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Abstract

Deterministic and Stochastic Optimization
for Aircraft Arrival Sequencing and

Scheduling under Uncertainty

Youkyung Hong

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

As the demand for air transportation increases, air traffic congestion is becom-

ing a critical issue in the current air traffic control system. In particular, many

researchers have recognized the need for decision support tools for human air

traffic controllers in the terminal area, where incoming arrivals and outgoing de-

partures are concentrated in a limited airspace surrounding airports. Although

uncertainty comes from various sources in the terminal area, only a few ex-

isting works consider uncertainty with respect to the aircraft sequencing and

scheduling problem.

In this dissertation, two different robust optimization approaches for aircraft

arrival sequencing and scheduling are presented that consider the uncertainty

of flight time. First, robust optimization based on deterministic programming is

proposed, which has a two-level hierarchical architecture. At the higher level, an

extra buffer is introduced in the aircraft safe separation constraint by adopting

the typical deterministic programming. The extra buffer size is analytically

derived based on a deterministic robust counterpart problem. However, robust
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solutions obtained at the higher level can only be implemented in restricted

situations where the magnitude of uncertainty is less than a predetermined

constant value. Therefore, at the lower level, to compensate for the effects of

unexpected situations under a dynamic environment, robust solutions obtained

at the higher level are adjusted by using a heuristic adjustment with a sliding

time window.

Second, two-stage stochastic programming based on Particle Swarm Op-

timization (PSO) is proposed to determine less conservative robust solutions

than the robust optimization based on deterministic programming. First and

second stage decision problems are defined as aircraft sequencing and schedul-

ing, respectively. PSO is utilized for a randomized search to make the first stage

decision under incomplete information about uncertain parameters. A random

key representation is adopted to apply PSO to a discrete aircraft sequencing

problem because PSO has a continuous nature. Next, the second stage deci-

sion is made by solving a mixed integer linear programming problem after the

realization of uncertain parameters.

The performances of the two proposed robust optimization methodologies

are verified through numerical simulations with historical flight data. Monte

Carlo simulations are also performed for randomly generated air traffic situa-

tions.

Keywords: Aircraft sequencing and scheduling, Robust optimization, Mixed

integer linear programming, Deterministic programming, Two-stage stochastic

programming

Student Number: 2012-30185
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Chapter 1

Introduction

1.1 Motivation

Continuous growth of air traffic has created many problems, including severe

air traffic congestion and a heavy workload for air traffic controllers. In partic-

ular, the terminal area has been considered the most complex type of airspace,

where incoming arrivals and outgoing departures are concentrated in a lim-

ited airspace surrounding airports. According to the Bureau of Transportation

Statistics (BTS) [1], the percentage of flights arriving and departing on time

were only 77.67% and 78.34%, respectively, in 2015. In BTS, a flight is con-

sidered delayed if it arrived at or departed from the gate 15 minutes or more

after the scheduled arrival or departure time. For this reason, to simplify the

clearance delivery procedures in the terminal area and improve the efficiency of

terminal airspace operations, Standard Instrument Departure (SID) and Stan-

dard Terminal Arrival Route (STAR) are defined with a lateral profile and

with level and speed restrictions along the profile. It is recommended that ar-

riving and departing aircraft follow SID (from the take-off phase to the en-route

phase) and STAR (from the en-route phase to the initial approach phase), re-

spectively [2]. However, it has been identified that a large number of aircraft

have trouble arriving at and departing from an airport on time. For this rea-

son, human air traffic controllers often provide tactical vectoring and manual

1



instructions of the heading angle and/or speed changes to achieve a safe sep-

aration between aircraft. However, these additional maneuvers, which deviate

from the standard routes, would significantly degrade the safety in a complex

terminal area. Therefore, the need for decision support tools for human air traf-

fic controllers has been emphasized. Numerous works are currently underway

in Single European Sky ATM Research (SESAR) and the Next Generation Air

Transportation System (NextGen) to provide relevant advice to human air traf-

fic controllers, such as Arrival Managers (AMANs) [3] and Departure Managers

(DMANs) [4].

The main objective of this study is to determine robust aircraft sequencing

and scheduling in the terminal area under uncertainty, especially for the Point

Merge System (PMS). Note that the PMS, which was recently proposed by

EUROCONTROL, is a new STAR design for merging inbound traffic [5]. Fol-

lowing the first implementation at the Oslo International Airport in 2011, PMS

is now operational in several international airports around the world, such as

Incheon (2012), Paris (2013), and Hannover (2014). Figures 1.1 and 1.2 show

SID and STAR in Jeju International Airport, the Republic of Korea. In the

current air traffic control system, human air traffic controllers usually provide

service on a First-Come First-Served (FCFS) basis. The FCFS order has several

benefits: 1) it is easy to implement, 2) it reduces the workload of human air

traffic controllers, and 3) it is a fair sequencing method because the landing

priority is given to the aircraft that reaches the terminal area at the earliest

time [6]. However, because the minimum separation requirements depend on

the International Civil Aviation Organization (ICAO) wake turbulence cate-

gory [7, 8], the FCFS order might result in greater spacing between aircraft.

Unfortunately, it is difficult for human air traffic controllers to calculate a new

aircraft sequence deviated from the FCFS order because the number of feasi-
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ble sequences available for the aircraft sequencing and scheduling problem is

quite large and they are faced with difficult operational considerations such as

ICAO wake turbulence separation rules [9]. Therefore, when the demand for air

transportation significantly increases and the traffic congestion can no longer be

resolved by human air traffic controllers, it is anticipated that complementary

methods, including optimization algorithms, will be required to suggest better

aircraft sequences and schedules to human air traffic controllers.

It is also necessary to account for uncertainty when the aircraft sequenc-

ing and scheduling problem is solved because the uncertainty in the terminal

area comes from various sources, such as weather conditions, aircraft dynamics,

data availability, human factors, and interactions between arriving and depart-

ing aircraft. For this reason, the actual aircraft sequencing and scheduling is

significantly different from the ideal aircraft sequencing and scheduling with-

out considering the uncertainty. However, to date, robust optimization for the

aircraft sequencing and scheduling problem to compensate for the effects of

uncertainty has not received major attention in the fields of Air Traffic Man-

agement (ATM).

Studies on robust optimization can be divided into two approaches: the

deterministic approach and the stochastic approach. The general strategy to

address the uncertainty in the deterministic approach [10–12] is to introduce

an extra buffer to the minimum separation constraint between aircraft. If the de-

terministic approach is focused on the aircraft conflict resolution problem, then

an arbitrarily large extra buffer should be used because the highest priority is

to maintain the safe separation between aircraft [12]. However, the extra buffer

size should be carefully determined in the aircraft sequencing and scheduling

problem because a large buffer size may increase the amount of delay, whereas

a small buffer size may increase the frequency of human controller interven-

5



tions to resolve potential conflicts [13]. Therefore, it is required to determine

the extra buffer size analytically by deriving a deterministic robust counter-

part problem, which has been applied in the fields of computer and chemical

engineering [14–16].

Robust optimization based on the deterministic approach may result in un-

necessarily excessive flight time of each aircraft because the extra buffer added

in the aircraft sequencing and scheduling problem increases the relative distance

between aircraft. To determine less conservative robust solutions, uncertainty

can be considered as a probability distribution function in the stochastic ap-

proach. The most common stochastic approach is a two-stage stochastic pro-

gramming with discrete scenarios corresponding to realizations of uncertainty.

However, it is difficult to determine robust solutions based on two-stage stochas-

tic programming within a reasonable computation time [17] because a large

number of scenarios exist, even for a small number of aircraft. Various approxi-

mation and decomposition methods have been used to solve robust optimization

of large-scale systems by reducing the computational load; nevertheless, these

efforts to obtain a reliable approximation and decomposition are excessive and

optimality gaps are inevitable [18–21]. Therefore, in this study, some insights

will be found from the two-stage stochastic programming based on evolutionary

algorithms [22,23] to compensate for the weakness of the existing algorithms.

6



1.2 Literature Review

The literature review presented in this chapter is divided into three main sec-

tions that cover previous research closely related to this study. Previous studies

on aircraft sequencing and scheduling for the runway and terminal area are

reviewed in Section 1.2.1. The literature considering uncertainty in the fields

of ATM can be classified into two categories: deterministic and stochastic pro-

gramming. The literature reports on deterministic and stochastic programming

are reviewed in Section 1.2.2 and 1.2.3, respectively. Because previous studies

on robust optimization for the aircraft sequencing and scheduling problem are

few in number, some notable studies on robust optimization in the fields of

computer and chemical engineering are also reviewed.

1.2.1 Aircraft Sequencing and Scheduling

A considerable amount of literature has been published on aircraft sequencing

and scheduling for the runway and terminal area. The runway has been recog-

nized as the main bottleneck of aircraft operations at airports [24]; therefore,

the major aim of various runway scheduling algorithms is to maximize runway

throughput (equivalent to minimizing the makespan or the landing time of the

last aircraft) for arrival-only or departure-only operations [25–28].

Traditionally, the runway arrival problem has been modeled based on a

job shop scheduling problem where runways and aircraft are regarded as ma-

chines and jobs, respectively [29–31]. Beasely et al. proposed a mixed-integer

formulation for the single and multiple runway aircraft arrival problems, and

the deviation from the estimated arrival time was minimized by using linear

programming-based tree search [32]. This study was also extended to utilize Ge-

netic Algorithm (GA), which is one of metaheuristic optimization algorithms,

7



to obtain sub-optimal solutions within a reasonable computation time [33,34].

Additionally, there have been several attempts to apply the Constrained

Position Shifting (CPS) framework to the runway arrival problem [25, 35–37].

Because human air traffic controllers usually provide service on a FCFS basis,

as mentioned previously, excessive sequence change from the FCFS order might

be infeasible in real airspace and might unnecessarily increase the workload of

human air traffic controllers. Therefore, Dear et al. proposed the CPS method,

in which the sequence deviation from the FCFS order is limited [35, 36]. In

other words, by using the CPS method, an aircraft can be moved up to a

specified maximum number of positions from the FCFS order. Balakrishnan

and Chandran presented the CPS network for the single runway aircraft arrival

problem and efficiently solved the problem in polynomial time (linearly in the

number of aircraft) by using dynamic programming [25]. Recently, Hong et al.

analyzed the effect of the CPS method on the total flight time and the difference

between the FCFS order and the newly determined order [37].

In the terminal area, the aircraft arrival sequencing and scheduling prob-

lem has been considered as two separate problems because the arrival routes

and departure routes are usually separated, and departing aircraft can be held

on the ground when the traffic congestion is severe [38]. The aircraft arrival

sequencing and scheduling problem should consider computational cost, which

increases with the number of aircraft, points, and routes. Consequently, to find

good solutions within a reasonable computation time, some researchers have

utilized relaxation methods to apply linear programming techniques, and oth-

ers have relied on metaheuristic optimization algorithms. Eun et al. solved the

aircraft arrival problem by computing the lower bound of the cost based on

the branch-and-bound algorithm with linear programming and applied a La-

grangian dual-decomposition for computational efficiency [38]. Moreover, Hu et
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al. introduced the concept of receding horizon control, which is an N-step-ahead

online optimization strategy, to the aircraft arrival problem and implemented

several variations of GA to enable real-time implementation [39–42].

In addition, approaches exist that introduce integrated arrivals and depar-

tures to improve the efficiency of terminal airspace operations. Capozzi et al. de-

scribed a MILP formulation that simultaneously solves the routing and schedul-

ing problems for metroplex areas [43]. Note that, in metroplex areas, because

two or more airports are located close enough in proximity, their operations can

no longer be treated independently. In a follow-up study, a hybrid algorithm

combining basic GA and MILP was proposed to efficiently solve the routing and

sequencing problems and the scheduling problem, respectively [44]. In addition,

Xue and Zelinski introduced a new formulation based on a nondominated sort-

ing GA for optimal integration of arrivals and departures in the terminal area

and examined three different separation strategies: the spatial, temporal, and

hybrid separations [45].

However, there exist only a few previous works regarding the aircraft arrival

sequencing and scheduling problem in PMS; moreover, most previous studies

on PMS have only focused on performance validation [46–49]. Boursier et al.

compared the performance of PMS with the current working method of man-

aging arrival traffic, such as heading instructions by using data collection ex-

periments [46]. In a follow-up study, Favnnec et al. assessed the performance of

PMS in more complex environment and investigated the application of contin-

uous descent from the further upstream airspace [47]. Ivanescu et al. provided

a method for designing fast-time models for performance comparison between

PMS and conventional vectoring [48]. Sahin Meric and Usanmaz applied PMS

to the Istanbul International Airport and described the pre-implementation

studies through real time simulation [49]. Likewise, much less attention has

9



been given to optimize actual flight operations conducted in PMS. Liang et al.

introduced the framework of an autonomous PMS and utilized the simulated

annealing algorithm, which is one of metaheuristic optimization algorithms, to

solve the scheduling problem in the proposed PMS [50–53]. In addition, Hong et

al. attempted to determine the exact optimal solutions for aircraft sequencing

and scheduling in PMS by using MILP and achieved a reduction in the number

of points and routes by considering the typical configuration and characteristics

of PMS [37,54].

1.2.2 Deterministic Programming under Uncertainty

Robust optimization based on deterministic approach has been studied in the

fields of computer and chemical engineering [14–16]. Ben-Tal and Nemirovski

claimed that optimal solutions of linear programming may become severely

infeasible when the nominal data is slightly perturbed [14]. For this reason,

they first introduced a robust optimization methodology for linear program-

ming when uncertainty arises in the coefficients of the inequality constraints.

Additionally, they suggested two methods of generating robust solutions for un-

certain linear programming, depending on whether they treat the uncertainty

affecting the data as bounded uncertainty or as bounded and symmetric un-

certainty. Lin et al. extended the previous work [14] to MILP problems when

uncertainty arises from both the coefficients and the right-hand-side parame-

ters of the inequality constraints. They also formulated the deterministic robust

counterpart problem to determine robust solutions when a probabilistic mea-

surement is applied and feasibility tolerance and reliability level are given [15].

Janak et al. extended the previous works [14, 15] to additionally consider un-

certainty that arises in the coefficients of the objective function and developed

robust optimization techniques when uncertain parameters are described by
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several known distributions, including a uniform distribution, a normal distribu-

tion, the difference of two normal distributions, a general discrete distribution,

a binomial distribution, and a Poisson distribution [16].

However, in the fields of ATM, no detailed investigation of uncertainty has

been performed to date. Most studies have only focused on sensitivity analysis,

which investigates the stability of optimal solutions with respect to data per-

turbations. In other words, the previous studies have been interested in how

much the optimal solution of the perturbed problem differs from the one of

the nominal problem after the aircraft sequencing and scheduling problem is

designed with perfect knowledge. Atkin et al. performed experiments where lin-

early distributed errors are injected into the taxi times given to the proposed

aircraft scheduling algorithm for the take-off problem at the holding area and

then evaluated how the performance of the proposed algorithm is changed [55].

Agogino and Rios analyzed the robustness of their optimization algorithm for

large-scale air traffic flow management when the departure times are slightly

different from the expected value in the proposed algorithm [56]. In this previous

study, the uncertainty was modeled as a normal distribution function based on

historical departure data analysis performed by Mueller and Chatterji [57], and

then numerical simulations were performed by adding the uncertainty to the

departure schedules. Recently, Xue et al. considered the extra buffer of 30 and

60 seconds in the separation constraints to perform sensitivity analysis [45] and

investigated the impacts of uncertainty on delays and controller interventions

through Monte Carlo simulations when aircraft arrival and departure times are

perturbed [13].

