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Abstract 

Background: The cardiovascular benefits of statins have been proven, but their effect on circulation in small vessels 
has not been examined fully. We investigated the effect of 20 mg rosuvastatin on biomarkers, including paraoxo-
nase-1 (PON-1) and asymmetric dimethylarginine (ADMA), and on microvascular reactivity.

Method: We enrolled 20 dyslipidemic patients with type 2 diabetes and 20 age- and body mass index (BMI)-
matched healthy controls. Rosuvastatin (20 mg/day) was given to the patient group for 12 weeks. Biochemical 
parameters, including PON-1 and ADMA, were compared between the patient and control groups, and before and 
after rosuvastatin treatment in the patient group. Fasting and 2 h postprandial levels of PON-1 and ADMA after mixed-
meal challenge were also compared. Microvascular reactivity in a peripheral artery was examined using laser Doppler 
flowmetry.

Results: The respective mean ± standard deviation of age and BMI were 50.1 ± 3.8 year and 25.8 ± 3.7 kg/m2 in the 
patients and 50.2 ± 3.2 year and 25.4 ± 3.4 kg/m2 in the controls. The patient group had worse profiles of cardiometa-
bolic biomarkers, including PON-1 and ADMA, than the controls. In the patients treated with 20 mg rosuvastatin, low-
density lipoprotein (LDL)-cholesterol decreased from 147.2 ± 26.5 to 68.3 ± 24.5 mg/dL and high-density lipoprotein 
(HDL)-cholesterol increased from 42.4 ± 5.2 to 44.7 ± 6.2 mg/dL (both P < 0.05). Both fasting and 2 h postprandial 
levels of PON-1 increased and those of ADMA decreased after treatment with rosuvastatin for 12 weeks. The changes 
in postprandial levels of both biomarkers were greater than those after fasting. Microcirculation assessed as reactive 
hyperemia in the patients after an ischemic challenge increased significantly from 335.3 ± 123.4 to 402.7 ± 133.4% 
after rosuvastatin treatment. The postprandial changes in the biomarkers were significantly associated with improve-
ment of microvascular reactivity.

Conclusions: Rosuvastatin treatment for 12 weeks improved microvascular reactivity with concomitant beneficial 
changes in the postprandial levels of PON-1 and ADMA. These results suggest that rosuvastatin improves the post-
prandial cardiometabolic milieu in type 2 diabetes.
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Introduction
The cardiovascular benefits of statin treatment have been 
proven in patients with type 2 diabetes (T2D) [1]. In the 
Collaborative Atorvastatin Diabetes Study, atorvasta-
tin (10 mg/day) was found to be efficacious in reducing 
the risk of cardiovascular events in patients with T2D, 
even those without high levels of low-density lipoprotein 
(LDL)-cholesterol [2]. In the “Justification for the Use of 
Statins in Prevention: An Intervention Trial Evaluating 
Rosuvastatin” trial, treatment with 20  mg rosuvastatin 
reduced major cardiovascular events in 17,802 healthy 
individuals with relatively low levels of LDL-cholesterol 
for up to 5 years [3].

However, studies that have investigated the effects of 
statins on circulation in small vessels are limited. A recent 
study reported that treatment with 20 mg pravastatin for 
6 months improved fasting and postprandial endothelial 
dysfunction as assessed by forearm blood flow during 
post-ischemic reactive hyperemia in patients with angina 
[4]. In a study of patients undergoing primary coronary 
intervention, treatment of 40 mg atorvastatin before and 
after the procedure reduced circulating levels of endothe-
lin-1, a marker of endothelial dysfunction [5].

