-specific rCMglu
pattern.
Therefore, this study investigated the relationships

of serum levels of thyroid hormones with in-vivo AD
neuropathologies, including cerebral Aβ burden and
neurodegeneration, in AD-signature regions in CN
middle-aged and older individuals.

Methods
Participants
This study was part of the Korean Brain Aging Study for
Early Diagnosis and Prediction of Alzheimer’s Disease
(KBASE), which is an ongoing prospective cohort study
searching for new biomarkers of AD with the aim of
identifying the associations of various lifetime experi-
ences with AD-related brain changes. The present study
assessed 148 CN middle-aged and older subjects. The
inclusion criteria were: aged between 55 and 90 years
(inclusive); a Clinical Dementia Rating score [15] of 0;
and no diagnosis of mild cognitive impairment or demen-
tia. The exclusion criteria were: any present serious med-
ical, psychiatric, or neurological disorders that could affect
mental function; the presence of severe communication
problems that would make a clinical examination or brain
scans difficult; contraindications for magnetic resonance
imaging (MRI) scans (e.g., pacemaker, claustrophobia,
etc.); the absence of a reliable informant; illiteracy; and
participation in another clinical trial and/or treatment
with an investigational product.
The Institutional Review Board of the Seoul National

University Hospital and SNU-SMG Boramae Center, South
Korea, approved the study and all participants provided
written informed consent.

Clinical assessment
All participants completed standardized clinical assess-
ments administered by trained psychiatrists that were
based on the KBASE clinical assessment protocol,
which incorporates the Korean version of the Consortium
to Establish a Registry for Alzheimer’s Disease Assessment
Packet (CERAD-K) [16]. Additionally, the KBASE neuro-
psychological assessment protocol, which incorporates the
CERAD neuropsychological battery [17], was administered
to all participants by trained neuropsychologists. The pres-
ence or absence of stroke, diabetes, and hyperlipidemia

and histories of transient ischemic attack (TIA), hyperten-
sion, and coronary artery disease were assessed systemat-
ically to create a composite score for vascular risk; this
score was the sum of the factors (if present) and ranged
from 0 to 6 [18].

Laboratory tests of blood samples
Blood samples were obtained via venipuncture after an
overnight fast. Serum levels of total triiodothyronine
(T3), free T3 (fT3), free thyroxine (fT4), and thyroid-
stimulating hormone (TSH) were evaluated with a
chemiluminescence immunoassay using the ADVIA
Centaur XP system (Siemens, Washington, DC, USA).
The normal range for total T3 is 65–150 ng/dl, for fT3
is 2.3–4.2 pg/ml, for fT4 is 0.89–1.76 ng/dl, and for
TSH is 0.55–4.78 μIU/ml; serum TSH and fT4 levels
were assessed to define thyroid status. Additionally,
genomic DNA was extracted from whole blood sam-
ples to perform apolipoprotein E (APOE) genotyping,
as described previously [19]. Participants with at least
one APOE ε4 allele (APOEε4) were identified as APOEε4
carriers.

11C-Pittsburgh Compound B-PET image acquisition and
preprocessing
All participants underwent simultaneous three-dimensional
11C-Pittsburgh Compound B (PiB)-PET and 3D T1-
weighted MRI scans with a 3.0 T Biograph mMR
(PET-MR) scanner (Siemens) according to the manu-
facturer’s approved guidelines. Prior to the scan, each
participant received an intravenous administration of
555 MBq of PiB (range 450–610 MBq) and then rested
in a waiting room for 40 min.
PiB-PET data collected in list mode were processed

for routine corrections such as uniformity, ultrashort
echo time (UTE)-based attenuation, and decay correc-
tions and were then reconstructed into a 256 × 256
image matrix using iterative methods (six iterations with
21 subsets). T1-weighted images were acquired in the
sagittal orientation using the following characteristics:
repetition time = 1670 ms, echo time = 1.89 ms, field of
view = 250 mm, 256 × 256 matrix, and slice thickness =
1.0 mm. Additionally, fluid-attenuated inversion recov-
ery (FLAIR) and T2-weighted images were obtained for
qualitative clinical readings.
All image preprocessing steps were performed using