Although the extra buffer size was not analytically determined yet by de-

riving the deterministic robust counterpart problem in the fields of ATM, the

following studies can be considered as the few literature reports related to robust
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deterministic programming [14–16]. Heidt et al. considered the uncertain earli-

est and latest aircraft arrival times for the robust runway scheduling problem

and protected the minimum separation constraints by introducing extra buffer,

the size of which is determined as the sum of mean value and two times stan-

dard deviation [10, 11]. Choi et al. extended the MILP problem for metroplex

operations [43] by introducing an extra buffer to maintain the safe separation

despite the arrival time error [12]. In this previous work, the extra buffer size

was determined with a 90% confidence interval based on the normal distribution

of the arrival time error.

1.2.3 Stochastic Programming under Uncertainty

In contrast to robust optimization based on the deterministic approach, the

uncertain parameters in the stochastic approach are considered as a probability

distribution function. Among several attempts with the stochastic approach,

the most commonly applied stochastic techniques are stochastic models with

recourse, namely, two- and multi-stage stochastic programs with discrete sce-

narios [22,58]. In a two-stage stochastic programming problem, some of the deci-

sions (first stage variables) are made under incomplete information on uncertain

parameters, and the remaining decisions (second stage or recourse variables) are

then made after the realization of the uncertain parameters is known [59]. To

efficiently and accurately solve a two-stage stochastic programming problem,

several studies have been performed based on various decomposition methods:

Bender’s decomposition [60] and L-shaped algorithm [61]. Shapiro et al. pro-

posed the Sample Average Approximation (SAA) method, which is a Monte

Carlo simulation-based technique, to replace the stochastic program with a set

of smaller problems based on a random sample of possible scenarios [62–65].

By using the SAA method, the expectation formulation of robust optimization
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based on stochastic programming can be replaced by its sample average.

Recently, scenario decomposition has been reexamined to derive a Deter-

ministic Equivalent Programming (DEP) problem from a two-stage stochastic

programming problem. Although the DEP problem belongs to the class of MILP

problems, it cannot be easily solved because the problem size increases with the

number of uncertainty realizations [66,67]. Carøe and Schults proposed dual de-

composition where a two-stage stochastic programming problem is decomposed

into scenarios (i.e., realizations of uncertainty) by applying Lagrangian relax-

ation and adopted a branch-and-bound algorithm to solve the problem [68].

However, according to the work by Sand and Engell [69], considerable effort is

required to calculate the lower bounds in dual decomposition. For this reason,

Till et al. presented a new approach for the robust chemical batch scheduling

problem, i.e., a hybrid algorithm to solve two-stage stochastic programming,

where GA performs the search on the first stage variables instead of invest-

ing effort in the calculations of lower bounds, and the decoupled second-stage

scenario problems are solved by using MILP [22,23].

In the field of ATM, there are two previous studies influenced by two-stage

stochastic programming. The first study involved determining robust solutions

in the runway scheduling problem [58]. Solveling et al. investigated two-stage

stochastic programming, where uncertainty arises from departure push-back

delay, taxiing delay, and arrival prediction error [18,58], and applied both Ben-

ders’ decomposition [60] and the SAA method [62, 64, 65] to the problem. In

the second study of Bosson et al. [19–21], they formulated the integrated ter-

minal area and airport surface operations under uncertainty as a multi-stage

stochastic programming by extending the optimization algorithm for integrated

arrivals and departures proposed by Xue et al. [45]. In these previous works,

solving several SAA problems with a smaller sample size rather than solving
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one SAA problem with a large number of samples was suggested as a solution

methodology.
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1.3 Contributions

This study focuses on developing robust optimization for aircraft sequencing

and scheduling in PMS under uncertainty. The main contributions of this study

are described in the following sections.

1.3.1 Systematic Problem Formulation

As mentioned in the previous section, a typical aircraft sequencing and schedul-

ing problem requires a large amount of computational time as the number of

aircraft, points, and routes increases. Because the computational performance

is one of the most important characteristics to use the aircraft sequencing and

scheduling algorithm as a decision support tool in real operation, some works

have been focused on metaheuristic approaches: simulated annealing algorithm,

GA, and so on [44,50–53]. However, although metaheuristic optimization algo-

rithms are widely recognized as one of the most practical approaches, a thor-

ough mathematical foundation for metaheuristic optimization algorithms has

not been developed yet; therefore, the optimality of the solution cannot be

guaranteed [70].

Contrary to the previous works, the key strength of this study is that MILP

is utilized to find exact optimal solutions for aircraft sequencing and scheduling.

By considering the typical configuration and characteristics of PMS, the num-

ber of points and routes can be significantly reduced. The only consideration

with respect to the computational load of the proposed MILP formulation is

the number of aircraft. Additionally, the computational load can be resolved

by using the concept of sliding time window, where a large number of aircraft

is divided into several small numbers of aircraft. In other words, the proposed

algorithm does not determine the sequence and schedule for all aircraft at once
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but only determines the sequence and schedule of some aircraft that are posi-

tioned in a specific time window. In summary, the proposed MILP formulation

achieves a reduction in the number of variables and therefore can be efficiently

implemented without significant computational effort.

1.3.2 Robust Optimization: Deterministic Programming

In general, robust optimization based on deterministic programming is quite

simple to apply because the uncertain parameter is replaced by a constant

value with the extra buffer [10–12]. In these previous studies, however, the

size of the extra buffer was arbitrarily determined, regardless of its importance

with respect to the efficiency of flight operations. In contrast, in this study, the

buffer size is analytically derived based on the deterministic robust counterpart

problem when the probability distribution function of uncertain data, feasibil-

ity tolerance, and reliability level are given [14–16]. Furthermore, the tradeoff

between the total flight time and the robustness depending on the extra buffer

size is identified through numerical simulations.

Robust solutions determined by the typical deterministic programming can

only be implemented in restricted situations, where the magnitude of the actual

uncertainty is less than the constant value that is used to replace the uncer-

tain parameter in the typical deterministic programming. However, the actual

uncertainty in real operation might be greater than the constant value. There-

fore, in this study, when a substantial uncertainty during CDA is imposed on

an aircraft, robust solutions determined by the typical deterministic program-

ming are adjusted by using the proposed heuristic adjustment to compensate

for unexpected situations under a dynamic environment.
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1.3.3 Robust Optimization: Stochastic Programming

Although previous studies on robust optimization typically consider determinis-

tic programming, it may result in an unnecessarily excessive flight time because

of the extra buffer. For this reason, stochastic programming, especially the two-

stage stochastic programming based on evolutionary algorithms, can be consid-

ered as an alternative approach to determine less conservative robust solutions.

In this study, Particle Swarm Optimization (PSO) is adopted instead of GA for

the first stage decision of the two-stage stochastic programming. The features

of PSO can be summarized as follows. PSO can be easily implemented with less

computational load than other stochastic optimization schemes [71, 72], and it

has been empirically verified that the performance of PSO is not sensitive to

the population size [73]. The solution quality of PSO does not rely on the ini-

tial population as long as they exist within the search space [74]. Furthermore,

both PSO and GA belong to population-based metaheuristic optimization ap-

proaches, but PSO has the flexibility to control the balance between the global

and local experience in the search space. This property enhances the search ca-

pabilities of PSO and avoids premature convergence to a local optimum. How-

ever, difficulties arise when PSO is applied to combinatorial problems, including

the aircraft sequencing problem, because of the continuous nature of PSO. To

solve this problem, a random key representation is introduced in this study to

convert the continuous position values to a discrete aircraft sequence [75, 76].

Therefore, PSO can be successively utilized to search the first stage variables

in the proposed robust optimization algorithm. Note that, to the best of our

knowledge, our application of the two-stage stochastic programming based on

an evolutionary algorithm is the first application of an evolutionary algorithm

to the aircraft sequencing and scheduling problem under uncertainty.
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1.4 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 explains the typical

configuration and characteristics of PMS and describes the operational concept

of the proposed optimal aircraft arrival sequencing and scheduling problem with

two control elements. Additionally, the detailed problem formulation including

decision variables, objective function, and several constraints is provided based

on MILP.

In Chapter 3, robust optimization based on deterministic programming is

presented to determine robust solutions for the aircraft sequencing and schedul-

ing problem in PMS under uncertainty. Robust solutions are first determined

based on the typical deterministic programming, and then they are adjusted

through two types of algorithm enhancements for a dynamic environment; one

is the heuristic adjustment, and the other one is the concept of sliding time

window.

Chapter 4 proposes robust optimization based on stochastic programming as

an alternative approach to solve the aircraft sequencing and scheduling problem

under uncertainty. In the proposed two-stage stochastic programming based on

PSO, the first and second stage decision problems are divided into aircraft

sequencing and scheduling, respectively. The first and second stage decision

problems are formulated based on PSO with random key representation and

MILP, respectively.

In Chapter 5, the summary of this study and extensions for future research

are provided.
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Chapter 2

Mixed Integer Linear Programming
for Aircraft Arrival Sequencing and
Scheduling

This chapter presents the formulation of the aircraft arrival sequencing and

scheduling problem in PMS without considering uncertainty, which will be con-

sidered as a nominal problem in chapters 3 and 4. In Section 2.1, the typical

configuration of PMS will be presented, and the arrival procedure through PMS

will be explained. In addition, by describing the characteristics of the PMS, the

way how the proposed MILP formulation achieves a reduction in the number

of points and routes will be explained. To clarify the operational concept of

the proposed algorithm, two control elements, where the required delay can be

absorbed, are explained in Section 2.2. Finally, the detailed problem formula-

tion based on MILP including decision variables, objective function, and several

constraints will be provided in Section 2.3.
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2.1 Point Merge System (PMS)

2.1.1 Configuration of PMS

The typical structure of PMS consists of a single merge point and two parallel

and opposite sequencing legs as shown in Fig. 2.1. The merge point is the last

fix of PMS, where the arrival flows in different directions are merged with the

safe separation. The sequencing legs are vertically and/or laterally separated

and equidistant from the merge point.

2.1.2 Arrival Procedure through PMS

From the perspective of aircraft, the arrival procedure through PMS can be

explained in chronological order as follows. When an aircraft leaves the en

route airspace and then enters the terminal area, the route referred to as the

sequencing leg is assigned. After the aircraft enters the pre-defined sequencing

leg, it flies with a constant airspeed along the leg. When the safe separation

Figure 2.1 Typical structure of PMS
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with the preceding aircraft in the sequence at the merge point is guaranteed,

a direct-to instruction is given by human air traffic controllers. The aircraft

turns off the sequencing leg and then conducts a Continuous Descent Approach

(CDA) from the sequencing leg to the merge point.

2.1.3 Characteristic of PMS

The advantages and disadvantages of PMS can be summarized as follows. By

providing a predefined procedure, PMS can allow human air traffic controllers

to systematically manage arrival traffic. Therefore, the traffic patterns inside

the terminal area can be more organized, and the safety level can be improved.

Additionally, unlike a conventional approach where an aircraft descends step-

wise including level flight, CDA allows an aircraft flying its individual optimal

vertical profile with minimum thrust. The flight efficiency of aircraft through

CDA can be improved, with reduced fuel consumption and environmental im-

pacts [5, 77].

However, PMS might become saturated when the volume of inbound traffic

through PMS is severe because the length and the amount of delay absorption

of the sequencing legs in PMS are limited. When the required delay cannot

be absorbed on the sequencing legs, intuitive operations should be performed

by human air traffic controllers: sequencing leg run-off, aircraft vectoring and

holding at the Initial Approach Fix (IAF) to absorb residual delay. However,

because sequencing leg run-off and aircraft vectoring would degrade the safety

inside the complex terminal area, they have been avoided in a real operation.

Additionally, overreliance on the traditional circular holding stack at the IAF

would increase fuel consumption, environmental impacts, and delays to passen-

gers.
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2.2 Concept of Operation

To obtain exact optimal solutions of the aircraft arrival sequencing and schedul-

ing problem in PMS, two control elements are considered as shown in Fig. 2.2:

the time of arrival into PMS and the time spent travelling along the sequencing

leg. In other words, before an aircraft enters PMS, the delay can be absorbed

by changing the entering time into PMS. Assuming that an aircraft follows a

nominal route and speed profile [78], the estimated time of arrival at the initial

point pI , i.e., TETAf,r,pI
, can be calculated by dividing the relative distance between

the initial position of flight f on route r and the initial point pI by the nom-

inal flight speed. If an aircraft speeds up, the entering time into PMS will be

earlier than TETAf,r,pI
. Additionally, the entering time into PMS might be delayed

by using the traditional vertical holding stack at the IAF if necessary. In this

study, it is assumed that an aircraft can change its speed by less than ±20%

with respect to the nominal flight speed. Then, the earliest and latest entering

times into PMS can be determined as 0.8 TETAf,r,pI
and 1.2 TETAf,r,pI

, respectively. If

it is assumed that the advice is given to aircraft ten minutes before they enter

PMS, then ±2 minutes are considered for the allowed time variations for the

earliest and latest arrival times, respectively.

On the other hand, after an aircraft enters PMS, the turning time on the

sequencing leg can be adjusted by stretching aircraft’s path on the sequencing

leg to absorb the delay. In this study, it is assumed that an aircraft stays on the

sequencing leg without limitation if necessary. In other words, the sequencing

leg run-off procedure is allowable. Note that this assumption is operationally

practical, in that the sequencing leg run-off procedure has been frequently used

in a real operation because human air traffic controllers put more effort toward

guaranteeing the safe separation at the merge point. The actual flight opera-
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tions conducted in PMS have been determined intuitively by human air traffic

controllers. However, in this study, the two control elements such as selecting

optimal sequences and schedules are automatically calculated to assist human

air traffic controllers in aircraft arrival sequencing and scheduling.

Note that, although 20% offset to the nominal flight speed is considered as

the feasible speed range in this study, different speed ranges may be selected by

considering the traffic characteristics of the target airport, which include traffic

demand level, fleet mix ratio, and the capacities of arrival fixes. Actually, in

previous ATM works, there is insufficient discussion on how the most feasible

earliest and latest arrival times can be determined from the estimated time of

arrival. According to [79], because of the resultant fuel expenditure, the time

variation for the earliest time of arrival at runway is usually limited to one

minute. In [50], three minutes allowed time advance and the maximum delay of

ten minutes are considered for the feasible constraint of the earliest and latest

arrival times, respectively.

𝑇𝑓,𝑟,𝑝𝐼
𝐸𝑇𝐴

𝑇𝑓,𝑟,𝑝𝐼
𝐿𝑇𝑓,𝑟,𝑝𝐼

𝐸

Initial point

Merge point

(a) Time of arrival into PMS

Initial point

Merge point

(b) Time spent travelling along the leg

Figure 2.2 Two control elements
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2.3 Problem Formulation

2.3.1 Decision Variables

Two decision variables are defined to formulate the aircraft arrival sequencing

and scheduling problem in PMS based on MILP: a continuous variable Tf,r,p

and a binary variable Sf,f ′,r,r′,p [43]. First, Tf,r,p is required to solve the aircraft

scheduling problem, which represents the time that a flight f reaches a point

p on route r. Second, Sf,f ′,r,r′,p is for the aircraft sequencing problem, which

becomes one when a flight f on route r is prior to a flight f ′ on route r′ at a

point p.

Note that each flight f , route r, and point p belong to the set of flights F ,

the set of points P , and the set of routes R, respectively. Based on the typical

configuration of PMS as shown in Fig. 2.1, the sets P and R are considered

as P = {pI , pT , pF } and R = {rL, rR}, respectively, where pI is an entry point

into the sequencing legs, pT is a transit point on the sequencing legs, and pF is

a final merge point. Because arrival traffic flows through PMS are generally in

the opposite direction as mentioned previously, the left and right traffic flows

are considered, i.e., the routes rL and rR.

