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Abstract 

Empirical Research on the 
Asymmetric Multifractal Properties 

in Financial Market Data 
 

Lee, Minhyuk 

Department of Industrial Engineering 

The Graduate School 

Seoul National University 
 

After the recent financial crisis, the importance of financial market analysis 

for financial risk management has been emphasized. Financial markets have 

diverse characteristics that are difficult to explain from the traditional 

models. Therefore, the effort on describing such characteristics is required. 

Specifically, many researches are actively conducted on the features of 

multifractal and asymmetric correlation in financial markets. Multifractal 

features can be characterized by various fractal features with self-similarity 

that does not change with scale; it is difficult to represent in a single fractal 

dimension. This feature can explain the complexity of stock market. The 

asymmetric correlation, depending on the market trend, represents the 

asymmetric structure of the financial market. In this context, this dissertation 

focuses on the asymmetric correlation of multifractal characteristics in the 
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financial market data where the asymmetric market efficiency is measured 

using asymmetric multifractal property. At first, ‘Price-based Asymmetric 

Multifractal Detrended Fluctuation Analysis (Price-based A-MFDFA)’ model 

is proposed to measure multifractal characteristics which asymmetrically 

follow the trend of market price. Given that previous models measure the 

multifractal characteristics based on the entire market, the price-based A-

MFDFA model has its advantage by considering the asymmetrical 

characteristics according to different market conditions. Furthermore, the 

methods to investigate the cause of multifractal features and the asymmetry 

are also suggested based on the proposed model. The empirical results in the 

U.S. financial market data confirms the presence of asymmetric multifractal 

characteristic and the autocorrelation of the variance in uptrend market and 

fat-tailed distribution in downtrend market as the cause of multifractality. 

The results of time-varying asymmetric multifractality show that the 

difference between the degree of uptrend and downtrend multifractality 

increases during the financial crisis period. Secondly, a simulation method is 

applied to prove the ability of capturing the asymmetric multifractal features 

of the Price-based A-MFDFA model by examining the factors affecting the 

asymmetric multifractality. In order to mimic the stock market data, an 

artificial time series with asymmetric features are constructed using the 

Monte-Carlo simulation. Then, the asymmetric multifractality is observed 

for each time series using the proposed model. The results show that the 

proposed model can detect the artificial asymmetric characteristics. In 
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addition, the effects of autocorrelation of time series, autocorrelation of 

volatility, the skewness and fat-tailed of distribution on the asymmetric long-

range dependence and multifractal features are studied. Lastly, a framework 

for testing the existence of asymmetric long-range dependence and 

multifractality is proposed. The source of market inefficiency, which has not 

been identified in previous models, is examined through the uptrend and 

downtrend multifractal features. The result of thirty four countries suggests 

that, in the financial crisis period, the difference in the long-range 

dependence measure and degree of multifractality between uptrend and 

downtrend increases, whereas the uptrend degree of multifractality has a 

strong negative correlation with the stock price in financial crisis period. In 

addition, the relationship between asymmetric long-range dependence and 

rate of return is tested. In conclusion, the contribution of this dissertation is 

to further refine the ability of multifractal analysis on asymmetric 

characteristics in accordance with market conditions as well as the overall 

market. While past analysis of the overall market focuses on only the 

downtrend, it is possible to analyze both uptrend and downtrend market 

through the segmented asymmetric multifractal characteristics. Hence, the 

proposed model can provide much useful information to various market 

participants in the perspective of financial risk management. 

 

Keywords: Multifractal, Generalized Hurst Exponent, Asymmetry, Market 

Efficiency, Financial Market Data, Simulation, Long-range Dependence 

Student Number: 2013-21075 
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Chapter 1 

Introduction 

 

1.1 Research motivation and purpose 
 

Financial risk management is an important issue and has become more 

important from the global financial crisis in 2007. The past theories of 

financial risk management used simple time series models (i.e. Gaussian 

model) to analyze the financial market. However, a real financial market has 

many features that cannot be explained by the financial market. However, a 

real financial market has many features that cannot be explained by the 

traditional simple time series models. An example of such characteristics is a 

thick tail of the probability distribution of returns and the thicker asymmetry 

in the left tail portion of the negative return distribution. In addition, there is a 

jump phenomenon in which a stock price sharply moves, and a momentum 

phenomenon that continuously changes in the same direction. Furthermore, 

the volatility of returns shows heteroscedasticity and mean reversion 

phenomenon. Because of these characteristics, the Gaussian time series model 

does not explain the real financial market well, which has been remarkable 

during the global financial crisis. To cope with this limitation, econophysics 

theories are applied to explain the realities of financial market. Among the 

econophysics theories, multifractal feature is one of the characteristics that 

can be observed in financial time series data. 

The multifractal property is a phenomenon in which a fractal dimension 

of multiple values exists simultaneously in a time series. If the fractal 
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dimension is fixed to one value, then it is called monofractal. Multifractal 

time series are characterized by heavy-tail of probability distribution, 

volatility clustering, and long-term memory phenomena. In this context, the 

Hurst exponent is utilized for measuring the long-term memory, which can be 

a determinant of multifractality. The multifractal analysis of financial market 

has been applied to investigate stock market prediction (Selvaratnam and 

Kirley 2006; Eom et al. 2008; Eom et al. 2008; Domino 2011), market 

collapse prediction (Grech and Mazur 2004; Grech and Pamuła 2008), 

financial times series modeling (Tzouras et al. 2015), trading strategy 

(Dewandaru et al. 2015), market efficiency (Wang et al. 2009), and et cetera. 

In recent years, the asymmetric correlations have become important in 

financial market research (Ding et al. 2011; Cao et al. 2014; Baruník et al. 

2016). A study of asymmetric correlations in financial markets identifies the 

characteristics of asymmetric risks which can be applied to various areas 

including the risk management and diversified investment. Correlations 

between international markets are much greater for downside movements than 

the upside. This phenomenon makes the market crash even more dangerous. 

The portfolio also should be redistributed if the correlation changes with 

respect to the financial market situation. 

There are many studies to analyze the entire stock market in the 

perspective of multifractal studies, but there are only few studies to analyze 

and compare the characteristics of each stock according to market conditions 

with multifractal theories. Since the asymmetric correlation of the stock 

market should be treated important as above, it is necessary to analyze the 

financial market separately in multifractal research as well as the entire 

market research. In addition, it is necessary to study the methodology that can 

be applied to various places using asymmetric features. 
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This dissertation provides the resolution by proposing the model named 

‘Price-based Asymmetric-Multifractal Detrended Fluctuation Analysis (Price-

based A-MFDFA)’, which can measure the asymmetric multifractal features. 

A stock market can be divided into a bull and bear market based on the price 

trend. Then, the multifractality measurement method is applied to each market 

asymmetrically. Once the model is proposed, the validity of proposed model 

is tested for the U.S. financial market data. Furthermore, the scaling 

asymmetries, source of the multifractality, source of asymmetry and time-

varying multifractality features are investigated. 

A simulation analysis is conducted to validate the proposed model. Using 

the Monte-Carlo simulation, an artificial time series are asymmetrically 

generated with various features that affect the long-range dependence and 

multifractality. Then, the asymmetric Hurst exponent and degree of 

multifractality for each time series are measured using the price-based A-

MFDFA model. By comparing the time series and measured values, the 

efficacy of the proposed model and its effects to the asymmetric long-range 

dependence and multifractality are examined. 

The efficient market hypothesis defines the information efficiency in the 

financial market, and it states that all past information is already reflected in 

the stock market. The stock market is theoretically unpredictable, but there is 

a long-range memory in the real stock market. A long-range memory 

phenomenon can be identified by measuring the generalized Hurst exponent. 

The previous multifractal theory can only present the overall market 

efficiency, and there are some limitations in recognizing the source of 

inefficiency. The source of inefficiency can be the false hope during the 

excessive bull market or the extreme fears during the crisis-phase bearish 

market. To challenge this limitation, the asymmetric long-range dependence 
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and multifractality are measured for each trend using asymmetric generalized 

Hurst exponent based on the price-based A-MFDFA model. It explains the 

reason of market inefficiency by comparing the result of uptrend and 

downtrend multifractal properties such as long-range dependence and 

multifractality. The proposed test for the asymmetric long-range dependence 

and multifractality are applied to various countries; a moving-window method 

is used to investigate the effect of financial market crisis to the market 

asymmetric multifractal features. 
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1.2 Theoretical background 
 

Fractal theory has appeared by defining fractal dimensions in fractal structures 

in Mandelbrot (1977). A fractal structure is a structure that has self-similarity 

and infinitely self-replicating. The self-similarity of the structure is applied to 

describe not only to the external features but also to the statistical properties. 

It implies that statistical structures of whole and part are similar or identical in 

fractal nature. ‘Monofractal’ is defined that fractal structure is persisted 

regardless of the size of the location and range. If the fractal structure is 

varied depending on the size of the location and range, this structure refers 

‘Multifractal’. Fractal structures are found in various phenomena of reality, 

and fractal characteristics are observed in financial market data covered in this 

dissertation. The Brownian motion generated using the normal distribution, 

which is traditionally assumed in financial time series, has monofractal 

characteristics. However, various researches have shown that financial time 

series data have multifractal features since a multifractal model of asset 

returns was proposed in Mandelbrot et al. (1997).  

Self-similar process is stochastic process that is invariant in distribution 

under scaling of time and space. The definition of self-similar process is as 

follows in Di Matteo (2007). 

A random process {𝑋(𝑡)} is called self-similar process if it satisfies 

{𝑋(𝑐𝑡1), … ,𝑋(𝑐𝑡𝑘)} =d {𝑐𝐻𝑋(𝑡1), … , 𝑐𝐻𝑋(𝑡𝑘)} 

for some 𝐻 >  0 and all 𝑐,𝑘, 𝑡1, . . , 𝑡𝑞 ≥ 0. 

H is called the self-similar index, scaling exponent of the process or the 

Hurst exponent. If the random process is stationary, H should be a value 

between 0 and 1.The Hurst exponent is used for measuring the long-term 

memory of time series. This is related to the autocorrelation of time series and 
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the rate of autocorrelation decreasing with time lag. When the Hurst exponent 

is over than 0.5, time series have a long-term positive autocorrelation. In the 

contrary, when the Hurst exponent is smaller than 0.5, time series is anti-

persistent. In other words, if data is a positive number, next data and even 

long term data can be a positive number when the Hurst exponent is over 0.5. 

However, if the Hurst exponent is less than 0.5, next data and even long term 

data could be a negative number. It is likely that the sign of data will continue 

to be switched over a long period of time. When the Hurst exponent is 0.5, the 

time series is perfectly uncorrelated. There is no autocorrelation for all time 

lags theoretically. However, in real model, there is a small autocorrelation, but 

the absolute value of autocorrelation is exponentially decayed. The Hurst 

exponent follows this proportional equation. 

𝐸(|𝑋𝑡+𝜏 − 𝑋𝑡|2)~ 𝜏2∗𝐻 

where 𝜏 is the time lag. 

The generalized Hurst exponent, H(q), is general form of the Hurst 

exponent. The generalized Hurst exponent follows below proportional 

equation. 

𝐸(|𝑋𝑡+𝜏 − 𝑋𝑡|𝑞)~ 𝜏𝑞∗𝐻(𝑞) 

where 𝜏 is the time lag. 

When q is 1 or 2, the generalized Hurst exponent contains information 

about averaged volatilities at scale 𝜏. When H(q) is a constant regardless of 

the change of q, the time series is a monofractal. If H(q) depends on q, then 

time series has a multifractal property. It implies that the structure of the 

fractal varies depending on the measurement conditions. 

There have been various studies on the causes of the characteristics of 

multifractal. There are two main factors that affect multifractal. First one is 

autocorrelation of volatility, and second one is heavy tail shape of probability 
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distribution. To investigate the effect of volatility autocorrelation on 

multifractal, many researches compared the time series with random shuffling 

time series that is eliminated autocorrelation of volatility (Kantelhardt et al. 

2002; Matia et al. 2003; Jiang and Zhou 2008). In addition, they compared 

surrogate time series to examine the effect of fat tail on multifractality (Lim et 

al. 2007; Kumar and Deo 2009; Barunik et al. 2012; Grahovac and Leonenko 

2014). There is more detailed explanation in chapter 2.4.3. 

There are many methodologies to measure the scale exponent, the Hurst 

exponent. R/S (rescaled range analysis) method (Hurst 1951), generalized 

Hurst exponent method(Di Matteo et al. 2003) and MFDFA (multifractal 

detrended fluctuation analysis) method (Kantelhardt et al. 2002) are widely 

used methodologies. Recently, MFDFA method has been extensively studied 

to grasp the long-range correlation of nonstationary time series and 

multifractal features. The advantage of MFDFA model is that it is easy to 

implement and can make robust estimates for short time series data. MFDFA 

model is usually applied to investigate the multifractality of financial time 

series (Sun et al. 2001; Norouzzadeh and Rahmani 2006; Oh et al. 2012). 

Multifractal property is also used to measure the efficiency of the stock 

market (Cajueiro and Tabak 2004; Wang et al. 2009; Rizvi et al. 2014). 

According to the Efficient Market Hypothesis (Hayek 1945), it is assumed 

that the price of the capital market is already reflected in all available 

information. It implies that future price changes cannot be predicted using 

past price changes. If there is an autocorrelation in the stock market, stock 

market does not follow random walk. Market efficiency is measured by 

observing long-range correlation through the Hurst exponent. According to 

Yuan et al. (2009), degree of multifractality can be used to measure market 

efficiency. The larger the degree of multi-fractal implies the more inefficient 
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market. On the other hands, the monofractal indicates the efficient market. 
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1.3 Organization of the research 
 

The rest of this dissertation is organized as follows. In Chapter 2, the price-

based asymmetric multifractal detrended fluctuation analysis method is 

proposed to explore the asymmetric multifractal scaling behavior with 

different trends in financial marker. In addition, the validity of model is 

confirmed by applying this model to the U.S. financial market. In Chapter 3, 

Simulation analysis is investigated for various generated time series to 

understand the asymmetric long-range correlation and multifractality. After 

generating artificial time series data with asymmetric features using Monte-

Carlo simulation, the price-based A-MFDFA model is examined whether the 

asymmetric features have been captured. In addition, how various factors 

affect asymmetric long-range dependence and multifractality is investigated 

through simulation analysis. In Chapter 4, the asymmetric market efficiency 

measure is proposed. The asymmetric market efficiency measure is applied to 

various countries’ stock market using the price-based A-MFDFA model. It is 

also observed that how the asymmetric market efficiency changes in the 

financial crisis through time-varying features using moving-window method. 

Lastly, the summary and contributions of this dissertation are reviewed in 

Chapter 5 with limitations and possible future work. 
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Chapter 2 

Asymmetric multi-fractality in the U.S. stock 

indices using the price-based model of A-MFDFA 

 

This chapter is published in Lee et al. (2017). 

 

2.1 Introduction 
 

The multi-fractal analysis has been applied to investigate various stylized 

facts of the financial market including market efficiency (Cajueiro and Tabak 

2004; Wang et al. 2009; Wang et al. 2010; Rizvi et al. 2014), financial crisis 

(Hasan and Mohammad 2015), risk evaluation (Lee et al. 2016), stock 

markets (Greene and Fielitz 1977; Sun et al. 2001; Lee et al. 2006) and crash 

prediction (Grech and Mazur 2004). Specifically, the multi-fractal detrended 

fluctuation analysis (MF-DFA), a generalization of the detrended fluctuation 

analysis (DFA) (Peng et al. 1994), is a typical approach to measure the long-

range autocorrelations and multi-fractality of a time-series (Kantelhardt et al. 

2002). Both DFA and MF-DFA also have been widely applied in various 

fields such as DNA sequences (Ossadnik et al. 1994), heart rate dynamics 

(Ashkenazy et al. 2001), long-range weather records (Ivanova and Ausloos 

1999; Zheng et al. 2008), exchange rate dynamics (Norouzzadeh and Rahmani 

2006) and oil market (He and Chen 2010).  

Recently, there have been a number of studies in the asymmetric 

correlation in the financial market (Longin and Solnik 2001; Ang and Chen 

2002; Ding et al. 2011). Longin and Solnik (2001) show that the international 
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market correlation increases at the extreme left-tail event based on extreme 

value theory. Ang and Chen (2002) detect the strong asymmetric correlations 

between equity portfolios and the U.S. aggregate market. Ding et al. (2011) 

examine potential fundamental of asymmetric correlation of stock portfolio. 

Therefore, the research on the asymmetric correlations within the financial 

market can provide an understanding of the asymmetric features of risk, 

which can be applied to enhance the portfolio in terms of diversification and 

risk management. 

It is commonly accepted fact that there are two trends of stock market, 

namely bullish and bearish markets, and they should be treated differently in 

analyzing the multi-fractal scaling behavior and correlation. However, there 

are limited numbers of studies focusing on measuring the asymmetric multi-

fractality. Alvarez-Ramirez et al. (2009) introduce the asymmetric DFA (A-

DFA) to examine asymmetric correlations in the scaling behavior of time-

series. Based on A-DFA, Cao et al. (2013) propose the asymmetric multi-

fractal detrended fluctuation analysis (A-MFDFA) method to extend MF-DFA 

methods, whereas Zhang et al. (2016) introduce the asymmetric multi-fractal 

detrending moving average analysis (A-MFDMA) method to extend MF-

DMA (Gu and Zhou 2010) to quantify the long-term correlations of non-

stationary time-series. 

Interestingly, A-MFDFA method and A-MFDMA methods demonstrate 

the distinct scaling properties in two different market trends where the up- and 

down-trends are distinguished based on the linear regression of return 

dynamics. However, we claim that the gain of portfolio profit is achieved 

when the market price moves up and the loss of portfolio profit is realized 

when the market price moves down. That is, the price dynamics can be a 

better proxy of market trend. Based on this idea, we provide the new model 
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named ‘price-based A-MFDFA’ which employs the price dynamics as more 

intuitive criterion for separating the market trends. In addition, to distinguish 

between our new model and conventional A-MFDFA method, we call 

conventional model as ‘return-based A-MFDFA’ in this dissertation. We 

employ ‘price-based A-MFDFA’ method for analyzing the stock indices of the 

United States so that the existence of asymmetric multi-fractal scaling 

behavior can be observed. Furthermore, we also analyze the stock indices 

using ‘return-based A-MFDFA’ to compare with our result as a reference. 

Based on two models, we discuss the empirical difference of two models and 

features of scaling behavior. Furthermore, we investigate the scaling 

asymmetries, source of the multi-fractality and asymmetry. Lastly, we explore 

the time-varying feature of asymmetric scaling behavior. This research is 

based on our initial work (Lee et al. 2016) and the contents of this chapter is 

the upgrade and the completion of our previous work.  

This chapter is organized as follows: Chapter 2.2 proposes the definition 

and step-by-step scenario of the return- and price-based model for A-MFDFA; 

Chapter 2.3 describes the statistical features of data; Chapter 2.4 discusses the 

empirical findings; and Chapter 2.5 concludes. 
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2.2 Price-based A-MFDFA 
 

We can investigate the asymmetric multifractal scaling behavior with different 

trends using the A-MFDFA method. Cao et al. (2013) proposed the ‘return-

based A-MFDFA’ method. We modify ‘return-based A-MFDFA’ method and 

introduce the ‘price-based A-MFDFA’ method, which use price criterion for 

dividing the market trend. We have a time-series {𝑥𝑡: 𝑡 = 1,2, … ,𝑁}. Our 

proposed method has the following steps. 

 

Step 1: Define yt = ∑ �𝑥𝑗 − 𝑥̅�𝑡
𝑗=1 ,   𝑡 = 1,2, … ,𝑁   where 𝑥̅ = ∑ 𝑥𝑗𝑁

𝑗=1 𝑁⁄ . 

 

Step 2: Divide time-series into non-overlapping sub-time series 

Let 𝐼𝑡 = 𝐼𝑡−1 𝑒𝑒𝑒(𝑥𝑡)  for 𝑡 = 1,2, … ,𝑁 , where 𝐼0 = 1  and 𝐼𝑡  is a price 

proxy for return time-series. We divide {𝐼𝑡: 𝑡 = 1,2, … ,𝑁}  and {yt: 𝑡 =

1,2, … ,𝑁} into 𝑁𝑛 ≡ ⌊𝑁/𝑛⌋ non-overlapping sub-time series of equal length 

𝑛, where ⌊𝑥⌋ is the largest integer less than or equal to 𝑥. We repeat this 

procedure from the other end of {𝐼𝑡} and {yt} respectively, resulting in 2𝑁𝑛 

sub-time series. Suppose 𝐺𝑗 = {𝑔𝑗,𝑘 ,𝑘 = 1, 2, … ,𝑛} be the length 𝑛  sub-

time series of {𝐼𝑡} in the 𝑗th time interval and 𝐻𝑗 = �ℎ𝑗,𝑘 ,𝑘 = 1,2, … ,𝑛� be 

the 𝑗 th sub-time series of {yt}  for 𝑗 = 1,2, . . . ,2𝑁𝑛 . Then, we have 

𝑔𝑗,𝑘 = 𝐼(𝑗−1)𝑛+𝑘  and ℎ𝑗,𝑘 = 𝑦(𝑗−1)𝑛+𝑘  for 𝑗 = 1, 2, . . . ,𝑁𝑛 , and for 

𝑗 = 𝑁𝑛 + 1, . . . , 2𝑁𝑛 𝑔𝑗,𝑘 = 𝐼𝑁−(𝑗−𝑁𝑛)𝑛+𝑘 and ℎ𝑗,𝑘 = 𝑦𝑁−(𝑗−𝑁𝑛)𝑛+𝑘. Peng et 

al. (1994) suggests that 5 ≤ 𝑛 ≤ 𝑁/4 . 

 

Step 3: Construct the fluctuation function 

For each sub-time series 𝐺𝑗 and 𝐻𝑗, we calculate the local trend by least-

squares fits 𝐿𝐺𝑗(𝑘) = 𝑎𝐺𝑗 + 𝑏𝐺𝑗𝑘  and 𝐿𝐻𝑗(𝑘) = 𝑎𝐻𝑗 + 𝑏𝐻𝑗𝑘 , where 𝑘  is 
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for the horizontal coordinate. The slope of 𝐿𝐺𝑗(𝑘) , 𝑏𝐺𝑗 , is used to 

discriminate whether the trend of 𝐺𝑗 is positive or negative. The linear fitting 

equation, 𝐿𝐻𝑗 is used to detrend the integrated time-series 𝐻𝑗. We define the 

fluctuation function as 𝐹𝑗(𝑛) = ∑ �ℎ𝑗,𝑘 − 𝐿𝐻𝑗(𝑘)�
2

/𝑛 𝑛
𝑘=1  for 𝑗 =

1, 2, . . . , 2𝑁𝑛. 