Statistical Parametric Mapping 8 (SPM8) implemented
in Matlab 2014a (Mathworks, Natick, MA, USA). Static
PiB-PET images were coregistered to an individual T1
structural image and then the transformation parameters
for the spatial normalization of the individual T1 image
to a standard Montreal Neurological Institute (MNI)
template were calculated. Using IBASPM software, in-
verse transformation parameters were used to bring the
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Automated Anatomical Labeling (AAL) 116 atlas [20] in
a standard space to an individual space for each subject
(resampling voxel size = 1 mm × 0.98 mm × 0.98 mm);
the nongray matter portions of the atlas were individu-
ally masked using the cerebral gray matter segment
image of each subject. Using the individual AAL116
atlas, the mean regional PiB uptake values from cerebral
regions were extracted from the T1-coregistered PiB-
PET images. The cerebellar gray matter was used as the
reference region for the quantitative normalization of
cerebral PiB uptake values due to its relatively low Aβ
deposition [21]. To measure PiB uptake in the cerebellar
gray matter regions, a probabilistic cerebellar atlas (In-
stitute of Cognitive Neuroscience, UCL, UK; Cognitive
Neuroscience Laboratory, Royal Holloway, UK) was
brought into individual space in the same manner as
already described. Of the 28 anatomical structural regions
in the cerebellar atlas, the cerebellar lobular regions (ex-
cept for the vermis) were included to extract the mean
cerebellar uptake values.
The AAL algorithm and a region combining method

[22] were applied to set regions of interest (ROIs) to
characterize PiB retention levels in the frontal, lateral
parietal, precuneus/posterior cingulate cortex (PCC),
and lateral temporal regions, where prominent PiB re-
tention has been reported [23]. Standardized uptake
value ratio (SUVR) values for each ROI were calculated
by dividing the mean value of all voxels within each ROI
by the mean cerebellar uptake value in the same image.
Additionally, a global cortical ROI consisting of the four
ROIs was defined and a global cortical SUVR was gener-
ated by dividing the mean value of all voxels of the global
cortical ROI by the mean cerebellar uptake value in the
same image. Global cerebral Aβ deposition was defined as
the mean PiB retention value of the global cortical ROI.
Images were classified as amyloid-positive if the mean
11C-PiB retention value was over 1.4 in at least one of the
following ROIs: frontal, lateral temporal, lateral parietal, or
posterior cingulate-precuneus (PC-PRC) [22].

FDG-PET image acquisition and preprocessing
The participants also underwent FDG-PET scans using
the same PET-MR machine described earlier. Prior to
the scan, each participant fasted for at least 6 h, received
an intravenous administration of FDG radioligands (0.1
mCi/kg), and then rested in a waiting room for 40 min.
PET data collected in list mode (5 min × four frames) were
processed for routine corrections such as uniformity,
UTE-based attenuation, and decay corrections. Following
an inspection for any significant head movements, the
data were reconstructed into a 20-min summed image
using iterative methods (six iterations with 21 subsets).
The following image processing steps were performed

using SPM12 implemented in Matlab 2014a (Mathworks).

Static FDG-PET images were coregistered to an individual
T1 structural image and then the transformation parame-
ters for the spatial normalization of the individual T1
image to a standard MNI template were calculated for the
utilization of the spatial normalization of FDG-PET im-
ages to a standard MNI space. After smoothing the
spatially normalized FDG-PET images with a 12-mm
Gaussian filter, intensity normalization was performed
using the pons as a reference region. SUVR values were
extracted from regions known to be sensitive to changes
associated with AD [24–26], including the angular gyri,
PCC, precuneus, and inferior temporal gyri. The AD-
signature region CMglu was defined as the weighted mean
of the four ROIs.