2.3.2 Objective Function

The objective function is defined to minimize the total flight time that is re-

quired for all flights to reach the merge point as follows:

min J =

NF∑
f=1

NR∑
r=1

Af,rTf,r,pF (2.1)

where NF and NR are the number of flights in F and routes in R, respectively,

and Af,r is a binary parameter that takes the value one when a flight f is

assigned to route r and zero otherwise.
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2.3.3 Constraints

Entering Time Range Constraint

The first constraint is to define the entering time range into PMS for each flight.

Based on the speed range considering 20% offset to the nominal flight speed,

the time of flight f on route r at the initial point pI , i.e., Tf,r,pI , can be limited

as follows:

Af,r

(
Tf,r,pI − 0.8 TETAf,r,pI

)
≥ 0, ∀f ∈ F,∀r ∈ R (2.2)

Af,r

(
Tf,r,pI − 1.2 TETAf,r,pI

)
≤ 0, ∀f ∈ F,∀r ∈ R (2.3)

Ordering Constraint

The second constraint is to determine the sequence between two flights f and

f ′ at a shared point. Because different sequencing legs are vertically and/or

laterally separated, the sequence at the initial point pI is only determined among

flights on same route. If the safe separation between any two flights can be

achieved at the initial point pI , then it can be maintained on the legs, i.e.,

at the transit point pT , because they fly with a constant speed. On the other

hand, at the merge point pF , the sequence among flights should be determined

whatever their assigned routes are. By considering these characteristics of PMS,

the aircraft sequence at points pI and pF can be determined under the following

constraints.

Sf,f ′,r,r′,pI + Sf ′,f,r′,r,pI = Af,rAf ′,r′ , ∀f, f ′ ∈ F,∀r, r′ ∈ R, f 6= f ′, r = r′ (2.4)

Sf,f ′,r,r′,pF + Sf ′,f,r′,r,pF = Af,rAf ′,r′ , ∀f, f ′ ∈ F,∀r, r′ ∈ R, f 6= f ′ (2.5)
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Safe Separation Constraint

The third constraint is to make the safe separation between two flights f and

f ′ at a shared point. The constraint can be expressed as follows:

SEPf,f ′,pI ≤ Af ′,r′Tf ′,r′,pI −Af,rTf,r,pI +M(1− Sf,f ′,r,r′,pI ), (2.6)

∀f, f ′ ∈ F,∀r, r′ ∈ R, f 6= f ′, r = r′

SEPf,f ′,pF ≤ Af ′,r′Tf ′,r′,pF −Af,rTf,r,pF +M(1− Sf,f ′,r,r′,pF ), (2.7)

∀f, f ′ ∈ F,∀r, r′ ∈ R, f 6= f ′

where M is an arbitrarily large number, and SEPf,f ′,pI and SEPf,f ′,pF are the

minimum safe separation required at the initial and merge points, respectively.

The parameters SEPf,f ′,pI and SEPf,f ′,pF can be determined according to the

ICAO wake turbulence category [7] where three types of aircraft are considered:

heavy, large, and small aircraft. The minimum safety separation standards de-

fined in terms of distance are summarized in Table 2.1. By considering the

flight speed, the separation distance given in Table 2.1 can be converted into

the time separation [8]. In this study, it is assumed that an aircraft flies with

a constant speed of 210 knots along the sequencing legs and reaches the merge

point with the standard landing speed of 160 knots regardless of aircraft type.

Table 2.1 Minimum safety separation standards defined in terms of the distance

[7, 8]

Class of trailing aircraft

Heavy Large Small

Class of leading aircraft

Heavy 4 NM 5 NM 6 NM

Large 3 NM 3 NM 4 NM

Small 3 NM 3 NM 3 NM
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For example, the minimum separation distance 3 NM can be converted into

the time separations 3, 600 × (3/210) = 51.43 seconds at the initial point and

3, 600× (3/160) = 67.50 seconds at the merge point.

Flight Time Constraint

The fourth constraint is to calculate the flight time of each flight between two

points. The constraint can be represented as follows:

Af,r (Tf,r,pT − Tf,r,pI ) ≥ 0, ∀f ∈ F, ∀r ∈ R (2.8)

Af,r
(
Tf,r,pF − Tf,r,pT − T

CDA
)

= 0, ∀f ∈ F, ∀r ∈ R (2.9)

where TCDA denotes the flight time during CDA. Note that TCDA can be

set to a constant value when it is assumed that an aircraft performs CDA

precisely without uncertainty. Equation (2.8) presents that the flight time along

the sequencing leg is greater than zero; in other words, the lower bound of flight

time constraint is set to zero. However, as mentioned previously, the upper

bound is not considered by assuming that an aircraft stays on the sequencing

leg without limitation if necessary.

2.3.4 Mathematical Formulation

The final MILP formulation to solve the aircraft arrival sequencing and schedul-

ing problem in PMS can be expressed as follows:

min J =

NF∑
f=1

NR∑
r=1

Af,rTf,r,pF (2.10)

subject to Eqs. (2.2)–(2.9).
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Chapter 3

Deterministic Programming for
Aircraft Arrival Sequencing and
Scheduling under Uncertainty

In this chapter, robust optimization based on deterministic programming is

presented to consider the uncertainty of flight time during CDA. The proposed

deterministic programming has a two-level hierarchical architecture as illus-

trated in Section 3.1. Section 3.2 formulates the problem of the deterministic

programming for aircraft arrival sequencing and scheduling under uncertainty.

Based on the typical deterministic programming, the uncertainty of flight time

during CDA is replaced by a constant value with the extra buffer, and the extra

buffer size is analytically derived based on the deterministic robust counterpart

problem. In Section 3.3, algorithm enhancements to be implemented in dynamic

environments, i.e., heuristic adjustment and sliding time window, are explained.

The deterministic programming is summarized in Section 3.4. The limitations

of the traffic handling capacity of the current PMS and the probabilistic dis-

tribution function of the uncertainty of flight time during CDA are identified

by performing historical flight data analysis of Jeju International Airport, the

Republic of Korea, in Section 3.5. Section 3.6 presents a toy problem to clearly

provide intuition about the proposed deterministic programming with a small

number of aircraft. In Section 3.7, the proposed deterministic programming is

validated through numerical simulation.
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3.1 Hierarchical Architecture

To determine dynamic robust solutions for aircraft arrival sequencing and schedul-

ing in PMS based on deterministic programming, a two-level hierarchical ar-

chitecture is considered as shown in Fig. 3.1. In the higher level, before aircraft

enter PMS, sequence and schedule are determined based on the typical deter-

ministic programming where the extra buffer size is added to compensate for

the effects of uncertainty. The outputs of the higher level are the continuous

decision variable Tf,r,p and the binary decision variable Sf,f ′,r,r′,p.

As aircraft progress through PMS, the static robust solutions determined by

the typical deterministic programming might become obsolete and be required

to be updated under dynamic environments. In the lower level, if a substantial

uncertainty during CDA is imposed on an aircraft f∗, then some aircraft modify

their schedules determined in the higher level to compensate for the delay of

aircraft f∗ and to achieve the safe separation between aircraft at the merge

point. Finally, the outputs of the lower level are the modified Tf,r,p, i.e., T ′f,r,p.

Deterministic 
Programming
(Higher level)

Algorithm 
Enhancements
(Lower level)
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solutions) 
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𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃

Traffic conditions

Proposed deterministic programming in dynamic environments

(Dynamic robust 
solutions) 

Figure 3.1 Two-level of hierarchical architecture for the proposed deterministic

programming in dynamic environments
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3.2 Deterministic Programming

3.2.1 Impact of Uncertainty

Let us consider the flight time constraint in Eqs. (2.8) and (2.9). In Eq. (2.9),

the flight time during CDA, i.e., TCDA, is set to a constant value because it

is assumed that an aircraft performs CDA accurately. However, in a real op-

eration, the CDA trajectory might deviate from the predefined path because

of several reasons. A typical source of deviation in the CDA trajectory is wind

disturbances, which cannot be precisely predicted. The CDA trajectory of air-

craft is computed before the execution of the flight management system, which

considers wind speed and direction. However, aircraft could fail to accurately

follow the predefined CDA trajectory if the considered wind components differ

from the actual ones. Another reason for the uncertainty of flight time during

CDA is that when aircraft receive the direct-to instruction from human air traf-

fic controller, the amount of heading changes required to leave the sequencing

leg and to start the descent maneuver is different depending on the location of

the aircraft along the leg.

By considering the uncertainty which arises in the CDA trajectory, Eq. (2.9)

can be re-established as follows:

Af,r

(
Tf,r,pF − Tf,r,pT − T̃

CDA
)
≥ 0, ∀f ∈ F, ∀r ∈ R (3.1)

where T̃CDA represents the uncertainty of flight time during CDA.

3.2.2 Determination of Extra Buffer Size [15]

Let us consider the general MILP problem as follows:

min cTx (3.2)

subject to Ax ≤ b
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where A is a matrix with elements aij , and x is a vector with elements xi. As-

sume that uncertainty exists in the right-hand-side parameter of the inequality

constraint in Eq. (3.2), i.e., bl for the l-th constraint. Then, the uncertain in-

equality can be represented as follows:

∑
m

almxm ≤ b̃l (3.3)

where the uncertainty b̃l can be represented as b̃l = (1 + ε ξl) bl, and ε and ξl

are a given uncertainty level and an independent random variable, respectively.

Suppose that the random variable ξ = −ξl bl has a normal distribution with

zero mean and standard deviation
√
b2l . With these conditions, a vector x can

be considered to be a robust solution when it satisfies the following conditions.

i) x is feasible for the nominal problem, and ii) for the l-th inequality, the

probability of violation of the uncertain inequality, i.e., Eq. (3.3), is at most κ,

which is

Pr
{∑

m

almxm > b̃l + δ max[1, |bl|]
}
≤ κ (3.4)

where δ > 0 is a given feasibility tolerance, and κ > 0 is a given reliability level.

To find a robust solution x considering the above two conditions, Theorem 1

can be derived based on the previous work [16].

Theorem 1. Given an infeasibility tolerance δ, a reliability level κ, and an

uncertainty level ε, to generate robust solutions, the modified MILP problem

can be defined as follows:

min cTx

subject to Ax ≤ b,∑
m

almxm + ε λ
√
b2l ≤ bl + δ max[1, |bl|], ∀l (3.5)
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where λ = F−1
n (1−κ), and F−1

n is the inverse distribution function of a random

variable with normal distribution, i.e., Fn(λ) = Pr {ξ ≤ λ}.

Proof. Let us consider that x satisfies the additional constraint, i.e., Eq. (3.5).

Then, we have

Pr
{∑

m

almxm > b̃l + δ max[1, |bl|]
}

= Pr
{∑

m

almxm > bl + ε ξl |bl|+ δ max[1, |bl|]
}

= Pr
{
− ε ξl |bl| > bl + δ max[1, |bl|]−

∑
m

almxm

}
≤ Pr

{
− ε ξl |bl| > ε λ

√
b2l

}
(3.6)

= Pr
{
− ξl |bl|/

√
b2l > λ

}
= 1− Pr

{
− ξl |bl|/

√
b2l ≤ λ

}
= 1− Fn(λ)

= 1− (1− κ)

= κ

where −ξl |bl|/
√
b2l is a random variable with normal distribution. �

The deterministic robust counterpart problem in Eq. (3.5) indicates that if the

optimization problem with the extra buffer ε λ
√
b2l is solved, then the solution

x is feasible at most κ under the uncertainty b̃l.

Let us apply Theorem 1 to the uncertain inequality Eq. (3.1). Suppose

that the uncertainty of flight time during CDA is known to have a normal

distribution with mean µCDA and standard deviation σCDA, i.e., T̃CDA ∼

N(µCDA, σCDA
2
). Then, Eq. (3.1) can be replaced by the following inequal-

ity to obtain robust solutions to compensate for the uncertainty of flight time
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during CDA.

Af,r

{
Tf,r,pF − Tf,r,pT −

(
µCDA + ε λ σCDA

)}
≥ 0, ∀f ∈ F,∀r ∈ R (3.7)

where ε λ σCDA is the extra buffer when the infeasibility tolerance δ is not

allowed. For example, if a 5% reliability level κ is considered and the uncertainty

level ε is set to unity, then the extra buffer is set as 1.645 × σCDA. In other

words, the probability of violation of Eq. (3.7) because of the uncertainty of

flight time during CDA is at most 5% with the extra buffer of 1.645× σCDA.

Note that, although the uncertain parameter with a normal distribution is

considered in this study, other probability distributions such as a uniform dis-

tribution, the difference of two normal distributions, a general discrete distribu-

tion, a binomial distribution, and a Poisson distribution can be easily extended

to robust optimization based on deterministic programming [16].

3.2.3 Mathematical Formulation

Finally, the typical deterministic programming to obtain robust solutions of

the aircraft arrival sequencing and scheduling problem in PMS considering the

uncertainty of flight time during CDA can be expressed as follows:

min J =

NF∑
f=1

NR∑
r=1

{
Af,rTf,r,pF +Af,r (Tf,r,pF − Tf,r,pT )

}
(3.8)

subject to Eqs. (2.2)–(2.8) and Eq. (3.7). The first term of Eq. (3.8) is to min-

imize the total flight time required for all flights to reach the merge point.

Additionally, the second term of Eq. (3.8) is to reduce the amount of delay

absorption during CDA. In this study, it is assumed that an aircraft can make

a detour after turning off the sequencing leg if it is necessary. Therefore, if a

substantial uncertainty during CDA is imposed on an aircraft, the safe separa-

tion between aircraft at the merge point might not be guaranteed without this
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assumption. However, when considering the objective of PMS and the advan-

tage of CDA, the amount of delay absorption during CDA should be as small

as possible. For this reason, the second term is incorporated into the objective

function as a soft constraint.
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3.3 Algorithm Enhancements for Dynamic Environ-

ments

3.3.1 Heuristic Adjustment

Throughout this dissertation, let us refer to robust solutions determined in Sec-

tion 3.2 as static robust solutions. The static robust solutions are valid only if

the actual flight time during CDA is less than the constant value representing

the uncertainty of flight time during CDA in the typical deterministic pro-

gramming, i.e., µCDA + ελσCDA in Eq. (3.7). For this reason, the static robust

solutions should be adjusted to maintain the safe separation between aircraft at

the merge point even if a substantial uncertainty during CDA is imposed on an

aircraft. Note that the substantial uncertainty means that the actual flight time

during CDA is greater than the constant value µCDA + ε λ σCDA in Eq. (3.7).

If a substantial uncertainty is imposed on an aircraft f∗ during CDA, then

its new arrival time T ′f∗,r,pF at the merge point can be calculated as follows:

T ′f∗,r,pF = Tf∗,r,pF − (µCDA + ε λ σCDA) + T̃CDAf∗,r (3.9)

where Tf∗,r,pF is the arrival time at the merge point of aircraft f∗ determined in

Section 3.2, and T̃CDAf∗,r represents the actual flight time during CDA of aircraft

f∗.

Now, let us adjust Tf,r,pI , Tf,r,pT , and Tf,r,pF of other aircraft that follow

the aircraft f∗. First, consider a case that an aircraft f has not yet passed the

initial point of PMS when an aircraft f∗ reaches the merge point. Then, Tf,r,pI

of aircraft f can be adjusted. Otherwise, if aircraft f has already entered PMS

before aircraft f∗ reaches the merge point, Tf,r,pI of aircraft f continues to have

the value determined by the typical deterministic programming in Eq. (3.8). It
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can be summarized as follows.