 

Step 4: Identify trend using price dynamics 

Assuming that {𝐼𝑡} has piecewise positive and negative linear trends, the 

asymmetric cross-correlation scaling property of fluctuation functions can be 

assessed by the sign of the slope, 𝑏𝐺𝑗. When 𝑏𝐺𝑗 > 0, the sub-time series 𝐺𝑗 

of {𝐼𝑡} has a positive trend. By contrast, 𝑏𝐺𝑗 < 0 indicates that the sub-time 

series 𝐺𝑗 of {𝐼𝑡} exhibits a negative trend. 

 

Step 5: Construct q-order average fluctuation functions 

The directional 𝑞-order average fluctuation functions of price-based model 

(when 𝑞 ≠ 0) is computed by,  𝐹𝑞+(𝑛) = �∑ (2𝑁𝑛
𝑗=1 1 + 𝑠𝑠𝑠(𝑏𝐺𝑗))�𝐹𝑗(𝑛)�𝑞 2⁄ /

𝑀+�
1/𝑞

 and  𝐹𝑞−(𝑛) = �∑ (2𝑁𝑛
𝑗=1 1 − 𝑠𝑠𝑠(𝑏𝐺𝑗))�𝐹𝑗(𝑛)�𝑞 2⁄ /𝑀−�

1/𝑞
 where 

𝑀+ = ∑ (2𝑁𝑛
𝑗=1 1 + 𝑠𝑠𝑠(𝑏𝐺𝑗)) , 𝑀− = ∑ (2𝑁𝑛

𝑗=1 1 − 𝑠𝑠𝑠(𝑏𝐺𝑗)) , and 𝑠𝑠𝑠(𝑥)  is 

the sign of 𝑥. Note that 𝑀+ and 𝑀− are the number of sub-time series with 

positive and negative trends, respectively. We assume that 𝑏𝐺𝑗 ≠ 0  and 

𝑀+ + 𝑀− = 2𝑁𝑛. The average fluctuation function of the traditional MF-

DFA model also can be computed as 𝐹𝑞(𝑛) = �∑ �𝐹𝑗(𝑛)�𝑞 2⁄2𝑁𝑛
𝑗=1 /(2𝑁𝑛)�

1/𝑞
.  

 

Step 6: Calculating the generalized Hurst exponent  
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If a time-series has a long-range correlation, the following power-law 

relationship is observed. Let 𝐻(𝑞), 𝐻+(𝑞), and  𝐻−(𝑞) denote the overall, 

upward, and downward scaling exponents, which are called the generalized 

Hurst exponents, respectively. Specifically, the scaling satisfies, 

 𝐹𝑞(𝑛) ~ 𝑛𝐻(𝑞), 𝐹𝑞+(𝑛) ~ 𝑛𝐻+(𝑞),  and 𝐹𝑞−(𝑛) ~ 𝑛𝐻−(𝑞) . Using the 

logarithmic form, 𝐻(𝑞), 𝐻+(𝑞),  and  𝐻−(𝑞)  can be obtained by the 

ordinary least square method. If 𝐻(𝑞)  is constant for all 𝑞 , the 

corresponding time series is mono-fractal. Otherwise, the time-series are 

multi-fractal. Note that the correlations in the time-series are persistent if 

𝐻(2)  >  0.5, whereas the correlations in the time-series are anti-persistent if 

𝐻(2)  <  0.5 . If 𝐻(2) = 0.5 , time-series follows random walk process 

(Kantelhardt et al. 2002). 

Analogous to 𝐻(𝑞), the up-trend (down-trend) time-series are multi-

fractal if the time-series shows positive (negative) trend. In addition, the 

correlations in the time-series are symmetric if 𝐻+(𝑞) = 𝐻−(𝑞), whereas the 

correlations are asymmetric if 𝐻+(𝑞) ≠ 𝐻−(𝑞) . The asymmetric scaling 

behavior means that the correlations are different between positive and 

negative trends. 

Note that the ‘return-based A-MFDFA’ model, which is used as a 

benchmark for our ‘price-based A-MFDFA’ model, is construct using {𝑥𝑡} 

instead of {𝐼𝑡} in step 2 and analyzes the sub-time series trend of {𝑥𝑡} to 

separate the positive trend and negative trend in step 4. 
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2.3 Data Description 

 

Our dataset consists of daily closing prices of the United States stock indices 

including the Dow Jones Industrial Average Index (DJIA), National 

Association of Securities Dealers Automated Quotations Composite Index 

(NASDAQ), New York Stock Exchange Composite Index (NYSE), and the 

Standard & Poor’s 500 Index (S&P500). The experimental period of time-

series is from 1991-01-01 to 2015-12-31. Then, we transform the price-series 

to the logarithmic return-series, 𝑟𝑡 = 𝑙𝑙𝑙(𝑃𝑡)− 𝑙𝑙𝑙(𝑃𝑡−1), where 𝑃𝑡 is the 

closing price of index at time 𝑡. Specifically, the sample sizes of DJIA, 

NASDAQ, NYSE, and S&P500 are 6290, 6293, 6291 and 6289 trading dates, 

respectively.  

Figure 2.1 and Table 2.1 demonstrate the evolutions of return series and 

their descriptive statistics for DJIA, NASDAQ, NYSE and S&P500, 

respectively. As shown in Figure 2.1 and Table 2.1, the skewness of the entire 

return series is not zero where all series except for the case of NASDAQ are 

skewed left. Also, all series are fat-tailed and peaked since the kurtosis of 

them are greater than three. The JB statistics are all significant at 1% level, 

suggesting that the normality assumption of the distribution of all return series 

is rejected. Furthermore, the ADF test shows that the absence of unit root is 

rejected at the 1% significant level. 
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Table 2.1 : Descriptive statistics for the returns of indices 

 Mean max min std skew kurt JB ADF 

DJIA 0.0003 0.1051 -0.0820 0.0108 -0.15 11.32 18174* -83.4* 

NASDAQ 0.0005 0.1720 -0.1111 0.0176 0.07 8.75 8675* -82.5* 

NYSE 0.0003 0.1153 -0.1023 0.0111 -0.39 13.92 31430* -82.2* 

S&P500 0.0003 0.1066 -0.0919 0.0115 -0.19 11.07 17110* -84.8* 

Note: “max”, “min”, “std.”, “skew” and “kurt” denote maximum, minimum, 

standard deviation, skewness and kurtosis, respectively. “JB” denotes Jarque-

Bera statistics for normality test and “ADF” denotes the Augmented Dicky-

Fuller(ADF) test for unit root test. * denotes 1% level of significance. 

 

 

 

Figure 2.1: Daily return series of indices 
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2.4 Empirical results of asymmetric scaling behavior 
 

2.4.1 Asymmetric fluctuation functions and their dynamics 

 

Figure 2.2 illustrates the results of both return- (left) and price-based (index-

based) (right) models of A-MFDFA when q = 2, which describes how 

𝑙𝑙𝑙2�𝐹2(𝑛)� changes with respect to 𝑙𝑙𝑙2(𝑛). Note that the blue, red, and 

yellow dots represent the overall, upwards, and downwards, respectively. It is 

well-known stylized fact that 𝑙𝑙𝑙2�𝐹2(𝑛)� vs. 𝑙𝑙𝑙2(𝑛) possesses a power-

law dependency where the straight dotted line indicates a decent power-law fit. 

In general, the asymmetry in fluctuation function is discovered within a single 

unit of time-scale where the distinctions between the values of uptrend and 

downtrend are observed through most of time-scale. Besides, the dynamics of 

fluctuation functions exhibit the symmetric evolution in accordance with the 

time-scale increment. In addition, the newly-suggested approach of the price-

based model clearly distinguishes the straight trends of upward and downward 

pivoting on the overall dots, whereas the conventional approach of return-

based model shows the scattered dots with a weak straight trend. Hence, the 

results suggest that the price-based model provides more robust criterion of 

detecting the power-law scaling property. In other words, the price-based 

model performs better clustering of two different trends. 

Furthermore, the fluctuation functions of trends show the reverse order of 

their values between the return- and price-based (index-based) models. All 

cases of DJIA, NASDAQ, NYSE and S&P500, the descending order of the 

fluctuation functions of return-based model is upward, overall, and downward, 

whereas that of price-based model is downward, overall, and upward. Note 

that the higher value of fluctuation function implies the more volatility of the 
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market.  

Figure 2.3 shows the plots of 𝐷𝐷 = 𝑙𝑙𝑙2 𝐹2+(𝑛) − 𝑙𝑙𝑙2 𝐹2−(𝑛) versus 𝑛 to 

visualize the asymmetry of fluctuation function. Based on Fig 2.3, the shape 

of 𝐷𝑓 are similar among all indices in each model. Specifically, the return-

based model shows many crossovers around zero, whereas the price-based 

(index-based) model has much less cases of crossovers. Since 𝐷𝐷 = 0 

indicates the symmetry between upward and downward, it is clear that the 

price-based model detects the asymmetry more explicitly than the return-

based one. In addition, the mean 𝐷𝐷 values of return-based model for DJIA, 

NASDAQ, NYSE, S&P500 are 0.2320, -0.1793, 0.3293, 0.1466, respectively, 

whereas those of price-based one are -0.8415, -1.0045, -0.9424, -0.9187. 

Therefore, the downward trend has greater fluctuation function in the price-

based model as shown in Figure 2.2.  
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Figure 2.2: Plots of 𝑙𝑙𝑙2�𝐹2(𝑛)� vs. 𝑙𝑙𝑙2(𝑛) for DJIA, NASDAQ, NYSE 

and S&P500 
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Figure 2.3: Plots of 𝐷𝐷 for DJIA, NASDAQ, NYSE and S&P500 
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2.4.2 Estimating the generalized Hurst exponent 𝑯(𝒒) 
 

Figure 2.4 visualizes the values of generalized Hurst exponents 𝐻(𝑞),𝐻+(𝑞), 

and 𝐻−(𝑞) with respect to 𝑞 varying from -5 to 5 with interval of 0.1. The 

result shows that the values of 𝐻(𝑞), 𝐻+(𝑞), and 𝐻−(𝑞) decrease when q 

increases for the most of cases except for NASDAQ, whose values changing 

regardless of q orders. It refers that each series possess the multi-fractal 

feature regardless of the trend. In case of the return-based model, the gap 

between the uptrend and downtrend is small when q is small (i.e. small 

fluctuation), whereas the gap becomes larger as q increases. The large gap is 

analogous to the significance of asymmetry. In case of the price-based (index-

based) model, the coupling of overall and uptrend is observed, while the 

downward shows different trend. Furthermore, the gap between the upward 

and downward decreases as q increases. 
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Figure 2.4: Plots of 𝐻(𝑞),𝐻+(𝑞), and 𝐻−(𝑞) versus 𝑞 
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2.4.3 Source of multi-fractality 
 

In general, there are two major sources of multi-fractality (Kantelhardt et al. 

2002; Wei-Xing 2009): (1) different long-range correlations for small and 

large fluctuations, and (2) fat-tailed probability distributions. It is also well 

known that the contribution of each source can be evaluated by comparing the 

multi-fractality of original and modified series. At first, the long-range 

correlation can be tested by comparing the multi-fractality between the 

original and randomly shuffled series. The step-by-step scenario of creating 

the randomly shuffled series is as follows: 

(1) Generate pairs (𝑎, 𝑏) of random integer numbers with 𝑎, 𝑏 ≤ 𝑁, 

where 𝑁 is the length of the time-series. 

(2) Change the value in a-th order with b-th order 

(3) Repeat (1) and (2) for 20𝑁 times 

Secondly, the fat-tailed distribution can be investigated by comparing the 

multi-fractality of original and surrogated series (Theiler et al. 1992). The 

algorithm to create the surrogated series is as follows: 

(1) Generate a sequence of random numbers {𝑥�𝑡: 𝑡 = 1,2, … ,𝑁} with 

the Gaussian distribution 

(2) Rearrange {𝑥�𝑡} in the same order of {𝑥𝑡} so that two time series 

can have the same rank patterns 

The degree of multi-fractality can be defined as 𝛥𝛥 = 𝑚𝑚𝑚�𝐻(𝑞)� −

𝑚𝑚𝑚�𝐻(𝑞)� (Yuan et al. 2009). When 𝛥𝛥 is zero, the time-series is called as 

mono-fractal, and the degree of multi-fractality is stronger as 𝛥𝛥 increases. 

Let 𝛥𝐻𝑜𝑜𝑜𝑜, 𝛥𝐻𝑠ℎ𝑢𝑢 and 𝛥𝐻𝑠𝑠𝑠𝑠 represent the degree of multi-fractality for 

the original, shuffled, and surrogated series, respectively (Cao et al. 2013). To 

achieve the robust result, we use the mean of 30 repeated values for 𝛥𝐻𝑠ℎ𝑢𝑢 
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and 𝛥𝐻𝑠𝑠𝑠𝑠. 

Tables 2.2 and 2.3 summarize the degree of multi-fractality for the 

original, shuffled and surrogated series using A-MFDFA. The bold numbers 

indicate the significance of multi-fractality. Note that either 𝛥𝐻shuf  or 

𝛥𝐻𝑠𝑠𝑠𝑠 is significant if its value is smaller than others given that it is also 

significantly smaller than 𝛥𝐻𝑜𝑜𝑜𝑜. For the most cases of overall, 𝛥𝐻𝑠ℎ𝑢𝑢 and 

𝛥𝐻𝑠𝑠𝑠𝑠 are smaller than 𝛥𝐻𝑜𝑜𝑜𝑜. This implies that the multi-fractality in the 

U.S. indices is affected by both long-range correlation and fat-tailed 

distribution. In case of original series, Δ𝐻𝑜𝑜𝑜𝑜 is larger in the upward than 

downward for the return-based model. However, Δ𝐻𝑜𝑜𝑜𝑜  is significantly 

larger in the downward than upward for the price-based model. That is, the 

strong multi-fractality is presented in the downward for the price-based model, 

while that is observed in the upward for the return-based. 

When 𝛥𝐻shuf is much smaller than not only 𝛥𝐻𝑜𝑜𝑜𝑜 but also 𝛥𝐻𝑠𝑠𝑠𝑠, 

we can claim that the main source of multi-fractality is long-range correlation. 

In Table 2.2 for a return-based A-MFDFA model, 𝛥𝐻shuf values for upward 

stock market are significant smaller in DJIA, NASDAQ, NYSE, and S&P500 

so that we can claim that the main source of multi-fractality in these upward 

stock market is fat-tail distribution.  

When 𝛥𝐻surr is much smaller than not only 𝛥𝐻𝑜𝑜𝑜𝑜 but also 𝛥𝐻𝑠ℎ𝑢𝑢, 

we can claim that the main source of multi-fractality is fat-tail distribution. In 

Table 2.3 for the price-based A-MFDFA model, 𝛥𝐻surr values for downward 

stock market are significant smaller in DJIA, NASDAQ, NYSE, and S&P500 

so that we can claim that the main source of multi-fractality in these 

downward stock market is long-range correlation. 
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Table 2.2: 𝛥𝛥 of the original, shuffled, and surrogated series using return-

based A-MFDFA model 

Return-

based A-

MFDFA 

DJIA NASDAQ 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Overall 0.1164 
0.0826 

(29.00%) 

0.0558 

(52.09%) 
0.0983 

0.0979 

(0.35%) 

0.1360 

(-38.39%) 

Upward 0.2103 
0.1034 

(50.82%) 

0.1256 

(40.27%) 
0.1567 

0.1095 

(30.17%) 

0.1490 

(4.92%) 

Downward 0.0790 
0.1069 

(-35.42%) 

0.0367 

(53.51%) 
0.1527 

0.1152 

(24.57%) 

0.2218 

(-45.27%) 

 

NYSE S&P500 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Overall 0.1700 
0.1247 

(26.66%) 

0.1094 

(35.69%) 
0.1031 

0.0961 

(6.79%) 

0.0297 

(71.17%) 

Upward 0.2690 
0.1300 

(51.67%) 

0.1625 

(39.60%) 
0.2187 

0.1171 

(46.46%) 

0.1291 

(40.99%) 

Downward 0.1375 
0.1431 

(-4.11%) 

0.0959 

(30.26%) 
0.0487 

0.1141 

(-134.31%) 

0.1008 

(-106.98%) 
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Table 2.3: 𝛥𝛥 of the original, shuffled, and surrogated series using the price-

based A-MFDFA model 

Price-

based A-

MFDFA 

DJIA NASDAQ 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Overall 0.1164 
0.0826 

(29.00%) 

0.0558 

(52.09%) 
0.0983 

0.0979 

(0.35%) 

0.1360 

(-38.39%) 

Upward 0.1476 
0.0921 

(37.60%) 

0.1191 

(19.29%) 
0.0759 

0.1064 

(-40.13%) 

0.0980 

(-29.12%) 

Downward 0.2276 
0.1533 

(32.66%) 

0.0824 

(63.82%) 
0.2839 

0.1514 

(46.69%) 

0.0778 

(72.60%) 

 

NYSE S&P500 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Original 

series 

Shuffled 

series 

Surrogated 

series 

Overall 0.1700 
0.1247 

(26.66%) 

0.1094 

(35.69%) 
0.1031 

0.0961 

(6.79%) 

0.0297 

(71.17%) 

Upward 0.1932 
0.1302 

(32.60%) 

0.1527 

(20.97%) 
0.1199 

0.0971 

(19.04%) 

0.0385 

(67.89%) 

Downward 0.3099 
0.1723 

(44.41%) 

0.1202 

(61.23%) 
0.3175 

0.1572 

(50.50%) 

0.0963 

(69.68%) 

Note for Table 2.2 and 2.3: The value in parentheses is the change in the 𝛥𝛥 value 

for the shuffled (resp. surrogated) data to that of the original data, ( 𝛥𝐻𝑜𝑜𝑜𝑜- 𝛥𝐻𝑠ℎ𝑢𝑢) 

/ 𝛥𝐻orig (resp. (𝛥𝐻𝑜𝑜𝑜𝑜- 𝛥𝐻𝑠𝑠𝑠𝑠)/ 𝛥𝐻𝑜𝑜𝑜𝑜) 
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2.4.4 Source of asymmetry 
 

Alvarez-Ramirez et al. (2009) suggest that the asymmetric scaling behavior 

also can be produced by the long-range correlation and fat-tailed distribution. 

Hence, we re-apply the method in section 4.3 to discover the source of the 

asymmetry scaling behavior. The degree of asymmetric scaling behavior can 

be defined as 𝛥𝐻±(𝑞) = |𝐻+(𝑞) −𝐻−(𝑞)| (Rivera-Castro et al. 2012). Note that 

the time-series has symmetric scaling behavior if 𝛥𝐻±(𝑞) is close to 0, 

whereas it has stronger asymmetry as 𝛥𝐻±(𝑞) increases.  

Figure 2.5 shows the value of 𝛥𝐻±(𝑞) for the original, shuffled and 

surrogated series. If 𝛥𝐻±(𝑞) for the shuffled and surrogated series are 

smaller than those of the original series, then the long-range correlation and 

fat-tailed distribution can be possible sources of the asymmetric scaling 

behavior. Analogous to the source of multi-fractality, the smallest value of 

𝛥𝐻±(𝑞) is the main source. In case of return-based model, 𝛥𝐻±(𝑞) of 

shuffled and surrogated series are not significantly smaller than that of 

original series. In other words, the source of asymmetry is not distinguishable. 

In contrast, the price-based (index-based) model clearly detects the source of 

asymmetry. The source of asymmetry in DJIA and S&P500 is the long-range 

correlation based on 𝛥𝐻±(𝑞) being close to zero for shuffled series. The 

result of NASDAQ shows that the long-range correlation and fat-tailed 

distribution are the main sources of asymmetry for q < 1 (small fluctuation) 

and 1 < q  (large fluctuation), respectively. Lastly, the result of NYSE 

reveals that the fat-tailed distribution and long-range correlation are the main 

sources of asymmetry for q < −2 and −2 < q < 2, respectively. 
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2.4.5 Time-varying multi-fractal asymmetry 
 

The time-varying feature of the multi-fractal asymmetry can be studied based 

on the rolling window method. We set the size of window and slide to be 1000 

trading dates (roughly 4 years) and 50 dates, respectively, to achieve the 

reliable result (Greene and Fielitz 1977; Cristescu et al. 2012). The 

corresponding results of return- and price-based (index-based) model are 

illustrated in Figure 2.6 and Figure 2.7, respectively. In general, each model 

shows the similar evolutionary patterns of 𝛥𝛥, 𝛥𝐻+, and 𝛥𝐻− among most 

of indices excluding NASDAQ. The difference between two models can be 

observed when the evolutions of upward and downward are compared. The 

return-based model shows the similar trend in the evolutions of overall, 

upward, and downward, whereas the price-based model shows the different 

evolution between the upward and downward. It is also noticeable that the 

time-varying 𝛥𝛥s of upward and downward are correlated in the return-based 

model, whereas those in the price-based model are uncorrelated. That is, the 

price-based model is more suitable in discriminating the time-varying multi-

fractal asymmetry. Furthermore, the peaks of 𝛥𝛥, 𝛥𝐻+ and 𝛥𝐻− in both 

models are observed in the window period from 1994-1998 to 1996-2000 and 

from 2005-2009 to 2008-2012, which include the Asian financial crisis in 

1997 and the Sub-prime mortgage crisis in 2008, respectively. It refers that the 

strong multi-fractality is the phenomenon of the financial crisis. As the market 

efficiency is measured by the degree of multi-fractality (Wang et al. 2010), the 

result of time-varying multi-fractal asymmetry provide the evidence of 

inefficient market during the financial crisis. 
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Figure 2.5 Plots of 𝛥𝐻±(𝑞) for the original, shuffled and surrogated data 
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Figure 2.6: Time evolution of 𝛥𝛥 with a slide step of 50 days for the 
overall, upward and downward for DJIA, NASDAQ, NYSE and S&P500, 
respectively, using return-based A-MFDFA model 
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Figure 2.7: Time evolution of 𝛥𝛥 with a slide step of 50 days for the 
overall, upward and downward for DJIA, NASDAQ, NYSE and S&P500, 
respectively, using the price-based (index-based) A-MFDFA model 
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2.5 Conclusion 
 

In this chapter, we propose A-MFDFA with new criterion for separating the 

market trend. Originally, A-MFDFA method distinguishes the market trend 

based on the coefficient of regression in the return dynamics. Considering that 

the coefficient of regression in the price dynamics is more intuitive criterion 

for the market trend, we provide the price-based model of A-MFDFA so that 

asymmetric multi-fractal features in the U.S. stock indices can be investigated.  