Several biomarkers are directly related to endothelial 
function or microcirculation. Among them, asymmetric 
dimethylarginine (ADMA) and paraoxonase-1 (PON-
1) have drawn attention. ADMA is a dimethylarginine 
structurally related to l-arginine. It is considered a key 
regulator of vascular tone because it inhibits the produc-
tion of nitric oxide (NO). A study using metabolomics 
has identified ADMA as a new biomarker of chronic kid-
ney disease [6]. High ADMA level leads to a decrease in 
NO production, indicating its association with endothe-
lial dysfunction [7]. Cross-sectional studies have found 
that ADMA levels are elevated in persons with T2D and 
macrovascular disease [8, 9]. Moreover, ADMA is an 
independent risk factor for cardiovascular disease and 
mortality in a wide spectrum of populations [10, 11].

PON-1 is an enzyme associated with high-density 
lipoprotein (HDL), and several studies have shown that 
PON-1 has antioxidant and antiatherosclerotic effects. 
This enzyme hydrolyzes aromatic carboxylic acid esters, 
organophosphates, and oxidized phospholipids. Thus, 
PON-1 protects against lipid oxidation, leading to a 
decrease in oxidized lipoprotein production [12, 13]. 
Decreased PON-1 activity is associated with acceler-
ated atherosclerosis [14]. A meta-analysis suggested that 

statin therapy is associated with a significant elevation of 
PON-1 activity [15].

Skin microvascular reactivity, as measured noninva-
sively by laser Doppler flowmetry, is a parameter that can 
be used to assess the responsiveness of microcirculation 
to occlusion or temperature [16]. Microvascular reactiv-
ity is attenuated in insulin-resistant conditions, and is 
an independent marker of future cardiovascular events 
in patients with T2D. Therefore, it has been recently 
adopted to assess endothelial function at an early stage 
[17, 18].

Postprandial lipid profiles are thought to be important 
in vascular health. The cardiovascular milieu around the 
vascular endothelium is aggravated particularly after a 
high-fat meal. A recent study showed that a high-fat diet 
increased NO consumption in the circulation [19]. Given 
that the removal of the lipids from the plasma deceler-
ates NO consumption, statin treatment might be able 
to improve an unfavorable endothelial milieu after food 
intake. However, to our knowledge, there is no study that 
has investigated the effect of a statin on postprandial lev-
els of vascular biomarkers such ADMA or PON-1 and 
their association with circulation in small vessels. Given 
that most people spend about half of each day in post-
prandial status, it would be intriguing to know whether 
high-intensity statin treatment may influence microcir-
culation, and, moreover, differently affect levels of bio-
markers in fasting and postprandial status.

The purpose of this study was to investigate the effect 
of rosuvastatin biomarkers related to endothelial func-
tion, focusing on ADMA and PON-1, and microvascular 
reactivity in patients with T2D. We also assessed whether 
changes in fasting and postprandial levels of ADMA or 
PON-1 are associated with microvascular reactivity.

Methods
Patients and design
We recruited 20 patients with T2D and dyslipidemia and 
20 age- and body-mass index (BMI)-matched healthy 
controls. Inclusion criteria for the patients group were 
individual with age ≥ 20 year, T2D with HbA1c ≥ 6.5%, 
LDL-cholesterol level ≥  100  mg/dL, and HDL-choles-
terol level < 40 mg/dL in men and < 50 mg/dL in women. 
Exclusion criteria were contraindications to statins, a sta-
tin medication history within 12  weeks of study enroll-
ment, and aspartate or alanine aminotransferase (AST or 
ALT) levels > 3 times above the upper normal range. For 

Trial registration ClinicalTrials.gov: NCT02185963 (July 7, 2014)
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the healthy control group, individuals who had normal 
glucose and lipid profiles without cardiovascular risk and 
were ± 3 years of the age and ± 2 kg/m2 of the BMI of 
the patient participants were selected.

First, we compared biochemical parameters and micro-
circulation between the patients and healthy controls. 
In addition to lipid and glucose metabolism parameters, 
vascular biomarkers such as ADMA and PON-1 levels 
were measured at fasting and in the 2 h postprandial con-
dition after the mixed-meal challenge in both patients 
and controls. Second, in the patient group, we investi-
gated changes in microcirculation and fasting and post-
prandial levels of ADMA and PON-1 between baseline 
and after 12 weeks of treatment with 20 mg rosuvastatin 
daily.