Statistical analyses
In order to examine the relationships of serum levels of
thyroid hormones or TSH with cerebral Aβ deposition
or CMglu, we took two steps of statistical analyses. Be-
fore analysis, global cerebral Aβ deposition was natural
log-transformed to reduce the skewness that existed in
the distributions. In the first step, we conducted Pearson
correlation analyses to explore the associations between
hormones and imaging variables including global cerebral
Aβ deposition and AD-signature region CMglu. Based on
the results from preliminary exploratory analyses, variables
with p < 0.1 were selected for the second-step multivariate
analyses. In the second step, we tested the multiple linear
regression model(s) with the hormone selected from the
first step as an independent variable and the correspond-
ing imaging marker as a dependent variable controlling
age, gender, and APOE ε4 genotype as covariates. For glo-
bal cerebral Aβ deposition, we conducted the same regres-
sion analyses controlling VRS as an additional covariate.
For CMglu, we conducted the same regression analyses
controlling global cerebral Aβ deposition or VRS as an
additional covariate. For the second step of the analyses,
we applied strict threshold by applying Bonferroni correc-
tion for multiple testing (p < 0.05/2 (number of associa-
tions selected for the second step of analyses) = 0.025). All
of the statistical tests were conducted using the Statistical
Package for the Social Sciences for Windows version 20.0
(SPSS Inc., Chicago, IL, USA).

Results
Demographic and clinical characteristics
The demographic and clinical characteristics of the
study participants (n = 148) are summarized in Table 1.
The global cerebral Aβ deposition SUVR was 1.16 ± 0.23
(range 0.56–2.54). The proportion of amyloid positive
subjects were 10.8% (n = 16). All participants were clinic-
ally euthyroid but subclinical thyroid problems were found
in 12 individuals (8.1%); of these 12 participants, nine had
high TSH levels and three had low TSH levels.
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Exploratory univariate analyses
In the exploratory step of the analyses using Pearson’s
correlation, we found that the associations between
serum fT4 and global cerebral Aβ deposition, as well
as between TSH and CMglu in the AD-signature re-
gion, are below the threshold (p < 0.1) (Additional file
1: Table S1). Based on the results, we selected these
associations for the second confirmatory step of the
analyses.

Confirmatory multivariate analysis for global cerebral Aβ
deposition
Based on the results from the first step, we selected
serum fT4 as the candidate hormone for further analyses
for global cerebral Aβ deposition. Multiple linear regres-
sion analyses controlling for age, gender, and APOE ε4
carrier status revealed that global cerebral Aβ deposition
had a significant negative association with serum fT4
levels (Table 2, Fig. 1). Serum fT4 explained 3.9% of the
variance of global cerebral Aβ deposition. Controlling
VRS in addition to age, gender, and APOEε4 status did
not largely change the results (Table 2). Similarly, exclud-
ing the participants (n = 5) who took medications with the
potential to affect thyroid function (e.g., synthroid, pro-
pylthiouracil, and methimazole) did not change the results
(Additional file 2: Table S2).
To explore whether or not one particular ROI is driv-

ing the relationship for global cerebral Aβ deposition
and serum fT4, the associations between each regional
cerebral Aβ and serum fT4 were also examined using
multiple regression analysis controlling for age, gender,
and APOEε4 status. Serum fT4 showed significant asso-
ciations with frontal, lateral temporal, and lateral parietal
regional cerebral Aβ deposition and a trend-level associ-
ation with PC-PRC regional cerebral Aβ deposition
(Additional file 3: Table S3), indicating no regional pre-
dominance of the relationship.
Additionally, in order to explore the clinically mean-

ingful serum fT4 level, we divided the fT4 level into four
quartiles and compared the global amyloid deposition
between the quartiles using general linear model ana-
lyses. Although statistically not significant, there was a
trend of negative association between quartiles of serum
fT4 concentrations and mean global cerebral Aβ depos-
ition (Additional file 4: Table S4). Participants with the
lowest quartile of fT4 concentration had a mean SUVR
of 1.199, whereas those in the highest quartile of fT4
concentration had a mean SUVR of 1.117 (Fig. 2).

Confirmatory multivariate analysis for CMglu
Based on the results of univariate analyses, we selected
serum TSH as the candidate hormone for further multi-
variate analysis for CMglu in the AD-signature regions.
However, multiple linear regression analyses controlling

Table 1 Demographic and clinical characteristics

CN (n = 148)

Age (years) 68.93 ± 7.85

Education (years) 11.67 ± 4.85

Gender, female (%) 92 (62.2)

CDR 0

APOE ε4 allele(+) (%) 25 (16.9)