At first, we discover that the existence of multi-fractality in all the U.S. stock 

indices, whose feature is revealed to be asymmetric. Also, the price-based 

model can detect the asymmetric multi-fractality more distinctly than the 

return-based model since its fluctuation function shows the clear-cut between 

the positive and negative trends. Secondly, we find the source of multi-

fractality and asymmetry by comparing the original series with the shuffling 

and surrogated series. Specifically, the long-range correlation is discovered to 

be the main source for the upward trend, whereas the fat-tailed distribution is 

the main source for the downward trend. The source of asymmetry is 

ambiguous in the return-based model, but the price-based model indisputably 

identifies the source where the source of asymmetry differs in each index and 

𝑞. Lastly, we explore the time-varying feature of asymmetric multi-fractality 

based on the moving window method. The time-varying feature of uptrend 

and downtrend are correlated in the return-based model, whereas the features 

are clearly distinguished in the price-based model. Furthermore, we detect that 

the degree of multi-fractality is high during the financial crisis period where 

the asymmetry between two trends are significantly elevated in the price-

based model. Thus, we claim that the price-based model performs better in 

detecting the asymmetric multi-fractality.  
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Chapter 3 

Study of asymmetric multifractal characteristics 

through various time series simulations 

 

3.1 Introduction 
 

The price-based A-MFDFA method is introduced in Chapter 2. The price-

based A-MFDFA method is methodology for analyzing multifractality by 

dividing time series based on price criterion for dividing the market trend. If 

the long-term memory characteristics are different according to the stock 

market trend, this model can find out the self-similarity features of uptrend 

and downtrend. 

The aim of this chapter is to understand the asymmetric features of 

multifractality and long-range dependence of various time series. There are 

various theoretical time series containing the factors affecting the Hurst 

exponent and multifractality. After generating these time series according to 

the purpose, using the price-based A-MFDFA model, simulations to know 

how the asymmetric Hurst exponent and multifractality are formed in time 

series are progressed. There are three main purposes of this simulation. First, 

it is to know that A-MFDFA model works properly by comparing the 

simulation with the time series that are generated differently according to 

trend and time series that are generated regardless of the trend. That is, once a 

time series with asymmetric features has been generated, it is checked 

whether the result of the A-MFDFA model contains that features. Secondly, it 

is to investigate the changes of asymmetric Hurst exponent according to the 
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changes of autocorrelation and skewness of distribution over time series 

which affect long-range dependence. Lastly, using the time series which 

contain the feature of autocorrelation of volatility and heavy-tail which affect 

the multifractality, it is examined that the change of asymmetric 

multifractality according to the change of features. 

In order to observe the asymmetric features, three methods have been 

introduced to generate random numbers differently according to the past 

values, past trends and independent with the past. 
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3.2 Various probability distribution and time series model 
 

Monte-Carlo simulation is used for obtaining the numerical results by 

generating random numbers. The Asymmetric Hurst exponent and degree of 

multifractality are obtained from various generated time series using Monte-

Carlo simulation and the price-based A-MFDFA model. With this 

methodology, the various asymmetric features of variety time series are 

realized. Skewed distribution and autoregressive model are used to study the 

features of the asymmetric Hurst exponent. Student’s t-distribution, 

autoregressive conditional heteroscedasticity model and generalized 

Autoregressive conditional heteroscedasticity model are used to understand 

the features of asymmetric degree of multifractality. The price-based A-

MFDFA model and the asymmetric Hurst exponent are introduced in Chapter 

2.2. The degree of multi-fractality is defined as 𝛥𝛥 = 𝑚𝑚𝑚�𝐻(𝑞)� −

𝑚𝑚𝑚�𝐻(𝑞)�  in Chapter 2.4.3. The handled time series and probability 

distribution are as follows. 

 

3.2.1 Normal distribution 
 

When the random number series are generated from normal distribution, it 

follows Brownian motion. The generalized Hurst exponent of Brownian 

motion, H(q), is 0.5 for all q. It means Brownian motion is random walk and 

completely uncorrelated series. Therefore, the random number series 

generated from the normal distribution can be regarded as the basic time 

series.  

Following equation is probability density function of normal distribution. 
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𝑓(𝑥|𝜇,𝜎2) =
1

√2𝜋𝜎2
𝑒−

(𝑥−𝜇)2
2𝜎2  

where 𝜇 is mean and 𝜎 is standard deviation. 

The standard normal distribution is used for experiments with mean = 0 

and sigma = 1.  

 

3.2.2 Skewed distribution 
 

For obtaining the skewed distribution, Pearson system of distribution is used. 

It uses transformations of various standard random variates for types ０-ⅲ 

and types ⅴ-ⅶ. Pearson distribution has 4 parameter which are mean, 

standard deviation, skewness and kurtosis. After setting the mean to 0, the 

variance to 1 and kurtosis to 3, skewed distribution is generated by changing 

the skewness. Skewness is selected at 0.1 intervals from -0.6 to 0.6 in this 

research. Skewed distribution is for investigating the asymmetric tail 

distribution features. 

 

3.2.3 Student’s t-distribution 

 

Student’s t-distribution (T-dist) is used for estimating the mean of a normally 

distributed population data where the sample size is small. T-dist is symmetric 

and bell-shaped like the normal distribution. But T-dist tails are heavier than 

the normal distribution. T-dist is depending on degrees of freedom, 𝜈 . 

Following equation is probability density function of T-dist. 

𝑓(𝑥|𝜈) =
𝛤 �𝜈 + 1

2 �

√𝜈𝜈𝛤 �𝜈2�
�1 +

𝑡2

𝜈 �
−𝜈+12

  

where 𝜈 is a degree of freedom and should be over than 0. 
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The smaller value of 𝜈, T-dist(𝜈) has heavier tails. Therefore, T-dist is 

used to obtain a time series with heavy tail distribution than normal 

distribution. T-distributions with the degree of freedom 1, 2, 3, 4, 6, 8 and 10 

are explored in this dissertation. 

 

3.2.4 Autoregressive model. (AR model) 

 

The AR(p) model is that the output variable, 𝑋𝑡, depends linearly on its own 

previous p values. Therefore, generated data have autocorrelation. Following 

equation is AR(p) model. 

𝑋𝑡 = 𝑐 + �𝑎𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝜖𝑡 

where 𝑎𝑖 are the parameter of model, 𝑐 is a constant, and 𝜖𝑡 is white noise. 

AR(1) model is used in this dissertation. Only past one day data can 

affect the today’s data. Four AR models with AR coefficients 0.2, 0.4, 0.6 and 

0.8 are simulated. 

 

3.2.5 Autoregressive conditional heteroscedasticity model (ARCH 

model) 
 

ARCH(p) model is a stochastic volatility model that the variance of the 

current error term is a function of the previous time periods’ error variance 

terms. The error variance follows an autoregressive model. This model is 

usually used for modeling financial time series to capture the time-varying 

volatility clustering. Following equation is ARCH(p) model. 

Xt = 𝜎𝑡𝜖𝑡 
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σt2 = 𝑐 + �𝑎𝑖𝑋𝑡−𝑖2

𝑝

𝑖=1

 

𝑎𝑖 are the parameter of model, 𝑐 is a constant, and 𝜖𝑡 is white noise.  

ARCH(1) model is used. Only past one day’s variance can affect the 

today’s variance. Four ARCH models with ARCH coefficients 0.2, 0.4, 0.6 

and 0.8 and constant 0.8, 0.6, 0.4 and 0.2 are simulated. Constant is chosen so 

that the total variance is set for 1. 

 

3.2.6 Generalized autoregressive conditional heteroscedasticity 

model (GARCH model) 
 

GARCH(p,q) model is a stochastic volatility model that variance of the 

current error term is affected by the past error variance terms and past 

variance terms. The p is the order of the ARCH terms, 𝑋𝑡−𝑖2  and q is the order 

of the GARCH terms, 𝜎𝑡−𝑖2 . Following equation is GARCH(p,q) model. 

Xt = 𝜎𝑡𝜖𝑡 

σt2 = 𝑐 + �𝑎𝑖𝑋𝑡−𝑖2

𝑝

𝑖=1

+ �𝑏𝑖𝜎𝑡−𝑖2

𝑞

𝑖=1

 

where p is the order parameter of the ARCH terms, 𝑋𝑡−𝑖2  and q is the order 

parameter of the GARCH terms, 𝜎𝑡−𝑖2 , 𝑐 is a constant, and 𝜖𝑡 is white noise.  

GARCH(1,1) model is used for only past one data can affect the today’s 

data. Four GARCH models with GARCH coefficients 0.2, 0.4, 0.6 and 0.8, 

constant 0.7, 0.5, 0.3 and 0.1 and ARCH coefficient 0.1 are simulated. To 

investigate the GARCH effect, the GARCH coefficient is changed, the ARCH 

coefficient is fixed, and the constant is chosen so that the total variance is set 

for 1. 
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ARCH model and GARCH model are used to obtain a time series for 

having autocorrelation of volatility. 
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3.3 Method to generate time series using Monte-Carlo 
Simulation 
 

In this chapter, a method of generating time series using the time series model 

and the distribution described in the above chapter is introduced. Followings 

are three ways to generate time series. 

 

3.3.1 Homogeneous time series generating 

When generating 𝑥𝑡 , 𝑥𝑡  follows one time series model or probability 

distribution independently with previous value, 𝑥𝑡−1. That is, the generated 

time series have one features of chosen time series model or distribution. 

Therefore, this method is named ‘Homogeneous time series generating’. 

 

3.3.2 Heterogeneous time series with previous data’s sign 

When generating 𝑥𝑡 , different time series or probability distribution is 

generated depending on whether 𝑥𝑡−1 is negative or positive. In other words, 

the current data is generated from a different distribution depending on 

previous data’s sign. There are two ways to make heterogeneous time series. 

First one is if the value of 𝑥𝑡−1 is a positive number, generate next data from 

the specific time series and generate a random number from standard normal 

distribution if 𝑥𝑡−1 is a negative. It is named ‘Positive model’. Second is 

opposite method with first one. If the previous data is negative, next random 

number is generated from the specific distribution and previous one is positive, 

then standard normal is generated. It is named ‘Negative model’. 

 

3.3.3 Heterogeneous time series with previous data’s trend 

When generating 𝑥𝑡 , different time series or probability distribution is 
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generated depending on the trend from 𝑥𝑡−𝑑 to 𝑥𝑡−1 where d is the period 

length for searching trend. To capture the characteristics of stock market, price 

trend is used to determine the trend of given period. Price trend is determined 

by sign of ∑ 𝑥𝑡−𝑖𝑑
𝑖=1 . When 𝑥𝑡−𝑖 = 𝑟𝑡−𝑖  holds (where 𝑟𝑡−𝑖 = ln (𝐼𝑡−𝑖) −

ln (𝐼𝑡−𝑖−1) is stock logarithm return at time 𝑡 − 𝑖 ) equation ∑ 𝑥𝑡−𝑖𝑑
𝑖=1 =

ln(𝐼𝑡−1) − ln (𝐼𝑡−𝑑−1) holds too. That is, ∑ 𝑥𝑡−𝑖𝑑
𝑖=1  can be the proxy of price 

trend. In other words, during that period, the price has risen and the fall has 

been seen as a trend. As with the chapter 3.3.2, ‘Positive model’ and 

‘Negative model’ are defined with respect to sign of previous trend. The 

values of d used in this dissertation are 10, 20, 30, 40 and 50. However, only 

the d = 20 result is showed in this chapter. The rest results are in Appendix A. 

Through this method, time series with characteristics of stock market can be 

generated. 
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3.4 Simulation results 
 

For Monte-Carlo simulation, 1000 samples of time series are generated with 

length 1000 for each model. The generalized Hurst exponent values can be 

calculated using the price-based A-MFDFA model for each one generated 

time series, then average value of the Hurst exponent, 𝐻(2), and the degree 

of multifractality, Δ𝐻, is obtained for each time series model or probability 

distribution. Using these values, the long range dependence and 

multifractality characteristics of the model can be explored by observing the 

change of the value of model parameters. 

 

3.4.1 Homogeneous time series simulation results 

 

This part contains Monte-Carlo simulation results of generated homogeneous 

time series. Since the homogeneous time series does not have asymmetric 

features, it can be seen that there are no asymmetric features through the 

price-based A-MFDFA. The results from each generated distribution and time 

series are follows. 

 

3.4.1.1 Skewed distribution 

Table 3.1 shows Monte-Carlo simulation results of time series obtained by 

skewed distribution. It can be seen that all distribution has the mean 0, 

standard deviation 1 and kurtosis 3, so that the distribution is made to have 

same with standard normal distribution except skewness. When the variation 

of the asymmetric Hurst exponent with the change of the skewness is 

examined, as the skewness increases, the value of the uptrend Hurst exponent 

decreases and the downtrend one grows larger. This is because if the right 
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skewness increases, the probability that a negative value will be generated 

increases. Therefore, the probability that positive data will have a negative 

long-range correlation increases and the probability that negative data will 

have a long-term positive autocorrelation increases. Proper simulation results 

are obtained. 

 

3.4.1.2 Autoregressive model 

Table 3.2 is Monte-Carlo simulation results of time series obtained by AR 

model. As the AR coefficient increases, all types of Hurst exponent increase. 

As the AR coefficient decreases from 0 to negative, the probability that the 

sign of 𝑥𝑡−1   and 𝑥𝑡  will change becomes higher. It means negative 

autocorrelation become stronger, so the Hurst exponent value becomes 

smaller. In contrary, the larger the AR coefficient from 0 to the positive, the 

greater the probability that 𝑥𝑡−1   and 𝑥𝑡 sign will become the same, so the 

positive autocorrelation becomes stronger and the Hurst exponent value 

becomes larger. Since there is little difference between uptrend and downtrend,  

it is confirmed that there is no asymmetric feature. 

 

3.4.1.3 Normal distribution and student’s t-distribution 

Table 3.3 shows Monte-Carlo simulation results of time series obtained by 

repeated generation of normal distribution and Student’s t-distribution. The 

results show that there is little difference between the uptrend Hurst exponent 

and the downtrend Hurst exponent in all distributions. In addition, the uptrend 

and downtrend degree of multifractality are not different. This indicates that 

no asymmetric feature is found. All types of the Hurst exponent values are 

close to 0.5 and do not change much, so it can be said that there is no long-

range correlation. However, it can be seen that as the degree of freedom of 
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student’s t-distribution decreases from 10 to 1, as the tail becomes thicker, all 

types of degree of multifractality become larger. The heavy tail can be noticed 

by an increase in kurtosis and standard deviation. In other words, as the tail 

distribution increases, the properties of multifractality become stronger. 

 

3.4.1.4 ARCH model and GARCH model 

Table 3.4 contains results of Monte-Carlo simulation about time series 

generated by ARCH model and GARCH model. It can be seen that the 

standard deviation converges to 1 since the total variance is set to 1 through 

constant coefficient adjustment. In case of GARCH model, the ARCH 

coefficients are all 0.1. In both ARCH model and GARCH model results, all 

types of Hurst exponent are close to 0.5. In the case of the degree of 

multifractality, it can be seen that as the ARCH coefficient and GARCH 

coefficient increase, the multifractality increases. This explains that the 

autocorrelation of volatility increases the degree of multifractality. When 

autocorrelation of volatility occurs, kurtosis increases and the tail distribution 

is thicker. The ARCH coefficient has a greater effect on the change of degree 

of multifractality than the GARCH coefficient. 
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Table 3.1: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated homogeneous time series (Skewed distribution) 

Skewness -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 

𝐻(2) 0.4985 0.4997 0.4996 0.4962 0.4941 0.4997 0.4972 0.4937 0.4971 0.5005 

𝐻+(2) 0.5083 0.5083 0.5020 0.4969 0.4911 0.4923 0.4910 0.4823 0.4811 0.4827 

𝐻−(2) 0.4796 0.4832 0.4887 0.4871 0.4887 0.4974 0.4963 0.4956 0.5024 0.5095 

Δ𝐻 0.0707 0.0709 0.0691 0.0712 0.0740 0.0699 0.0720 0.0696 0.0702 0.0702 

Δ𝐻+ 0.0922 0.0905 0.0916 0.0955 0.0976 0.0912 0.0915 0.0904 0.0874 0.0855 

Δ𝐻− 0.0872 0.0896 0.0888 0.0905 0.0932 0.0924 0.0971 0.0926 0.0922 0.0936 

Mean 0.0001 0.0016 -0.0001 -0.0005 -0.0006 -0.0007 0.0006 -0.0004 -0.0007 0.0015 

Std 1.0004 0.9991 0.9998 1.0002 0.9996 0.9996 1.0000 0.9992 0.9993 0.9992 

Skewness -0.4945 -0.3966 -0.3022 -0.1987 -0.1003 0.1001 0.2006 0.2972 0.3990 0.4965 

Kurtosis 2.9811 2.9898 2.9974 2.9957 2.9997 2.9878 3.0004 2.9897 2.9987 2.9932 
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Table 3.2: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated homogeneous time series (Autoregressive model) 

 AR(-0.8) AR(-0.6) AR(-0.4) AR(-0.2) AR(0.2) AR(0.4) AR(0.6) AR(0.8) 

𝐻(2) 0.2542 0.3530 0.4133 0.4592 0.5500 0.6137 0.7094 0.9078 

𝐻+(2) 0.2520 0.3516 0.4127 0.4557 0.5496 0.6125 0.7076 0.9045 

𝐻−(2) 0.2548 0.3508 0.4094 0.4575 0.5461 0.6093 0.7046 0.9037 

Δ𝐻 0.1272 0.0498 0.0486 0.0579 0.1139 0.1663 0.2172 0.2561 

Δ𝐻+ 0.1335 0.0580 0.0573 0.0711 0.1289 0.1829 0.2327 0.2762 

Δ𝐻− 0.1297 0.0577 0.0586 0.0694 0.1303 0.1793 0.2350 0.2794 

Mean -0.0009 0.0001 0.0000 0.0006 0.0012 0.0001 -0.0020 0.0051 

Std 1.6645 1.2510 1.0904 1.0202 1.0197 1.0919 1.2465 1.6565 

Skewness 0.0020 0.0017 -0.0007 0.0002 -0.0005 -0.0006 -0.0007 -0.0051 

kurtosis 2.986 2.987 2.990 2.995 2.997 2.982 2.989 2.970 
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Table 3.3: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated homogeneous time series (Normal dist and T-dist) 

 Normal dist T-dist(10) T-dist(8) T-dist(6) T-dist(4) T-dist(3) T-dist(2) T-dist(1) 

𝐻(2) 0.5016 0.5025 0.5011 0.5030 0.5038 0.5018 0.5031 0.5083 

𝐻+(2) 0.4981 0.5030 0.4968 0.4996 0.4981 0.5024 0.5006 0.4992 

𝐻−(2) 0.4997 0.4967 0.4992 0.5010 0.5041 0.4958 0.4980 0.4978 

Δ𝐻 0.0831 0.1056 0.1163 0.1353 0.1983 0.2730 0.4586 0.9401 

Δ𝐻+ 0.0990 0.1193 0.1317 0.1517 0.2061 0.2704 0.4450 0.9798 

Δ𝐻− 0.0954 0.1220 0.1287 0.1438 0.2029 0.2763 0.4502 0.9842 

Mean 0.0010 -0.0030 0.0009 0.0006 0.0018 0.0006 -0.0003 2.7533 

Std 1.0004 1.1180 1.1543 1.2234 1.4106 1.7058 3.2059 206.6421 

Skewness -0.0007 -0.0052 -0.0048 -0.0029 0.0614 -0.0919 -0.0540 0.3293 

Kurtosis 2.995 3.999 4.479 5.635 12.080 29.281 130.092 496.410 
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Table 3.4: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated homogeneous time series (ARCH model and GARCH model) 

 ARCH(0.2) ARCH(0.4) ARCH(0.6) ARCH(0.8) GARCH(0.2) GARCH(0.4) GARCH(0.6) GARCH(0.8) 

𝐻(2) 0.5015 0.5022 0.5009 0.4965 0.5026 0.5029 0.5034 0.5050 

𝐻+(2) 0.4990 0.4987 0.4942 0.4909 0.4994 0.5001 0.4994 0.5008 

𝐻−(2) 0.4990 0.5006 0.4999 0.4900 0.5006 0.4997 0.5019 0.5025 

Δ𝐻 0.1132 0.1641 0.2478 0.3488 0.0981 0.1016 0.1111 0.1367 

Δ𝐻+ 0.1266 0.1793 0.2580 0.3603 0.1105 0.1165 0.1253 0.1552 

Δ𝐻− 0.1282 0.1745 0.2523 0.3567 0.1142 0.1175 0.1264 0.1512 

Mean 0.0008 0.0007 -0.0013 -0.0004 -0.0006 -0.0016 -0.0007 -0.0006 

Std 0.9992 0.9962 0.9882 0.9485 0.9996 0.9992 0.9997 0.9995 

Skewness -0.0018 0.0094 0.0245 -0.0439 0.0017 -0.0014 0.0011 -0.0073 

kurtosis 3.255 4.395 8.807 21.576 3.048 3.073 3.115 3.307 
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3.4.2 Heterogeneous time series simulation with previous data’s 

sign results 

 

In this part, Monte-Carlo simulation result of heterogeneous time series with 

previous data's sign that 𝑥𝑡 is generated different distribution according to 

sign of previous data 𝑥𝑡−1 is included. Heterogeneous time series should 

have asymmetric features. If the value of 𝑥𝑡−1  is positive, next data is 

generated from the corresponding time series, otherwise generated from the 

standard normal distribution, this method is named positive model. The 

negative model is that data is generated from specific distribution when  

𝑥𝑡−1 is negative and from standard normal distribution when 𝑥𝑡−1 is not 

negative. The results of the two methods are as follows. 

 

3.4.2.1 Skewed distribution 

Table 3.5 is Monte-Carlo simulation results of heterogeneous time series 

obtained from skewed distribution depending on previous data’s sign. For 

example, Positive Skew(-0.6) means that if 𝑥𝑡−1 is a positive number, 𝑥𝑡 is 

generated from the distribution with skewness is 0.6, and if 𝑥𝑡−1 is not a 

positive number, 𝑥𝑡 is generated from the standard normal distribution. The 

mean, standard deviation and kurtosis of the skewed distribution are set to 0, 1 

and 3, respectively, as normal distribution. As a result, in the case of the 

positive model, as the skewness increases, the uptrend Hurst exponent 

decreases and the value of the downtrend Hurst exponent increases. The same 

result is obtained for the negative model. The reason is that, as the skewness 

increases, the probability of the negative value being generated increases. It 

can make the probability of autocorrelation of the negative trend increase. On 

the other hand, the autocorrelation of the positive trend decreases. When the 
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skewness is reduced, the uptrend Hurst exponent increases and the downtrend 

Hurst exponent decreases with the above mechanism. 

 

3.4.2.2 AR model 

Table 3.6 and Table 3.7 show the results of the heterogeneous time series 

simulation of the AR model with previous data's sign. Table 3.6 shows the 

positive model results and Table 3.7 shows the results of the negative model. 

First, in the case of positive model, all types of Hurst exponent value 

increases as the AR coefficient increases. When the AR coefficient is over 

than 0, the Hurst exponent value is more than 0.5, and if the AR coefficient is 

smaller than 0, the Hurst exponent value is below the 0.5. This is the same 

reason explained in 3.4.1.2. Because there is a difference between the values 

of uptrend and downtrend Hurst exponent, it can be confirmed that there is an 

asymmetric property. When AR coefficient is positive, uptrend Hurst 

exponent is lower than downtrend Hurst exponent. When AR coefficient is 

negative, uptrend Hurst exponent is over than downtrend Hurst exponent. In 

the case of negative model, similar results are obtained with positive model. 