This study was approved by the Institutional Review 
Board of Seoul National University Bundang Hospi-
tal (SNUBH) (IRB no. B-1403-241-008) and complied 
with the principles of the Declaration of Helsinki and its 
contemporary amendments. This study was registered 
at ClinicalTrials.gov: NCT02185963. All participants 
provided their written informed consent to participate 
before enrollment in this study.

Anthropometric parameters
Height and body weight were measured by standard 
methods with the participants in light clothing. BMI was 
calculated as body weight (in kg) divided by the square of 
the height (in m).

Mixed‑meal test
We used a commercialized formula for the standardized 
meal test (New Care, Daesang, Seoul, South Korea). A 
can of New Care contains 200 kcal, 28 g of carbohydrates, 
8 g of protein, 7 g of fat, and 180 mg of sodium. Detailed 
information of the individual nutrient content is shown 
in Additional file 1: Table S1. Two and a half cans of New 
Care (500  kcal in total) were given to each patient par-
ticipant who had been in a fasting state for 10 h. Blood 
samples were obtained at fasting and 2 h postprandially.

Biochemical parameters
After 10  h of overnight fasting, venous blood sam-
ples were taken for biochemical assays at baseline and 
after rosuvastatin treatment. The serum levels of total 
cholesterol, triglycerides, HDL-cholesterol, and LDL-
cholesterol were measured using a Hitachi 747 Clinical 
Chemistry Analyzer (Hitachi, Tokyo, Japan). Aspartate 
aminotransferase/alanine aminotransferase (AST/ALT) 
and creatinine were measured using an Architect Ci8200 
analyzer (Abbott Laboratories, Abbott Park, IL, USA).

Plasma glucose concentration was measured using 
a glucose oxidase method (747 Clinical Chemistry 

Analyzer; Hitachi). Glycated hemoglobin (HbA1c) levels 
were measured using a Bio-Rad Variant II Turbo HPLC 
Analyzer (Bio-Rad, Hercules, CA, USA) in the National 
Glycohemoglobin Standardization Program level II cer-
tified laboratory at SNUBH. Fasting insulin levels were 
measured by radioimmunoassay (Linco, St. Louis, MO, 
USA). The homeostasis model assessments of insulin 
resistance (HOMA-IR) and β-cell function (HOMA-β) 
were calculated [20]. High-sensitivity C-reactive protein 
(hsCRP) levels were measured with a high-sensitivity 
automated immunoturbidimetric method (CRP II Latex 
3; Denka Seiken, Tokyo, Japan).

Measurement of specific biomarkers related to endothelial 
function
Blood was centrifuged immediately after collection from 
each participant, and the plasma was frozen and stored at 
− 80 °C. The maximal storage time of the plasma samples 
before analysis of biomarkers was 6 months.

PON-1 activity was measured in serum using commer-
cial enzyme-linked immunosorbent assay kits according 
to the manufacturer’s instructions (VersaMax; Molecular 
Devices, Sunnyvale, CA, USA) [21]. The intra- and inte-
rassay coefficients of variation for the assays were 4.2 and 
6.1%, respectively.

Plasma concentrations of ADMA were determined by 
high-performance liquid chromatography/mass spec-
trometry simultaneously with fluorescence detection 
(LC–MS/MS, Agilent Technologies, Santa Clara, CA, 
USA) as previously described [22], using modified chro-
matographic separation conditions [23]. For ADMA, the 
intra- and interassay coefficients of variation were < 2.1 
and < 4.2%, respectively.