0 ≤ T ′f,r,pI ≤ M If Tf,r,pI > T ′f∗,r,pF (3.10)

T ′f,r,pI = Tf,r,pI Otherwise (3.11)

Second, consider a case that an aircraft f has not yet passed the transit point pT

when aircraft f∗ reaches the merge point. The flight time along the sequencing

legs, i.e., Tf,r,pT , of aircraft f can be newly determined as shown in Eq. (3.12).

Otherwise, Tf,r,pT of aircraft f continues to have the value determined by the

typical deterministic programming in Eq. (3.8).

0 ≤ T ′f,r,pT ≤ M If Tf,r,pT > T ′f∗,r,pF (3.12)

T ′f,r,pT = Tf,r,pT Otherwise (3.13)

Lastly, if an aircraft f has not yet passed the merge point when aircraft f∗

reaches the merge point, then the arrival time at the merge point of aircraft f

can be determined by Eq. (3.14). Otherwise, Tf,r,pF continues to have the value

determined by the typical deterministic programming in Eq. (3.8), as described

in Eq. (3.15).

0 ≤ T ′f,r,pF ≤ M If Tf,r,pF > T ′f∗,r,pF (3.14)

T ′f,r,pF = Tf,r,pF Otherwise (3.15)

The proposed heuristic adjustment for the substantial uncertainty is finally

achieved by solving Eq. (3.8) with Eqs. (3.9)–(3.15) serving as additional con-

straints, which can be expressed as follows:

min J =

NF∑
f=1

NR∑
r=1

{
Af,rTf,r,pF +Af,r (Tf,r,pF − Tf,r,pT )

}
(3.16)

subject to Eqs. (2.2)–(2.8), Eq. (3.7) and Eqs. (3.9)–(3.15).

36



Although, in this study, it is focused on a simplified case where the substan-

tial uncertainty is imposed on one aircraft, the proposed heuristic adjustment

can be extended to a more complicated case where the substantial uncertainty

is imposed on K aircraft. That is, the modified deterministic programming in

Eq. (3.16), is solved K times, and the decision variables are updated for each

k-th (= 1, · · · ,K) calculation. The decision variables are i) Tf∗,r,pF (k) of the k-

th aircraft f∗, ii) Tf,r,pI (k), iii) Tf,r,pT (k), and iv) Tf,r,pF (k) of aircraft f , which

follows the k-th aircraft f∗.

Algorithm 3.1 shows the detailed procedure of the proposed heuristic adjust-

ment, which is extended to the complicated case. Suppose that Tf,r,pI , Tf,r,pT ,

and Tf,r,pF are the static robust solutions determined by the typical deter-

ministic programming in Eq. (3.8) for each aircraft f on route r (line 1 of

Algorithm 3.1). If a substantial uncertainty during CDA is imposed on an air-

craft f (line 4 of Algorithm 3.1), then the aircraft is referred to as aircraft

f∗ (line 5 of Algorithm 3.1) and Tf,r,pF of aircraft f∗ is adjusted by using

Eq. (3.9) (line 10 of Algorithm 3.1). Additionally, the static robust solutions

are adjusted by solving Eq. (3.16) (line 13 of Algorithm 3.1). The modified

solutions are updated for each k-th (= 1, · · · ,K) calculation (line 14 of Algo-

rithm 3.1). If adjustments are performed for all aircraft for which the flight time

during CDA is greater than the extra buffer size, then Tf,r,pI (k), Tf,r,pT (k), and

Tf,r,pF (k) for k = 1, · · · ,K can be considered as appropriate scheduling results

under dynamic environments; otherwise, the procedure from line 4 to line 15 of

Algorithm 3.1 is repeated.
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Algorithm 3.1 Heuristic Adjustment

1: procedure HA(µCDA, ε, λ, σCDA, T̃CDAf,r , Tf,r,pI , Tf,r,pT , Tf,r,pF )
2: k ← 0
3: for each aircraft f on route r do
4: if T̃CDA

f,r > µCDA + ε λ σCDA then
5: f∗ ← f
6: if k > 0 then
7: Tf∗,r,pF

← Tf∗,r,pF
(k)

8: Tf,r,pI
← Tf,r,pI

(k), Tf,r,pT
← Tf,r,pT

(k), Tf,r,pF
← Tf,r,pF

(k)
9: end if

10: Compute T ′f∗,r,pF
using Eq. (3.9)

11: k ← k + 1
12: Tf∗,r,pF

(k)← T ′f∗,r,pF

13: Compute T ′f,r,pI
, T ′f,r,pT

, T ′f,r,pF
forf = f∗+1, · · · , NF using Eq. (3.16)

14: Tf,r,pI
(k)← T ′f,r,pI

, Tf,r,pT
(k)← T ′f,r,pT

, Tf,r,pF
(k)← T ′f,r,pF

15: end if
16: end for
17: return Tf,r,pI

(k), Tf,r,pT
(k), Tf,r,pF

(k) for all aircraft f
18: end procedure
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3.3.2 Sliding Time Window

Suppose that a large number of aircraft arrive through PMS. First, their se-

quence and schedule can be determined by using the typical deterministic pro-

gramming in Eq. (3.8), and the obtained result can then be modified under a

dynamic environment by using the proposed heuristic adjustment in Section

3.3.1. Because huge computational effort is required to solve the optimization

problem, it might be more appropriate to first determine the sequence and

schedule of some aircraft approaching PMS in the near future, with subsequent

aircraft being added to the problem set as time progresses. Therefore, a sliding

time window is introduced to divide the original problem into several small

problems.

The operational concept of sliding time window is illustrated in Fig. 3.2,

which can be applied as follows. Let us define the length of the time window

as ‘TW ’. For the first operational interval, the first group of aircraft, with an

estimated time of arrival at the initial point, i.e., TETAf,r,pI
, within [0, 0 + TW ], is

included in the optimization problem. For the next operational interval, three

different events are considered, as shown in Fig. 3.2. The first event is to add

new aircraft (solid triangle in Fig. 3.2) to the problem set, of which TETAf,r,pI
is

within the current time window [t, t+ TW ] and was not managed in the previ-

ous operational interval. The second event is to eliminate the aircraft (dotted

triangle in Fig. 3.2) that have already arrived at the merge point. By elimi-

nating these aircraft from the problem set, the computational effort needed to

solve the optimization problem can be maintained at a proper level. The third

event is to adjust the sequence and schedule of aircraft (filled triangle at the

bottom of Fig. 3.2), which corresponds to the proposed heuristic adjustment

in Section 3.3.1. If an aircraft’s actual flight time during CDA is greater than
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𝑓start𝑓end

Figure 3.2 Operational concept of sliding time window

the constant value representing the uncertainty of flight time during CDA in

the typical deterministic programming, i.e., µCDA + ε λ σCDA in Eq. (3.7), its

sequence and schedule as well as those of subsequent aircraft should be modified

by solving Eq. (3.16). After the three events are resolved, the sequencing and

scheduling of aircraft within the current time window can be determined in a

dynamic environment with a low computational load.
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3.4 Algorithm Summary

The proposed deterministic programming with algorithm enhancements for dy-

namic environments is summarized in Algorithm 3.2. When Algorithm 3.2 is

started at t = 0, the first aircraft is assigned to fstart, and the last aircraft in

the first group, i.e., the aircraft of which TETAf,r,pI
is the largest within [0, 0+TW ],

which is the first operational interval in Fig. 3.2, is assigned to fend (line 7 of

Algorithm 3.2). The parameters fstart and fend are used to indicate the earliest

and latest aircraft in the current problem set. As previously described, TEf,r,pI

and TLf,r,pI are computed as 0.8TETAf,r,pI
and 1.2TETAf,r,pI

, respectively (line 8 of Algo-

rithm 3.2). By solving the typical deterministic programming in Eq. (3.8), the

sequences and schedules of the current problem can be calculated (line 9 of Algo-

rithm 3.2). In the next operational interval, as shown in Fig. 3.2, it is determined

whether adding aircraft, excluding aircraft, or adjusting the previously deter-

mined aircraft schedule is required. If adding aircraft is required, then a new

aircraft is added to the problem set, and its schedule is determined by solving the

typical deterministic programming in Eq. (3.8) (lines 13–18 of Algorithm 3.2).

Note that the parameters TEf,r,pI and TLf,r,pI of newly added aircraft are then

calculated as t+0.8(TETAf,r,pI
−t) and t+1.2(TETAf,r,pI

−t), respectively (line 15 of Al-

gorithm 3.2). If deleting aircraft is required, the aircraft referred to as fstart is ex-

cluded from the problem set (lines 21–26 of Algorithm 3.2). If adjusting the cur-

rent aircraft schedule is required, then the alternative schedule is determined by

solving the modified deterministic programming in Eq. (3.16) (lines 28–40 of Al-

gorithm 3.2). If Algorithm 3.2 is performed in the given time window, i.e., from 0

to max(Tf,r,pF ), then Tf,r,pI (h) ∈ R1, Tf,r,pT (h) ∈ R1, and Tf,r,pF (h) ∈ R1 can be

considered as the final scheduling results for the given time window; otherwise,

the procedure from line 11 to line 43 is repeated. Because the scheduling results
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are updated for each h-th calculation (lines 10, 17, 22–24, and 37–39 of Algo-

rithm 3.2), the solution histories Tf,r,pI (1, · · · , h) ∈ Rh, Tf,r,pT (1, · · · , h) ∈ Rh,

and Tf,r,pF (1, · · · , h) ∈ Rh can be obtained by using Algorithm 3.2.
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Algorithm 3.2 Deterministic Programming for Dynamic Environments

1: procedure DPDE(F , R, µCDA, ε, λ, σCDA, TW )
2: Create Af,r, TETA

f,r,pI
, and T̃CDA

f,r for ∀f ∈ F and ∀r ∈ R
3: Create SEPf,f ′,pI

and SEPf,f ′,pF

4: for every time step t = 0, · · · , max(Tf,r,pF
) do

5: if t = 0 then
6: h← 1
7: fstart ← 1, fend ← f of which TETA

f,r,pI
is the largest within [t, t+ TW ]

8: TE
f,r,pI

← 0.8 TETA
f,r,pI

and TL
f,r,pI

← 1.2 TETA
f,r,pI

for f = fstart, · · · , fend
9: Compute (Tf,r,pI

, Tf,r,pT
, Tf,r,pF

) for f = fstart, · · · , fend using Eq. (3.8)
10: Tf,r,pI

(h)← Tf,r,pI
, Tf,r,pT

(h)← Tf,r,pT
, Tf,r,pF

(h)← Tf,r,pF

11: else
12: for each aircraft f = fend + 1, · · · , NF do
13: if TETA

f,r,pI
≤ t+ TW then

14: h← h+ 1, fend ← fend + 1
15: Update TE

f,r,pI
and TL

f,r,pI
for f = fstart, · · · , fend

16: Compute (Tf,r,pI
, Tf,r,pT

, Tf,r,pF
) for f = fstart, · · · , fend

17: Tf,r,pI
(h)← Tf,r,pI

, Tf,r,pT
(h)← Tf,r,pT

, Tf,r,pF
(h)← Tf,r,pF

18: end if
19: end for
20: for each aircraft f = fstart, · · · , fend do
21: if Tf,r,pF

< t then
22: h← h+ 1, Tf,r,pI

(h)← Tf,r,pI
(h− 1) for f = fstart + 1, · · · , fend

23: Tf,r,pT
(h)← Tf,r,pT

(h− 1) for f = fstart + 1, · · · , fend
24: Tf,r,pF

(h)← Tf,r,pF
(h− 1) for f = fstart + 1, · · · , fend

25: fstart ← fstart + 1
26: Update TE

f,r,pI
and TL

f,r,pI
for f = fstart, · · · , fend

27: elseif t ≤ Tf,r,pF
≤ t+ TW

28: if T̃CDA
f,r > µCDA + ε λ σCDA then

29: Tf,r,pI
← Tf,r,pI

(h)
30: Tf,r,pT

← Tf,r,pT
(h)

31: Tf,r,pF
← Tf,r,pF

(h)
32: f∗ ← f
33: Compute T ′f∗,r,pF

using Eq. (3.9)
34: h← h+ 1
35: Tf∗,r,pF

(k)← T ′f∗,r,pF

36: Compute (T ′f,r,pI
, T ′f,r,pT

, T ′f,r,pF
) for f = f∗ + 1, · · · , fend

37: Tf,r,pI
(h)← T ′f,r,pI

38: Tf,r,pT
(h)← T ′f,r,pT

39: Tf,r,pF
(h)← T ′f,r,pF

40: end if
41: end if
42: end for
43: end if
44: end for
45: return Tf,r,pI

(h), Tf,r,pT
(h), Tf,r,pF

(h) for all aircraft f
46: end procedure
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3.5 Historical Data Analysis

The uncertainty of flight time during CDA can be identified using historical

data analysis for the PMS used at Jeju International Airport. Figure 3.3 shows

the air routes, including the PMS, around Jeju International Airport, which is

indicated by the small black circle. The Y722 route, indicated by a green dash-

dot line, is the busiest air route, by origin-and-destination passenger volume, in

the world [80]. The small triangles represent fixes, and the names of some ma-

jor fixes are indicated. As shown in Fig. 3.3, there exist three PMSs of which

availability depends on the wind conditions: two of PMSs (to the left of the

airport) are indicated by a blue dotted line, while the other PMS (to the right

of the airport) is indicated by a red solid line. In this study, the right PMS

is considered as the target PMS, which comprises the initial point DANBI,

the merge point HANUL, and the sequencing legs from DANBI to WOOD.

This PMS is shared by three inbound traffic flows: DOTOL–PC731–DANBI–

WOODO–HANUL (route 1), PC735–DANBI–WOODO–HANUL (route 2), and

MAKET–SELIN–WOODO–HANUL (route 3). Note that these routes are ver-

tically separated.

To analyze the arrival traffic flows through the target PMS, historical flight

data of a 24-hour period in April 2015 are used. There was a total of 285 arriving

flights; among these flights, 113 flights used the target PMS. Among 113 flights,

85.85% used route 1 passing through DOTOL, 4.42% used route 2 passing

through PC735, and 9.73% used route 3 passing through MAKET. Four kinds

of trajectories are identified as shown in Fig. 3.4: i) good trajectory, ii) unusual

trajectory along the sequencing legs, i.e., leg run-offs, iii) unusual trajectory

during CDA, and iv) unusual trajectory both along the sequencing legs and

during CDA. The number of trajectories per type is summarized in Table 3.1.
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Table 3.1 Radar tracking trajectories among 113 aircraft arriving through the
target PMS

Trajectory Good
Unusual along Unusual Both
sequencing legs during CDA unusual

Number of aircraft 70 30 9 4
Percentage 61.95% 26.55% 7.96% 3.54%

Among 113 flights, only 70 flights (61.95%) arrived at the airport by accurately

following the target PMS. Otherwise, when the traffic was heavily congested, a

leg run-offs situation, a deviation from CDA, or both resulted. Therefore, it can

be concluded that the limitations of the traffic handling capacity of the current

PMS are identified, which emphasizes the need for decision support tools for

human air traffic controllers in PMS.

Figure 3.5 shows the average flight time consumed in the target PMS and the

number of aircraft every 10 minutes during the 24-hour period. It can be seen

from Fig. 3.5 that the flight time in the target PMS increases with the number

of aircraft, and during the peak hour from 19:50:00 to 20:50:00, a total of 21

aircraft arrived at the airport though the target PMS. The detailed schedules

of arriving aircraft during the peak hour are summarized in Table 3.2.