As AR coefficient increases, all types of Hurst exponent increases. When AR 

coefficient is positive, downtrend Hurst exponent value is smaller than 

uptrend. When AR coefficient is negative, downtrend Hurst exponent value is 

larger than uptrend. This shows that even if the stock market has 

autocorrelation of return relationship, the opposite effect can be seen when the 

asymmetric feature is divided by the price trend viewpoint. 

 

3.4.2.3 Student’s t-distribution 

Table 3.8 shows the results of the heterogeneous time series simulation of the 

T-dist with previous data's sign. The results show that all types of Hurst 
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exponent are close to 0.5 similar to homogeneous time series simulation of T-

dist results. In case of degree of multifractality, as degree of freedom 

decreases, degree of multifractality increases for both positive and negative 

models. When degree of freedom is being smaller, the tail distribution is being 

heavier. That is, more heavy tail makes the degree of multifractality larger. In 

particular, it is observed that the uptrend degree of multifractality is larger 

than the downtrend degree of multifractality in positive model, and vice versa 

in negative model. In the case of positive model, if 𝑥𝑡−1 is a positive number, 

next random value is generated from heavy tail distribution. This situation 

affects upward trend, so the uptrend degree of multifractality gets larger. It is 

not as much as uptrend degree of multifractality, but downtrend degree of 

multifractality also increases slightly by that effect. For the same mechanism, 

downtrend degree of multifractality is observed to be larger in the negative 

model. 

 

3.4.2.4 ARCH model and GARCH model 

Table 3.9 and Table 3.10 are the results of the heterogeneous time series 

simulation of the ARCH model and GARCH model with previous data's sign, 

respectively. In the case of ARCH model results, at first, there is a difference 

in degree of multifractality between uptrend and downtrend, indicating that 

there is an asymmetric feature. Secondly, as ARCH coefficient increases, all 

types of the degree of multifractality increases. Lastly, in the case of positive 

model, uptrend multifractality is larger than downtrend multifractality and 

vice versa in negative model. That is, if 𝑥𝑡−1 is a positive number, next 

random value has autocorrelation of volatility with previous data, so that 

upward trend is affected by volatility autocorrelation. Negative model has 

same mechanism, so that downtrend multifractality is larger than uptrend 
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multifractality. GARCH model results are almost same with ARCH model 

results. Because GARCH effect has less influence on multifractality than 

ARCH effect, the increased amount of multifractality is less than the ARCH 

model. 
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Table 3.5: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous data’s sign (Skewed distribution) 

 
Positive 

Skew(-0.6) 
Positive 

Skew(-0.3) 
Positive 

Skew(0.3) 
Positive 

Skew(0.6) 
Negative 

Skew(-0.6) 
Negative 

Skew(-0.3) 
Negative 

Skew(0.3) 
Negative 

Skew(0.6) 

𝐻(2) 0.5023 0.5044 0.5020 0.5030 0.5041 0.5008 0.5030 0.5012 

𝐻+(2) 0.5090 0.5091 0.4951 0.4891 0.5122 0.5035 0.4970 0.4900 

𝐻−(2) 0.4912 0.4947 0.5037 0.5126 0.4918 0.4937 0.5047 0.5086 

Δ𝐻 0.0757 0.0797 0.0862 0.0874 0.0897 0.0838 0.0794 0.0760 

Δ𝐻+ 0.0898 0.0939 0.0988 0.0952 0.1078 0.1009 0.0931 0.0854 

Δ𝐻− 0.0845 0.0903 0.1019 0.1047 0.0971 0.0955 0.0918 0.0895 

Mean -0.0019 -0.0005 -0.0010 -0.0001 -0.0012 0.0007 -0.0015 -0.0004 

Std 0.9995 0.9989 1.0006 0.9986 1.0004 0.9995 0.9997 1.0000 

Skewness -0.3119 -0.1550 0.1458 0.2818 -0.2854 -0.1465 0.1554 0.3137 

Kurtosis 3.0021 2.9926 2.9885 2.9911 2.9914 2.9934 3.0009 3.0081 
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Table 3.6: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous data’s sign (Positive model with AR 
model) 

 
Positive 
AR(-0.8) 

Positive 
AR(-0.6) 

Positive 
AR(-0.4) 

Positive 
AR(-0.2) 

Positive 
AR(0.2) 

Positive 
AR(0.4) 

Positive 
AR(0.6) 

Positive 
AR(0.8) 

𝐻(2) 0.4227 0.4437 0.4630 0.4820 0.5256 0.5608 0.6189 0.7490 

𝐻+(2) 0.4249 0.4536 0.4657 0.4816 0.5172 0.5474 0.6019 0.7334 

𝐻−(2) 0.4179 0.4369 0.4561 0.4768 0.5291 0.5742 0.6547 0.8256 

Δ𝐻 0.0564 0.0565 0.0592 0.0707 0.1006 0.1284 0.1632 0.1956 

Δ𝐻+ 0.2530 0.1849 0.1458 0.1077 0.1061 0.1287 0.1604 0.1908 

Δ𝐻− 0.0541 0.0550 0.0593 0.0753 0.1365 0.2203 0.3201 0.4354 

Mean -0.2529 -0.1954 -0.1381 -0.0730 0.0883 0.2097 0.4002 0.8056 

Std 1.0868 1.0518 1.0240 1.0057 1.0070 1.0351 1.1061 1.3074 

Skewness -0.1177 -0.0573 -0.0195 0.0008 0.0045 0.0241 0.0939 0.2807 

Kurtosis 3.0803 3.0280 3.0034 3.0036 3.0005 3.0033 3.0280 3.1143 
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Table 3.7: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous data’s sign (Negative model with AR 
model) 

 
Negative 
AR(-0.8) 

Negative 
AR(-0.6) 

Negative 
AR(-0.4) 

Negative 
AR(-0.2) 

Negative 
AR(0.2) 

Negative 
AR(0.4) 

Negative 
AR(0.6) 

Negative 
AR(0.8) 

𝐻(2) 0.4228 0.4422 0.4609 0.4846 0.5263 0.5625 0.6180 0.7503 

𝐻+(2) 0.4177 0.4354 0.4527 0.4770 0.5325 0.5737 0.6511 0.8215 

𝐻−(2) 0.4320 0.4578 0.4706 0.4880 0.5171 0.5496 0.6012 0.7335 

Δ𝐻 0.0556 0.0582 0.0620 0.0704 0.1015 0.1274 0.1650 0.1968 

Δ𝐻+ 0.0536 0.0555 0.0622 0.0748 0.1411 0.2207 0.3228 0.4505 

Δ𝐻− 0.2431 0.1903 0.1458 0.1055 0.1070 0.1288 0.1620 0.1919 

Mean -0.7963 -0.3978 -0.2094 -0.0887 0.0726 0.1384 0.1946 0.2519 

Std 1.3027 1.1048 1.0360 1.0067 1.0052 1.0231 1.0510 1.0868 

Skewness -0.2870 -0.0877 -0.0199 -0.0063 0.0069 0.0187 0.0577 0.1178 

Kurtosis 3.1216 3.0241 3.0023 3.0018 2.9928 3.0062 3.0218 3.0682 
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Table 3.8: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous data’s sign (T-dist.) 

 
Positive 

T-dist(10) 
Positive 
T-dist(8) 

Positive 
T-dist(6) 

Positive 
T-dist(4) 

Negative 
T-dist(10) 

Negative 
T-dist(8) 

Negative 
T-dist(6) 

Negative 
T-dist(4) 

𝐻(2) 0.5036 0.5038 0.5028 0.5019 0.5026 0.5041 0.5010 0.5039 

𝐻+(2) 0.4986 0.4961 0.4944 0.4913 0.5031 0.5069 0.5038 0.5075 

𝐻−(2) 0.5049 0.5069 0.5062 0.5080 0.4967 0.4964 0.4924 0.4951 

Δ𝐻 0.0954 0.1010 0.1168 0.1671 0.0963 0.1014 0.1156 0.1635 

Δ𝐻+ 0.1152 0.1211 0.1404 0.1872 0.1039 0.1071 0.1199 0.1580 

Δ𝐻− 0.1021 0.1082 0.1171 0.1618 0.1180 0.1217 0.1371 0.1823 

Mean -0.0004 -0.0012 0.0003 -0.0003 -0.0016 0.0012 -0.0013 -0.0003 

Std 1.0606 1.0777 1.1170 1.2236 1.0593 1.0792 1.1175 1.2246 

Skewness 0.0029 0.0035 -0.0005 -0.0121 0.0036 -0.0079 -0.0094 -0.0301 

Kurtosis 3.6298 3.9373 4.9311 10.3474 3.6116 3.9538 5.0213 11.2458 

 

  



 

58 
 

Table 3.9: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous data’s sign (ARCH model) 

 
Positive 

ARCH(0.2) 
Positive 

ARCH(0.4) 
Positive 

ARCH(0.6) 
Positive 

ARCH(0.8) 
Negative 

ARCH(0.2) 
Negative 

ARCH(0.4) 
Negative 

ARCH(0.6) 
Negative 

ARCH(0.8) 

𝐻(2) 0.5003 0.5022 0.5012 0.5004 0.5033 0.5021 0.5001 0.4979 

𝐻+(2) 0.4949 0.4986 0.4987 0.5027 0.5024 0.5032 0.4997 0.4961 

𝐻−(2) 0.5011 0.5000 0.4966 0.4917 0.5000 0.4959 0.4940 0.4937 

Δ𝐻 0.0978 0.1209 0.1516 0.2107 0.0965 0.1199 0.1572 0.2116 

Δ𝐻+ 0.1225 0.1568 0.2008 0.2698 0.0994 0.1094 0.1237 0.1460 

Δ𝐻− 0.1016 0.1102 0.1255 0.1602 0.1221 0.1569 0.2065 0.2759 

Mean 0.0000 0.0001 0.0003 -0.0005 -0.0009 0.0010 -0.0011 0.0003 

Std 0.9990 0.9998 1.0009 0.9942 0.9985 0.9996 0.9988 0.9959 

Skewness -0.0006 -0.0034 0.0004 -0.0401 0.0026 0.0073 0.0049 0.0330 

Kurtosis 3.1105 3.6004 4.8134 7.2144 3.1172 3.5695 4.7290 7.0189 
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Table 3.10: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous data’s sign (GARCH model) 

 
Positive 

GARCH(0.2) 

Positive 

GARCH(0.4) 

Positive 

GARCH(0.6) 

Positive 

GARCH(0.8) 

Negative 

GARCH(0.2) 

Negative 

GARCH(0.4) 

Negative 

GARCH(0.6) 

Negative 

GARCH(0.8) 

𝐻(2) 0.5035 0.5032 0.5035 0.5034 0.5033 0.4995 0.5032 0.5032 

𝐻+(2) 0.5019 0.4985 0.5010 0.5008 0.5006 0.4980 0.5041 0.5006 

𝐻−(2) 0.5002 0.5032 0.5014 0.5012 0.5009 0.4965 0.4980 0.5002 

Δ𝐻 0.0884 0.0902 0.0894 0.0928 0.0916 0.0906 0.0912 0.0906 

Δ𝐻+ 0.1072 0.1107 0.1103 0.1155 0.1002 0.0994 0.0965 0.0952 

Δ𝐻− 0.0990 0.0985 0.0980 0.0991 0.1105 0.1101 0.1133 0.1162 

Mean -0.0008 0.0005 0.0004 0.0011 -0.0016 0.0004 -0.0015 -0.0011 

Std 0.9996 1.0007 1.0001 0.9984 1.0000 0.9996 1.0014 0.9986 

Skewness 0.0003 0.0063 0.0026 -0.0016 0.0010 0.0007 0.0018 0.0010 

Kurtosis 3.0320 3.0227 3.0327 3.0398 3.0280 3.0297 3.0260 3.0382 
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3.4.3 Heterogeneous time series simulation with previous data’s 

trend results 

 

In the last part, Monte-Carlo simulation results of heterogeneous time series 

with previous data trend are shown which generates 𝑥𝑡 differently depending 

on the trend of previous data series. Trend from 𝑥𝑡−𝑑 to 𝑥𝑡−1 is determined 

by the sign of ∑ 𝑥𝑡−𝑖𝑑
𝑖=1  to capture the stock market’s price trend. In the case 

of the positive model, if the sign of the previous trend is a positive number, 

then next number is generated from specific distribution, and if the sign is a 

negative, the next data is generated from standard normal distribution. 

Negative model is generated reversed with positive model. Since the trend 

cannot be measured if the past data has no d data, first d data is generated 

from the standard normal distribution. This implied that heterogeneous data is 

generated from d+1 data. The results for d = 20 are represented in this chapter. 

Other results for d=10, 30, 40, 50 are in Appendix A. 

 

3.4.3.1 Skewed distribution 

Table 3.11 shows the results of the heterogeneous time series simulation of the 

skewed distribution with the previous data trend. The results are similar with 

heterogeneous time series simulation of the skewed distribution with previous 

data sign in chapter 3.4.2.1. In both positive and negative models, as the 

skewness increases, the uptrend Hurst exponent decreases and the downtrend 

Hurst exponent increases. The smaller the skewness affects the higher the 

probability that a positive value will be generated. It increases the long-range 

dependence of upward trend. On the contrary, the larger the skewness affects 

the higher the probability that the negative value will be generated. It 

increases the long-range dependence of downward trend. 
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3.4.3.2 AR model 

Table 3.12 and Table 3.13 show the results of the heterogeneous time series 

simulation of the AR model with previous data trends. Table 3.12 shows the 

positive model results and Table 3.13 shows the results of the negative model. 

In the case of positive model, all types of Hurst exponent increases as AR 

coefficient increases. When AR coefficient is over than zero, Hurst exponent 

is over than 0.5 and when AR coefficient is below than zero, Hurst exponent 

is less than 0.5. Since there is a difference between uptrend and downtrend 

Hurst exponent, this time series has asymmetric feature. When AR coefficient 

is positive, uptrend Hurst exponent value is over than downtrend one. When 

AR coefficient is negative, uptrend Hurst exponent value is smaller than 

downtrend one. In case that AR coefficient is positive, since the AR model is 

generated only when the previous trend is positive, the autocorrelation of the 

uptrend increases and the uptrend Hurst exponent value is larger. If the AR 

coefficient is negative, the uptrend Hurst exponent value is lowered because 

data with negative autocorrelation is generated when trend is positive. 

In case of negative model, opposite results of positive model are obtained. 

As AR coefficient increases, all types of the Hurst exponent value increase. In 

case that AR coefficient is positive, downtrend Hurst exponent is over than 

uptrend because generating a data with a positive autocorrelation when the 

trend is negative makes downtrend long-range dependence larger. This result 

is opposite result of heterogeneous time series simulation of AR model with 

previous data’s sign in 3.4.2.3.  

 

3.4.3.3 Student’s t-distribution 

Table 3.14 shows the results of the heterogeneous time series simulation of 

the T-dist with previous data trends. In case of the positive model results, as 
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degree of freedom decreases, uptrend Hurst exponent increases and over than 

0.5 and downtrend Hurst exponent decreases and lower than 0.5. When 

previous trend is positive, next data is generated from heavy-tailed 

distribution. It makes the variance of uptrend long term period large. That is 

why uptrend Hurst exponent increases as the tail distribution is heavier. In the 

case of the downtrend Hurst exponent, the variance becomes smaller in the 

downtrend long period due to the reflection effect. In case of negative model, 

opposite results of positive model are obtained. 

In case of multifractality, all types of degree of multifractality increases 

as tail distribution is heavier. Uptrend multifractality is largest one in positive 

model and downtrend multifractality is largest one in negative model. The 

reason is that positive model generate fat-tailed data when trend is only 

positive, so uptrend multifractality is larger, and negative model generate fat-

tailed data when trend is only negative, so downtrend multifractality is larger. 

 

3.4.3.4 ARCH model and GARCH model 

Table 3.15 and Table 3.16 show the results of the heterogeneous time series 

simulation of the ARCH model and GARCH model with previous data trends, 

respectively. Table 3.15 shows the ARCH model results and Table 3.16 shows 

the results of the GARCH model. In case of ARCH model results, this 

generated time series has asymmetric feature since there is a difference 

between uptrend and downtrend degree of multifractality. Also, all types of 

the degree of multifractality increases as ARCH coefficient increases. In case 

of positive model, uptrend multifractality is little larger than negative 

multifractality. In case of negative model, opposite phenomenon is occurred. 

When previous trend is positive, the data which is autocorrelated with past 

data’s volatility is generated, so uptrend multifractality is being larger. 
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Negative model has same mechanism. In case of GARCH model, there are 

similar results with ARCH model but increasing rate of multifractality is 

smaller than ARCH model. 

In Appendix A, the results of d=10, 30, 40, 50 are existed. When d is 30 

or more, in case of positive model, uptrend degree of multifractality is lower 

than downtrend one, and in case of negative model, downtrend degree of 

multifractality is lower than uptrend one.  
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Table 3.11: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous 20 data’s trend (Skewed dist.) 

Day=20 
Positive 

Skew(-0.6) 
Positive 

Skew(-0.3) 
Positive 

Skew(0.3) 
Positive 

Skew(0.6) 
Negative 

Skew(-0.6) 
Negative 

Skew(-0.3) 
Negative 

Skew(0.3) 
Negative 

Skew(0.6) 

𝐻(2) 0.5025 0.5052 0.5028 0.5028 0.5053 0.5018 0.5007 0.5046 

𝐻+(2) 0.5123 0.5080 0.4959 0.4891 0.5152 0.5041 0.4920 0.4907 

𝐻−(2) 0.4883 0.4974 0.5042 0.5119 0.4920 0.4945 0.5050 0.5138 

Δ𝐻 0.0907 0.0861 0.0762 0.0746 0.0731 0.0796 0.0883 0.0913 

Δ𝐻+ 0.1075 0.1016 0.0899 0.0851 0.0884 0.0941 0.0995 0.0982 

Δ𝐻− 0.0970 0.0966 0.0902 0.0909 0.0826 0.0944 0.1037 0.1061 

Mean -0.0001 -0.0003 -0.0001 0.0012 -0.0007 0.0005 -0.0002 -0.0007 

Std 1.0000 1.0003 0.9989 1.0004 1.0001 1.0002 1.0007 1.0001 

Skewness -0.2952 -0.1427 0.1478 0.2908 -0.2913 -0.1497 0.1481 0.2936 

Kurtosis 2.9906 2.9929 2.9939 2.9897 2.9946 2.9993 2.9973 2.9984 
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Table 3.12: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous 20 data’s trend (Positive model with AR 
model) 

Day=20 
Positive 
AR(-0.8) 

Positive 
AR(-0.6) 

Positive 
AR(-0.4) 

Positive 
AR(-0.2) 

Positive 
AR(0.2) 

Positive 
AR(0.4) 

Positive 
AR(0.6) 

Positive 
AR(0.8) 

𝐻(2) 0.4172 0.4456 0.4661 0.4826 0.5267 0.5685 0.6416 0.8013 

𝐻+(2) 0.3988 0.4250 0.4467 0.4709 0.5318 0.5822 0.6591 0.8199 

𝐻−(2) 0.4166 0.4482 0.4717 0.4863 0.5132 0.5329 0.5779 0.6918 

Δ𝐻 0.0866 0.0642 0.0648 0.0726 0.0999 0.1253 0.1446 0.1461 

Δ𝐻+ 0.1192 0.0860 0.0813 0.0847 0.1208 0.1609 0.2115 0.2371 

Δ𝐻− 0.0930 0.0783 0.0798 0.0897 0.1108 0.1371 0.1578 0.1616 

Mean -0.0646 -0.0455 -0.0318 -0.0159 0.0188 0.0483 0.1015 0.2531 

Std 1.2028 1.0978 1.0391 1.0090 1.0096 1.0452 1.1298 1.3504 

Skewness -0.0496 -0.0239 -0.0095 0.0016 0.0033 0.0117 0.0403 0.1714 

Kurtosis 3.4947 3.1108 3.0128 3.0016 3.0008 3.0148 3.1054 3.4202 
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Table 3.13: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous 20 data’s trend (Negative model with AR 
model) 

Day=20 
Negative 
AR(-0.8) 

Negative 
AR(-0.6) 

Negative 
AR(-0.4) 

Negative 
AR(-0.2) 

Negative 
AR(0.2) 

Negative 
AR(0.4) 

Negative 
AR(0.6) 

Negative 
AR(0.8) 

𝐻(2) 0.4153 0.4447 0.4629 0.4849 0.5282 0.5702 0.6417 0.7992 

𝐻+(2) 0.4126 0.4456 0.4647 0.4861 0.5155 0.5309 0.5531 0.6111 

𝐻−(2) 0.4057 0.4285 0.4496 0.4766 0.5336 0.5857 0.6679 0.8319 

Δ𝐻 0.0866 0.0669 0.0678 0.0721 0.1002 0.1247 0.1459 0.1479 

Δ𝐻+ 0.0917 0.0783 0.0836 0.0878 0.1117 0.1414 0.1827 0.2213 

Δ𝐻− 0.1161 0.0854 0.0792 0.0836 0.1211 0.1595 0.2087 0.2464 

Mean 0.0634 0.0446 0.0322 0.0157 -0.0190 -0.0485 -0.0996 -0.2455 

Std 1.2055 1.0965 1.0378 1.0086 1.0091 1.0460 1.1283 1.3435 

Skewness 0.0490 0.0246 0.0081 0.0052 -0.0046 -0.0071 -0.0391 -0.1843 

Kurtosis 3.5104 3.0985 3.0156 2.9914 3.0030 3.0183 3.0984 3.4380 
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Table 3.14: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous 20 data’s trend (T-dist.) 