HRSD 0.86 ± 1.60

VRS 1.07 ± 0.92

Neuropsychological testsa

MMSE score 26.94 ± 2.58

Animal fluency 16.22 ± 4.70

Boston naming 12.27 ± 2.37

Word list learning 20.15 ± 4.15

Constructional praxis 10.06 ± 1.37

Word list recall 6.76 ± 1.83

Word list recognition 9.24 ± 1.04

Constructional recall 7.46 ± 2.80

Global amyloid burden (SUVR) 1.16 ± 0.23

Amyloid positivity (%) 16 (10.8)

T3 (mg/dl) 103.84 ± 17.34

Free T3 (pg/ml) 3.11 ± 0.34

Free T4 (ng/dl) 1.17 ± 0.16

TSH (μIU/ml) 2.36 ± 1.57

Data for continuous variables presented as a mean ± SD. Categorical variables
presented as N (%)
APOE apolipoprotein E, CDR Clinical Dementia Rating, CN cognitively normal,
HRSD Hamilton Depression Rating Score, VRS vascular risk score, MMSE
Mini-mental State Examination, SUVR standardized uptake value ratio,
T3 triiodothyronine, T4 thyroxine, TSH thyroid-stimulating hormone
an = 147

Table 2 Multiple linear regression analysis with global cerebral Aβ deposition as the dependent variable (n = 148)

Dependent variable Independent variable Model Ia Model IIb

B SE t p B SE t p

Global cerebral Aβ deposition Serum fT4 level – 0.213 0.088 – 2.407 0.017* – 0.205 0.088 – 2.316 0.022*

Multiple linear regression analysis was conducted to investigate the relationship between serum fT4 level and global cerebral Aβ deposition controlling for several
variables. Global Aβ deposition values were natural log-transformed to normalize variance
Aβ amyloid beta protein, APOE apolipoprotein E, B regression coefficient, SE standard error, fT4 free thyroxine
*p < 0.025 (statistically significant)
aAdjusted for age, gender, and APOE ε4 carrier status
bAdjusted for age, gender, APOE ε4 carrier status, and vascular risk score
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Fig. 1 Partial regression plot showing the relationship between serum fT4 and cerebral Aβ in CN participants. Illustration of the partial regression
model predicting natural log-transformed cerebral Aβ according to serum fT4 values. Control variables included age, gender, and the APOE ε4
genotype. fT4 free thyroxine, Aβ global cerebral amyloid burden, APOE apolipoprotein E, CN cognitively normal

Fig. 2 Global cerebral Aβ deposition according to the quartiles of fT4 levels in the study population. When subjects were divided according to
category of fT4 (quartiles of similar sizes), higher levels of free T4 showed lower global cerebral amyloid deposition. Values presented as mean
and error bars represent standard error. fT4 free thyroxine, Aβ global cerebral amyloid burden
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for age, gender, and APOE ε4 carrier status showed that
serum TSH levels were not related to CMglu in the AD-
signature regions (Table 3). The addition of global cere-
bral Aβ deposition and VRS as covariates did not largely
change the results. Additional exploratory multiple re-
gression analyses for the relationship between serum
TSH and each regional CMglu showed that the serum
TSH level had significant association with CMglu in the
precuneus, but did not have any association with CMglu
of the other regions (Additional file 5: Table S5).

Discussion
The present study examined the relationships between
serum levels of thyroid hormones or TSH and AD-
specific brain biomarkers (i.e., an amyloid biomarker and
a neurodegeneration biomarker) in CN middle-aged and
older individuals with no clinical symptoms of thyroid
disease. Low serum fT4 levels were associated with an
increase in cerebral Aβ deposition, and fT4 explained
3.9% of the variance of global cerebral Aβ deposition.
Although statistically not significant, there was a trend
of negative association between quartiles of serum fT4
concentrations and mean global cerebral Aβ deposition.
Given that the mean global cerebral Aβ deposition level
largely decreased from the second quartile to the third
quartile of the free T4 level (Fig. 2, Additional file 5:
Table S5), individuals with a serum fT4 level < 1.165 ng/
dl (quartile 3) appear relatively more vulnerable to cere-
bral Aβ deposition than those with a higher fT4 level.
To the best of our knowledge, this is the first report to
reveal associations between serum thyroid hormones
and cerebral Aβ burden and AD-specific neurodegenera-
tion in euthyroid CN older individuals.
The mechanisms underlying the relationship between