Figure 3.6 shows the histogram of the flight time during CDA for 113 flights.

In this study, the uncertainty of flight time during CDA is modelled as a nor-

mal distribution, and the mean and standard deviations are 274.60 seconds

and 27.75 seconds, respectively. Considering the theoretical value of safe sepa-

ration between successive aircraft at the merge point, the uncertainty of flight

time during CDA could impact the safety of an aircraft, and therefore robust

optimization for aircraft sequencing and scheduling in PMS is required to com-

pensate for the uncertainty of flight time during CDA.
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(b) Unusual trajectory along the
sequencing leg
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Figure 3.4 Four kinds of radar tracking trajectories
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Table 3.2 Historical data of arriving aircraft through the target PMS during
the peak hour

Aircraft Route Class Arrival Time at pI (sec)
1 1 Large 0 (19:52:15)
2 1 Large 290 (19:54:15)
3 1 Large 430 (19:58:30)
4 1 Large 1,075 (20:00:45)
5 1 Large 1,260 (20:04:35)
6 1 Large 1,575 (20:07:25)
7 1 Large 1,775 (20:12:55)
8 1 Large 1,920 (20:14:00)
9 1 Large 2,040 (20:14:50)
10 1 Large 2,300 (20:18:30)
11 1 Large 2,415 (20:20:00)
12 3 Large 2,555 (20:26:55)
13 1 Large 2,685 (20:31:35)
14 1 Large 2,995 (20:36:40)
15 1 Large 3,185 (20:40:40)
16 1 Large 3,305 (20:43:40)
17 2 Large 3,585 (20:47:10)
18 1 Large 3,735 (20:47:10)
19 1 Large 4,020 (20:47:10)
20 1 Large 4,285 (20:47:10)
21 1 Large 4,450 (20:47:10)
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3.6 Toy Problem

Before performing numerical simulations, a toy problem is introduced to clearly

provide intuition about the proposed deterministic programming. For the toy

problem, it is considered that three arrival flights exist on two different routes;

route 1 is assigned for one flight, and route 2 is assigned for the other flights.

The type of flight is arbitrarily assigned among heavy, large, and small. The

estimated time of arrival at the initial point is also arbitrarily assigned, but

it is considered that the first flights on routes 1 and 2 arrive at their initial

points around the same time. In addition, by considering the structure of PMS

operated in Jeju International Airport, the flight time during CDA without un-

certainty is set to 274.60 seconds. As determined in the historical data analysis,

the uncertainty of flight time during CDA is modeled as a normal distribution

(i.e., T̃CDA ∼ N(274.60, 27.752)), and the uncertainty level ε is set to unity.

The extra buffer size depends on the reliability level κ, as summarized in Table

3.3. Note that the reliability level represents the probability of the solution to

violate the constraints because of the uncertainty [14,15]. For example, if a 5%

reliability level is considered, then the extra buffer size equals to 1.645× 27.75

seconds = 45.65 seconds, and the buffer size decreases as the reliability level in-

Table 3.3 Extra buffer sizes depending on the reliability level κ when ε = 1

Reliability level κ (%) Buffer size (sec)
22.5 20.96
20 23.36

17.5 25.94
15 28.76

12.5 31.92
10 35.56
7.5 39.95
5 45.65

2.5 54.40
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creases. In this toy problem, the extra buffer size of 31.92 seconds is considered

(i.e., the reliability level is set to 12.5%).

First, let us compare the theoretical results determined by the optimization

through MILP in Chapter 2 and the proposed deterministic programming in

Chapter 3. Figure 3.7 shows the trajectory of each flight determined by the

optimization through MILP. In Fig. 3.7, each triangle denotes the position and

orientation of the flight every one minute until each flight reaches the final

merge point of PMS. The initial traffic conditions and the theoretical results

are summarized in Table 3.4, where 4T1 and 4T2 are the flight time on the

sequencing leg and the flight time during CDA, respectively. On the other hand,

Fig. 3.8 and Table 3.5 show the theoretical results when the proposed deter-

ministic programming is implemented. Unlike the optimization result through

MILP, the flight time during CDA is set to 306.5 seconds instead of 274.6 sec-

onds to determine robust aircraft sequencing and scheduling under uncertainty

in the proposed deterministic programming. Therefore, the total flight time of

the proposed deterministic programming is determined as 1,407 seconds which

is greater than that of the optimization through MILP (i.e., 1,311 seconds).

Next, suppose that the flight time during CDA of flight 1 is delayed from

the theoretical value 274.6 seconds in real operation, and the amount of time

delayed is 13.7 seconds. Let us refer this uncertainty as Uncertainty 1. Un-

der Uncertainty 1, the sequencing and scheduling results of the optimization

through MILP are shown in Fig. 3.9. As shown in Fig. 3.9, the separation be-

tween flights 1 and 3 becomes 96.8 seconds which is less than the minimum

safety separation standard, i.e., 110.5 seconds. The detailed values are summa-

rized in Table 3.6. On the other hand, as described in Fig. 3.10 and Table 3.7,

the separation between flights 1 and 3 becomes greater than 110.5 seconds by

using the proposed deterministic programming, even though Uncertainty 1 is
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generated. The reason is that the flight time during CDA (i.e., 306.5 seconds)

considered in the theoretical results is greater than the uncertainty of flight

time during CDA of flight 1 (i.e., 288.3 seconds).

Lastly, suppose that a substantial uncertainty during CDA is imposed on

flight 1; in other words, the flight time during CDA of flight 1 becomes 318.7

seconds in real operation. Let us refer this substantial uncertainty as Uncer-

tainty 2. Note that the theoretical results and the results under Uncertainty 1

could be determined through the typical deterministic programming; in other

words, the proposed algorithm enhancements described in Chapter 3.3 are not

required. However, because Uncertainty 2 is greater than the constant value,

306.5 seconds, representing the uncertainty of flight time during CDA in the

typical deterministic programming, the typical deterministic programming can-

not guarantee the minimum safe separation between flights 1 and 3 as shown in

Fig. 3.11 and Table 3.8. Therefore, to determine robust sequencing and schedul-

ing under Uncertainty 2, the proposed deterministic programming with a two-

level hierarchical architecture is required. Figure 3.12 and Table 3.9 show the

toy problem results determined by the proposed deterministic programming.

As described in Fig. 3.12 and Table 3.9, by adjusting the arrival time of flight 3

at the final merge point, the separation between flights 1 and 3 becomes greater

than 110.5 seconds.

The toy problem results can be summarized as follows. Theoretically, the

optimal aircraft sequence and schedule minimizing the total flight time can

be achieved by the optimization through MILP. However, when uncertainty is

generated in real operation, the optimal aircraft sequence and schedule are not

valid. On the other hand, although the total flight time of the proposed deter-

ministic programming increases than that of the optimization through MILP,

the aircraft sequencing and scheduling determined by the proposed determin-
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istic programming can guarantee the minimum safety separation standard be-

tween aircraft under uncertainty.
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Figure 3.7 Trajectory of each flight theoretically determined by the optimization
through MILP

Table 3.4 Theoretical results determined by the optimization through MILP

Initial conditions Scheduling results (sec)
Flight Class Route TETAf,r,pI

(sec) Tf,r,pI 4T1 4T2 Tf,r,pF
1 Heavy 1 90.0 72.0 75.5 274.6 422.1
2 Small 2 100.0 80.0 0.0 274.6 354.6
3 Large 2 244.3 195.4 64.6 274.6 532.6
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Figure 3.8 Trajectory of each flight theoretically determined by the proposed
deterministic programming

Table 3.5 Theoretical results determined by the proposed deterministic pro-
gramming

Initial conditions Scheduling results (sec)
Flight Class Route TETAf,r,pI

(sec) Tf,r,pI 4T1 4T2 Tf,r,pF
1 Heavy 1 90.0 72.0 75.5 306.5 454.0
2 Small 2 100.0 80.0 0.0 306.5 386.5
3 Large 2 244.3 195.4 64.6 306.5 566.5
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Figure 3.9 Toy problem results under Uncertainty 1 determined by the opti-
mization through MILP

Table 3.6 Toy problem results under Uncertainty 1 determined by the opti-
mization through MILP

Flight
Theoretical results (sec) Results under uncertainty (sec)

Tf,r,pI 4T1 4T2 Tf,r,pF Tf,r,pI 4T1 4T2 Tf,r,pF
1 72.0 75.5 274.6 422.1 72.0 75.5 288.3 435.8
2 80.0 0.0 274.6 354.6 80.0 0.0 274.6 354.6
3 195.4 64.6 274.6 532.6 195.4 64.6 274.6 532.6
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Figure 3.10 Toy problem results under Uncertainty 1 determined by the pro-
posed deterministic programming

Table 3.7 Toy problem results under Uncertainty 1 determined by the proposed
deterministic programming

Flight
Theoretical results (sec) Results under uncertainty (sec)

Tf,r,pI 4T1 4T2 Tf,r,pF Tf,r,pI 4T1 4T2 Tf,r,pF
1 72.0 75.5 306.5 454.0 72.0 75.5 288.3 435.8
2 80.0 0.0 306.5 386.5 80.0 0.0 306.5 386.5
3 195.4 64.6 306.5 566.5 195.4 64.6 306.5 566.5
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Figure 3.11 Toy problem results under Uncertainty 2 determined by the typical
deterministic programming

Table 3.8 Toy problem results under Uncertainty 2 determined by the typical
deterministic programming

Flight
Theoretical results (sec) Results under uncertainty (sec)

Tf,r,pI 4T1 4T2 Tf,r,pF Tf,r,pI 4T1 4T2 Tf,r,pF
1 72.0 75.5 306.5 454.0 72.0 75.5 318.7 466.2
2 80.0 0.0 306.5 386.5 80.0 0.0 306.5 386.5
3 195.4 64.6 306.5 566.5 195.4 64.6 306.5 566.5
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Figure 3.12 Toy problem results under Uncertainty 2 determined by the pro-
posed deterministic programming

Table 3.9 Toy problem results under Uncertainty 2 determined by the proposed
deterministic programming

Flight
Theoretical results (sec) Results under uncertainty (sec)

Tf,r,pI 4T1 4T2 Tf,r,pF Tf,r,pI 4T1 4T2 Tf,r,pF
1 72.0 75.5 306.5 454.0 72.0 75.5 318.7 466.2
2 80.0 0.0 306.5 386.5 80.0 0.0 306.5 386.5
3 195.4 64.6 306.5 566.5 195.4 64.6 318.7 578.7
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3.7 Numerical Simulation

The proposed deterministic programming in dynamic environments is evaluated

based on the real historical data during the peak hour of Jeju International

Airport, which are described in Table 3.2. Additionally, to investigate the effect

of the extra buffer size on the total flight time and robustness, various extra

buffer sizes are considered as summarized in Table 3.3.

The estimated time of arrival at the initial point of PMS is determined based

on the real historical data during the peak hour. In a real operation, more time

separation at the merge point might be required because of the capacity of the

airport runway system and the impact of other arriving and departing aircraft.

Therefore, the time separation at the merge point is three times higher than

that of theoretical value, e.g., 67.5 seconds × 3 = 202.5 seconds. The size of the

sliding time window is set to be ten minutes.

Figure 3.13 shows the number of adjustments (dashed red line) in the pro-

posed heuristic adjustment and the total flight time (blue solid line) for each

buffer size, which is determined based on the reliability level. It is apparent from

Fig. 3.13 that more adjustments are required when a smaller buffer size is con-

sidered in the typical deterministic programming. The number of adjustments is

related to the robustness of the proposed deterministic programming; therefore,

the robustness tends to improve as the buffer size increases. However, because

more time separation is imposed on each aircraft as the buffer size increases,

the total flight time of arriving aircraft through the target PMS increases. This

tendency can be identified in Fig. 3.13, where there exists a steady increase in

the total flight time from a buffer size of 25.94 seconds to a buffer size of 54.40

seconds. It is interesting to note that the total flight time declines from 20.96

seconds to 25.94 seconds because of the decrease in the number of heuristic
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adjustments, which deteriorates the optimality of the solutions. Therefore, the

buffer size of 25.94 seconds (i.e., 17.5% reliability level) can be considered as

the most appropriate for the proposed deterministic programming in dynamic

environments in terms of minimizing the total flight time and the number of

interruptions made by human air traffic controllers.

Figure 3.14 and Table 3.10 show the detailed sequencing and scheduling

results achieved by the proposed deterministic programming in dynamic envi-

ronments with the extra buffer when a 17.5% reliability level is considered. As

shown in Fig. 3.14, the arrival times at the merge point of the 4th, 10th, and

21st aircraft were delayed with respect to the static robust solutions determined

in the typical deterministic programming in Eq. (3.8). In other words, the ac-

tual flight time during CDA of these aircraft is greater than the constant value

µCDA + ε λ σCDA in the typical deterministic programming when a 17.5% reli-

ability level is considered. To compensate for these delays and to maintain the

safe separation between aircraft at the merge point, the proposed heuristic ad-

justment lengthens the flight time during CDA of the 5th and 11th aircraft and

recalculates the turning time of the 12th and 13th aircraft from the sequencing

legs, as shown in Fig. 3.14.

Figure 3.15 shows the number of aircraft and the CPU time required for the

proposed deterministic programming in dynamic environments for each cal-

culation of the sliding time windows. The aircraft, whose estimated time of

arrival are within the range of the first operational interval, i.e., between zero

and ten minutes, are scheduled and sequenced in the first calculation. As time

progresses, the sliding time window moves forward in time, and a new set of

aircraft, with an estimated time of arrival within the current operational in-

terval, is added to the problem set. At the same time, the aircraft arrived at

the merge point during the previous operational interval are excluded, and the
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sequences and schedules of some aircraft are adjusted when the safe separation

between aircraft cannot be maintained because of a substantial uncertainty.

As shown in Fig. 3.15, to determine dynamic robust sequences and schedules

for 21 aircraft, the proposed deterministic programming is performed 42 times;

one is for the first three aircraft at the first operational interval, 18 times are

performed to add an aircraft whenever a new aircraft enters to the current op-

erational window, 3 times are to adjust the schedule and sequence of aircraft

when a substantial uncertainty is generated during CDA, and 20 times are to

eliminate the aircraft which arrives at the merge point of PMS. Specifically, at

the third calculation where the operational window is from 476 seconds to 1,076

seconds, the fourth aircraft is added to the problem set. The decision variables

Tf,r,pI , Tf,r,pT , and Tf,r,pF for the fourth aircraft are then determined as 955

seconds, 955 seconds, and 1,256 seconds, respectively. And then, at the fourth

calculation where the operational window is from 536 seconds to 1,136 seconds,

the second aircraft is excluded from the problem set. At the fifth calculation

where the operational window is from 661 seconds to 1,261 seconds, the deci-

sion variables Tf,r,pI , Tf,r,pT , and Tf,r,pF of the fifth aircraft are determined as

1,140 seconds, 1,158 seconds, and 1,459 seconds, respectively. However, during

the seventh calculation, the fourth and fifth aircraft are rescheduled because

the actual flight time during CDA of the fourth aircraft is larger than the pre-

defined extra buffer size. Therefore, Tf,r,pF of the fourth aircraft is changed from

1,256 seconds to 1,280 seconds. Also, the decision variable Tf,r,pF of the fifth

aircraft is updated as 1,483 seconds, respectively.

In Table 3.11, the minimum, mean, and maximum number of aircraft con-

sidered in each calculation and the minimum, mean, and maximum CPU time

required to solve the problems are summarized. As shown in Table 3.11, by

using the sliding time window, the number of aircraft included in each problem
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set is maintained less than six. Therefore, the proposed deterministic program-

ming for dynamic environments can be solved efficiently and implemented over

a long time period (approximately one hour) with a low computational load.