Assessment of microvascular reactivity in small vessels
Vascular health was assessed by microcirculation using a 
laser Doppler system in a fasting state in both controls 
and patients, and was repeated after 12 weeks of rosuv-
astatin treatment only in the patient group. To measure 
microvascular flow, a Laser Doppler perfusion monitor 
system (PeriFlux System 5000, Perimed, Stockholm, Swe-
den) was used [18]. This system operates with two laser 
diodes that emit light with a wavelength of 780 nm. The 
Laser Doppler probe was applied at the dorsum of the 
hand, avoiding any underlying bony structures or large 
vessels. Mean blood flow was measured over 1 min while 
patients were resting. Postocclusive reactive hyperemia 
was assessed during the examination by a 5-min occlu-
sion of the upper limb, which was performed using a cuff 
placed on the upper arm. The pressure of the cuff was 
50  mmHg higher than the systolic pressure measured 
on the upper arm. The maximal flow within 5 min after 
release of the cuff was recorded.
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Statistical analysis
Data are given as the mean ±  standard deviation (SD). 
Baseline characteristics were compared between the 
patient and control groups using a Student t or Mann–
Whitney U test. A paired t test or Wilcoxon signed-rank 
test was used to compare various factors before and after 
statin treatment. The Pearson correlation coefficient was 
analyzed to evaluate the association between levels of 
biomarkers and microcirculation. We considered P < 0.05 
to be significant. Statistical analyses were performed 
using SPSS Statistics for Windows (version 20.0, IBM 
Corp, Armonk, NY, USA).

Results
Comparison of biochemical parameters between patients 
with diabetes and healthy controls
Clinical and biochemical characteristics in the 20 dyslipi-
demic patients with T2D and 20 age- and BMI-matched 
healthy controls are presented in Table 1. They were gen-
erally middle aged and moderately overweight. Among 
the patients with T2D, five were managed with lifestyle 
modification alone, eight with metformin alone, and 
seven with metformin plus other hypoglycemic agents.

As expected, the patients had higher fasting levels of 
glucose, insulin, and HbA1c than the controls. Accord-
ingly, HOMA-IR was greater and HOMA-β was lower in 
the patients than in the controls. Patient participants also 
had significantly higher levels of fasting total cholesterol, 
triglycerides, LDL-cholesterol, and hsCRP, and lower 
levels of HDL-cholesterol. Fasting and 2  h postprandial 
levels of ADMA were significantly higher in the patients 
than in the controls. By contrast, fasting and 2  h post-
prandial levels of PON-1 were significantly lower in the 
patients than in the controls. Postocclusive microvascu-
lar reactivity was significantly lower in the patients than 
in the controls (P < 0.05), suggesting altered endothelial 
function.

Changes in biochemical parameters, including ADMA 
and PON‑1, and microcirculation after rosuvastatin 
treatment
All 20 study participants completed 12  weeks of treat-
ment with rosuvastatin. As shown in Table 2, BMI, gly-
cemic indices, HOMA-IR, and HOMA-β did not change 
after 12 weeks of treatment with 20 mg rosuvastatin. Total 
cholesterol, triglycerides, and LDL-cholesterol levels 
decreased significantly, while HDL-cholesterol increased 
significantly in response to rosuvastatin treatment. Cir-
culating concentrations of hsCRP also decreased sig-
nificantly after rosuvastatin treatment. The degree of 
postocclusive reactive hyperemia increased by 20.1% 
(from 335.3  ±  123.4 to 402.7  ±  133.4%) after same 

duration of treatment (Table  2), suggesting altered 
microcirculation.

Fasting ADMA levels decreased by 3.87% and fasting 
PON-1 levels increased by 5.88% after treatment with 
rosuvastatin for 12  weeks (P  =  0.040 and P  =  0.066, 
respectively). Levels of ADMA 2  h postprandially 
decreased by 8.58% and those of PON-1 increased by 
17.92% (both P < 0.01). Thus, the changes in fasting levels 
of both markers were modest compared with the changes 
in 2 h postprandial levels.