Day=20 
Positive 

T-dist(10) 
Positive 
T-dist(8) 

Positive 
T-dist(6) 

Positive 
T-dist(4) 

Negative 
T-dist(10) 

Negative 
T-dist(8) 

Negative 
T-dist(6) 

Negative 
T-dist(4) 

𝐻(2) 0.5014 0.5031 0.5034 0.5037 0.5019 0.5024 0.5050 0.5036 

𝐻+(2) 0.5089 0.5136 0.5193 0.5282 0.4896 0.4857 0.4853 0.4722 

𝐻−(2) 0.4889 0.4883 0.4833 0.4739 0.5097 0.5143 0.5195 0.5307 

Δ𝐻 0.0976 0.1049 0.1127 0.1562 0.0955 0.1039 0.1122 0.1549 

Δ𝐻+ 0.1150 0.1233 0.1396 0.1837 0.1060 0.1148 0.1204 0.1630 

Δ𝐻− 0.1099 0.1164 0.1212 0.1633 0.1152 0.1264 0.1385 0.1838 

Mean -0.0024 -0.0001 -0.0001 -0.0001 -0.0014 0.0012 -0.0021 0.0001 

Std 1.0570 1.0755 1.1100 1.2042 1.0575 1.0751 1.1117 1.2041 

Skewness -0.0023 0.0035 0.0052 -0.0397 -0.0002 -0.0056 0.0096 -0.0595 

Kurtosis 3.6311 3.9820 4.8155 10.6141 3.6375 3.9856 4.8259 10.4612 
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Table 3.15: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous 20 data’s trend (ARCH model) 

Day=20 
Positive 

ARCH(0.2) 
Positive 

ARCH(0.4) 
Positive 

ARCH(0.6) 
Positive 

ARCH(0.8) 
Negative 

ARCH(0.2) 
Negative 

ARCH(0.4) 
Negative 

ARCH(0.6) 
Negative 

ARCH(0.8) 

𝐻(2) 0.5002 0.5016 0.5016 0.4992 0.5035 0.5025 0.5002 0.4979 

𝐻+(2) 0.4966 0.4979 0.4924 0.4792 0.5007 0.5028 0.5027 0.5090 

𝐻−(2) 0.4991 0.5003 0.5042 0.5132 0.5011 0.4971 0.4916 0.4808 

Δ𝐻 0.0983 0.1267 0.1723 0.2686 0.0962 0.1242 0.1722 0.2649 

Δ𝐻+ 0.1166 0.1467 0.1912 0.2794 0.1057 0.1304 0.1748 0.2753 

Δ𝐻− 0.1089 0.1306 0.1748 0.2760 0.1150 0.1444 0.1877 0.2764 

Mean -0.0002 -0.0003 0.0004 -0.0006 -0.0008 0.0010 -0.0009 0.0002 

Std 0.9984 0.9980 0.9918 0.9597 0.9984 0.9985 0.9884 0.9624 

Skewness -0.0010 -0.0068 0.0043 -0.0935 0.0007 0.0084 0.0036 0.0491 

Kurtosis 3.1126 3.6405 5.1270 8.6073 3.1183 3.6123 4.9705 8.8644 
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Table 3.16: Average of asymmetric Hurst exponent, asymmetric degree of multifractality, mean, standard deviation (Std), 
Skewness and Kurtosis for each simulated heterogeneous time series with previous 20 data’s trend (GARCH model) 

Day=20 
Positive 

GARCH(0.2) 

Positive 

GARCH(0.4) 

Positive 

GARCH(0.6) 

Positive 

GARCH(0.8) 

Negative 

GARCH(0.2) 

Negative 

GARCH(0.4) 

Negative 

GARCH(0.6) 

Negative 

GARCH(0.8) 

𝐻(2) 0.5037 0.5034 0.5035 0.5030 0.5026 0.4997 0.5030 0.5027 

𝐻+(2) 0.5011 0.4996 0.5018 0.5004 0.4994 0.4970 0.5030 0.5001 

𝐻−(2) 0.5015 0.5026 0.5004 0.5001 0.5013 0.4969 0.4973 0.4997 

Δ𝐻 0.0885 0.0914 0.0950 0.1083 0.0915 0.0918 0.0967 0.1083 

Δ𝐻+ 0.1053 0.1077 0.1104 0.1247 0.1031 0.1043 0.1076 0.1163 

Δ𝐻− 0.1030 0.1045 0.1075 0.1193 0.1068 0.1075 0.1150 0.1283 

Mean -0.0005 0.0005 0.0004 0.0013 -0.0016 0.0004 -0.0017 -0.0012 

Std 0.9996 1.0011 1.0005 1.0004 1.0003 0.9994 1.0019 1.0003 

Skewness 0.0018 0.0061 0.0034 -0.0021 0.0000 0.0011 0.0006 0.0026 

Kurtosis 3.0320 3.0277 3.0425 3.0954 3.0296 3.0343 3.0396 3.1070 
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3.5 Conclusion 
 

In this chapter, the asymmetric features of long-range dependence and 

multifractality are examined by simulation analysis. To change autocorrelation 

and skewness of data to affect long-range dependence, AR model and Skewed 

distribution is used to generate time series. Multifractality is affected by 

heavy-tail distribution and autocorrelation of volatility. Therefore, student’s t-

distribution and ARCH, GARCH model are used to generate time series, too. 

In addition, in order to incorporate asymmetric characteristics into the time 

series, there are three ways to generate time series. The first method is to 

generate data regardless of past values named ‘homogeneous time series’. The 

second and third are to generate random numbers from different models 

depending on past values and past trend values named ‘heterogeneous time 

series’. This implies that the time series generated through the second and 

third method has asymmetric features. Using the price-based A-MFDFA 

model, asymmetric Hurst exponent and degree of multifractality are obtained 

for various generated time series, and characteristics of the asymmetric long-

range dependence and asymmetric multifractality are examined. 

The results are summarized as follows. At first, the simulation results of 

the homogeneous model are symmetric except skewed distribution. In other 

words, there is no difference between uptrend and downtrend results. Because 

time series generated by skewed distribution has autocorrelation, 

heterogeneous nature, asymmetric results are obtained. In case of 

heterogeneous model, asymmetric results are obtained in all generated time 

series. This means that the price-based A-MFDFA model captures asymmetric 

properties well because time series with artificially asymmetric features are 

examined. Second, the results of the simulated heterogeneous time series with 
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the previous data and the previous data trend are as expected from the positive 

model and the negative model, respectively. In the case of the positive model, 

uptrend feature is observed more than downtrend feature according to desired 

effect. In case of the negative model, down trend feature is larger than uptrend 

feature. In case of AR model with negative AR coefficient, negative 

autocorrelation effect is applied, so that result is reversed as expected. The 

most interesting case is the AR model of the simulated heterogeneous time 

series with previous data. The downtrend Hurst exponent value is higher than 

the uptrend one when the AR coefficient is positive in the positive model. 

This result means that the autocorrelation feature of the return series has the 

opposite effect when the trend is divided with price. 
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Chapter 4 

Evaluating the asymmetric long-range 

dependence and multifractality of financial 

markets 

 

4.1 Introduction 
 

Since the work of Fama (1970), the theory of Efficient Market Hypothesis 

(EMH) has been popular in the field of Finance. The term, Efficient, implies 

the condition when the market reflects all available information. The weak-

form of EMH states that the past information is reflected in the current asset 

price. Therefore, the exceed return cannot be obtained based on its past price. 

In other words, the price moves a random walk with a zero mean or a positive 

drift. However, it is now widely known that the price does not follow the 

random walk when the market is inefficient. Furthermore, the long memory 

exists in the market when the market does not follow the random walk. For 

instance, Kim and Shamsuddin (2008) test for the martingale hypothesis in the 

stock prices of Asian markets using multiple variance ratios test, whereas 

Rounaghi and Zadeh (2016) measure the market efficiency using ARMA 

model and predict stock returns. 

In this context, many studies in Econophysics have focused on measuring 

the market efficiency by analyzing the long memory based on the multifractal 

theory. Multifractality in financial markets has been studied for discovering 

various stylized facts and applications including stock markets (Sun et al. 
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2001; Lee and Chang 2015; Stošić et al. 2015), foreign exchange market (Oh 

et al. 2012; Stošić et al. 2015), market crash prediction (Grech and Mazur 

2004) and market risk (Lee et al. 2016). The Multi-Fractal Detrended 

Fluctuation analysis (MFDFA) method (Kantelhardt et al. 2002) is a typical 

approach to measure the multifractal features of a time series. The main 

approaches that have been utilized for the market efficiency include the Hurst 

Exponent (Liu et al. 2010; Wang et al. 2010; Horta et al. 2014; Arshad et al. 

2016; Sensoy and Tabak 2016; Mensi et al. 2017; Shahzad et al. 2017), the 

Generalized Hurst exponent approach (Di Matteo et al. 2003), the rescaled 

range statistical analysis (Cajueiro and Tabak 2004; Cajueiro and Tabak 2004; 

Hull and McGroarty 2014), the Detrended Fluctuation analysis(DFA) (Wang 

et al. 2009; Wang et al. 2010), the Multifractal Detrended Cross-Correlation 

Analysis (Shahzad et al. 2017) and the mixture of DFA, Detrended Moving 

Average and Height-height correlation analysis (Kristoufek and Vosvrda 

2013). The efficient market implies the expectation of rationality among 

investors. Thus, the inefficient market is realized when the investor expresses 

the irrationality due to a specific incident. The previous studies based on the 

multifractal theory can provide the overall market efficiency, but they also 

have limitations in discovering the source of inefficiency.  

The possible sources of market inefficiency are the overheated bull 

market with false hope and the crisis-phase bearish market with excessive 

fears. The source in bull market is caused by the irrationality in long position, 

whereas the source in bear market is caused by the irrationality in short 

position. Therefore, in this chapter, asymmetric long-range dependence and 

degree of multifractality is measured to investigate the source of market 

inefficiency. Asymmetric long-range dependence and multifractality are 

defined as measured long-range dependence and multifractality by dividing 
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the stock market according to the market trends in which the stock price rises 

or falls. Using the price-based Asymmetric-MFDFA method introduced in 

Chapter 2 (Lee et al. 2017), we compute the generalized Hurst exponent by 

distinguishing the long-range correlation for overall, up-trend and down-trend, 

simultaneously. Then, we analyze the asymmetric long-range dependence and 

degree of multifractality by discussing the difference among the asymmetric 

generalized Hurst exponent for different trends to access the market efficiency 

according to market trends. If there is an up-trend long-range dependence, the 

source of market inefficiency in the stock market is from the bull-market. In 

contrary, if down-trend long-range dependence is detected, then bear market is 

the source of market inefficiency. 

We mainly focus on three different approaches for the analysis. The first 

approach is generating the theoretical values of the generalized Hurst 

exponent and asymmetric one based on the Monte Carlo simulation with the 

time series following the Brownian motion. Furthermore, we suggest the 

nonparametric significance level as a proxy to test if the empirical values of 

the Hurst exponent and degree of multifractality are in the range of the 

random walk. The second approach is measuring the cross-sectional 

asymmetric generalized Hurst exponent for 34 countries and four different 

sub-periods to discover the impact of the financial crisis to the market long-

range dependence and multifractality. The last approach is analyzing the time-

varying aspects of the asymmetric generalized Hurst exponent and its relation 

to the stock market indices based on the moving window method. In previous 

studies, it is discovered that the moving window method in Econophysics can 

provide the time-varying aspects of financial market in details (Carbone et al. 

2004; Jang et al. 2011; Song et al. 2016). 

This chapter is organized as follows: Section 4.2 explains the 
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mathematical background of the Asymmetric-MFDFA method; Section 4.3 

describes the stock market data; Section 4.4 discusses the results of the 

empirical findings; and Section 4.5 concludes.  
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4.2 Methodology 
 

4.2.1 Price-based A-MFDFA  
 

The asymmetric multifractal scaling behavior can be discovered using the 

price-based A-MFDFA method. Let {𝑥𝑡: 𝑡 = 1,2, … ,𝑁}  be a return time 

series, then the price-based A-MFDFA can be computed in following steps 

(Lee et al. 2017). 

 

Step 1: Define yt = ∑ �𝑥𝑗 − 𝑥̅�𝑡
𝑗=1 ,   𝑡 = 1,2, … ,𝑁   where 𝑥̅ = ∑ 𝑥𝑗𝑁

𝑗=1 𝑁⁄ . 

Step 2: Divide the time series into non-overlapping sub-time series 

Let 𝐼𝑡 = 𝐼𝑡−1 𝑒𝑒𝑒(𝑥𝑡)  for 𝑡 = 1,2, … ,𝑁 , where 𝐼0 = 1  and 𝐼𝑡  is a price 

proxy for return time series. Then, {𝐼𝑡: 𝑡 = 1,2, … ,𝑁}  and {yt: 𝑡 =

1,2, … ,𝑁} can be divided into 𝑁𝑛 ≡ ⌊𝑁/𝑛⌋ non-overlapping sub-time series 

of equal length 𝑛. Note that ⌊𝑥⌋ is the largest integer less than or equal to 𝑥. 

This procedure is repeated from the other end of {𝐼𝑡} and {yt}, respectively, 

which yields 2𝑁𝑛  sub-time series. Suppose 𝐺𝑗 = {𝑔𝑗,𝑘,𝑘 = 1, 2, … ,𝑛} be 

the 𝑛 -length sub-time series of {𝐼𝑡}  in the 𝑗 th time interval and 𝐻𝑗 =

�ℎ𝑗,𝑘 ,𝑘 = 1,2, … ,𝑛� be the 𝑗th sub-time series of {yt} for 𝑗 = 1,2, . . . ,2𝑁𝑛. 

Then, 𝑔𝑗,𝑘 = 𝐼(𝑗−1)𝑛+𝑘  and ℎ𝑗,𝑘 = 𝑦(𝑗−1)𝑛+𝑘  represent 𝑗 = 1, 2, . . . ,𝑁𝑛 , 

whereas 𝑔𝑗,𝑘 = 𝐼𝑁−(𝑗−𝑁𝑛)𝑛+𝑘  and ℎ𝑗,𝑘 = 𝑦𝑁−(𝑗−𝑁𝑛)𝑛+𝑘  represent 

𝑗 = 𝑁𝑛 + 1, . . . , 2𝑁𝑛. Note that 10 ≤ 𝑛 ≤ 𝑁/4 . 

Step 3: Define the fluctuation function 

For each sub-time series 𝐺𝑗 and 𝐻𝑗, the local trend can be calculated based 

on least-squares fits 𝐿𝐺𝑗(𝑘) = 𝑎𝐺𝑗 + 𝑏𝐺𝑗𝑘 and 𝐿𝐻𝑗(𝑘) = 𝑎𝐻𝑗 + 𝑏𝐻𝑗𝑘, where 

𝑘 refers to the horizontal coordinate. That is, the positive or negative trend of 

𝐺𝑗 is depending on the slope of 𝐿𝐺𝑗(𝑘), 𝑏𝐺𝑗. Note that the integrated time 
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series 𝐻𝑗 is detrended by the linear fitting equation, 𝐿𝐻𝑗. The fluctuation 

function is then defined as 𝐹𝑗(𝑛) = ∑ �ℎ𝑗,𝑘 − 𝐿𝐻𝑗(𝑘)�
2

/𝑛 𝑛
𝑘=1  for 

𝑗 = 1, 2, . . . , 2𝑁𝑛. 

Step 4: Determine the trend  

Let {𝐼𝑡}  has a piecewise positive and negative linear trend, then the 

asymmetric cross-correlation scaling property of fluctuation functions can be 

determined by the sign of the slope, 𝑏𝐺𝑗. Therefore, 𝑏𝐺𝑗 ≥ 0 indicates a 

positive trend of sub-time series 𝐺𝑗 of {𝐼𝑡}, whereas 𝑏𝐺𝑗 < 0 indicates the 

negative trend. 

Step 5: Define the q-order average fluctuation functions 

Let 𝑀+ = ∑ (2𝑁𝑛
𝑗=1 1 + 𝑠𝑠𝑠(𝑏𝐺𝑗)), 𝑀− = ∑ (2𝑁𝑛

𝑗=1 1 − 𝑠𝑠𝑠(𝑏𝐺𝑗)), and 𝑠𝑠𝑠(𝑥) 

denotes the sign of 𝑥 , then the directional 𝑞 -order average fluctuation 

functions of the price-based model ( when 𝑞 ≠ 0)  can be defined as 

 𝐹𝑞+(𝑛) = �∑ (2𝑁𝑛
𝑗=1 1 + 𝑠𝑠𝑠(𝑏𝐺𝑗))�𝐹𝑗(𝑛)�𝑞 2⁄ /𝑀+�

1/𝑞
 and  𝐹𝑞−(𝑛) =

�∑ (2𝑁𝑛
𝑗=1 1 − 𝑠𝑠𝑠(𝑏𝐺𝑗))�𝐹𝑗(𝑛)�𝑞 2⁄ /𝑀−�

1/𝑞
. Note that 𝑏𝐺𝑗 ≠ 0  and 

𝑀+ + 𝑀− = 4𝑁𝑛. In addition, the average fluctuation function of MF-DFA 

model is 𝐹𝑞(𝑛) = �∑ �𝐹𝑗(𝑛)�𝑞 2⁄2𝑁𝑛
𝑗=1 /(2𝑁𝑛)�

1/𝑞
.  

Step 6: Calculate the generalized Hurst exponent  

The power-law relationship is observed in a time series which possess the 

long-range correlation. Let 𝐻(𝑞), 𝐻+(𝑞), and  𝐻−(𝑞) refers to the overall, 

up-trend, and down-trend scaling exponents, which are called the generalized 

Hurst exponents, respectively. Note that the scaling satisfies,  𝐹𝑞(𝑛) ~ 𝑛𝐻(𝑞),

𝐹𝑞+(𝑛) ~ 𝑛𝐻+(𝑞), and 𝐹𝑞−(𝑛) ~ 𝑛𝐻−(𝑞) . 𝐻(𝑞), 𝐻+(𝑞), and  𝐻−(𝑞) can be 

obtained by the ordinary least square method based on the logarithmic form. 
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The time series is mono-fractal when its 𝐻(𝑞)  is constant for all 𝑞 . 

Otherwise, the time series is multi-fractal. Furthermore, the correlation in the 

time series is persistent when 𝐻(2)  >  0.5, whereas the correlation is anti-

persistent when 𝐻(2)  <  0.5. The time series follows random walk process 

when 𝐻(2) = 0.5 (Kantelhardt et al. 2002). In the same context of 𝐻(𝑞), 

the up-trend or down-trend time series are multi-fractal when its 𝐻+(𝑞) or 

𝐻−(𝑞) depends on 𝑞, respectively. Specifically, the correlation in the time 

series is symmetric if 𝐻+(𝑞) = 𝐻−(𝑞) , whereas the correlation is 

asymmetric if 𝐻+(𝑞) ≠ 𝐻−(𝑞). The asymmetric scaling behavior indicates 

that the correlation is different between positive and negative trends. 

 

4.2.2 Evaluating the existence of asymmetric long-range 

dependence and multifractality 
 

In this study, the existence of asymmetric long-range dependence and 

multifractality are conducted to access the source of market efficiency using 

the asymmetric generalized Hurst exponent. Basically, the efficient market 

shows that its generalized Hurst exponents for all q’s are equal to 0.5. 

Therefore, long-range dependence is evaluated based on how much 𝐻(𝑞) is 

far from 0.5. In addition, degree of multifractality is the difference of 

maximum value and minimum value of 𝐻(𝑞). 

 

4.2.2.1 Testing the existence of asymmetric long-range dependence 

The first test is evaluating the existence of long-range dependence based on 

how much the Hurst exponent, 𝐻(2), is far from the 0.5. 𝐻(2) is the Hurst 

exponent corresponding to the scaling of the second moment which indicates 

the autocorrelation (𝑞=2) with the time horizon. The time invariant scaling of 
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variance is studied in Peng et al. (1994) by analyzing the multifractality in 

𝑞=2. When the Hurst exponent is not 0.5, the market can be considered as 

inefficient due to the existence of the long-range correlation. 

The Hypothesis is as follows; 

H0:𝐻(2) = 0.5  𝑣𝑣 H1:𝐻(2) ≠ 0.5 

To test the existence of asymmetric long-range dependence, we use 

𝐻+(2) and 𝐻−(2) instead of 𝐻(2). 

 

4.2.2.2 Testing the existence of asymmetric multifractality 

The second test is focusing on the extreme value of the generalized Hurst 

exponent. Wang et al. (2009) uses the degree of multifractality to test the 

market inefficiency. The scale exponents max𝑞 𝐻(𝑞) and min𝑞 𝐻(𝑞) are 

considered as the extreme cases of the variations. Therefore, the degree of 

multifractality can be measured using the following equation, 

Degree of multifractality(𝛥𝛥) = max
𝑞

𝐻(𝑞) − min
𝑞
𝐻(𝑞) 

Hence, the hypothesis based on the degree of multifractality is, 

H0:Δ𝐻 = 0  𝑣𝑣 H1:Δ𝐻 > 0 

To test the existence of asymmetric multifractality, 𝐻+(𝑞) and 𝐻−(𝑞) 

are utilized instead of 𝐻(𝑞). 

 

4.2.2.3 Grouping with respect to the existence of long-range dependence 

and multifractality 

Stock markets in each country can be classified into eight different groups 

since the asymmetric long-range dependence and multifractality are analyzed 

based on overall, up-trend, and down-trend trends. 

As illustrated in Table 4.1, the mark “O” refers to the no long-range 



 

80 
 

dependence or no multifractality, whereas “X” refers that market has long-

range dependence or multifractality. By classifying the groups, we can 

investigate the sources of market inefficiency in details. 

 

Table 4.1: Groups with respect to asymmetric long-range dependence and 

multifractality 

 
Overall market  Up-trend market  

Down-trend 

market 

Group 1 O O O 

Group 2 O O X 

Group 3 O X O 

Group 4 O X X 

Group 5 X O O 

Group 6 X O X 

Group 7 X X O 

Group 8 X X X 
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4.3 Data description 
 

We analyze the existence of asymmetric long-range dependence and 

multifractality of stock indices in 34 countries. The daily indices are obtained 

from the Thomson DataStream in their local currency. Table 4.2 shows the 

description of the selected countries and the tick information in the 

DataStream. The total period for analysis is considered from 2003-01-01 to 

2016-12-31. The total period is then divided into four sub-periods: Pre-crisis 

(from 2005-01-03 to 2007-07-31), Subprime-crisis (from 2007-08-01 to 2009-

12-07), European-crisis (from 2009-12-08 to 2012-04-27), and Post-crisis 

(2012-04-28 to 2016-12-31). Note that this sub-periods are also considered in 

Horta et al. (2014). We transform the indices into the logarithmic return-series, 

𝑟𝑡 = log(𝑃𝑡)− log (𝑃𝑡−1), where 𝑃𝑡 is the closing price of each index at time 

𝑡.
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Table 4.2: List of selected country ticker, country name, index name, stock exchange market name and DataStream code 

  Ticker Country Index Stock Exchange Market  DataStream code 

1 ARG Argentina Buenos Aires Stock Exchange Merval Index Buenos Aires Stock Exchange  ARGMERV 

2 AUS Australia S&P/ASX 200 Index Australian Securities Exchange  ASX200I 

3 BEL Belgium BEL 20 Index Brussels Stock Exchange  BGBEL20 

4 BRA Brazil Ibovespa Brasil Sao Paulo Stock Exchange Index Sao Paulo Stock Exchange  BRBOVES 

5 CAN Canada S&P/TSX Composite Index Toronto Stock Exchange  TTOCOMP 

6 CHL Chile Santiago Stock Exchange IGPA Index Santiago Stock Exchange  IGPAGEN 

7 CHN China Shanghai Stock Exchange Composite Index Shanghai Stock Exchange CHSASHR 

8 CZE 
Czech 

Republic 
Prague Stock Exchange Index Prague Stock Exchange  CZPXIDX 

9 DNK Denmark OMX Copenhagen 20 Index Copenhagen Stock Exchange  DKKFXIN 

10 FIN Finland OMX Helsinki Index Helsinki Stock Exchange  HEXINDX 

11 FRA France CAC 40 Index Paris Stock Exchange FRCAC40 

12 DEU Germany Deutsche Boerse AG German Stock DAX Index Frankfurt Stock Exchange  DAXINDX 

13 GRC Greece Athens Stock Exchange General Index Athens Stock Exchange  GRAGENL 

14 HKG Hong Kong Hong Kong Hang Seng Index Hong Kong Stock Exchange HNGKNGI 

15 IND India S&P BSE SENSEX Index Bombay Stock Exchange  IBOMSEN 

16 IDN Indonesia Jakarta Stock Exchange Composite Index Jakarta Stock Exchange JAKCOMP 

17 IRL Ireland Irish Stock Exchange Overall Index Irish Stock Exchange  ISEQUIT 

18 ISR Israel Tel Aviv Stock Exchange 125 Index Tel Aviv Stock Exchange  ISTA100 

19 ITA Italy FTSE MIB Index Milan Stock Exchange  FTSEMIB 
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Table 4.2(continue) 
 Ticker Country Index Stock Exchange Market  DataStream code 

20 JPN Japan Nikkei 225 Index Tokyo Stock Exchange  JAPDOWA 

21 KOR Korea Korea Stock Exchange KOSPI Index Korea Stock Exchange  KORCOMP 

22 MEX Mexico Mexican Stock Exchange Mexican Bolsa IPC Index Mexican Stock Exchange  MXIPC35 

23 NLD Netherlands AEX-Index Amsterdam Stock Exchange AMSTEOE 

24 NZL 
New 

Zealand 
S&P/NZX 10 Index New Zealand Stock Exchange NZ10CAP 

25 PAK Pakistan Karachi Stock Exchange KSE100 Index Karachi Stock Exchange  PKSE100 

26 PHL Philippines Philippines Stock Exchange PSEi Index Philippine Stock Exchange  PSECOMP 

27 PRT Portugal PSI 20 Index Lisbon Stock Exchange POPSI20 

28 RUS Russia MICEX Index Moscow Exchange  RSMICEX 

29 ZAF 
South 

Africa 
FTSE/JSE Africa All Share Index Johannesburg Stock Exchange  JSEOVER 

30 ESP Spain IBEX 35 Index Madrid Stock Exchange  IBEX35I 

31 SWE Sweden OMX Stockholm 30 Index Stockholm Stock Exchange  SWEDOMX 

32 CHE Switzerland Swiss Market Index SIX Swiss Exchange  SWISSMI 

33 GBR 
United 

Kingdom 
FTSE 100 Index London Stock Exchange FTSE100 

34 USA 
United 

States 
S&P 500 Index 

New York Stock Exchange / 

Nasdaq Exchange 
S&PCOMP 
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4.4 Results and Discussions 
 

We analyze the asymmetric long-range dependence and multifractality in 

stock markets based on three different results. At first, we compute the 

theoretical values and their confidence intervals of the Hurst exponent and the 

degree of multifractality using the standard normal distribution generated by 

the Monte Carlo simulation. Secondly, we test the existence of asymmetric 

long-range dependence and multifractality in the stock indices of 34 countries 

for different sub-periods. Lastly, we discover the time-varying characteristics 

of asymmetric long-range dependence and degree of multifractality based on 

the moving window method, which reveals the association with the stock 

indices. 