Note that the computation is performed using MATLAB [81] and a desktop

PC with an Intel Core (3.60 GHz) processor.
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Figure 3.13 The number of heuristic adjustments and the total flight time for
each buffer size
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Table 3.10 Detailed sequencing and scheduling results for the extra buffer size
with a 17.5% reliability level

Aircraft Tf,r,pI (sec) Tf,r,pT (sec) T̃CDAf,r (sec) Tf,r,pF (sec)

1 0 0 301 301
2 232 232 301 533
3 344 435 301 735
4 955 955 325 1,280
5 1,140 1,158 325 1,483
6 1,455 1,455 301 1,756
7 1,658 1,658 301 1,958
8 1,860 1,860 301 2,161
9 1,920 2,063 301 2,363
10 2,180 2,265 385 2,650
11 2,295 2,468 385 2,852
12 2,514 2,755 301 3,055
13 2,565 2,957 301 3,258
14 2,875 3,160 301 3,460
15 3,134 3,362 301 3,663
16 3,185 3,565 301 3,865
17 3,564 3,767 301 4,068
18 3,615 3,970 301 4,270
19 3,900 4,172 301 4,473
20 4,279 4,375 301 4,675
21 4,330 4,577 350 4,927
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Figure 3.15 The number of aircraft and the CPU time required for each calcu-
lation for the extra buffer size with a 17.5% reliability level

Table 3.11 The minimum, mean, and maximum number of aircraft and the
CPU time required for each calculation for the extra buffer size with a 17.5%
reliability level

The number of aircraft
Minimum 1

Mean 4.17
Maximum 6

CPU time (sec)
Minimum 0.00

Mean 0.16
Maximum 0.62
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Chapter 4

Stochastic Programming for Aircraft
Arrival Sequencing and Scheduling
under Uncertainty

This chapter describes robust optimization based on stochastic programming for

the aircraft sequencing and scheduling problem in PMS to compensate for the

uncertainty of flight time during CDA. The general formulation for two-stage

stochastic programming is described in Section 4.1. Two existing stochastic

approaches are briefly summarized in Section 4.1: i) deterministic equivalent

programming in Section 4.1.1 and ii) two-stage stochastic programming based

on GA in Section 4.1.2. Then, two-stage stochastic programming based on PSO

is proposed with a detailed formulation for the first and second stage decisions

in Section 4.2.1. In Section 4.2.2, the aircraft sequencing problem is newly rep-

resented based on the random key representation to determine the first stage

decision by using PSO. In Section 4.3, to clearly understand the proposed two-

stage stochastic programming based on PSO, the toy problem is solved. By

performing three different numerical simulations in Section 4.4, the appropri-

ate number of scenarios required in the second stage is determined and the

performance of the proposed two-stage stochastic programming based on PSO

is compared with that of the deterministic programming proposed in Chapter

3 and other stochastic approaches.
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4.1 Two-Stage Stochastic Programming

Let us reconsider the general MILP problem described in Eq. (3.2). By in-

corporating the uncertainty existing in the right-hand-side parameter of the

inequality constraint in Eq. (3.2), two-stage stochastic programming can be

represented as follows:

min
x,y

cTx+ Eξ [φ(x, y, ξ)] (4.1)

subject to

Ax ≤ b, x ∈ X (4.2)

where the symbol Eξ denotes expectation with respect to the distribution of

random variable ξ, and the function φ(x, y, ξ) is given as follows:

φ(x, y, ξ) = min
y
q(ξ)T y (4.3)

subject to

Tx+Wy ≤ h(ξ), y ∈ Y (4.4)

If the uncertainty is considered to be a finite set of scenarios, i.e., ω ∈ Ω,Ω =

{1, · · · , NΩ}, Eqs. (4.1)–(4.4) can be re-established as follows [60,61]:

min
x,yω

cTx+

NΩ∑
ω=1

πωq
T
ω yω (4.5)

subject to

Ax ≤ b, (4.6)

Tx+Wyω ≤ hω, ∀ω = 1, · · · , NΩ (4.7)

where the variables to be optimized are divided into the first stage decision

variables x and the second stage decision variables yω. Note that the decision
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in the first stage does not depend on each scenario ω, and Eq. (4.6) is the

constraint for the first stage decision. On the other hand, the decision in the

second stage is associated with a particular realization of hω in Eq. (4.7). The

objective function of two-stage stochastic programming in Eq. (4.5) is composed

of the first stage decision and the expected cost of the second stage decision.

In addition, πω represents the probability of each scenario ω, and c and qω are

weighting parameters for the first and second stage decisions, respectively.

4.1.1 Deterministic Equivalent Programming (DEP)

To determine robust solutions of two-stage stochastic programming in Eqs. (4.5)–

(4.7), the first approach is to derive the DEP problem based on scenario de-

composition [68]. By introducing xω according to the number of scenarios and

the so-called nonanticipativity constraints such that x1 = x2 = · · · = xNΩ
,

Eqs. (4.5)–(4.7) can be represented as follows:

min
x,yω

NΩ∑
ω=1

πω

{
cTxω + qTω yω

}
(4.8)

subject to

Axω ≤ b, ∀ω = 1, · · · , NΩ (4.9)

Tx+Wyω ≤ hω, ∀ω = 1, · · · , NΩ (4.10)

xω − xω+1 = 0, ∀ω = 1, · · · , NΩ − 1 (4.11)

Because the DEP problem presented in Eqs. (4.8)–(4.11) belongs to the class

of MILP, a standard optimization software for MILP such as CPLEX [82] can

be utilized to solve it. However, the number of second stage decisions yω and

the number of nonanticipativity constraints in Eq. (4.11) grow linearly with

the number of scenarios; therefore, the DEP problem with a large number of

variables and constraints requires a large amount of computational time.
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4.1.2 Two-Stage Stochastic Programming based on GA

An alternative approach is the two-stage stochastic programming based on an

evolutionary algorithm, especially GA [22, 23]. Equations (4.5)–(4.7) can be

divided into a master problem and sub-problems. The master problem is a

function of the first stage decision x only. Therefore, it can be represented as

follows:

min
x

cTx+

NΩ∑
ω=1

πωQω(x) (4.12)

subject to

Ax ≤ b (4.13)

For a given x, the sub-problems can be set up as follows:

Qω(x) = min
yω

qTω yω (4.14)

subject to

Tx+Wyω ≤ hω, ∀ω = 1, · · · , NΩ (4.15)

In [22,23], the master problem presented in Eqs. (4.12)–(4.13) is solved by using

GA. Each individual in GA represents the first stage decision x and evaluates its

fitness as described in Eqs. (4.12)–(4.13). Note that to calculate the fitness, the

sub-problems of Eqs. (4.14)–(4.15) are solved by using CPLEX. By performing

the GA operations, i.e., the selection, crossover, and mutation operations, the

offspring of the current generation can provide better solutions than those of

the previous generation. Eventually, the optimal first stage decision x resulting

in the minimum fitness for NΩ scenarios can be determined.
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4.2 Two-Stage Stochastic Programming based on PSO

4.2.1 Master and Sub-Problems

Before applying the two-stage stochastic programming based on PSO, let us

reconsider the uncertain inequality constraint in Eq. (3.1). As described in

Eq. (3.1), the uncertainty arising in the CDA trajectory is considered in this

study. The uncertainty of flight time during CDA T̃CDAf,r in Eq. (3.1) is closely

related to the continuous decision variable Tf,r,p; otherwise, it does not connect

with the binary decision variable Sf,f ′,r,r′,p. In other words, the continuous

decision variable Tf,r,p is associated with each realization of the uncertainty of

flight time during CDA T̃CDAf,r , while the binary decision variable Sf,f ′,r,r′,p is

not. For this reason, the first stage decision x is defined as the binary decision

variable Sf,f ′,r,r′,p for the aircraft sequencing problem, and the second stage

decision yω is defined as the continuous decision variable Tf,r,p for the aircraft

scheduling problem.

The master problem for the aircraft arrival sequencing and scheduling prob-

lem in PMS can be represented as follows:

min
Sf,f ′,r,r′,p

1

NΩ

NΩ∑
ω=1

Qω(Sf,f ′,r,r′,p) (4.16)

subject to Eqs. (2.4) and (2.5). Note that, in Eq. (4.16), it is assumed that

each scenario ω has identical probability with 1/NΩ. In addition, for a given

Sf,f ′,r,r′,p, the resulting sub-problems for the aircraft arrival sequencing and

scheduling problem in PMS can be written as follows:

Qω(Sf,f ′,r,r′,p) = min
Tf,r,p

NF∑
f=1

NR∑
r=1

Af,rTf,r,pF (4.17)

subject to Eqs. (2.2)–(2.3), Eqs. (2.6)–(2.8), and Eq. (3.1). Note that for each

scenario ω, the uncertainty of flight time during CDA, i.e., T̃CDAf,r in Eq. (3.1),
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is sampled from the normal distribution function, which is identified through

the historical data analysis performed in Section 3.5.
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4.2.2 Random Key Representation

To solve the master problem described in Eq. (4.16) by using PSO, the random

key representation [75,76] is utilized in this study. In other words, the position

vector xs ∈ RNF ·(NP−1) of the particle s (s ∈ S, S = {1, · · · , NS}), where NS

is the swarm size, is defined as follows:

xs = [xspI xspF ] (4.18)

xspI = [xspI1 xspI2 · · · xspINF
] (4.19)

xspF = [xspF 1 xspF 2 · · · xspFNF
] (4.20)

where xspI and xspF represent the continuous value for all aircraft f ∈ F at the

initial and merge points, respectively. For example, the element of the position

vector xspI = [0.25 0.43 0.06 0.85 0.17] represents a five aircraft sequence,

such as 3→5→1→2→4, at the initial point pI . By using this solution represen-

tation, the operational constraint for the aircraft sequencing problem described

in Eqs. (2.4) and (2.5) can be automatically satisfied.

The detailed procedure for transforming the element of the position vector

xs of particle s, i.e., xspI and xspF , to the binary decision variable Sf,f ′,r,r′,p for

the aircraft sequencing problem at a point p is summarized in Algorithm 4.1.

Note that the output of Algorithm 4.1 is the matrix S2 which contains each

binary decision variable Sf,f ′,r,r′,p for aircraft sequencing problem at a point p

for ∀f ∈ F,∀f ′ ∈ F, f 6= f ′, ∀r ∈ R,∀r′ ∈ R.
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Algorithm 4.1 Random Key Representation

1: procedure RKR(xsp, F, R, Af,r)
2: for i from 1 to NF do
3: S0(i, 1)← xsp(1, i)
4: S0(i, 2)← i
5: end for
6: [ign, seq] ← sort(S0(:, 1))
7: S1 ← zeros(1, N2

F )
8: for i from 1 to NF do
9: for j from 1 to NF do

10: if find(seq== i) < find(seq== j) then
11: S1(1, (i− 1) ·NF + j ) ← 1
12: S1(1, (j − 1) ·NF + i ) ← 0
13: else
14: S1(1, (i− 1) ·NF + j ) ← 0
15: S1(1, (j − 1) ·NF + i ) ← 1
16: end if
17: end for
18: end for
19: k ← 0
20: S2← zeros(1, N2

F ·N2
R)

21: for i from 1 to NF do
22: for j from 1 to NF do
23: k ← k + 1
24: if S1(1, k) == 1 then
25: if Af,r == 1 when f ← i, r ← rL then
26: r1← 1
27: else
28: r1← 2
29: end if
30: if Af,r == 1 when f ← j, r ← rL then
31: r2← 1
32: else
33: r2← 2
34: end if
35: S2(1, (i− 1) ·NF ·N2

R + (j− 1) ·N2
R + (r1− 1) ·NR + r2)← 1

36: end if
37: end for
38: end for
39: return S2
40: end procedure
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4.2.3 Algorithm Summary

With the new solution representation in Eqs. (4.18)–(4.20), a fitness J iters at

each iteration can be defined as follows:

J iters =
1

NΩ

NΩ∑
ω=1

Qω(Sf,f ′,r,r′,p) (4.21)

where Qω(Sf,f ′,r,r′,p) can be determined by solving the sub-problems of Eq.

(4.17). To determine the optimal aircraft sequence that minimizes Eq. (4.21),

the velocity vector us ∈ RNF ·(NP−1) and position vector xs of the particle s are

generated using a random uniform distribution within bounds at the beginning.

Then, updates are performed at each iteration as follows:

uiters = Wuiter−1
s + c1r1(x∗sp − x

iter−1
s ) + c2r2(x∗g − xiter−1

s ) (4.22)

xiters = xiter−1
s + uiters (4.23)

where x∗sp ∈ RNF ·(NP−1) and x∗g ∈ RNF ·(NP−1) are the stored best previous

position of the particle s and the position of the best particle among all of the

particles, respectively, c1 and c2 are the acceleration constants, and r1 and r2

are uniform random values between 0 and 1. In Eq. (4.22), the second and third

terms represent the personal and social experiences, respectively. Note that one

key strength of PSO is to make a balance between the personal and social

experiences. If the term representing the personal experience is larger than the

social experience, then a particle remains its current position; otherwise, the

particle updates its velocity based on the social experience. In addition, W is an

inertia weight, whose role is crucial for the PSO’s convergence behavior. A high

inertia weight means that the particles tend to maintain the current direction.

On the other hand, a low inertia weight means that the particles tend to follow

their personal and social experiences [83]. In the exisitng works on PSO, the

inertia weight was set to a constant value [84], and a time-decreasing inertia
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weight value was used [85]. Note that, the acceleration constants and the inertia

weight should be carefully determined, because they provide balance between

the global and local exploration ability of the swarm, which results in better

convergence performance.

Algorithm 4.2 shows the detailed procedure of the proposed two-stage stochas-

tic programming based on PSO. Each particle’s position xs and velocity us are

initialized with a uniform distribution in the specified range [0 4] and [-1,000

1,000] (default), respectively (line 2 of Algorithm 4.2). After all particles’ fitness

values are computed by using Eq. (4.21), the values are compared with each

other, and then the best of the personal bests x∗sp is set to the global best x∗g (line

5 of Algorithm 4.2). Each particle updates its position xs and velocity us using

Eqs. (4.22) and (4.23), thereby they move closer to the optimal solution with

the personal best x∗sp and the global best x∗g (lines 6–7 of Algorithm 4.2). Each

particle evaluates its current position xs by computing its fitness value J iters

based on Eq. (4.21) (line 9 of Algorithm 4.2). If the current fitness value of a

particle J iters is less than its previous fitness value J iter−1
s , then it updates its

personal best x∗sp (line 11 of Algorithm 4.2). If one of the stopping criteria is

met, then the global best x∗g is returned as the optimal solution; otherwise, the

procedure from line 5 to line 17 of Algorithm 4.2 is repeated.
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Algorithm 4.2 Two-Stage Stochastic Programming based on PSO

1: procedure TSSPPSO(F , S)
2: Initialize xs and us for all particles s ∈ S
3: Initialize the x∗sp and the cost J0

s such as x∗sp ← xs and J0
s ←∞

4: while stopping criteria are not satisfied do
5: Find x∗sp and set the best of x∗sp as x∗g by using Eq. (4.21)

6: Update each particle’s velocity by using Eq. (4.22)
7: Update each particle’s position by using Eq. (4.23)
8: for each s = 1, · · · , NS do
9: Compute J iters by using Eq. (4.21)

10: if J iters < J iter−1
s then

11: x∗sp ← xs
12: else
13: J iters ← J iter−1

s
14: end if
15: end for
16: Check the stopping criteria
17: iter ← iter + 1
18: end while
19: return x∗ ← x∗g
20: end procedure
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4.3 Toy Problem

In this section, the toy problem introduced in Section 3.6 is solved by using

the proposed two-stage stochastic programming based on PSO. For simplicity,

the number of scenarios required in the second stage is set to 10. For 10 dif-

ferent realizations of uncertainty, the optimal aircraft sequence determined by

the proposed two-stage stochastic programming based on PSO is as follows:

1→2→3 at the initial point and 2→1→3 at the merge point. Let us consider

the ordered list which contains the sum of 10 different realizations of uncer-

tainty. In the ordered list, the worst uncertainty imposed on flights 1, 2, and

3 (i.e., the 100th percentiles of this list) are 306.3 seconds, 292.2 seconds, and

348.9 seconds, respectively. When the worst uncertainty is considered, the air-

craft sequencing and scheduling results determined by the proposed two-stage

stochastic programming based on PSO are illustrated in Fig. 4.1 and Table 4.1.