serum levels of fT4 and cerebral Aβ deposition are not
yet fully understood. Serum fT4 crosses the blood–brain
barrier (BBB) via monocarboxylate transporter 8 (MCT
8) and reaches the astrocytes where it is converted to T3
by type 2 deiodinase (D2) [27]. Brain T3 can suppress
the cerebral gene expression of beta-amyloid precursor
protein (APP) [9]. In the present study, serum fT3 was
not associated with brain amyloid burden, which may

have been due to its small contribution to brain T3. In
the cerebral cortex, active T3 is predominantly derived
from serum T4 rather than serum T3 [28] because serum
T3 seems to be degraded by tyrosyl ring deiodinase before
it reaches the neuronal space [29].
Preclinical studies have found a negative association

between brain T3 and APP expression using a transgenic
mouse model of AD [8, 9, 30], and a human autopsy
study [10] revealed decreases in cerebral T3 levels in
subjects at Braak stages IV–V, which is similar to the
present results. In contrast to the present results, a post-
mortem human study [5] reported that higher serum
levels of total T4 but not fT4 are associated with an in-
crease in neocortical neuritic plaques. Serum levels of
total T4 can be affected by the concentration of thyroid
hormone-binding proteins, which fluctuate due to vari-
ous medical conditions. Moreover, this autopsy study
assessed the brain tissues of AD dementia patients in
which the Aβ deposition may have already been satu-
rated, which would make it difficult to identify an associ-
ation between serum fT4 levels and neocortical amyloid
burden. On the other hand, the present study included
only CN older individuals far from Aβ saturation.
Although serum TSH levels were not significantly

associated with overall metabolism in AD-signature
regions, exploratory analysis indicated that it may be
negatively associated with CMglu in the precuneus,
where AD-related hypometabolism first occurs [27–29].
This is partially consistent with the findings of a previous
study [31] showing that serum TSH levels are negatively
associated with global CMglu in euthyroid mood disorder
patients. The mechanisms linking serum TSH with CMglu
are not well understood. It is possible that serum dyslipid-
emia mediates elevations in TSH and decreases in CMglu
because subclinical hypothyroidism may lead to elevated
serum levels of total cholesterol [32], which are associated
with lower CMglu in various brain regions, including the
precuneus, during late middle age [33].
The present study has several limitations. First, this is

a cross-sectional study and, therefore, it is difficult to
identify causal relationships based on these findings.
Further longitudinal studies are needed to determine the

Table 3 Multiple linear regression analysis with AD-signature CMglu as a dependent variable (n = 148)

Model Ia Model IIb Model IIIc

B SE t p B SE t p B SE t p

AD-signature region CMglu

TSH – 0.011 0.006 – 1.677 0.096 – 0.011 0.006 – 1.667 0.098 – 0.010 0.007 – 1.486 0.139

Multiple linear regression analysis was conducted to investigate the relationship between serum TSH and AD-signature CMglu controlling for several variables
B regression coefficient, SE standard error, CMglu cerebral glucose metabolism, APOE apolipoprotein E, TSH thyroid-stimulating hormone, AD Alzheimer’s disease,
Aβ amyloid beta protein
aAdjusted for age, gender, and APOE ε4 carrier status
bAdjusted for age, gender, APOE ε4 carrier status, and global Aβ retention (natural log-transformed)
cAdjusted for age, gender, APOE ε4 carrier status, global Aβ retention (natural log-transformed), and vascular risk score
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nature of the associations between serum thyroid hor-
mones or TSH and brain amyloid burden. Additionally,
the lack of repeated assessments of thyroid hormone levels
might have resulted in some errors in measurements of
the serum levels because there are diurnal/seasonal varia-
tions in thyroid hormone levels. However, in order to
minimize such errors, thyroid hormones were assessed at
the same time (9–10 a.m.) in all participants.

Conclusions
The present results suggest that, even in a clinical eu-
thyroid state, low serum fT4 and high serum TSH levels
are differentially associated with AD-related brain changes
(i.e., increases in global cerebral amyloid burden and
increases in precuneus hypometabolism, respectively).
Further longitudinal studies are needed to clarify whether
stricter correction of serum thyroid hormone levels will be
helpful for attenuating AD specific brain pathologies.
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