 

4.4.1 Monte Carlo Simulation 
 

When 𝐻(𝑞) =  0.5, a return time series of stock index price follows the 

random walk, and the underlying market is considered as an efficient market. 

Otherwise, the underlying market is inefficient and presents the long-term 

dependence. Therefore, we need to set the statistical criterion for 

discriminating whether the generalized Hurst exponent is 0.5 or not. 

Since 𝐻(𝑞) =  0.5  can be obtained in the Brownian motion, we 

compute the theoretical values of 𝐻(2) using the Monte Carlo simulation as 

follows. At first, we generate the values of standard normal distribution for the 

length of 250×2, 250×3, 250×4, 250×5, 250×12, which are corresponding to 

the 2, 3, 4, 5, and 12 years of trading days, respectively. Using 5000 iterations, 

we create the 5000 generalized Hurst exponents for each time length. Then, 

we calculate the mean, standard deviation, and nonparametric confidence 
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intervals based on the theoretical Hurst exponents. Furthermore, we compute 

degree of multifractality Δ𝐻 =  max𝑞 𝐻(𝑞) − min𝑞 𝐻(𝑞) so that the mean, 

standard deviation, and nonparametric confidence intervals for degree of 

multifractality can be obtained for each length. Note that the confidence 

interval of the Hurst exponent, 𝐻(2), is used as the two-sided test, whereas 

that of degree of multifractality is used as the one-sided test. 

 

4.4.1.1 𝑯(𝟐) simulation for long-range dependence 

 

Table 4.3 shows the Monte Carlo simulation results for various time lengths 

and trends regarding the Hurst exponent, 𝐻(2). Comparing the result among 

trends, the overall trend shows the mean of 𝐻(2) closer to 0.5 and smaller 

standard deviation then those of up-trend and down-trend. The result relies on 

the fact that the time length is smaller in the up-trend and down-trend since 

the time series is divided into two sub-time series, which reduces the 

robustness of simulation. However, we observe that as the time length 

increases the mean of 𝐻(2) and standard deviation develops into 0.5 and 

smaller value for all trends. Based on this simulation result, we test the 

hypothesis regarding the empirical values of 𝐻(2) using the nonparametric 

95% confidence intervals. 

 

4.4.1.2 Degree of multifractality simulation 

 

Table 4.4 shows the results of Monte Carlo simulation for various time 

lengths and trends regarding degree of multifractality. Analogous to the result 

in Table 4.3, as time length increases, the mean of degree of multifractality, 

standard deviation, and the confidence interval converges to 0, smaller value, 
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and smaller interval, respectively. Furthermore, degree of multifractality also 

shows more robust result in overall than the up-trend and down-trend. Note 

that the form of confidence interval for degree of multifractality is different to 

that of 𝐻(2). 𝐻(2) requires the two-sided test, which indicates the quantile 

interval 0.025 – 0.975 to compute the confidence interval. In contrast, degree 

of multifractality requires the one-sided test, which indicates the quantile 

interval 0 - 0.950. 



 

87 
 

Table 4.3: Results of Monte Carlo simulation with various time lengths and trend about 𝐻(2) 

Trend Time length Mean 
Standard 
Deviation 

Quantile 

0.995 0.975 0.950 0.050 0.025 0.005 

Overall 
𝐻(2) 

250×2 0.4970 0.0610 0.6444 0.6171 0.5993 0.3983 0.3798 0.3482 

250×3 0.4971 0.0531 0.6303 0.6031 0.5869 0.4120 0.3948 0.3683 

250×4 0.4973 0.0491 0.6208 0.5953 0.5803 0.4199 0.4027 0.3740 

250×5 0.4973 0.0462 0.6169 0.5899 0.5735 0.4227 0.4097 0.3793 

250×12 0.4967 0.0384 0.5923 0.5709 0.5593 0.4336 0.4190 0.3972 

Up-
trend 
𝐻+(2) 

250×2 0.4906 0.0776 0.6943 0.6452 0.6191 0.3656 0.3407 0.2837 

250×3 0.4918 0.0670 0.6689 0.6248 0.6041 0.3819 0.3634 0.3256 

250×4 0.4922 0.0612 0.6617 0.6143 0.5952 0.3951 0.3761 0.3310 

250×5 0.4931 0.0577 0.6508 0.6112 0.5887 0.3997 0.3835 0.3434 

250×12 0.4942 0.0468 0.6097 0.5861 0.5703 0.4162 0.4028 0.3683 

Down-
trend 
𝐻−(2) 

250×2 0.4914 0.0789 0.7035 0.6492 0.6259 0.3642 0.3402 0.2995 

250×3 0.4924 0.0670 0.6680 0.6269 0.6044 0.3846 0.3649 0.3251 

250×4 0.4934 0.0620 0.6560 0.6167 0.5953 0.3926 0.3749 0.3357 

250×5 0.4934 0.0576 0.6493 0.6077 0.5900 0.4023 0.3811 0.3488 

250×12 0.4923 0.0468 0.6144 0.5861 0.5692 0.4161 0.4009 0.3711 
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Table 4.4: Results of Monte Carlo simulation with various time lengths and trend about degree of multifractality 

Trend 
Time 
length 

Mean 
Standard 
Deviation 

Quantile 

0.995 0.990 0.975 0.950 0.925 0.900 

Overall 

Δ𝐻 

250×2 0.0968 0.0533 0.2507 0.2367 0.2111 0.1889 0.1783 0.1700 

250×3 0.0806 0.0439 0.2007 0.1882 0.1721 0.1576 0.1482 0.1408 

250×4 0.0711 0.0389 0.1738 0.1665 0.1506 0.1400 0.1319 0.1254 

250×5 0.0648 0.0360 0.1572 0.1496 0.1397 0.1284 0.1202 0.1144 

250×12 0.0492 0.0271 0.1190 0.1145 0.1046 0.0970 0.0909 0.0864 

Up-

trend 

Δ𝐻+ 

250×2 0.1233 0.0644 0.3027 0.2822 0.2543 0.2332 0.2200 0.2095 

250×3 0.1042 0.0525 0.2448 0.2295 0.2103 0.1938 0.1828 0.1746 

250×4 0.0935 0.0471 0.2203 0.2059 0.1867 0.1736 0.1638 0.1546 

250×5 0.0856 0.0432 0.1968 0.1882 0.1711 0.1586 0.1499 0.1432 

250×12 0.0665 0.0323 0.1448 0.1389 0.1288 0.1191 0.1137 0.1088 

Down-

trend 

Δ𝐻− 

250×2 0.1228 0.0635 0.2976 0.2797 0.2540 0.2305 0.2167 0.2069 

250×3 0.1037 0.0516 0.2431 0.2241 0.2054 0.1900 0.1801 0.1725 

250×4 0.0935 0.0464 0.2178 0.2037 0.1855 0.1705 0.1615 0.1532 

250×5 0.0865 0.0426 0.1946 0.1863 0.1706 0.1569 0.1484 0.1429 

250×12 0.0673 0.0326 0.1468 0.1395 0.1291 0.1202 0.1144 0.1104 
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4.4.2 The results for testing the existence of asymmetric long-range 

dependence and multifractality in each period 
 

We measure the cross-sectional asymmetric long-range dependence and 

multifractality for 34 countries and sub-periods. The point of interest is 

focused on how two financial crises affect the asymmetric long-range 

dependence and multifractality. As described in Chapter 4.3, the total period is 

divided into the cross-sectional periods, namely the Pre-crisis, Subprime-crisis, 

European-crisis and Post-crisis. Note that we use the results of Monte Carlo 

simulation in Chapter 4.4.1 as the nonparametric confidence interval for 

testing the existence of long-range dependence and degree of multifractality 

with 5% significance level. The time lengths of total period and sub-periods 

are 3130, 672, 614, 624 and 1220 trading dates, respectively. Therefore, the 

test for total period uses the result of 250 × 12 time length; the Pre-crisis, 

Subprime-crisis and European-crisis use the 250 × 3 time length result; and 

the Post-crisis uses the 250 × 5 time length. 

 

4.4.2.1 Results of testing the existence of asymmetric long-range 

dependence using the Hurst exponent 

 

Table B.1, B.2 and B.3, in Appendix B, show the result of the existence of 

asymmetric long-range dependence test for different asymmetric Hurst 

exponents, H(2), H+(2) and H−(2) , respectively. Note that the bolded 

numbers are countries that belong to either side at 5% significance level. It 

refers that the rejection of null hypothesis, stating the asymmetric Hurst 

exponent is 0.5, indicates the presence of long-range correlation in the stock 

market. If the stock market has long-range dependence, the stock market is 
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treated as the inefficient market. The results show that the stock markets of 

the most countries have no long-range dependence in each period. The 

following stock markets has long-range dependence in overall trend: CHN, 

IDN, ISR, PAK in Total, ZAF in Pre-crisis, PAK in Subprime-crisis, CAN, 

BEL in European-crisis, and CAN, ZAF, NLD, SWE, FRA, IRL, USA, ESP, 

BEL, GBR, CHE in Post-crisis. The countries showing the long-range 

dependence in up-trend market are CHN, CHL, ZAF in Total, PRT in Pre-

crisis, PAK, CHN, JPN, CHE, PRT in Subprime-crisis, AUS, CHE, PRT in 

European-crisis, and ESP, GBR in Post-crisis, whereas the countries showing 

the long-range dependence in down-trend market are PAK, IDN, USA, ZAF, 

DNK, RUS, HKG, IRL, CAN, FIN, NLD in Total, GRC, USA in Pre-crisis, 

PAK in Subprime-crisis, DEU, CAN in European-crisis, DNK, IRL, CZE, 

GRC, CHE. 

In summary, the long-range dependence of down-trend is majority in 

Total period, whereas the most numbers of countries regarding the long-range 

dependence in overall and down-trend are detected in the Post-crisis where 

the long-range dependence is caused by the Hurst exponent being less than 

0.5. In addition, the strongest long-range dependence of up-trend are observed 

during the Subprime-crisis (5 countries) and the European-crisis (3 countries). 

 

4.4.2.2 Results of testing the existence of asymmetric long-range 

dependence using the degree of multifractality 

 

Table B.4, B.5 and B.6, in Appendix B, show the existence of asymmetric 

multifractality test for 𝛥𝛥, 𝛥𝐻+  and 𝛥𝐻− , respectively. Note that the 

bolded country names indicate the rejection of one-sided efficiency test whose 

null hypothesis suggests the value of 𝛥𝛥 is 0. That is, the extreme value of 
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generalized Hurst exponent is spreading up and down from 0.5. The results 

suggest that the number of stock markets which has overall, uptrend and 

downtrend multifractal properties in Total period are 18, 26, 28; 19, 12, 29 

countries in Pre-crisis; 33, 31, 30 countries in Subprime-crisis; 29, 25, 29 

countries in European-crisis; and 33, 24, 31 countries in Post-crisis. 

Interestingly the largest numbers of countries showing the multifractal market 

regarding the overall and up-trend tests is the Subprime-crisis, whereas the 

numbers of multifractal market regarding the down-trend are similar in all 

periods. 

 

4.4.2.3 Group distribution 

 

We divide each country into eight different groups as defined in Table 4.1 

based on the results of the Hurst exponents or the degree of multifractality in 

Table 4.5 and 4.6, respectively. The result of the Hurst exponents, Table 4.5, 

shows that the Group 1, whose market has not long-range dependence for all 

trends of overall, up-trend, and down-trend, is the majority. The Group 2, 

whose market has long-range dependence for down-trend only, is the second 

majority in Total period. The Group 3, whose market has long-range 

dependence for up-trend, is the second largest in Subprime-crisis and 

European-crisis periods. The Group 4, whose market has long-range 

dependence for up-trend and down-trend, has one country, ZAF, in Total 

period. The Group 5, whose market has long-range dependence for overall 

only, is the second majority in Post-crisis. The Group 6, whose market has 

long-range dependence for overall and down-trend, has few countries in Total, 

European-crisis, and Post-crisis. The Group 7, whose market has long-range 

dependence for overall and up-trend, has few countries in Total and Post-crisis. 
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Lastly, the Group 8, whose market has long-range dependence for all trends, 

has only one country, PAK, in Subprime-crisis. Following the result that 

Group 1 is major; the market has generally no long-range dependence. In 

Subprime-crisis and European-crisis, Group 3 is the second major group, so 

long-position may be irrational. 

Table 4.6 shows the grouping results of the test of the existence of 

asymmetric multifractality. It shows a different pattern from the group 

distribution divided by the result of the test of the existence of Hurst exponent. 

That is, when q = 2, stock return has no long-range dependence, but when q is 

varied from -5 to 5, extreme values of q have long-range dependence. Results 

are as follow. The Group 1 has few countries in Total, Pre-crisis, European-

crisis and Post-crisis. The Group 2 is the second majority in Pre-crisis and the 

third majority in Total. The Group 3 has few countries in Total, Subprime-

crisis and European-crisis. The Group 4 is the second largest in Total. The 

Group 5 has one country for each Pre-crisis and European-crisis. The Group 6 

is the second majority in Subprime-crisis, European-crisis and Post-crisis. 

Finally, the Group 7 has few countries in all periods. Subprime-crisis, 

European-crisis and Post-crisis periods have a similar group distribution. Prior 

to the crisis, Group 2 is the major group and Group 8 is the second, but after 

the crisis, Group 8 is main group and Group 6 and Group 7 are the next most. 

That is, down-trend multifractality is the major source of multifractality and 

irrationality is coming from short-position. 
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Table 4.5: Groups of countries based on the test results of the existence of 

long-range dependence 

 
Total Pre-crisis 

Subprime -

crisis 

European -

crisis 
Post-crisis 

Group 1 

ARG AUS BEL 

BRA CHE CZE 

DEU ESP FRA 

GBR GRC IND 

ITA JPN KOR 

MEX NZL PHL 

PRT SWE 

ARG AUS BEL 

BRA CAN CHE 

CHL CHN CZE 

DEU DNK ESP 

FIN FRA GBR 

HKG IDN IND 

IRL ISR ITA 

JPN KOR MEX 

NLD NZL PAK 

PHL RUS WER 

ARG AUS BEL 

BRA CAN CHL 

CZE DEU DNK 

ESP FIN FRA 

GBR GRC HKG 

IDN IND IRL 

ISR ITA KOR 

MEX NLD NZL 

PHL RUS SWE 

USA ZAF 

ARG BRA CHL 

CHN CZE DNK 

ESP FIN FRA 

GBR GRC HKG 

IDN IND IRL 

ISR ITA JPN 

KOR MEX NLD 

NZL PAK PHL 

RUS SWE USA 

ZAF 

ARG AUS BRA 

CHL CHN DEU 

FIN HKG IDN 

IND ISR ITA 

JPN KOR MEX 

NZL PAK PHL 

PRT RUS 

Group 2 

CAN DNK FIN 

HKG IRL NLD 

RUS USA 

GRC USA  DEU CZE DNK GRC 

Group 3 CHL PRT 
CHE CHN JPN 

PRT 
AUS CHE PRT  

Group 4 ZAF     

Group 5 ISR ZAF  BEL 

BEL CAN FRA 

NLD SWE USA 

ZAF 

Group 6 IDN PAK   CAN CHE IRL 

Group 7 CHN    ESP GBR 

Group 8   PAK   
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Table 4.6: Groups of countries based on the test results of the existence of 

multifractality 

 
Total Pre-crisis 

Subprime- 

crisis 

European- 

crisis 
Post-crisis 

Group 1 IND RUS BRA NZL PRT  CHN GRC NZL 

Group 2 
BRA ISR KOR 

NZL SWE 

BEL CHE DEU 

FIN FRA GRC 

HKG IDN IND 

ITA MEX USA 

   

Group 3 AUS CHN FIN  NZL DNK  

Group 4 
BEL CAN HKG 

NLD USA ZAF 
    

Group 5  CAN  DEU  

Group 6 ARG 
ARG AUS DNK 

ESP GBR ISR 
DNK FIN HKG 

CAN CZE FIN 

PAK PHL RUS 

ARG BRA CHN 

IRL ISR KOR 

PRT RUS SWE 

Group 7 CZE KOR ARG CAN CHN ARG GBR IRL HKG ZAF 

Group 8 

CHE CHL DEU 

DNK ESP FRA 

GBR GRC IDN 

IRL ITA JPN 

MEX PAK PHL 

PRT 

CHL CHN CZE 

IRL JPN NLD 

PAK PHL RUS 

SWE ZAF 

AUS BEL BRA 

CHE CHL CZE 

DEU ESP FRA 

GBR GRC IDN 

IND IRL ISR 

ITA JPN KOR 

MEX NLD PAK 

PHL PRT RUS 

SWE USA ZAF 

AUS BEL BRA 

CHE CHL ESP 

FRA HKG IDN 

IND ISR ITA 

JPN KOR MEX 

NLD NZL PRT 

SWE USA ZAF 

AUS BEL CAN 

CHE CHL CZE 

DEU DNK ESP 

FIN FRA GBR 

GRC IDN IND 

ITA JPN MEX 

NLD PAK PHL 

USA 
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4.4.3 Time-varying asymmetric Hurst exponent and multifractality 
 

We discover the time-varying asymmetric Hurst exponent and multifractality 

using the moving window method whose window size and moving day are set 

to be 250 days and one trading day, respectively. Figure 4.1 demonstrates the 

time-varying 𝐻(2) and 𝛥𝛥 of the United States as representative with the 

evolution of its stock index price. The red solid, yellow and purple dashed 

lines represent the up-trend, down-trend and stock index price, respectively. 

Also, the black vertical lines divide the total period into the sub-periods as 

explained in Chapter 4.3. Note that the time-varying 𝐻(2) and 𝛥𝛥 of the 

remaining countries can be found in Appendix C. Analyzing the result of 

𝐻(2), we observe the large gap between the 𝐻+(2) and 𝐻−(2) during the 

Subprime-crisis. Specifically, the up-trend, 𝐻+(2) , develops into zero, 

whereas the down-trend evolves around 0.5. The similar phenomenon is also 

found in the other countries in Appendix C. Furthermore, the result of 𝛥𝛥 

shows the large gap between the 𝛥𝐻+ and 𝛥𝐻− during the Subprime-crisis. 

That is, the Hurst exponent in up-trend shows the anti-persistent and strong 

asymmetry during the outbreak of financial crisis. 

We also visually detect the positive correlation between the evolution of 

stock index price and the up-trend Hurst exponent, 𝐻+(2) and the negative 

correlation between the stock index price and 𝛥𝐻+. Hence, we calculate the 

mean of correlation of the entire countries between 𝐻(2) or 𝛥𝛥 with stock 

index price for different sub-periods. Note that the correlation result for each 

country can be found in Table D.1 to D.6 in Appendix D. The mean 

correlation in Table 4.7 shows the evidence of the strong positive correlation 

(0.6302) between 𝐻+(2) and stock index price and the strong negative 

correlation (-0.6091) between the 𝛥𝐻+ and stock index price during the 
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Subprime-crisis. It implies that the crisis delivers the decrement of 𝐻+(2) 

and the increment of 𝛥𝐻+. In general, the asymmetric Hurst exponent shows 

the positive correlation for total period against the stock index price, whereas 

asymmetric 𝛥𝛥 shows the positive correlation in down-trend and negative 

correlation in overall and up-trend. 

In order to examine the direct relationship between asymmetric long-

range dependence and returns, daily average returns of 34 countries are 

obtained when the daily asymmetric Hurst exponent value satisfies a certain 

condition. The rate of return referred in here is the rate of annual return 

converted from the rate of daily return. When the daily uptrend Hurst 

exponent is greater than 0.6, the average daily annual return for 34 countries 

is 8.08%. On the other hand, when the uptrend Hurst exponent is less than 0.4, 

the average daily return is -2.52% based on the annual return. In other words, 

the return of the day with uptrend long-term positive autocorrelation is higher 

than the return of the day with uptrend long-term negative autocorrelation. In 

particular, the average return with the uptrend long-term negative 

autocorrelation is negative. In case of downtrend long-range dependence, the 

average return is 5.52% when downtrend Hurst exponent is greater than 0.6 

and 17.76% when it is less than 0.4 based on annual rate of return. That is, 

return on day with downtrend anti-persistent is over than return on day with 

downtrend persistent as opposed to uptrend. In conclusion, the asymmetric 

Hurst exponent is associated with the rate of return such that the return is 

higher when the time series has the features of uptrend persistent and 

downtrend anti-persistent. In the case of forecasting the return after one day, 

realized return is 4.42% when the uptrend Hurst exponent is over than 0.6 and 

3.72% when the uptrend Hurst exponent is less than 0.4. In case of downtrend, 

the realized return after one day is 8.00% when the downtrend Hurst exponent 
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is over than 0.6 and 10.60% when the downtrend Hurst exponent is less than 

0.4. The prediction results are similar to results of the direct relationship 

between asymmetric long-range dependence and daily return. 

