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Abstract

Background: MYO15A variants, except those in the N-terminal domain, have been shown to be associated with
congenital or pre-lingual severe-to-profound hearing loss (DFNB3), which ultimately requires cochlear implantation
in early childhood. Recently, such variants have also been shown to possibly cause moderate-to-severe hearing loss.
Herein, we also demonstrate that some MYO15A mutant alleles can cause postlingual onset of progressive
partial deafness.

Methods: Two multiplex Korean families (SB246 and SB224), manifesting postlingual, progressive, partial
deafness in an autosomal recessive fashion, were recruited. Molecular genetics testing was performed in two
different pipelines, in a parallel fashion, for the SB246 family: targeted exome sequencing (TES) of 129 known
deafness genes from the proband and whole exome sequencing (WES) of all affected subjects. Only the
former pipeline was performed for the SB224 family. Rigorous bioinformatics analyses encompassing structural
variations were executed to investigate any causative variants.

Results: In the SB246 family, two different molecular diagnostic pipelines provided exactly the same candidate
variants: c.5504G > A (p.R1835H) in the motor domain and c.10245_10247delCTC (p.S3417del) in the FERM domain of
MYO15A. In the SB224 family, c.9790C > T (p.Q3264X) and c.10263C > G (p.I3421M) in the FERM domain were detected
as candidate variants.

Conclusions: Some recessive MYO15A variants can cause postlingual onset of progressive partial deafness. The
phenotypic spectrum of DFNB3 should be extended to include such partial deafness. The mechanism for a milder
phenotype could be due to the milder pathogenic potential from hypomorphic alleles of MYO15A or the presence of
modifier genes. This merits further investigation.
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Background
MYO15A, a causative gene of DFNB3 (OMIM 600316)
[1], is a frequently detected deafness gene. Friedman et
al., in Bali, first reported that the frequency of autosomal
recessive hearing loss caused by the MYO15A patho-
genic variant was about 2% [2]. Thereafter, the fre-
quency of MYO15A pathogenic variant was reported
in up to 9.9% of deafness cases in Turkey [3]. In our
previous study, MYO15A pathogenic variant was re-
ported at a frequency of 2.1% in nonsyndromic auto-
somal recessive deafness, which was the fourth most
common deafness gene in Korea, following SLC26A4,
GJB2 and CDH23 [4]. Sequentially, several studies
have been performed to investigate the effects of
MYO15A pathogenic variants on hearing loss [5–9].
The role of myosin XVA, which is encoded by

MYO15A, includes the graded elongation and mainten-
ance of stereocilia and actin-organization in the inner
ear hair cells. These are both essential for normal
auditory function. Therefore, MYO15A pathogenic
variants were initially thought to induce congenital
severe-to-profound hearing loss [1, 10–15]. However,
it was later discovered that the phenotypes of
MYO15A pathogenic variants varied depending on the
affected domain. The variation of phenotypes accord-
ing to the affected domain has been explained by the
existence of two isoforms – a class 1 isoform with the
N-terminal domain, which is encoded by exon 2, and a
class 2 isoform with no N-terminal domain [16, 17].
The pathogenic variant in N-terminal domain affects
only the class 1 isoform without affecting the class 2
isoform [18]. The class 2 isoform is present in the
human inner ear [17]. Therefore, pathogenic variants
in the N-terminal domain are known to cause minor
deficiencies in the inner ear, resulting in amilder auditory
phenotype, when compared with other pathogenic vari-
ants in MYO15A [5–7]. Conversely, MYO15A pathogenic
variants that reside in the regions shared by both isoforms
are known to cause congenital or prelingual severe-to-
profound hearing loss [7].
Recently, Naz et al. reported that MYO15A patho-

genic variants, which had previously been thought to
only cause profound hearing loss, may cause moderate-
to-severe hearing loss [9]. We also found two families
with MYO15A pathogenic variants in the motor and
FERM domains, which were expected to cause pro-
found hearing loss. They showed postlingual onset of
bilateral symmetrical, partial deafness with significant
residual hearing at low frequencies. Based on these re-
sults, we suggest that MYO15A may be a causative gene
responsible for the postlingual onset of progressive par-
tial deafness, which in turn requires the expansion of
the phenotypic spectrum of MYO15A pathogenic
variants.