Table 1 Baseline characteristics of  patients with  type 2 
diabetes and dyslipidemia and the healthy controls

DM diabetes mellitus, BMI body mass index, MMT mixed-meal test, HDL high-
density lipoprotein, LDL low-density lipoprotein, HOMA-IR homeostasis model 
assessment of insulin resistance, HOMA-β homeostasis model assessment of 
β-cell function, AST aspartate aminotransferase, ALT alanine aminotransferase, 
hsCRP high sensitivity C-reactive protein, PON-1 paraoxonase 1, ADMA 
asymmetric dimethylarginine
a Log-transformed value was used for analysis

DM patients Healthy controls P

Age (year) 52.3 ± 9.9 52.0 ± 7.7 NS

Height (cm) 164.2 ± 9.4 165.4 ± 9.6 NS

Weight (kg) 66.8 ± 12.4 66.7 ± 11.0 NS

BMI (kg/m2) 24.6 ± 2.8 24.2 ± 1.9 NS

Total cholesterol (mg/dL) 233.4 ± 36.5 183.8 ± 20.4 < 0.001

Triglycerides (mg/dL) 230.5 ± 95.8 110.7 ± 48.6 < 0.001

Triglycerides at 2 h during 
MMT (mg/dL)

298.6 ± 128.4 132.1 ± 54.2 < 0.001

HDL-cholesterol (mg/dL) 42.4 ± 5.2 58.2 ± 13.1 < 0.001

LDL-cholesterol (mg/dL) 147.2 ± 26.5 96.2 ± 19.2 < 0.001

Fasting plasma glucose 
(mg/dL)

173.8 ± 63.9 92.0 ± 7.6 < 0.001

Postprandial 2 h glucose 
(mg/dL)

282.0 ± 97.1 103.2 ± 19.9 < 0.001

HbA1c (%) 8.3 ± 2.0 5.3 ± 0.2 < 0.001

Fasting plasma insulin 
(μIU/L)

10.3 ± 4.9 8.2 ± 3.0 0.097

HOMA-IR 4.3 ± 2.2 1.9 ± 0.7 < 0.001

HOMA-β 44.8 ± 27.4 104.0 ± 36.9 < 0.001

AST (IU/mL) 25.3 ± 11.1 25.9 ± 22.2 0.915

ALT (IU/mL) 32.3 ± 22.4 19.4 ± 11.9 0.029

Creatinine (mg/mL) 0.81 ± 0.18 0.78 ± 0.15 0.489

hsCRP (mg/dL)a 0.47 ± 1.40 0.07 ± 0.06 0.003

ADMA (mmol/L) 432.0 ± 48.7 374.5 ± 63.3 0.003

ADMA at 2 h during MMT 
(mmol/L)

458.3 ± 42.2 383.5 ± 63.4 < 0.001

PON-1 (μg/mL) 11.9 ± 2.2 13.5 ± 2.9 0.048

PON-1 at 2 h during MMT 
(μg/mL)

10.6 ± 1.4 13.8 ± 4.3 0.003

Microvascular reactivity using laser Doppler flowmetry

 Increase after ischemic 
challenge (%)

335.3 ± 123.4 579.3 ± 261.3 0.001
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As shown in Fig.  1, the decrement in postprandial 
ADMA levels was significantly greater than the decre-
ment in fasting ADMA levels (P = 0.025). The increment 
in postprandial PON-1 levels was significantly greater 
than the increment in fasting PON-1 levels (P = 0.041).

Correlations between changes in ADMA or PON-1 
and changes in microvascular reactivity were analyzed 
to determine whether they were directly associated. As 
shown in Fig. 2b, d, the changes in 2 h postprandial levels 
of ADMA and PON-1 after a mixed-meal test were cor-
related with changes in microvascular reactivity signifi-
cantly. By contrast, there was no significant correlation 
between changes in fasting levels of ADMA or PON-1 
and changes in microvascular reactivity (Fig. 2a, c).

Discussion
In the present study, circulating levels of ADMA and 
hsCRP were significantly higher and levels of PON-1 
were significantly lower in the patients than in the age- 
and BMI-matched healthy controls. In the intervention 
study, treatment with 20  mg rosuvastatin for 12  weeks 
improved postocclusive microvascular reactivity in 
the upper extremities, and increased PON-1 levels and 
decreased ADMA levels both under fasting conditions 
and 2  h postprandially. In particularly, changes in post-
prandial levels of PON-1 and ADMA after rosuvastatin 
treatment were significantly associated with improve-
ment in microvascular reactivity.