 

 

 

 
Figure 4.1: Time-varying asymmetric Hurst exponent and degree of 
multifractality with stock index price about United States. (Red solid line is 
up-trend, yellow dashed line is down-trend and purple dashed line is stock 
index price. Vertical black solid lines are for dividing the period. Other 
countries’ figures are in Appendix C)  
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Table 4.7: Summary of correlation between the asymmetric Hurst exponent or 

the degree of multifractality and stock index 

 
Total Pre-crisis 

Subprime 

-crisis 

European 

-crisis 

Post-

crisis 

Mean of correlation 

(𝐻(2), stock index) 
0.1135 -0.3457* 0.3307* -0.0003 0.3134* 

Mean of correlation 

(𝐻+(2), stock index) 
0.2362 -0.2992 0.6302** 0.1640 0.3341* 

Mean of correlation 

(𝐻−(2), stock index) 
0.0478 0.1285 0.1624 0.1117 0.1732 

Mean of correlation 

(𝛥𝛥, stock index) 
-0.0150 -0.0241 -0.2899 -0.0500 0.0891 

Mean of correlation 

(𝛥𝐻+, stock index) 
-0.1634 0.0786 -0.6091** -0.2797 0.0037 

Mean of correlation 

(𝛥𝐻−, stock index) 
0.1088 0.3402* 0.1471 0.1761 0.0582 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively 
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4.5 Conclusion 
 

In this chapter, we propose a framework for analyzing the asymmetric long-

range dependence and multifractality. We apply the framework to 34 of world 

stock indices using the price-based Asymmetric-MFDFA, which analyzes the 

multifractality of stock returns for overall, up-trend, and down-trend. Our 

research is novel for its trial to understand the source of market inefficiency 

by studying the asymmetric long-range dependence and multifractality given 

that the focus of previous researches is limited in the market inefficiency of 

overall market.  

The main results of this study are as follows. At first, we provide the 

criteria for testing the existence of asymmetric Hurst exponent and 

multifractality based on the asymmetric generalized Hurst exponents. The 

theoretical asymmetric Hurst exponent and degree of multifractality are 

generated based on the Monte Carlo simulation using the time series 

following the Brownian motion. Then, the 5% confidence interval is 

suggested to test the existence of long-range dependence and multifractality. 

The test is valid since the generalized Hurst exponents of empirical stock 

indices must not possess the long-range correlation. Secondly, we measure the 

asymmetric Hurst exponent and degree of multifractality for 34 countries to 

test the existence of asymmetric long-range dependence and multifractality. 

The result implies that the financial markets of most countries have no 

asymmetric long-range dependence in terms of the Hurst exponent. However, 

the asymmetric multifractality are observed when extreme values of 

generalized Hurst exponents are evaluated. Also, we classify the countries into 

eight groups based on their existence of asymmetric long-range dependence 

and multifractality. Interestingly, the Group 8, which refers to the group 
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possessing the multifractality in overall, up-trend, and down-trend, has the 

greatest numbers of countries during the Subprime-crisis. Lastly, we analyze 

the time-varying aspects of the asymmetric Hurst exponent and degree of 

multifractality. In general, the result shows the existence of positive 

correlation between the stock index price and the Hurst exponent and the 

negative correlation between the stock index price and the degree of 

multifractality. Interestingly, the financial crisis reveals the strong positive 

correlation between the stock indices and up-trend Hurst exponent and the 

strong negative correlation between the stock indices and the up-trend degree 

of multifractality. Also, there is a large gap between 𝐻+(2) and 𝐻−(2), and 

between 𝛥𝐻+ and 𝛥𝐻− during the Subprime-crisis. In addition, as a result 

of examining the relationship between the rate of return and asymmetric long-

range dependence, the return on day with uptrend persistent is higher than the 

return on day with uptrend anti-persistent. In case of downtrend, conversely, 

the rate of return on day with downtrend long-range negative autocorrelation 

is above than that with downtrend long-range positive autocorrelation. 

The contributions of this chapter are as follows. In the past, obtaining 

long-range dependence and multifractality for the overall market was used to 

predict the market crisis or to prepare for a decline. This methodology was 

useful for finding the point at which the decline began or ended. However, 

there is little research on when the stock market will go up or the uptrend 

market will end if the market is booming. Therefore, this research has made it 

possible to study the beginning and end of the upsurge by obtaining not only 

the long-range dependence and multifractality of the entire stock market, but 

also the uptrend and downtrend stock markets segmentalized. In addition, 

asymmetric long-range dependence and multifractality can be used to observe 

the asymmetric market efficiency. If the market is inefficient, there is 
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asymmetric long-range dependence. It means that the stock market is able to 

predict the future by looking at the pattern since it does not follow the random 

walk. Therefore, as the rate of return and asymmetric long-range dependence 

are directly related, this study enables research on investment strategies that 

predicts the future by finding repeated patterns in an asymmetric inefficient 

market. 

Our research has limitation in its price-based model whose main method 

only considers the linear regression to divide market trend. Since there are 

many further researches about dividing market regimes (Maheu and McCurdy 

2000; Pagan and Sossounov 2003), the regime detection methods can be 

useful for distinguishing the asymmetric long-range dependence and 

multifractality. Despite this weakness, our research is novel in providing a 

simple approach to explore the asymmetric Hurst exponent and multifractality 

to analyze the market’s irrationality depending on its trends.  
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Chapter 5 

Concluding Remarks 

 

5.1 Summary and contributions 
 

Recently, the structure of financial markets and assets becomes more 

complicated, and it becomes more difficult to explain the real market 

phenomenon using the traditional models. Consequently, many researchers 

have devoted their efforts in developing models that can explain the 

characteristics of the financial markets. In this context, the importance of 

studying the asymmetric characteristics with different features according to 

the market trend has been increased. Therefore, this dissertation focuses on 

identifying and applying the asymmetric long-range dependence and 

asymmetric multifractal characteristics in financial market data. The results 

are summarized as follows. 

At first, the price-based A-MFDFA model is proposed with more definite 

criterion for separating the market price trend. It is used to explore the 

asymmetric long-range dependence and asymmetric multifractality. In 

addition, the proposed model is applied to the U.S. financial market to 

validate the efficacy of the model. As a result, it is discovered that the U.S. 

stock market has multifractal features and asymmetric characteristics. In 

addition, the source of multifractality is inspected which discovers that the fat-

tailed distribution and long-range dependence are the source of downtrend 

multifractality and uptrend multifractality, respectively. The fat-tail 

distribution and long-range dependence can be the source of asymmetry. Also, 
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the time-varying features of asymmetric multifractality are explored, which 

finds that the multifractality between uptrend and downtrend increases during 

the financial crisis in the U.S market.  

Secondly, the simulation analysis is applied to generate the time series to 

verify the usability of the proposed model and the effect of various factors to 

the asymmetric characteristics. The heterogeneous time series with 

asymmetric features and homogeneous with symmetric features are artificially 

generated and analyzed with the price-based A-MFDFA model. The results 

show that the price-based A-MFDFA model can capture the asymmetric 

properties well. In addition, it is observed that the asymmetric Hurst exponent 

and asymmetric multifractality change with respect to the adjustment of 

skewness, autocorrelation, fat-tailed and volatility autocorrelation affecting 

long-range dependence and multifractality. 

Lastly, a framework for testing the existence of asymmetric long-range 

dependence and multifractality are proposed using asymmetric generalized 

Hurst exponent derived from the price-based AMDFA model. Using this 

framework, the source of market inefficiency in the uptrend and downtrend 

market is tested by investigating the asymmetric long-range dependence and 

multifractality of the stock markets in thirty four countries. The result shows 

that the thirty four countries are classified into eight groups based on their 

multifractal properties. The empirical results indicate the degree of changes in 

asymmetric long-range dependence and multifractality with respect to the 

crisis, whereas the existence of strong negative correlation between the stock 

index price and the uptrend degree of multifractality in crisis periods. In 

addition, the gaps between the uptrend and downtrend multifractality become 

larger during the Subprime-crisis. Finally, the direct relationship between the 

rate of return and asymmetric long-range dependence is examined. The result 



 

104 
 

shows that the return on day with positive persistent and negative anti-

persistent features is over than that of the return on day with positive anti-

persistent and negative persistent. 

The contribution of this dissertation is as follows. A proper methodology 

to measure the asymmetric Hurst exponent and multifractality in stock market 

is proposed, namely the price-based A-MFDFA. In addition, it is confirmed 

that the price-based A-MFDFA model has better performance to capture the 

asymmetric characteristics of the stock market than the return-based A-

MFDFA model. The asymmetric Hurst exponent and multifractality can be 

used for other researches to study asymmetric long-range dependence and the 

stock market time series data. Other contribution lies on providing 

information of asymmetric market inefficiency using the test of existence of 

asymmetric long-range dependence and multifractality. In other words, the 

criteria for testing the existence of asymmetric long-range dependence and 

multifractality are provided. In the past, the limited view on the multifractal 

characteristics in the overall market are studied for the purpose of analyzing 

the financial market crisis or falling. That is, those studies were focused on 

only the downtrend market. However, this dissertation extends the view by 

separately analyzing the beginning and end of the uptrend market with not 

only the long-range dependence and multifractality of the overall market, but 

also those of uptrend and downtrend markets. In addition, if the market has 

asymmetric long-range dependence or multifractality, the market is inefficient 

and does not follow the random walk. This dissertation studies the investment 

strategies by finding the repetitive patterns in an asymmetric inefficient 

market. Also, by comparing the asymmetric multifractal properties, the source 

of market efficiency is analyzed in terms of uptrend or downtrend market. It 

also stresses the understanding of market crash, the biggest concern in the 
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financial market, and its affect to the asymmetric multifractal properties. The 

result shows that the uptrend multifractal property and the stock index price 

are related to each other. The relationship between the rate of return and 

asymmetric long-range dependence is also examined. Therefore, it is possible 

to study the financial market crisis using the uptrend property. Obviously, 

these implications can be useful information for the market participants and 

policy makers when they make related decision. 
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5.2 Limitations and future work 
 

This study can be developed in the following way. The price-based a-MFDFA 

model divides the stock market using only the linear trend of the stock price. 

In addition to the linear trend, the model can be improved by applying other 

methods of dividing the stock market regimes. Since there are many further 

researches about dividing market regimes (Maheu and McCurdy 2000; Pagan 

and Sossounov 2003), the regime detection methods can be useful for 

distinguishing the asymmetric long-range dependence and multifractality. 

Non-linear market trend also can be treated to divide market regimes. 

Secondly, in this dissertation, only fat-tailed distribution and long-range 

dependence are considered as factors affecting asymmetry. In addition to the 

factors related to the distribution of stock returns, asymmetry can also be 

induced in relation to stock market sentiment, trading volume or investment 

amount by investment group. Research on finding other factors that affect 

asymmetry is needed to analyze. Lastly, there are various methodologies for 

measuring market efficiency, but there is no standardized and formalized 

methodology. Therefore, only way to verify market efficiency is to compare 

the results of various methodologies of measuring market efficiency. To cope 

with this problem, it is necessary to combine various methodologies into a 

single unified methodology to verify the method. Asymmetric market 

efficiency discussed in this dissertation is also the first attempted method to 

measure asymmetric efficiency, so a methodology for verifying this is also 

needed. 

The proposed price-based A-MFDFA model in dissertation can be 

applied to develop in various fields. The first is the development of a time 

series model containing the asymmetric Hurst exponent properties. 
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Multifractal model of asset returns (MMAR)(Mandelbrot et al. 1997), 

multifractal random walk (MRW)(Bacry et al. 2001) and other multifractal 

time series models can be improved to a time series model considering 

asymmetric multifractal features to better reflect the stock market. Second, 

portfolio selection and investment strategy considering the asymmetric long-

range dependence can be researched. In this dissertation, only direct 

relationship between the rate of return and asymmetric long-range dependence 

is examined. If asymmetric long-range dependence exists in the stock market, 

there are repeated patterns that help predict the future. Studying the 

investment strategy that finds the pattern of the stock market and uses it to 

develop the portfolio theory to hedge the risk or raises the stock return is 

remained research. Lastly, asymmetric multifractality can be applied to 

predict market crash. Grech and Mazur (2004) and Grech and Pamuła (2008) 

refer that it is possible to predict market crisis through a local Hurst exponent. 

In this dissertation, asymmetric Hurst exponent, which is a result of 

asymmetrically dividing the Hurst exponent, is associated with stock price 

and market crash, especially with uptrend multifractal feature. Based on these 

results, modeling that predict market crisis rather than just past analysis is the 

remaining task. 
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Appendix A 
Table A.1: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 10 data’s trend (Skewed dist. and T-dist.) 

Day=10 
Positive 

Skew(-0.6) 
Positive 

Skew(-0.3) 
Positive 

Skew(0.3) 
Positive 

Skew(0.6) 
Negative 

Skew(-0.6) 
Negative 

Skew(-0.3) 
Negative 

Skew(0.3) 
Negative 

Skew(0.6) 
𝐻(2) 0.5024 0.5029 0.5007 0.5033 0.5007 0.5034 0.5024 0.5022 
𝐻+(2) 0.5087 0.5039 0.4926 0.4904 0.5088 0.5065 0.4937 0.4875 
𝐻−(2) 0.4915 0.4979 0.5041 0.5109 0.4878 0.4951 0.5060 0.5139 
Δ𝐻 0.0935 0.0868 0.0754 0.0702 0.0708 0.0748 0.0862 0.0941 
Δ𝐻+ 0.1116 0.1020 0.0890 0.0806 0.0876 0.0884 0.0990 0.0999 
Δ𝐻− 0.0992 0.0993 0.0932 0.0868 0.0780 0.0895 0.0992 0.1093 

 
Positive 

T-dist(10) 
Positive 
T-dist(8) 

Positive 
T-dist(6) 

Positive 
T-dist(4) 

Negative 
T-dist(10) 

Negative 
T-dist(8) 

Negative 
T-dist(6) 

Negative 
T-dist(4) 

𝐻(2) 0.5007 0.5008 0.5051 0.5032 0.5017 0.5029 0.5059 0.5007 
𝐻+(2) 0.5046 0.5052 0.5137 0.5183 0.4925 0.4933 0.4943 0.4818 
𝐻−(2) 0.4915 0.4907 0.4902 0.4814 0.5056 0.5078 0.5109 0.5124 
Δ𝐻 0.0995 0.1036 0.1102 0.1518 0.0955 0.1014 0.1094 0.1573 
Δ𝐻+ 0.1146 0.1242 0.1341 0.1775 0.1077 0.1145 0.1179 0.1578 
𝐻− 0.1113 0.1126 0.1194 0.1591 0.1119 0.1180 0.1332 0.1852 
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Table A.2: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 10 data’s trend (AR model) 

Day=10 
Positive 
AR(-0.8) 

Positive 
AR(-0.6) 

Positive 
AR(-0.4) 

Positive 
AR(-0.2) 

Positive 
AR(0.2) 

Positive 
AR(0.4) 

Positive 
AR(0.6) 

Positive 
AR(0.8) 

𝐻(2) 0.4053 0.4387 0.4621 0.4815 0.5262 0.5661 0.6348 0.7904 

𝐻+(2) 0.3941 0.4317 0.4550 0.4768 0.5241 0.5640 0.6294 0.7733 

𝐻−(2) 0.4000 0.4319 0.4577 0.4798 0.5204 0.5464 0.5867 0.6898 

Δ𝐻 0.0845 0.0686 0.0665 0.0716 0.1017 0.1298 0.1552 0.1589 

Δ𝐻+ 0.1348 0.0950 0.0832 0.0840 0.1194 0.1528 0.1951 0.2114 

Δ𝐻− 0.0872 0.0782 0.0783 0.0867 0.1144 0.1435 0.1803 0.2136 

 
Negative 
AR(-0.8) 

Negative 
AR(-0.6) 

Negative 
AR(-0.4) 

Negative 
AR(-0.2) 

Negative 
AR(0.2) 

Negative 
AR(0.4) 

Negative 
AR(0.6) 

Negative 
AR(0.8) 

𝐻(2) 0.4035 0.4383 0.4595 0.4840 0.5275 0.5666 0.6338 0.7890 

𝐻+(2) 0.3985 0.4326 0.4546 0.4803 0.5236 0.5472 0.5866 0.6776 

𝐻−(2) 0.3945 0.4306 0.4544 0.4813 0.5241 0.5642 0.6251 0.7660 

Δ𝐻 0.0869 0.0689 0.0690 0.0717 0.1019 0.1281 0.1564 0.1579 

Δ𝐻+ 0.0872 0.0754 0.0805 0.0848 0.1134 0.1389 0.1717 0.2045 

Δ𝐻− 0.1396 0.0964 0.0859 0.0847 0.1214 0.1558 0.2002 0.2184 
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Table A.3: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 10 data’s trend (ARCH and GARCH model) 

Day=10 
Positive 

ARCH(0.2) 
Positive 

ARCH(0.4) 
Positive 

ARCH(0.6) 
Positive 

ARCH(0.8) 
Negative 

ARCH(0.2) 
Negative 

ARCH(0.4) 
Negative 

ARCH(0.6) 
Negative 

ARCH(0.8) 

𝐻(2) 0.5007 0.5018 0.5008 0.5003 0.5031 0.5026 0.4997 0.4989 

𝐻+(2) 0.4970 0.4992 0.4966 0.4937 0.5003 0.5012 0.4983 0.4970 

𝐻−(2) 0.4995 0.4988 0.4986 0.4999 0.5014 0.4989 0.4954 0.4928 

Δ𝐻 0.0985 0.1239 0.1699 0.2550 0.0962 0.1247 0.1694 0.2558 

Δ𝐻+ 0.1204 0.1538 0.2058 0.2905 0.1025 0.1213 0.1508 0.2062 

Δ𝐻− 0.1050 0.1200 0.1500 0.2084 0.1181 0.1533 0.2013 0.2877 

 
Positive 

GARCH(0.2) 

Positive 

GARCH(0.4) 

Positive 

GARCH(0.6) 

Positive 

GARCH(0.8) 

Negative 

GARCH(0.2) 

Negative 

GARCH(0.4) 

Negative 

GARCH(0.6) 

Negative 

GARCH(0.8) 

𝐻(2) 0.5037 0.5030 0.5034 0.5032 0.5027 0.4997 0.5029 0.5023 

𝐻+(2) 0.5011 0.4992 0.5022 0.5026 0.4989 0.4969 0.5020 0.4986 

𝐻−(2) 0.5010 0.5020 0.4992 0.4982 0.5012 0.4972 0.4991 0.4999 

Δ𝐻 0.0901 0.0920 0.0940 0.1054 0.0917 0.0939 0.0953 0.1046 

Δ𝐻+ 0.1087 0.1107 0.1149 0.1285 0.1015 0.1033 0.1031 0.1059 

Δ𝐻− 0.1013 0.1019 0.1032 0.1104 0.1086 0.1129 0.1178 0.1309 
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Table A.4: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 30 data’s trend (Skewed dist. and T-dist.) 

Day=30 
Positive 

Skew(-0.6) 
Positive 

Skew(-0.3) 
Positive 

Skew(0.3) 
Positive 

Skew(0.6) 
Negative 

Skew(-0.6) 
Negative 

Skew(-0.3) 
Negative 

Skew(0.3) 
Negative 

Skew(0.6) 

𝐻(2) 0.5031 0.5034 0.5038 0.5040 0.5034 0.5022 0.5030 0.5046 

𝐻+(2) 0.5116 0.5058 0.4957 0.4921 0.5112 0.5049 0.4957 0.4911 

𝐻−(2) 0.4901 0.4962 0.5067 0.5112 0.4916 0.4949 0.5058 0.5137 

Δ𝐻 0.0848 0.0854 0.0808 0.0762 0.0772 0.0793 0.0835 0.0856 

Δ𝐻+ 0.1027 0.1007 0.0951 0.0849 0.0921 0.0947 0.0964 0.0947 

Δ𝐻− 0.0931 0.0968 0.0944 0.0935 0.0862 0.0936 0.0969 0.1016 

 
Positive 

T-dist(10) 
Positive 
T-dist(8) 

Positive 
T-dist(6) 

Positive 
T-dist(4) 

Negative 
T-dist(10) 

Negative 
T-dist(8) 

Negative 
T-dist(6) 

Negative 
T-dist(4) 

𝐻(2) 0.5020 0.5034 0.5024 0.5028 0.5005 0.5013 0.5025 0.5032 

𝐻+(2) 0.5093 0.5154 0.5203 0.5299 0.4878 0.4844 0.4812 0.4697 

𝐻−(2) 0.4899 0.4864 0.4798 0.4718 0.5087 0.5135 0.5191 0.5338 

Δ𝐻 0.0972 0.1001 0.1164 0.1536 0.0953 0.1014 0.1114 0.1522 

Δ𝐻+ 0.1169 0.1216 0.1361 0.1829 0.1069 0.1154 0.1231 0.1624 

Δ𝐻− 0.1061 0.1100 0.1281 0.1616 0.1159 0.1176 0.1362 0.1816 
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Table A.5: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 30 data’s trend (AR model) 

Day=30 
Positive 
AR(-0.8) 

Positive 
AR(-0.6) 

Positive 
AR(-0.4) 

Positive 
AR(-0.2) 

Positive 
AR(0.2) 

Positive 
AR(0.4) 

Positive 
AR(0.6) 

Positive 
AR(0.8) 

𝐻(2) 0.4248 0.4492 0.4675 0.4830 0.5264 0.5691 0.6430 0.8053 

𝐻+(2) 0.3929 0.4167 0.4415 0.4674 0.5362 0.5891 0.6709 0.8374 

𝐻−(2) 0.4319 0.4589 0.4783 0.4902 0.5086 0.5310 0.5753 0.7039 

Δ𝐻 0.0837 0.0647 0.0646 0.0712 0.1007 0.1210 0.1331 0.1430 

Δ𝐻+ 0.1124 0.0830 0.0805 0.0845 0.1204 0.1598 0.2119 0.2341 

Δ𝐻− 0.0928 0.0818 0.0803 0.0887 0.1132 0.1305 0.1419 0.1446 

 
Negative 
AR(-0.8) 

Negative 
AR(-0.6) 

Negative 
AR(-0.4) 

Negative 
AR(-0.2) 

Negative 
AR(0.2) 

Negative 
AR(0.4) 

Negative 
AR(0.6) 

Negative 
AR(0.8) 

𝐻(2) 0.4232 0.4488 0.4648 0.4853 0.5291 0.5700 0.6417 0.8059 

𝐻+(2) 0.4259 0.4552 0.4720 0.4896 0.5131 0.5221 0.5432 0.6073 

𝐻−(2) 0.4061 0.4265 0.4460 0.4740 0.5380 0.5949 0.6829 0.8651 

Δ𝐻 0.0815 0.0645 0.0676 0.0708 0.0970 0.1192 0.1366 0.1410 

Δ𝐻+ 0.0921 0.0794 0.0843 0.0859 0.1096 0.1368 0.1739 0.1955 

Δ𝐻− 0.0996 0.0787 0.0785 0.0832 0.1208 0.1592 0.2111 0.2389 
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Table A.6: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 30 data’s trend (ARCH and GARCH model) 

Day=30 
Positive 

ARCH(0.2) 
Positive 

ARCH(0.4) 
Positive 

ARCH(0.6) 
Positive 

ARCH(0.8) 
Negative 

ARCH(0.2) 
Negative 

ARCH(0.4) 
Negative 

ARCH(0.6) 
Negative 

ARCH(0.8) 

𝐻(2) 0.5006 0.5017 0.5008 0.5003 0.5030 0.5019 0.4999 0.4992 

𝐻+(2) 0.4967 0.4989 0.4911 0.4771 0.5007 0.5024 0.5041 0.5107 

𝐻−(2) 0.4999 0.4997 0.5038 0.5162 0.5009 0.4956 0.4903 0.4807 

Δ𝐻 0.0982 0.1263 0.1748 0.2662 0.0962 0.1252 0.1767 0.2744 

Δ𝐻+ 0.1160 0.1421 0.1884 0.2677 0.1074 0.1364 0.1844 0.2998 

Δ𝐻− 0.1106 0.1360 0.1837 0.2945 0.1134 0.1416 0.1850 0.2682 

 
Positive 

GARCH(0.2) 

Positive 

GARCH(0.4) 

Positive 

GARCH(0.6) 

Positive 

GARCH(0.8) 

Negative 

GARCH(0.2) 

Negative 

GARCH(0.4) 

Negative 

GARCH(0.6) 

Negative 

GARCH(0.8) 

𝐻(2) 0.5037 0.5027 0.5031 0.5030 0.5031 0.5001 0.5033 0.5028 

𝐻+(2) 0.5015 0.4989 0.5014 0.4995 0.4999 0.4984 0.5031 0.5009 

𝐻−(2) 0.5011 0.5019 0.4998 0.5011 0.5014 0.4973 0.4981 0.4991 

Δ𝐻 0.0886 0.0920 0.0963 0.1086 0.0917 0.0930 0.0969 0.1084 

Δ𝐻+ 0.1034 0.1064 0.1117 0.1247 0.1040 0.1061 0.1094 0.1193 

Δ𝐻− 0.1033 0.1059 0.1098 0.1227 0.1073 0.1076 0.1126 0.1257 
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Table A.7: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 40 data’s trend (Skewed dist. and T-dist.) 