Methods
Human subjects
All procedures in this study were approved by the
Institutional Review Boards of Seoul National University
Hospital (IRBY-H-0905-041-281) and Institutional Review
Boards of Seoul National University Bundang Hospital
(IRB-B-1007-105-402). Written informed consent was ob-
tained from all participants. Two multiplex Korean
families (SB246 and SB224), with the segregation of post-
lingual, bilaterally symmetrical, partial hearing loss in an
autosomal recessive fashion, were included in this
study. The first family (SB246) was comprised of five
individuals, three of whom participated in the study;
the second family (SB224) was comprised of four indi-
viduals, all of whom participated. Two generations were
included in each family (Fig. 1). Phenotypic evaluations
included medical and developmental history interviews,
physical examinations, and audiometric evaluation.

Audiometric evaluation
Pure-tone audiometry was performed on SB246–482,
483, and 484 as well as on SB224–437, in accordance
with the standard protocols. The air and bone con-
duction thresholds were obtained at frequencies of
250–8000 Hz. The hearing loss range was divided
into three parts: low frequency, 250–500 Hz; mid fre-
quency, 1–2 kHz; and high frequency, 4–8 kHz [19].
The mean levels of hearing loss for all frequencies as well
as low, mid, and high frequencies were calculated.

Molecular genetic test
In the SB246 family, molecular genetic testing was per-
formed in two different pipelines, in a parallel fashion.
The first pipeline was targeted exome sequencing (TES)
of 129 known deafness genes from the proband, followed
by a segregation study using Sanger sequencing; the sec-
ond pipeline was whole exome sequencing (WES) in the
three affected subjects. In the SB224 family, TES of 129
known deafness genes was performed from the proband,
followed by a segregation study using Sanger
sequencing.

Targeted exome sequencing
TES and bioinformatics analyses were performed, as
previously described [20–25]. The DNA samples from
SB246–482 and SB224–437 underwent TES of 129 known
deafness genes (TRS-129) by Otogenetics (Norcross, GA,
USA) (Additional file 1: Table S1). The acquired reads
were mapped onto the UCSC hg19 reference genome as-
sembly, using Lasergene 14 software package (DNASTAR,
Madison, WI, USA) (Additional file 2: Table S2). Further
bioinformatics analyses were performed to identify all var-
iants. As a basic filtering step, non-synonymous single nu-
cleotide polymorphisms (SNPs) with read depths ≥20
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were chosen. The known disease-causing SNPs or SNPs
with global minor allele frequency (MAF) ≤ 0.002 were
chosen. Global MAF was checked using several databases,
including 1000 Genomes, Exome Aggregation Consor-
tium (ExAC), and NHLBI Grand Opportunity Exome
Sequencing Project (GO-ESP). These non-synonymous
SNPs were compared against the Korean Reference
Genome Database (KRGDB), that consists of 622 Ko-
rean individuals (1,244alleles) (http://152.99.75.168/
KRGDB/menuPages/firstInfo.jsp). SNPs with allele fre-
quency < 0.005 were chosen. Inheritance patterns were
checked and SNPs that did not coincide with the auto-
somal recessive pattern were excluded. To predict the
pathogenicity of each variant, SIFT, PolyPhen-2 analyses,
and Pathogenic variantTaster were performed. Pathogenic
variants are described in the context of the American Col-
lege of Medical Genetics and Genomics (ACMG) 2015
guidelines [26]. The evolutionary conservation of the
amino acid sequence was estimated using the GERP++
score in the UCSC Genome Browser (http://geno-
me.ucsc.edu/). The variants that were predicted as be-
nign by silico prediction were excluded. The remaining
SNPs were validated in other family members (SB246–
483, 484, 485 and 486 and SB224–592, 593 and 594) by
Sanger sequencing.