Endothelial function impairment is considered a patho-
physiological starting point in the initiation and progres-
sion of atherosclerotic vascular diseases [24]. Commonly, 
endothelial dysfunction is caused by endothelial damage 
and leads to subsequent events such as vascular stenosis, 

Table 2 Changes in biochemical parameters and microcir-
culation from  baseline to  12  weeks after  the administra-
tion of  rosuvastatin (20  mg daily) in  patients with  type 2 
diabetes and dyslipidemia

MMT mixed-meal test, PON-1 paraoxonase 1, ADMA asymmetric 
dimethylarginine

Parameters Baseline At 12 weeks P

BMI (kg/m2) 24.6 ± 2.8 24.8 ± 2.7 0.114

Total cholesterol (mg/dL) 233.4 ± 36.5 132.7 ± 28.7 < 0.001

Triglycerides (mg/dL) 230.5 ± 95.8 151.1 ± 69.6 0.002

Triglycerides at 2 h during MMT 
(mg/dL)

298.6 ± 128.4 186.3 ± 78.0 < 0.001

HDL-cholesterol (mg/dL) 42.4 ± 5.2 44.7 ± 6.2 0.041

LDL-cholesterol (mg/dL) 147.2 ± 26.5 68.3 ± 24.5 < 0.001

Fasting plasma glucose (mg/dL) 173.8 ± 63.9 152.4 ± 60.9 0.081

Postprandial 2 h glucose (mg/
dL)

282.0 ± 97.1 264.2 ± 102.7 0.489

HbA1c (%) 8.3 ± 2.0 8.0 ± 1.8 0.559

Fasting plasma insulin (μIU/L) 10.3 ± 4.9 14.1 ± 17.4 0.282

HOMA-IR 4.3 ± 2.2 5.1 ± 5.9 0.486

HOMA-β 44.8 ± 27.4 80.0 ± 98.6 0.110

AST (IU/mL) 25.3 ± 11.1 30.8 ± 19.1 0.100

ALT (IU/mL) 32.3 ± 22.4 35.8 ± 21.7 0.348

Creatinine (mg/mL) 0.81 ± 0.18 0.80 ± 0.10 0.713

hsCRP (mg/dL)b 0.47 ± 1.40 0.10 ± 0.09 0.014

ADMA (mmol/L) 432.0 ± 48.7 415.3 ± 51.6 0.040

ADMA at 2 h during MMT 
(mmol/L)

458.3 ± 42.2 419.0 ± 49.4 < 0.001

PON-1 (μg/mL) 11.9 ± 2.2 12.6 ± 2.5 0.066

PON-1 at 2 h during MMT (μg/
mL)

10.6 ± 1.4 12.5 ± 2.2 0.001

Microvascular reactivity using laser Doppler flowmetry

 Increase after ischemic chal-
lenge (%)

335.3 ± 123.4 402.7 ± 133.4 0.006

Fig. 1 Comparison of changes in ADMA and PON-1 levels under fasting conditions and 2 h postprandially (PP2) during a mixed-meal test at 
baseline and after 12 weeks of treatment with 20 mg rosuvastatin. *P indicates a comparison of changes in fasting levels and 2 h postprandial levels 
using an independent t test. ADMA asymmetric dimethylarginine, PON-1 Paraoxonase-1
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platelet aggregation, inflammation, and oxidative stress. 
Ultimately, this series of processes leads to the rupture 
of atheromatous plaques, resulting in an acute coronary 
syndrome [25].

Unfortunately, it is difficult to assess endothelial func-
tion at an early stage in  vivo, despite much effort to do 
so. Flow-mediated dilation is used for this purpose, but 
it is somewhat examiner-dependent and not always avail-
able. In our study, we assessed postocclusive microvas-
cular reactivity to detect early endothelial dysfunction 
using laser Doppler flowmetry. Microvascular reactivity 
was used as an early marker of endothelial dysfunction in 
women with gestational diabetes [17]. Microvascular cir-
culatory function was assessed using laser Doppler flow-
metry in patients with T2D [26].