Note that the total flight time of the proposed two-stage stochastic program-

ming based on PSO is 1,389 seconds, which is less than that of the deterministic

programming, i.e., 1,407 seconds.

Suppose that Uncertainty 2, which was introduced in Chapter 3.6, is gen-

erated. Under Uncertainty 2, the aircraft sequencing and scheduling results

determined by the two-stage stochastic programming based on PSO are given

in Fig. 4.2 and Table 4.2. As described in Fig. 4.2 and Table 4.2, the minimum

safe separation between flights 1 and 3 can be successfully maintained, even

though Uncertainty 2 is generated. Furthermore, the total flight time of the

two-stage stochastic programming based on PSO is 1,389 seconds which is less

than that of the deterministic programming, i.e., 1,431 seconds.

Through this toy problem, the following characteristics and performance

of the deterministic programming and the two-stage stochastic programming
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based on PSO can be identified. First, the proposed deterministic programming

is quite simple and results in computational benefits, but provides conservative

robust solutions by replacing an uncertain parameter with a constant value

which becomes larger as the robustness increases. For this reason, the proposed

deterministic programming has a tendency to increase the total flight time.

On the other hand, although the computational load of the proposed two-stage

stochastic programming based on PSO is quite high, it provides less conservative

robust solutions than the proposed deterministic programming by considering

an uncertain parameter having a probability distribution function. In other

words, the proposed two-stage stochastic programming based on PSO has an

advantage in terms of the total flight time.
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Figure 4.1 Trajectory of each flight theoretically determined by the proposed
two-stage stochastic programming based on PSO

Table 4.1 Theoretical results determined by the proposed two-stage stochastic
programming based on PSO

Initial conditions Scheduling results (sec)
Flight Class Route TETAf,r,pI

(sec) Tf,r,pI 4T1 4T2 Tf,r,pF
1 Heavy 1 90.0 72.0 61.4 306.3 439.7
2 Small 2 100.0 80.0 0.0 292.2 372.2
3 Large 2 244.3 195.4 7.8 348.9 552.2

81



0 100 200 300 400 500 600

Time (sec)

T
f,r,p

I

T
f,r,p

T

T
f,r,p

F

Theoretical results
Results under uncertainty

Figure 4.2 Toy problem results under Uncertainty 2 determined by the proposed
two-stage stochastic programming based on PSO

Table 4.2 Toy problem results under Uncertainty 2 determined by the proposed
two-stage stochastic programming based on PSO

Flight
Theoretical results (sec) Results under uncertainty (sec)

Tf,r,pI 4T1 4T2 Tf,r,pF Tf,r,pI 4T1 4T2 Tf,r,pF
1 72.0 61.4 306.5 439.7 72.0 61.4 318.7 452.1
2 80.0 0.0 292.2 372.2 80.0 0.0 292.2 372.2
3 195.4 7.8 348.9 552.2 195.4 7.8 361.4 564.6
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4.4 Numerical Simulation

The performance of the proposed two-stage stochastic programming based on

PSO is demonstrated through three different numerical simulations. In the first

simulation, because the number of scenarios is closely related to the accuracy

and the computational load, the appropriate number of scenarios required in the

second stage of the proposed two-stage stochastic programming based on PSO

is investigated. In the second simulation, the simulation results of the proposed

two-stage stochastic programming based on PSO are compared with those of

the proposed deterministic programming in Chapter 3. Lastly, the performance

of the proposed two-stage stochastic programming based on PSO is compared

with that of other strategies for two-stage stochastic programming: i) the DEP

problem in Section 4.1.1, and ii) the two-stage stochastic programming based

on GA in Section 4.1.2.

For all of the simulations, 20 different air traffic situations are randomly

generated, where eight arriving aircraft through PMS are considered. First,

in each air traffic situation, the type of aircraft is randomly assigned among

heavy, large, and small. Second, two routes rL and rR, as shown in Fig. 2.1,

are randomly assigned to each aircraft. Third, the estimated time of arrival at

the initial point of PMS, i.e., TETAf,r,pI
, is randomly given. The lower and upper

bounds of TETAf,r,pI
are set to SEPf,f ′,pI and 2 ·SEPf,f ′,pI , respectively. Note that

the uncertainty of flight time during CDA can be modelled as a normal distri-

bution through historical data analysis performed in Section 3.5. In particular,

in the case of PMS operated in Jeju International Airport, the mean µCDA and

standard deviation σCDA are 274.60 seconds and 27.75 seconds, respectively. All

computations are performed by using MATLAB [81] and a desktop PC with an

Intel Core (3.60 GHz) processor.
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4.4.1 Numerical Analysis on the Number of Scenarios

The aim of the numerical simulation in this section is to determine the ap-

propriate number of scenarios in the second stage of the proposed two-stage

stochastic programming based on PSO. Despite recent research efforts [22,23],

the determination of the number of scenarios in the second stage of the two-

stage stochastic programming based on evolutionary algorithms remains empir-

ical and is also problem dependent. A large number of scenarios will increase

the probability of finding a better solution which can fully reflect the char-

acteristics of uncertainty; however, it requires higher computational loads in

the second stage. For this reason, the appropriate number of scenarios, which

can fully reflect the uncertainty with a low computational load, is desirable. In

this study, to find the best tradeoff between the accuracy (the realization of

uncertainty) and the efficiency (the computational load), following numerical

simulations are performed.

First, 20 different air traffic situations are considered. For each air traffic

situation, 150 scenarios are generated by considering the uncertainty of flight

time during CDA. Note that one scenario is sampled from the normal dis-

tribution function, i.e., N(µCDA, σCDA
2
). The proposed two-stage stochastic

programming based on PSO is evaluated with various numbers of scenarios in

the second stage, i.e., 25, 50, · · · , 125 scenarios. Finally, total flight times and

computational times are compared. MATLAB optimization toolbox [81] is used

to implement PSO. As summarized in Table 4.3, the acceleration constants c1

and c2 are set to default values, and the inertia weight W is gradually decreased

within the range of [0.1 1.1].

Figures 4.3 and 4.4 show the total flight time with respect to the elapsed

CPU time for one sample air traffic situation among the 20 different air traffic
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Table 4.3 Parameters used in the first stage of the proposed two-stage stochastic
programming based on PSO

Parameters Value

First stage

Number of variables (=nvars) NF · (NP − 1)
Number of particles 3 · nvars

Maximum time (hour) 6
W in Eq. (4.22) [0.1 1.1] (default)
c1 in Eq. (4.22) 1.49 (default)
c2 in Eq. (4.22) 1.49 (default)

situations, where the small circle, triangle, and square represent each iteration.

As shown in Figs. 4.3 and 4.4, CPU time elapsed in each iteration increases as

the number of scenarios considered in the second stage increases. Note that the

obtained best value in the total flight time depends on the number of scenar-

ios. Figure 4.4 shows the difference between the total flight times obtained by

considering 100, 125, and 150 scenarios. The best values in the total flight time

obtained by considering 25, 50, and 75 scenarios slightly deviate from the best

value in the total flight time obtained by considering 150 scenarios, as shown

in Fig. 4.3.

Figures 4.5 and 4.6 show the overall results for the 20 different air traffic

situations. Figure 4.5 shows the total flight times using Whisker plots, where

the central mark is the median, the edges of the box are the 25th and 75th per-

centiles, the top and bottom horizontal lines are the minimum and maximum

data points, and the outliers are plotted individually. The differences between

the median of 150 scenarios and that of other numbers of scenarios are sum-

marized in Table 4.4. If the difference is small, then the corresponding number

of scenarios indicates that it fully reflects the uncertainty. However, as shown

in Table 4.4, the results of 25, 50, and 75 scenarios strongly deviate from those

of 150 scenarios. Figure 4.6 shows the elapsed CPU time using the Whisker

plots. It is apparent from Fig. 4.6 that more computational time is required
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as the number of scenarios increases. Therefore, it can be concluded that 100

scenarios are appropriate for the proposed two-stage stochastic programming

based on PSO because the results for 100 scenarios are quite similar to those of

150 scenarios, as shown in Fig. 4.5 and Table 4.4, and the computational load

of 100 scenarios is much less than that of 150 scenarios, as shown in Fig. 4.6.

Table 4.4 Median of various numbers of scenarios and differences in the median
from 150 scenarios

Number of scenarios 25 50 75 100 125 150
Median (sec) 4,420 4,419 4,379 4,382 4,380 4,383

Difference
37.42 36.73 3.73 1.14 2.38 -

in the median (sec)
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Figure 4.3 Total flight time with respect to CPU time for one situation when
25, 50, and 75 scenarios are considered
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Figure 4.4 Total flight time with respect to CPU time for one situation, when
100, 125, and 150 scenarios are considered
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4.4.2 Comparison with Deterministic Programming

In this section, the performance of the proposed two-stage stochastic program-

ming based on PSO is compared with that of the proposed deterministic pro-

gramming in Chapter 3. The 20 different air traffic situations are considered

for the simulation. Based on the simulation results in Section 4.4.1, the number

of scenarios required in the second stage of the proposed two-stage stochastic

programming based on PSO is set to 100.

Let us consider the heuristic adjustment in Section 3.3.1 to implement the

proposed deterministic programming in dynamic environments. In the proposed

deterministic programming, the uncertainty of flight time during CDA is con-

sidered to be the constant value, i.e., µCDA + ε λ σCDA in Eq. (3.7). Note that

the constant value, especially the extra buffer size ε λ σCDA, is determined by

the reliability level considered in the proposed deterministic programming. In

this simulation, various reliability levels, i.e., 2.5%, 7.5%, · · · , 22.5%, are con-

sidered to determine the extra buffer size. If the actual flight time during CDA

of an aircraft is greater than the constant value µCDA + ε λ σCDA, then its

trailing aircraft’s schedules are adjusted by using the heuristic adjustment in

Section 3.3.1.

Likewise, the two-stage stochastic programming based on PSO can be imple-

mented in dynamic environments as follows. First, for 100 different scenarios

(i.e., 100 different realizations of uncertainty), the optimal aircraft sequence

is determined by using the two-stage stochastic programming based on PSO.

Let us consider the ordered list containing the sum of 100 different realiza-

tions of uncertainty. Then, by considering the 50th or 100th percentiles of the

list, the optimal aircraft schedule is determined for the given optimal aircraft

sequence. After the optimal aircraft sequence and schedule are determined, ac-
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tual flight time during CDA is evaluated for a newly realized uncertainty. If the

actual flight time during CDA of an aircraft is greater than the 50th or 100th

percentiles of the ordered list, its trailing aircraft’s schedules are adjusted to

achieve the safe separation with the aircraft at the merge point. Note that this

procedure is similar with the heuristic adjustment described in Section 3.3.1.

Figure 4.7 shows the overall strategy to implement both the proposed determin-

istic programming and the proposed two-stage stochastic programming based

on PSO in dynamic environments.

To compare the performance of the two-stage stochastic programming based

on PSO and the deterministic programming, Monte Carlo simulations are per-

formed 50 times for one air traffic situation. For each simulation, the actual

flight time during CDA is newly sampled from the normal distribution, i.e.,

N(µCDA, σCDA
2
). The simulation results are shown in Fig. 4.8, where each

data point is an average of 20 different air traffic situations. The left y-axis

corresponds to the total flight time of eight arriving aircraft through PMS.

The dark-colored bar against the left y-axis shows the total flight time before

conducting the heuristic adjustment, and the light-colored bar against the left

y-axis represents the increase in the total flight time caused by the heuristic

adjustment. The line graph against the right y-axis corresponds to the number

of aircraft on which a substantial uncertainty during CDA is imposed.

Let us now examine the results given in Fig. 4.8. First, from the results

obtained by the deterministic programming with various reliability levels (from

2.5% to 22.5%), it can be stated that the total flight time increases but fewer

heuristic adjustments are required as the reliability level decreases, i.e., as the

extra buffer size increases. The additional flight time caused by the heuris-

tic adjustment decreases as the reliability level decreases. The reason is that

more time separation is imposed to compensate for the effects of the actual

90



uncertainty when the extra buffer size is small. Second, the comparison results

between the two-stage stochastic programming based on PSO and the deter-

ministic programming indicate that even though the uncertainty of flight time

during CDA is modelled as a probabilistic distribution function in the two-

stage stochastic programming based on PSO, the results do not deviate much

from those of the deterministic programming. Before performing heuristic ad-

justment, the flight time determined by the two-stage stochastic programming

based on PSO with the 50th percentile uncertainty becomes 4,821 seconds,

which is less than that of deterministic programming with a 22.5% reliabil-

ity level, i.e., 4,865 seconds. However, when the 100th percentile uncertainty

is considered, the flight time determined by the two-stage stochastic program-

ming based on PSO increases and becomes 5,050 seconds, but it is less than that

of deterministic programming with a 2.5% reliability level, i.e., 5,136 seconds.

Third, in case of the two-stage stochastic programming based on PSO with

the 50th percentile uncertainty, the additional flight time caused by heuristic

adjustment is 271 seconds which is greater than that of deterministic program-

ming. The reason is that, when the 50th percentile uncertainty is considered, the

number of substantial uncertainties is twice greater than that of deterministic

programming as shown in the line graph. On the other hand, the smallest ad-

ditional flight time, 147 seconds, can be determined by the two-stage stochastic

programming based on PSO when the 100th percentile uncertainty is consid-

ered. It is considered that, although the considered worst uncertainty might be

greater or less than the actual uncertainty, it does not deviate much from the

actual uncertainty because it is sampled from the probability distribution.

In summary, the comparison results between the proposed deterministic

programming and the proposed two-stage stochastic programming based on

PSO depend on which uncertainty is considered among 100 different realizations
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of uncertainty. However, when the 50th percentile uncertainty is considered, the

total flight time, 5,092 seconds, is less than that of deterministic programming

with a 17.5% reliability level, i.e., 5,099 seconds. In addition, when the 100th

percentile uncertainty is considered, the total flight time, 5,197 seconds, is less

than that of deterministic programming with a 2.5% reliability level, i.e., 5,315

seconds. Therefore, it can be concluded that the robust solutions of the proposed

two-stage stochastic programming based on PSO are less conservative that those

of the proposed deterministic programming with a 2.5% reliability level.
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Figure 4.7 Strategy to implement both the proposed deterministic programming
and the proposed two-stage stochastic programming based on PSO in dynamic
environments
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Figure 4.8 Average total flight time (left y-axis) and number of substantial un-
certainties (right y-axis) comparisons between the proposed two-stage stochas-
tic programming based on PSO with the (a) 50th and (b) 100th percentile
uncertainties and the proposed deterministic programming with (c) 22.5%, (d)
17.5%, (e) 12.5%, (f) 7.5%, and (g) 2.5% reliability levels
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4.4.3 Comparison with Other Stochastic Programming

In this section, the performance of the proposed two-stage stochastic program-

ming based on PSO is compared with that of other strategies to solve two-stage

stochastic programming: the DEP problem solved with CPLEX [66,67] in Sec-

tion 4.1.1 and the two-stage stochastic programming based on GA [22, 23] in

Section 4.1.2. Note that MATLAB optimization toolbox [81] is used to imple-

ment PSO and GA. As summarized in Table 4.5, the crossover rate, mutation

rate, and elitism rate, which are related to the convergence performance of GA,

are set to default values. For the simulation, the previously generated 20 differ-

ent air traffic situations are considered, and the number of scenarios required

in the second stage is set to 100.