Whole exome sequencing
DNA samples from SB246–482, 483, and 484 were sub-
jected to WES by Macrogen (Seoul, South Korea)

(Additional file 3: Table S3). First, we filtered out the vari-
ants in non-coding regions, as well as synonymous vari-
ants in coding regions. Second, the variants with MAF <
1% were selected based on Exome Sequencing Project
6500 (ESP6500), 1000 Genomes Project (1000G), ExAC,
and our in-house database containing the exomes of
192 Korean individuals. Third, following the inheritance
pattern, homozygous variants and compound heterozy-
gote variants with enough read depths (> 10×) and a
genotype quality (> 20) were selected. Finally, to ex-
clude the variants without clinical significance, flagged
SNPs based on dbSNP ID (dbSNP 147) were selected.
The relation of selected genes with diseases or func-
tions was identified through previous studies. The vari-
ants related to hearing loss were selected. Moreover,
rigorous bioinformatics analyses encompassing the struc-
tural variations were performed to investigate the causa-
tive variants. Copy number variations (CNV) were
calculated by EXCAVATOR2 [27] with 20 k window size;
the pooling mode and in-house CNV tool were used to es-
timate the log2 normalized depth ratio of each targeted
region. Finally, we selected CNVs containing hearing loss
gene or locus.

Results
Auditory phenotype
Pure-tone audiograms for the affected individuals are
presented at Fig. 1. SB246–482 and SB224–437 showed
bilateral, severe, and symmetrical sensorineural hearing

Fig. 1 Pedigree and pure-tone audiograms of family SB246 (a) and 224 (b). SB246–482 and SB224–437 showed bilateral, severe, and symmetrical
SNHL. SB246–483 and 484 showed bilateral, moderate, and symmetrical SNHL. In all subjects, hearing at low frequencies was significantly preserved.
SB224–437 had cochlear implantation at the age of 20. During the operation, insertion of Med-El device, Flex 24 (Angular insertion depth [28] of 393°) into
the cochlea was performed, and residual hearing of low frequencies was substantially preserved. *, subjects who underwent targeted exome sequencing
of 129 known deafness genes and whole exome sequencing; †, subjects who underwent targeted exome sequencing of 129 known deafness
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loss (SNHL). SB224–437 showed a positive stapedial re-
flex at the time of toddler, suggesting that the subject
did not have severe SNHL at that time (data not
shown). Due to the progression of SNHL into a severe
degree, especially in mid-to-high frequencies, SB224–
437 underwent cochlear implantation in his/her twen-
ties. During the operation, an insertion of Med-El de-
vice, Flex 24 (Angular insertion depth [28] of 393°)
rather than Flex 28 into the cochlea, was performed,
aiming to preserve low frequency hearing. Conse-
quently, residual hearing of low frequencies was pre-
served substantially (Fig. 1b). Pure-tone audiometry
was not performed for SB224–592 at our hospital.
However, the pure-tone audiogram from another hos-
pital showed that SB224–592’s hearing thresholds were
75 dB HL on both sides, and SB224–592 used bilateral
hearing aids.

Interestingly, SB246–483 and 484 showed bilateral
partial deafness, characterized by normal thresholds in
low frequencies, but with severe SNHL in high frequen-
cies. In SB246–482 and SB224–437, the mean threshold
level for high frequencies was the highest, followed by
mid and low frequencies. In all subjects, hearing at low
frequencies was significantly preserved.

Targeted exome sequencing
TES was performed in SB246–482 and SB224–437. The
reads were aligned to the human reference genome
(GRCh37/hg19), using SeqMan NGen, and the targeted
variants were analyzed using ArrayStar software (version
14.1.0; DNASTAR, WI, USA). Bioinformatics analyses
were performed (Fig. 2a). After the basic filtering step,
eight and six variants were selected as candidate patho-
genic variants for SB246–482 and SB224–437, respectively.