Among the many biomarkers related to vascular health, 
ADMA and PON-1 reflect endothelial dysfunction and 
are known as early markers for cardiovascular events. 
High ADMA levels are associated with increases in car-
diovascular events such as myocardial infarction, percu-
taneous coronary intervention, coronary-artery bypass 

graft, stroke, and carotid revascularization in patients 
with T2D [27]. Elevated levels of ADMA are indepen-
dently associated with an increased risk of poor cardio-
vascular outcomes in T2D patients with coronary artery 
disease (CAD) [28]. Thus, clinical studies have proven a 
significant association between high ADMA levels and 
worse cardiovascular outcomes. A recent study reported 
that the circulating levels of ADMA were not altered 
after 12 weeks of treatment with trelagliptin, a dipeptidyl 
peptidase-4 inhibitor [29]. Additional studies are needed 
to corroborate the clinical value of ADMA as a cardio-
vascular biomarker.

The evidence on the effects of statin treatment on 
ADMA levels is inconsistent. A meta-analysis reported 
that hydrophilic statins such as rosuvastatin, pravasta-
tin, and fluvastatin decrease ADMA levels, while hydro-
phobic statins such as atorvastatin or simvastatin do not 
alter ADMA levels [30]. However, there is no study that 
has investigated whether changes in ADMA levels after 
statin treatment are associated with an improvement in 
microcirculation.

Fig. 2 Correlation between changes in fasting and 2 h postprandial (PP2) levels of ADMA (a, b) and PON-1 (c, d) during a mixed-meal test, and 
changes in microvascular reactivity (microcirculation). ADMA asymmetric dimethylarginine, PON-1 Paraoxonase-1
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In the present study, ADMA levels decreased after 
treatment with 20  mg rosuvastatin, and the decrement 
in ADMA levels during a mixed-meal test was associated 
with improved microvascular reactivity. Two potential 
mechanisms underlying this finding can be suggested. 
First, statins upregulate both proprotein convertase sub-
tilisin/kexin type 9 mRNA levels and LDL receptor pro-
tein via activation of sterol-regulatory-element-binding 
protein-2, an important activator of dimethylarginine 
dimethylaminohydrolase (DDAH) transcription and 
activity [31]. Second, statins inhibit ADMA-induced 
inflammation, which is modulated by a mitogen-acti-
vated protein kinase (MAPK) pathway in endothelial 
cells [32]. Rosuvastatin preserves endothelial function 
through stimulation of vascular endothelial NO [33]. 
Taken together, these studies suggest that statin therapy 
might decrease ADMA levels through decreasing inflam-
mation aggravated by MAPK pathways and/or activa-
tion of decreased activity of DDAH, which is linked to 
endothelial dysfunction.

PON-1 has drawn attention because of its associa-
tion with cardiovascular and metabolic disorders [14]. 
A case–control study suggests that lower PON-1 activity 
and higher oxidized LDL levels are independently asso-
ciated with CAD [34]. PON-1 activity is associated with 
HDL function, such as diminishing malondialdehyde 
formation [35]. Moreover, PON-1 inactivation leads to 
greater activation of protein kinase C-β, which is closely 
linked to endothelial dysfunction [36], and decreased 
phosphorylation of eNOS-Ser1177. This process blunts 
NO production, aggravates monocyte–endothelial 
cell adhesion, and impairs the endothelial repair sys-
tem. These findings suggest a potential mechanistic link 
between decreased PON-1 activity and endothelial func-
tion. Furthermore, HDL fails to stimulate NO produc-
tion or to antagonize endothelial inflammatory activation 
from Pon1−/− mice [35]. These findings indicate that 
PON-1 has an important impact on endothelial function, 
which is consistent with the results of our present study 
and those of others [37].