The comparison results between PSO and GA can be categorized into four

cases; 1) PSO wins, 2) GA wins, 3) PSO wins but finds a sub-optimum, and

4) GA wins but finds a sub-optimum. The sample simulation results for each

case are shown in Figs. 4.9–4.12, where the small circle in the solid line and

the small triangle in the dotted line correspond to each iteration of PSO and

each generation of GA, respectively, and the dashed line represents the exact

optimum determined by CPLEX.

First, PSO converges to the exact optimum more quickly than GA for 9 of

the 20 situations (45%). Figure 4.9 shows the total flight time versus the elapsed

CPU time for this case. On the other hand, GA finds the exact optimum in a

shorter time than PSO for 6 of the 20 situations (30%) as shown in Fig. 4.10.

There are also some cases in which both PSO and GA fail to find the exact

optimum within 3 hours of CPU time. In these cases, PSO finds a better sub-

optimum than GA for 2 of the 20 situations (10%). However, the opposite results

are obtained for 3 of the 20 situations (15%). In Table 4.6, the average deviation
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between the exact optimum determined by CPLEX and the best values achieved

by PSO and GA for the 20 situations are summarized according to the maximum

CPU time. As shown in Table 4.6, for all cases, PSO finds the best value which is

less deviated from the optimum determined by CPLEX than GA. In particular,

within 0.5 hour of CPU time, PSO makes a significant difference compared to

GA in the convergence performance. Although the difference is reduced when

the CPU time limit is set to one hour, it becomes more substantial as the CPU

time limit increases.

For all of the cases, PSO and GA find better solutions than CPLEX within 3

hours of CPU time. The reason is that, 56,000 variables are required in the DEP

problem to formulate the aircraft arrival sequencing and scheduling problem

in PMS by considering 100 scenarios, and therefore the elapsed CPU time is

greater than 24 hours. It can be concluded that PSO and GA are more preferable

than CPLEX when optimal or sub-optimal solutions are to be obtained within

a short time. Furthermore, if it is required to determine sub-optimal solutions

within a very short time (less than 0.5 hour of CPU time), then PSO is a better

choice than other strategies for two-stage stochastic programming.
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Table 4.5 Parameters used in the first stage of the two-stage stochastic pro-
gramming based on GA

Parameter Value

First stage

Number of chromosome 3 · nvars
Maximum time (hour) 6

Crossover rate 80% (default)
Mutation rate 20% (default)
Elitism rate 5% (default)

Table 4.6 Comparison results PSO vs. GA

Maximum CPU
0.5 1 1.5 2 2.5 3

time (hour)
Average deviation

129.32 59.03 37.28 25.04 24.57 22.61
of PSO (sec)

Average deviation
154.13 60.79 38.28 37.15 37.15 37.15

of GA (sec)
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Figure 4.9 Total flight time with respect to CPU time for case 1
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Figure 4.10 Total flight time with respect to CPU time for case 2
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Figure 4.11 Total flight time with respect to CPU time for case 3
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Figure 4.12 Total flight time with respect to CPU time for case 4
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, robust optimization methods for aircraft sequencing and

scheduling in the Point Merge System (PMS), which can support the decision

making of human air traffic controllers in real operation, were developed.

First, this study attempted to determine exact optimal aircraft sequence

and schedule for each aircraft arriving through PMS based on Mixed Integer

Linear Programming (MILP). In the proposed MILP formulation, the objective

function was designed to minimize the total flight time that is required for all

aircraft to reach the merge point, and four constraint equations were derived by

considering the arrival procedure through PMS. Although the typical aircraft

sequencing and scheduling problem requires a large amount of computational

time when the numbers of aircraft, points, and routes increase, the proposed

MILP formulation achieved a reduction in the number of variables by consid-

ering the typical configuration and characteristics of PMS. Therefore, the pro-

posed MILP formulation could be efficiently implemented without significant

computational effort.

Second, to consider the uncertainty of flight time during Continuous Descent

Approach (CDA), robust optimization based on deterministic programming was

proposed. The extra buffer size was analytically derived based on the determin-
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istic robust counterpart problem for given feasibility tolerance and reliability

level. Unlike the typical deterministic programming, of which robust solutions

are only available in static environments, alternative solutions were determined

to compensate for unexpected situations under dynamic environments by us-

ing the proposed heuristic adjustment. In addition, the operational time of the

proposed deterministic programming was extended with a low computational

load by using the sliding time window. By performing the historical data anal-

ysis, only 62% of aircraft arriving through the PMS used in Jeju International

Airport were precisely maneuvered during a nominal day; therefore, the histor-

ical data analysis results suggested that decision support tools for human air

traffic controllers in PMS are required to increase the control capacity of the

current air traffic control system. The performance of the proposed determin-

istic programming was validated through historical flight data during the peak

hour of Jeju International Airport. Among the various reliability levels, a 17.5%

reliability level was considered as the most appropriate reliability level because

the resulting total flight time was reduced to the minimum and the percent

decrease in the number of heuristic adjustments from the maximum was 40.0%

(=100×(5-3)/5). When a 17.5% reliability level was considered, 42 calculations

were performed with a sliding time window; as a result, the maximum CPU

time required for each calculation was maintained to less than 0.62 seconds.

Therefore, it can be stated from the simulation results that the proposed deter-

ministic programming can be efficiently implemented over a long time period

(approximately one hour) with a low computational load.

Finally, two-stage stochastic programming based on Particle Swarm Opti-

mization (PSO) was proposed for the aircraft sequencing and scheduling prob-

lem in PMS to compensate for the uncertainty that arises in the CDA trajectory.

Unlike the previous studies on two-stage stochastic programming, which have
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focused on approximation and decomposition methods, PSO was utilized for

the randomized search to make the first stage decision, i.e., the optimal aircraft

sequence, under incomplete information about uncertain parameters. In addi-

tion, the second stage decision, i.e., the optimal aircraft schedule, was made by

solving MILP after the realization of uncertain parameters. Because of the con-

tinuous nature of PSO, the random key representation was utilized to convert

the continuous aircraft position values to the discrete aircraft sequence. Numer-

ical analysis was performed to determine the appropriate number of scenarios

required in the second stage of the proposed two-stage stochastic programming

process. Consequently, 100 scenarios were appropriate because the difference in

the median from 150 scenarios was less than 2 seconds and the percent decrease

in CPU time from 150 scenarios was 37.8% (=100×(15,071-9,376)/15,071). Ad-

ditionally, the performance of the proposed two-stage stochastic programming

based on PSO was evaluated and compared with that of the proposed deter-

ministic programming and other stochastic approaches. In comparison with the

proposed deterministic programming, the percent decrease in the total flight

time from the proposed deterministic programming with a 2.5% reliability level

to the proposed two-stage stochastic programming based on PSO was 4.2%

(=100×(5,315-5,092)/5,315) and 2.2% (=100×(5,315-5,197)/5,315), when the

50th and 100th percentile uncertainties are considered, respectively. In com-

parison with other stochastic approaches, for 55% of the 20 situations, the

proposed two-stage stochastic programming based on PSO could find better

solutions than the previous stochastic approach with Genetic Algorithm (GA).

In particular, when the maximum CPU time is less than 0.5 hour, the percent

decrease in the average difference between the exact optimum and the sub-

optimum from GA to PSO was 16.1% (=100×(154.1-129.3)/154.1). The results

showed that the proposed two-stage stochastic programming based on PSO is
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less conservative than the proposed deterministic programming and preferable

than other stochastic approaches when a short computing time is allowed.
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5.2 Future Research Directions

The work presented in this dissertation can be expanded in the following direc-

tions in the future.

5.2.1 Applications of Multi-Objective Optimization

While this study focuses on a single-objective optimization problem to deter-

mine the optimal solutions from the perspective of air traffic control, i.e., total

flight time minimization, a multi-criteria decision-making problem can further

be considered for the aircraft sequencing and scheduling problem because of the

following reasons: multiple stakeholders, including airport, airlines, and human

air traffic controllers, are involved in the aircraft sequencing and scheduling

problem [50,79,86]; from the perspective of airport operations, minimizing the

makespan (i.e., maximizing the throughput) is highly desirable [79]; airlines

are interested in the economic benefit, such as fuel consumption and aircraft

delay [79, 86]; human air traffic controllers aim at minimizing the number of

conflicts because their highest priority is the safety [50, 86]. Therefore, each

criterion should be carefully modeled to reflect various perspectives of different

stakeholders.

Instead of determining a single optimal solution, the new aim of the multi-

objective optimization problem is to find the set of Pareto optimal solutions

that cannot be improved in one objective function without deteriorating their

performance in at least one of the others [87]. To determine the Pareto optimal

solutions that realize a good tradeoff among the objective functions, the follow-

ing optimization techniques have been developed: weighted sum method [88], ε-

constraint method [89], and multi-objective evolutionary algorithm [90]. There-

fore, in an extended study, it would be interesting to adopt the existing opti-

mization techniques for the multi-objective optimization problem or to develop
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a new method for accurate and efficient determination of the Pareto optimal

solutions.

5.2.2 Extensions of Airport Surface Traffic Optimization

In this study, the robust optimization for aircraft arrival sequencing and schedul-

ing was independently developed and did not consider the interaction with de-

partures and airport surface operations. However, further investigation into the

integrated arrival, departure, and surface operations is strongly recommended

to improve the efficiency because the schedule of arrivals and departures might

be affected by ground conditions [21,91].

As a solution methodology, the final scheduling point of this study, i.e.,

the merge point of PMS, could be shifted to the gate on the airport surface

by including runways as well as spots along taxiways on the airport surface

as the intermediate scheduling points [92, 93]. In addition, several important

operational constraints regarding airport surface operations should also be ad-

dressed [94]. Therefore, the integrated optimization model might require a long

computation time to determine the exact optimal solutions because the num-

ber of aircraft, points, and routes at the same time period inevitably increases.

To be computationally tractable, further studies are required to develop the

integrated optimization model as a unified single system [95] or sequentially

connected optimization systems [79]; in addition, further studies could also be

conducted to implement different optimization techniques.

5.2.3 Consideration of Various Uncertainties

A limitation of this study is that one uncertainty, which arises in the CDA

trajectory, was considered for robust optimization. However, as mentioned pre-

viously, uncertainty arises from various sources in the complex terminal area;

for example, the estimated time of arrival might be inaccurate, and the speed
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of aircraft might not be maintained constantly in the sequencing leg. For this

reason, further investigation of robust optimization considering various uncer-

tainties is strongly recommended for aircraft sequencing and scheduling.

First, to consider various uncertainties in robust optimization based on de-

terministic programming, the deterministic robust counterpart problem should

be newly derived when uncertainty arises from the coefficients and the right-

hand-side parameters of the inequality constraints as well as the coefficients

of the objective function [15]. In addition, for robust optimization based on

stochastic programming, the decision variables should be carefully divided into

the first and second stage decisions as various uncertainties are considered.

Additionally, to fully reflect all characteristics of various uncertainties, a large

number of scenarios should be considered in robust optimization.

Furthermore, future studies can be undertaken to perform sensitivity analy-

sis for various uncertainties. Various methodologies for sensitivity analysis have

been investigated in the fields of computer and chemical engineering [96–98].

For example, in [96], the change in the objective function value with respect

to the change of the protection level (i.e., the extra buffer size) was estimated

because the degree of protection controls the tradeoff between the provability

of violation and the effect to the objective function of the nominal optimization

problem. In addition, in [97], analytical expressions for the sensitivities were

derived, and then the sensitivities of the objective function with respect to var-

ious uncertainties were calculated to determine the most sensitive uncertainty.

Because a few works have been reported in the fields of ATM, further studies

regarding sensitivity analysis with various uncertainties would be worthwhile

for the aircraft sequencing and scheduling problem.
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국문초록

항공기를 이용한 여행과 물류 수송을 위한 항공교통량이 급증함에 따라 항공교통

밀집을 해소하기 위한 연구의 필요성이 커지고 있다. 특히, 공항근처 공역은 도

착하는 항공기와 출발하는 항공기가 집중되는 복잡한 공역으로, 많은 연구자들이

이 공역에서 항공교통관제사의 의사결정을 돕기 위한 항공기 시퀀싱 및 스케줄

링 툴 개발의 필요성을 인지하고 있다. 그러나 공항근처 공역이 복잡하고 많은

불확실성 요소를 가지고 있음에도 불구하고 불확실성을 고려한 항공기 시퀀싱 및

스케줄링에 대한 연구는 미비한 실정이다.

본 연구에서는 항공기 시퀀싱 및 스케줄링 문제에서 불확실한 비행시간을 고

려하기 위해 두 가지 강건 최적화 기법을 제안하였다. 첫 번째 기법은 결정론적

프로그래밍에 기반한 방법으로 2단계 계층적 구조를 갖는다. 상위 계층에서는 불

확실성에 강건한 시퀀싱 및 스케줄링을 결정하기 위해 완충 값을 최적화 문제에

포함시키고, 완충 값의 크기를 수학적으로 유도하여 적용한다. 그러나 이러한 접

근방식은실제불확실성의크기가결정론적프로그래밍에서불확실성파라미터를

대변하는 상수보다 작은 경우에만 유효하다. 따라서 하위 계층에서는 동적 환경에

서도 강건한 항공기 시퀀싱 및 스케줄링을 계산하기 위해 상위 계층에서 결정된

강건한 시퀀싱 및 스케줄링 결과를 조정한다. 이를 위해 휴리스틱 조정 기법을

제안하였으며, 계산시간을 줄이기 위해 슬라이딩 시간 윈도우 개념을 도입하였다.

두 번째 기법은 확률론적 프로그래밍에 기반한 방법으로 입자 군집 최적화 알

고리즘을 이용한 2단계 확률론적 프로그래밍 기법이다. 이 기법은 첫 번째 기법과

달리 불확실성을 확률분포함수 형태로 모델링하고, 이를 알고리즘상에서 고려한

다. 따라서 결정론적 프로그래밍에 기반한 첫 번째 기법보다 덜 보수적인 시퀀싱

및 스케줄링을 결정할 수 있다. 확률론적 프로그래밍 기법의 첫 번째 단계에서는

강건한 항공기 시퀀싱을 결정하기 위해, 불확실성에 대한 정보가 없는 상태에서
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입자군집최적화알고리즘을이용한무작위탐색을수행한다.두번째단계에서는

불확실성 정보를 고려하기 위해 첫 번째 단계에서 결정된 항공기 시퀀싱 결과를

보정하기 위한 항공기의 최적 스케줄링을 혼합정수선형계획법으로 결정한다. 본

연구에서제안한두가지강건최적화기법들의성능은실제비행데이터를이용한

수치 시뮬레이션과 몬테카를로 시뮬레이션을 통해 검증하였다.

주요어: 항공기 시퀀싱 및 스케줄링, 강건 최적화, 혼합정수선형계획법, 결정론적

프로그래밍, 확률론적 프로그래밍

학번: 2012-30185
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