Fig. 2 Schematic flowchart of filtering of causative variants in this study. a Targeted exome sequencing. b Whole exome sequencing. AR, autosomal
recessive; AD, autosomal dominant
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As the inheritance pattern was autosomal recessive,
variants that did not follow an autosomal recessive inherit-
ance pattern were excluded. Through in silico prediction,
a benign variant was excluded. Lastly, candidate variants
were validated using Sanger sequencing in parents
(SB246–485 and 486) and siblings (SB246–483 and 484)
of SB246–482, as well as in parents (SB224–593 and 594)
and sibling (SB224–592) of SB224–437. Only two candi-
date variants from a single gene, MYO15A, survived the
filtering steps in each family (Fig. 2a). In the SB246 family,
c.5504G >A (p.R1835H) and a single aminoacid deletion,
c.10245_10247delCTC (p.S3417del), remained after the
final filtering step (Table 1 and Fig. 3). The parents
(SB246–485 and 486) of SB246–482 were heterozygous
for c.5504G >A (p.R1835H) and c.10245_10247delCTC
(p.S3417del), respectively (Fig. 4a). Moreover, p.R1835
and p.S3417 were well-conserved in several species,
and in silico prediction supported the pathogenicity of
these variants. In the SB224 family, a nonsense vari-
ant, c.9790C > T (p.Q3264X), and a missense variant,
c.10263C > G (p.I3421M), remained (Table 1). The
parents (SB224–593 and 594) of SB224–437 were het-
erozygous for c.9790C > T (p.Q3264X) and c.10263C >G
(p.I3421M), respectively (Fig. 4b). Furthermore, p.Q3264
and p.I3421 were well-conserved in several species, and in
silico prediction supported the pathogenicity of these
variants.

Whole exome sequencing
Independently of molecular genetic testing using TES,
WES of genomic DNA from three affected subjects
(SB246–482, 483 and 484) in the SB246 family was per-
formed in a parallel fashion. Following the basic filtering
step, 1188 variants from 895 genes were selected as
candidate pathogenic variants (Fig. 2b). The inheritance
pattern was regarded as autosomal recessive, and vari-
ants that did not fit for this inheritance pattern were
excluded. After excluding the variants without clinical
significance, seven variants from five genes remained
(Fig. 2b and Table 2). Among the five genes, only
MYO15A was related to hearing loss (Table 2). Two candi-
date variants, c.5504G >A and c.10245_10247delCTC
from a single gene, MYO15A, remained. In addition, a
large heterozygous genomic deletion involving STRC was
detected from SB246–482; however, it did not segregate
among the other two affected subjects. In the evaluation
of CNV, one copy number alteration residing in STRC and
CATSPER2, which are both known hearing loss genes,
was detected by both EXCAVATOR2 and in-house CNV
tool from only SB246–482 (Fig. 5a, b). The deletion of
STRC and CATSPER2 of SB246-482, if in a homozygous
form, could be pathogenic, leading to dieafness-infertility
syndrome.

Discussion
Although TES of 129 genes in the deafness panel is an
efficient and convenient tool for detecting known causa-
tive variants, pathogenic variants from a novel deafness
gene may not be detected using only TES. To explore
and minimize such a possibility, we performed genetic
testing via two diagnostic pipelines, TES and WES, in a
parallel fashion for the SB246 family. Filtering of candi-
date variants through these two pipelines indicated the
same result, strongly supporting our molecular diagno-
sis. Moreover, certain genes, such as OTOF and STRC,
have been reported not to be fully covered by next gen-
eration sequencing [29, 30]. To overcome this, we modi-
fied the mapping quality of bioinformatics analysis.
Furthermore, we excluded the possibility of structural
variations involving STRC and CATSPER2, which was re-
ported to be an important molecular etiology of SNHL in
Japan [30]. In the SB224 family, two variants, c.9790C > T
(p.Q3264X) and c.10263C >G (p.I3421M), of MYO15A
survived at the final filtering step of TES analyses;
c.9790C > T was a nonsense variant causing truncation of
the protein, and c.10263C > G has already been re-
ported to be pathogenic. Therefore, it is most likely that
hearing loss from SB224–437 was attributed to these
two MYO15A variants. Sequentially, WES was not per-
formed in SB224.
The conservation and pathogenicity prediction study