In addition to their lipid-lowering effect, several other 
mechanisms could be inferred to explain the improve-
ment in microvascular function observed after treatment 
with statins, particularly rosuvastatin. Improvement in 
endothelial function after rosuvastatin treatment has 
been demonstrated in studies performed in animals and 
patients with heart failure [38, 39]. In an in  vitro study, 
rosuvastatin treatment also suppressed the expression 
of the alkaline phosphatase mRNA, a proposed mecha-
nism for vascular calcification [40], leading to impaired 
vascular reactivity. Alleviation in inflammatory processes 
by statin treatment was proven in cell studies [41, 42]. 

Decrease in inflammatory markers by rosuvastatin treat-
ment was also found in clinical studies [43, 44], and was 
associated with mitigation of the progression of athero-
sclerosis and reduction of cardiovascular events. In most 
cases, these changes were not associated directly with 
changes in lipid levels, which indicates that rosuvastatin 
has multifactorial effects on vascular function beyond its 
direct lipid-lowering action. Along these lines, the serum 
levels of ADMA, a novel biomarker reflecting endothelial 
dysfunction, and PON-1, a specific enzyme with antioxi-
dant and antiatherosclerotic properties, were modulated 
in a positive direction by rosuvastatin treatment, espe-
cially after fat loading, in the present study (Fig. 2). These 
findings support the potential favorable effect of rosuvas-
tatin on microvascular reactivity beyond its lipid-lower-
ing effect.

Postprandial hyperlipidemia triggers the proatheroscle-
rotic processes of endothelial cells and is more closely 
related to early endothelial dysfunction than are fast-
ing levels [45]. In subjects with T2D, such postprandial 
hyperlipidemia is prominent, long lasting, and finally 
contributes to increased risks of atherosclerotic disease. 
The therapeutic roles of lipid-lowering agents, including 
statins and ezetimibe, which lower lipid levels and inhibit 
the inflammatory process, have been proven to be supe-
rior regarding postprandial status [46, 47]. Consistently, 
the effects of rosuvastatin in improving atherosclerotic 
biomarkers are stronger in postprandial conditions, and 
were closely correlated with the improvement of micro-
vascular reactivity in the present study.

Our present study has several limitations. First, our 
study population comprised only a small number of rela-
tively healthy patients with T2D and dyslipidemia. Sec-
ond, the duration of treatment was short, so long-term 
effects could not be evaluated. Third, antidiabetic treat-
ments in the present study were diverse, including drug-
naïve, treatment with metformin, or a combination of 
metformin with sulfonylurea; this may affect ADMA or 
PON-1 levels. Nevertheless, these treatments were main-
tained throughout the study period.

Our present study also has several advantages. First, 
we assessed circulation in small vessels using laser Dop-
pler flowmetry, which has been validated for assessing 
endothelial dysfunction [17, 18]. Second, a standard-
ized mixed-meal was given to the study participants to 
measure postprandial levels of PON-1 and ADMA in a 
standardized fashion. The changes in postprandial levels 
of PON-1 and ADMA were associated with microcircu-
lation in small vessels after rosuvastatin treatment.

In the present study, treatment with 20 mg rosuvasta-
tin decreased hsCRP levels, which is consistent with the 
results of other studies [3]. HsCRP reflects low-grade 
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inflammation and has links to future cardiovascular 
events through having a deleterious effect on endothelial 
integrity [48].

In conclusion, treatment with 20  mg rosuvastatin 
improved microvascular reactivity in patients who had 
both diabetes and dyslipidemia. The favorable changes 
observed in the levels of biomarkers, i.e., increased 
PON-1 and decreased ADMA levels, which are related 
to endothelial function, were significantly associated with 
an improvement in microvascular reactivity. Our present 
findings suggest that, in addition to the lipid-lowering 
effects of rosuvastatin treatment, improved circulation in 
small vessels may contribute to its positive outcomes on 
cardiovascular morbidity and mortality.
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