also strengthened our hypothesis that MYO15A patho-
genic variants, c.5504G > A (p.R1835H) and c.10245_
10247delCTC (p.S3417del), in the SB246 family and
c.9790C > T (p.Q3264X) and c.10263C >G (p.I3421M), in
the SB224 family were the causative pathogenic variants
of hearing loss. Among the four MYO15A pathogenic var-
iants discovered here, c.5504G > A and c.9790C > T were
novel variants; c.9790C > T was a nonsense pathogenic
variant, and c.5504G > A resided in the motor domain.
The motor domain is one of the most important domains
in myosin XVA. Sequentially, it is reasonable to infer that
variants in the motor domain may lead to profound
hearing loss. c.10245_10247delCTC and c.10263C >G
resided in the FERM domain; they have already been re-
ported to cause congenital profound hearing loss [31–33].
Therefore, four variants detected in this study were ex-
pected to cause profound hearing loss; however, they were
associated with partial deafness with significant residual or
even near-normal hearing at low frequencies.
The establishment of genotype-phenotype correlation

is one of the fundament goals of genetics, as it enables
personalized and timely management of diseases, leading
to great contribution to precision medicine. Personalized
and timely auditory rehabilitation is crucial in hearing
loss because there is a critical time window for auditory
development and degeneration. Therefore, an establish-
ment of genotype-phenotype correlation is a meaningful
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issue in hearing loss. Sequentially, genotype-phenotype
correlations of several genes and their pathogenic vari-
ants have been investigated widely. However, genotype-
phenotype correlations have generally been based on the
observation of phenotypes, rather than prudent analysis
of pathogenic mechanism. Previously established genotype-
phenotype correlations could be modified. Recently, several
genes, including MYO15A, CDH23, and PTPRQ, have been
reported to cause different types of hearing loss from those
previously postulated in the literature [9, 31].
MYO15A is one of the genes with a well-documented

genotype-phenotype correlation. It has been reported

that hearing loss phenotype related to MYO15A is different
according to the affected domain. Specifically, pathogenic
variants in the N-terminal domain of MYO15A have been
suggested to be associated with residual hearing [5–8], es-
pecially at low frequencies, while pathogenic variants in
other domains resulted in congenital severe-to-profound
hearing loss [1, 10–15]. With the progress of various audi-
tory rehabilitation technologies, appropriate auditory re-
habilitation tailored to the type of hearing loss should be
implemented. A moderate hearing loss can be fully rehabil-
itated with hearing aids; however, cochlear implantation
may be necessary in cases of severe hearing loss. Moreover,

Fig. 3 The locations of MYO15A variants

Fig. 4 Segregation of MYO15A variants in two families, SB246 and 224. a-c Sanger sequencing traces for c.5504G >A (p.R1835H) + c.10245_10247delCTC
(p.S3417del) compound heterozygote (SB246–482, 483 and 484). d Sanger sequencing traces for c.5504G >A carrier (SB246–485). e Sanger sequencing
traces for c.10245_10247delCTC carrier (SB246–486). f Conservation of mutant residues among the orthologs from several species; p.R1835 and p.S3417 are
conserved among all species, ranging from humans to zebrafish. g and h Sanger sequencing traces for c.9790C > T (p.Q3264X) + c.10263C >G (p.I3421M)
compound heterozygote (SB224–437 and 592). i Sanger sequencing traces for c.9790C > T carrier (SB224–593). j Sanger sequencing traces for c.10263C >G
carrier (SB224–594). k Conservation of mutant residues among the orthologs from several species; p.Q3264 and p.I3421 are conserved among all species,
ranging from humans to zebrafish

Chang et al. BMC Medical Genetics  (2018) 19:29 Page 7 of 10



for subjects with overall profound hearing loss, while
retaining significant residual hearing at low frequencies,
electroacoustic stimulation (EAS) may be the best op-
tion. Therefore, a prediction of phenotypes in accord-
ance with the affected domain in MYO15A has greatly
contributed to personalized and timely auditory re-
habilitation. Recently, these previously established
genotype-phenotype correlations appear to require an
updated modification. Some MYO15A pathogenic vari-
ants affecting the domains other than the N-terminal,
have shown to cause moderate-to-severe hearing loss,
not profound hearing loss [9]. We also found two fam-
ilies carrying MYO15A pathogenic variants, which were
expected to cause congenital severe-to-profound hear-
ing loss, but resulted in postlingual onset of progressive
partial deafness with residual hearing at low frequen-
cies. Indeed, SB224–437 carrying two MYO15A mutant
alleles in this current study had a shallower angular in-
sertion depth of 393°, by Flex 24 rather than by the

longer Flex 28 electrode to minimize the shift in low
frequency thresholds from this subject (Fig. 1b).
A milder phenotype may have been influenced by fac-

tors like milder pathogenic potential from hypomorphic
alleles of MYO15A, genetic modifiers that reduce severity
of hearing loss, or environmental factors. A recent pro-
gress in the genetic diagnosis technique can also contrib-
ute to the expansion of phenotypic spectrum of MYO15
alterations. In the past, genetic hearing loss had been
found in consanguineous families using a linkage ana-
lysis, especially homozygous mapping. Therefore, it is
likely that the severe phenotypes caused by severely
pathogenic homozygous pathogenic variants had been
preferentially recruited for the genetic study. However,
with the development of next generation sequencing,
there has been an increase in the frequency of mo-
lecular diagnostic testing of small-to-mid sized, non-
consanguineous families, leading to the emergence of
many compound heterozygotes with varying degrees

Table 2 Results of whole exome sequencing

Inheritance pattern Gene Exonic function Relation in disease
or functions

OMIM Reference

Autosomal recessive PER3 Non-frame shift
deletion

FASPS3 616,882 Zhang et al.

LNP1 Non-frame shift
insertion

unknown – –

FADS6 Non-frame shift
insertion

Fatty acid metabolism – –

Compound heterozygote ABCA2 Missense/missense Macrophage lipid

metabolism

– Kaminski et al.

MYO15A Missense/Non-frame shift
deletion

DFNB3 600,316 Wang et al., Liburd et al.,
Riahi et al.

Fig. 5 Copy number variant identification by in-house CNV tool and EXCAVATOR2 with WES. a The horizontal axis indicates chromosomal position,
and the vertical axis indicates the log2 normalized depth ratio; 0 indicates 2 copies and − 1.0 indicates 1 copy deletion, respectively. The red line
indicates SB246–482, light-blue line indicates SB246–483, and green line indicates SB246–484, respectively. A heterozygote deletion in the STRC and
CATSPER2 region is seen in only SB246–482. The hypothesized mechanisms for the event is shown to the right. b The result of EXCAVATOR2 also
indicates 1 copy deletion in the region where STRC and CATSPER2 as well as PPIP5K1 and CKMT1A were located in
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of pathogenicity. Consequently, it has become possible to
discover various phenotypes from the existing genes.
Further studies are needed about other potential factors
affecting phenotypes, such as genetic modifiers or
environmental factors.

Conclusions
We discovered that four MYO15A pathogenic variants
in the motor and FERM domains caused partial deafness
with significant residual hearing at low frequencies.
This is interesting since these pathogenic variants were
previously thought to cause profound hearing loss,
without any association with partial deafness. This re-
sult suggests that some MYO15A variants may cause
adult-onset, progressive partial deafness. The pheno-
typic spectrum of DFNB3 should be extended to include
such partial deafness.
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