Day=40 
Positive 

Skew(-0.6) 
Positive 

Skew(-0.3) 
Positive 

Skew(0.3) 
Positive 

Skew(0.6) 
Negative 

Skew(-0.6) 
Negative 

Skew(-0.3) 
Negative 

Skew(0.3) 
Negative 

Skew(0.6) 

𝐻(2) 0.5036 0.5027 0.5051 0.5038 0.5040 0.5027 0.5022 0.5024 

𝐻+(2) 0.5142 0.5054 0.4981 0.4927 0.5128 0.5034 0.4953 0.4886 

𝐻−(2) 0.4887 0.4954 0.5068 0.5107 0.4912 0.4978 0.5042 0.5111 

Δ𝐻 0.0869 0.0823 0.0809 0.0778 0.0794 0.0799 0.0816 0.0883 

Δ𝐻+ 0.1021 0.0981 0.0931 0.0890 0.0965 0.0957 0.0961 0.0938 

Δ𝐻− 0.0934 0.0945 0.0956 0.0924 0.0881 0.0913 0.0969 0.1040 

 
Positive 

T-dist(10) 
Positive 
T-dist(8) 

Positive 
T-dist(6) 

Positive 
T-dist(4) 

Negative 
T-dist(10) 

Negative 
T-dist(8) 

Negative 
T-dist(6) 

Negative 
T-dist(4) 

𝐻(2) 0.5035 0.5035 0.5051 0.5038 0.5053 0.5013 0.5043 0.5053 

𝐻+(2) 0.5118 0.5139 0.5206 0.5290 0.4937 0.4865 0.4845 0.4741 

𝐻−(2) 0.4911 0.4887 0.4856 0.4748 0.5129 0.5117 0.5192 0.5312 

Δ𝐻 0.0969 0.1009 0.1135 0.1595 0.0950 0.1035 0.1118 0.1513 

Δ𝐻+ 0.1143 0.1207 0.1370 0.1879 0.1059 0.1134 0.1226 0.1614 

Δ𝐻− 0.1070 0.1110 0.1236 0.1625 0.1151 0.1258 0.1350 0.1787 
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Table A.8: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 40 data’s trend (AR model) 

Day=40 
Positive 
AR(-0.8) 

Positive 
AR(-0.6) 

Positive 
AR(-0.4) 

Positive 
AR(-0.2) 

Positive 
AR(0.2) 

Positive 
AR(0.4) 

Positive 
AR(0.6) 

Positive 
AR(0.8) 

𝐻(2) 0.4290 0.4506 0.4682 0.4832 0.5266 0.5690 0.6445 0.8090 

𝐻+(2) 0.3873 0.4127 0.4381 0.4660 0.5370 0.5918 0.6750 0.8472 

𝐻−(2) 0.4416 0.4657 0.4828 0.4928 0.5083 0.5300 0.5812 0.7109 

Δ𝐻 0.0788 0.0614 0.0643 0.0720 0.0971 0.1175 0.1244 0.1385 

Δ𝐻+ 0.1093 0.0816 0.0784 0.0837 0.1190 0.1565 0.1985 0.2051 

Δ𝐻− 0.0892 0.0787 0.0799 0.0892 0.1079 0.1282 0.1323 0.1377 

 
Negative 
AR(-0.8) 

Negative 
AR(-0.6) 

Negative 
AR(-0.4) 

Negative 
AR(-0.2) 

Negative 
AR(0.2) 

Negative 
AR(0.4) 

Negative 
AR(0.6) 

Negative 
AR(0.8) 

𝐻(2) 0.4264 0.4505 0.4664 0.4860 0.5288 0.5706 0.6421 0.8112 

𝐻+(2) 0.4340 0.4608 0.4769 0.4919 0.5118 0.5210 0.5442 0.6230 

𝐻−(2) 0.4023 0.4248 0.4445 0.4736 0.5383 0.5990 0.6892 0.8786 

Δ𝐻 0.0786 0.0628 0.0665 0.0697 0.0982 0.1146 0.1287 0.1372 

Δ𝐻+ 0.0905 0.0789 0.0841 0.0862 0.1095 0.1357 0.1637 0.1761 

Δ𝐻− 0.0952 0.0755 0.0774 0.0807 0.1212 0.1532 0.2009 0.2108 
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Table A.9: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 40 data’s trend (ARCH and GARCH model) 

Day=40 
Positive 

ARCH(0.2) 
Positive 

ARCH(0.4) 
Positive 

ARCH(0.6) 
Positive 

ARCH(0.8) 
Negative 

ARCH(0.2) 
Negative 

ARCH(0.4) 
Negative 

ARCH(0.6) 
Negative 

ARCH(0.8) 

𝐻(2) 0.5010 0.5026 0.5011 0.5006 0.5032 0.5024 0.4997 0.4991 

𝐻+(2) 0.4975 0.4992 0.4918 0.4796 0.5002 0.5029 0.5019 0.5121 

𝐻−(2) 0.4995 0.5007 0.5040 0.5153 0.5013 0.4979 0.4919 0.4795 

Δ𝐻 0.0982 0.1255 0.1779 0.2720 0.0953 0.1253 0.1784 0.2747 

Δ𝐻+ 0.1135 0.1397 0.1875 0.2702 0.1073 0.1389 0.1911 0.3034 

Δ𝐻− 0.1113 0.1372 0.1895 0.2982 0.1121 0.1377 0.1842 0.2671 

 
Positive 

GARCH(0.2) 

Positive 

GARCH(0.4) 

Positive 

GARCH(0.6) 

Positive 

GARCH(0.8) 

Negative 

GARCH(0.2) 

Negative 

GARCH(0.4) 

Negative 

GARCH(0.6) 

Negative 

GARCH(0.8) 

𝐻(2) 0.5037 0.5025 0.5037 0.5030 0.5031 0.4996 0.5033 0.5020 

𝐻+(2) 0.5023 0.4981 0.5029 0.4997 0.5003 0.4971 0.5023 0.4995 

𝐻−(2) 0.5001 0.5019 0.4992 0.5010 0.5012 0.4970 0.4993 0.4986 

Δ𝐻 0.0884 0.0932 0.0945 0.1096 0.0903 0.0923 0.0974 0.1091 

Δ𝐻+ 0.1035 0.1071 0.1078 0.1244 0.1032 0.1081 0.1099 0.1232 

Δ𝐻− 0.1036 0.1059 0.1099 0.1246 0.1061 0.1060 0.1130 0.1255 
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Table A.10: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 50 data’s trend (Skewed dist. and T-dist.) 

Day=50 
Positive 

Skew(-0.6) 
Positive 

Skew(-0.3) 
Positive 

Skew(0.3) 
Positive 

Skew(0.6) 
Negative 

Skew(-0.6) 
Negative 

Skew(-0.3) 
Negative 

Skew(0.3) 
Negative 

Skew(0.6) 

𝐻(2) 0.5047 0.5040 0.5037 0.5034 0.5012 0.5030 0.5016 0.5019 

𝐻+(2) 0.5133 0.5059 0.4955 0.4912 0.5090 0.5048 0.4922 0.4883 

𝐻−(2) 0.4914 0.4974 0.5066 0.5118 0.4885 0.4961 0.5067 0.5104 

Δ𝐻 0.0820 0.0806 0.0806 0.0787 0.0788 0.0809 0.0832 0.0851 

Δ𝐻+ 0.0981 0.0953 0.0929 0.0896 0.0958 0.0957 0.0974 0.0927 

Δ𝐻− 0.0893 0.0928 0.0961 0.0941 0.0872 0.0925 0.0957 0.1021 

 
Positive 

T-dist(10) 
Positive 
T-dist(8) 

Positive 
T-dist(6) 

Positive 
T-dist(4) 

Negative 
T-dist(10) 

Negative 
T-dist(8) 

Negative 
T-dist(6) 

Negative 
T-dist(4) 

𝐻(2) 0.5044 0.5029 0.5037 0.5031 0.5023 0.5028 0.5030 0.5022 

𝐻+(2) 0.5104 0.5095 0.5171 0.5270 0.4929 0.4876 0.4874 0.4744 

𝐻−(2) 0.4933 0.4906 0.4864 0.4753 0.5073 0.5125 0.5148 0.5257 

Δ𝐻 0.0935 0.1003 0.1131 0.1510 0.0967 0.0990 0.1160 0.1546 

Δ𝐻+ 0.1133 0.1221 0.1339 0.1779 0.1086 0.1122 0.1274 0.1617 

Δ𝐻− 0.1032 0.1088 0.1205 0.1574 0.1145 0.1171 0.1375 0.1815 
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Table A.11: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 50 data’s trend (AR model) 

Day=50 
Positive 
AR(-0.8) 

Positive 
AR(-0.6) 

Positive 
AR(-0.4) 

Positive 
AR(-0.2) 

Positive 
AR(0.2) 

Positive 
AR(0.4) 

Positive 
AR(0.6) 

Positive 
AR(0.8) 

𝐻(2) 0.4311 0.4524 0.4681 0.4833 0.5269 0.5698 0.6433 0.8107 

𝐻+(2) 0.3900 0.4118 0.4391 0.4660 0.5375 0.5927 0.6763 0.8502 

𝐻−(2) 0.4457 0.4708 0.4832 0.4930 0.5100 0.5308 0.5809 0.7154 

Δ𝐻 0.0743 0.0603 0.0634 0.0710 0.0988 0.1125 0.1197 0.1401 

Δ𝐻+ 0.1016 0.0832 0.0792 0.0832 0.1192 0.1477 0.1841 0.1765 

Δ𝐻− 0.0857 0.0755 0.0788 0.0881 0.1090 0.1247 0.1315 0.1444 

 
Negative 
AR(-0.8) 

Negative 
AR(-0.6) 

Negative 
AR(-0.4) 

Negative 
AR(-0.2) 

Negative 
AR(0.2) 

Negative 
AR(0.4) 

Negative 
AR(0.6) 

Negative 
AR(0.8) 

𝐻(2) 0.4286 0.4526 0.4662 0.4861 0.5282 0.5706 0.6435 0.8140 

𝐻+(2) 0.4393 0.4650 0.4773 0.4922 0.5114 0.5229 0.5532 0.6457 

𝐻−(2) 0.4011 0.4248 0.4448 0.4737 0.5382 0.5991 0.6895 0.8792 

Δ𝐻 0.0778 0.0614 0.0652 0.0702 0.0980 0.1117 0.1183 0.1400 

Δ𝐻+ 0.0915 0.0761 0.0813 0.0866 0.1117 0.1342 0.1536 0.1567 

Δ𝐻− 0.0926 0.0743 0.0776 0.0824 0.1203 0.1475 0.1818 0.1789 
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Table A.12: Average of asymmetric Hurst exponent and asymmetric degree of multifractality for each simulated 
heterogeneous time series with previous 50 data’s trend (ARCH and GARCH model) 

Day=50 
Positive 

ARCH(0.2) 
Positive 

ARCH(0.4) 
Positive 

ARCH(0.6) 
Positive 

ARCH(0.8) 
Negative 

ARCH(0.2) 
Negative 

ARCH(0.4) 
Negative 

ARCH(0.6) 
Negative 

ARCH(0.8) 

𝐻(2) 0.5008 0.5022 0.5016 0.5002 0.5032 0.5024 0.4999 0.4997 

𝐻+(2) 0.4967 0.4988 0.4923 0.4797 0.5008 0.5025 0.5022 0.5087 

𝐻−(2) 0.5003 0.4996 0.5049 0.5157 0.5015 0.4969 0.4919 0.4826 

Δ𝐻 0.0974 0.1249 0.1721 0.2710 0.0972 0.1238 0.1787 0.2701 

Δ𝐻+ 0.1133 0.1392 0.1833 0.2685 0.1085 0.1384 0.1912 0.2993 

Δ𝐻− 0.1105 0.1350 0.1826 0.2966 0.1142 0.1382 0.1850 0.2635 

 
Positive 

GARCH(0.2) 

Positive 

GARCH(0.4) 

Positive 

GARCH(0.6) 

Positive 

GARCH(0.8) 

Negative 

GARCH(0.2) 

Negative 

GARCH(0.4) 

Negative 

GARCH(0.6) 

Negative 

GARCH(0.8) 

𝐻(2) 0.5025 0.5027 0.5028 0.5029 0.5028 0.4991 0.5027 0.5017 

𝐻+(2) 0.5002 0.4990 0.5014 0.4989 0.4996 0.4970 0.5019 0.5004 

𝐻−(2) 0.5001 0.5018 0.4993 0.5014 0.5018 0.4965 0.4978 0.4983 

Δ𝐻 0.0911 0.0919 0.0953 0.1088 0.0923 0.0921 0.0964 0.1089 

Δ𝐻+ 0.1050 0.1058 0.1094 0.1221 0.1058 0.1056 0.1094 0.1211 

Δ𝐻− 0.1061 0.1065 0.1098 0.1248 0.1062 0.1059 0.1128 0.1247 
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Appendix B 
Table B.1 Results of 𝐻(2) of all countries with various periods. 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.5416 0.4912 0.5319 0.4927 0.5322 
AUS 0.5130 0.4582 0.4642 0.4165 0.4321 
BEL 0.5414 0.4909 0.5517 0.3693 0.3833 
BRA 0.5278 0.4381 0.4220 0.4516 0.5096 
CAN 0.5414 0.4968 0.4465 0.3714 0.4093 
CHE 0.4705 0.4797 0.4213 0.4436 0.3449 
CHL 0.5481 0.5123 0.5033 0.5395 0.4824 
CHN 0.6327 0.5304 0.4789 0.5371 0.5634 
CZE 0.5574 0.4820 0.5369 0.4780 0.4136 
DEU 0.4927 0.4434 0.4915 0.5154 0.4464 
DNK 0.5417 0.4600 0.5175 0.4398 0.4254 
ESP 0.4863 0.4772 0.4787 0.4545 0.3843 
FIN 0.5322 0.4644 0.4846 0.4594 0.4119 
FRA 0.4718 0.4506 0.4601 0.4399 0.3970 
GBR 0.4514 0.4419 0.4768 0.4410 0.3626 
GRC 0.5516 0.5167 0.5663 0.4920 0.4168 
HKG 0.5500 0.4643 0.4693 0.4579 0.5198 
IDN 0.5943 0.5264 0.5055 0.4604 0.4602 
IND 0.5546 0.5409 0.5145 0.5097 0.4243 
IRL 0.5523 0.4847 0.4512 0.4512 0.3882 
ISR 0.5906 0.4660 0.4926 0.4907 0.4571 
ITA 0.5030 0.4846 0.5545 0.4787 0.4279 
JPN 0.5143 0.4886 0.4690 0.4848 0.4416 
KOR 0.5136 0.5028 0.4946 0.4712 0.4264 
MEX 0.4988 0.4671 0.4793 0.4230 0.4236 
NLD 0.5282 0.5268 0.5468 0.4501 0.4038 
NZL 0.5030 0.5330 0.5473 0.4260 0.4699 
PAK 0.5798 0.5481 0.6670 0.5836 0.4799 
PHL 0.5295 0.4627 0.4743 0.5054 0.4701 
PRT 0.5554 0.6028 0.5173 0.3992 0.4774 
RUS 0.5670 0.4514 0.4391 0.4445 0.4385 
SWE 0.4973 0.4658 0.4265 0.4190 0.3991 
USA 0.5062 0.4132 0.4616 0.4358 0.3881 
ZAF 0.4609 0.3840 0.4533 0.4020 0.4083 

Note: The bolded numbers indicate that market has long-range dependence with 5% 
statistical significance 
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Table B.2 Results of 𝐻+(2) of all countries with various periods 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.5380 0.5551 0.4892 0.4769 0.5739 
AUS 0.4602 0.5285 0.3645 0.3552 0.4501 
BEL 0.4547 0.5187 0.3859 0.3901 0.3861 
BRA 0.5323 0.4424 0.5002 0.4816 0.5029 
CAN 0.4631 0.5532 0.4272 0.4030 0.4054 
CHE 0.4716 0.5053 0.3403 0.3320 0.3858 
CHL 0.6063 0.5741 0.5294 0.5354 0.4730 
CHN 0.6902 0.5651 0.6331 0.5886 0.6105 
CZE 0.4883 0.5362 0.5194 0.5143 0.4617 
DEU 0.4728 0.4732 0.4554 0.4266 0.4336 
DNK 0.5200 0.5088 0.4179 0.4010 0.4730 
ESP 0.4580 0.5468 0.4155 0.3980 0.3737 
FIN 0.4540 0.4896 0.4913 0.4775 0.4259 
FRA 0.4146 0.5034 0.4039 0.3933 0.4029 
GBR 0.4148 0.4873 0.4284 0.4124 0.3468 
GRC 0.5013 0.5241 0.5553 0.5409 0.4777 
HKG 0.4654 0.4950 0.4879 0.4655 0.4828 
IDN 0.5765 0.5727 0.5190 0.5024 0.4423 
IND 0.5304 0.5627 0.5288 0.5262 0.4312 
IRL 0.4916 0.5303 0.4707 0.4513 0.4341 
ISR 0.5451 0.4929 0.4527 0.4207 0.4817 
ITA 0.4274 0.5392 0.4675 0.4434 0.4380 
JPN 0.5355 0.4701 0.6262 0.5624 0.4749 
KOR 0.4914 0.5223 0.4714 0.4564 0.4452 
MEX 0.4707 0.4818 0.4751 0.4565 0.4470 
NLD 0.4356 0.5558 0.4564 0.4362 0.3875 
NZL 0.4559 0.5605 0.3755 0.3815 0.4695 
PAK 0.5071 0.5875 0.6530 0.6023 0.5152 
PHL 0.5324 0.4723 0.5701 0.5452 0.4996 
PRT 0.5537 0.6398 0.3032 0.2712 0.5060 
RUS 0.4781 0.5394 0.4353 0.4150 0.4470 
SWE 0.4638 0.4934 0.4396 0.4204 0.4029 
USA 0.4442 0.4785 0.4624 0.4395 0.3960 
ZAF 0.3779 0.4583 0.4561 0.4342 0.4224 

Note: The bolded numbers indicate that market has long-range dependence with 5% 
statistical significance 
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Table B.3 Results of 𝐻−(2) of all countries with various periods 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.5666 0.4824 0.5834 0.4990 0.5478 
AUS 0.5323 0.4309 0.4535 0.4603 0.4321 
BEL 0.5823 0.5550 0.5282 0.3749 0.4274 
BRA 0.4798 0.4744 0.4664 0.4115 0.5034 
CAN 0.5923 0.5060 0.4641 0.3483 0.4254 
CHE 0.4485 0.5371 0.4231 0.4836 0.3439 
CHL 0.4546 0.4479 0.4739 0.5554 0.4987 
CHN 0.5575 0.4117 0.4782 0.5052 0.4854 
CZE 0.5759 0.5549 0.5187 0.4595 0.3640 
DEU 0.5428 0.4762 0.4889 0.6858 0.5001 
DNK 0.6058 0.4848 0.4963 0.5053 0.3722 
ESP 0.4819 0.4657 0.4734 0.4677 0.4187 
FIN 0.5921 0.5770 0.4444 0.4494 0.4236 
FRA 0.4868 0.4862 0.4621 0.4698 0.4137 
GBR 0.4847 0.5092 0.4886 0.4692 0.4124 
GRC 0.5443 0.6429 0.5257 0.4676 0.3474 
HKG 0.5957 0.4829 0.4836 0.4474 0.5927 
IDN 0.6280 0.4791 0.5132 0.4657 0.4959 
IND 0.5402 0.6192 0.5058 0.4905 0.4060 
IRL 0.5956 0.4554 0.4181 0.4467 0.3659 
ISR 0.5797 0.5230 0.5005 0.5235 0.4551 
ITA 0.5219 0.4642 0.4657 0.4975 0.4260 
JPN 0.4940 0.5576 0.4916 0.4250 0.4077 
KOR 0.5260 0.5717 0.5249 0.5873 0.4141 
MEX 0.5859 0.5748 0.5071 0.3711 0.4043 
NLD 0.5862 0.5703 0.5448 0.4732 0.5025 
NZL 0.5857 0.4783 0.5523 0.4479 0.4695 
PAK 0.7372 0.5547 0.6921 0.5543 0.4054 
PHL 0.5558 0.5094 0.4885 0.4739 0.4226 
PRT 0.5340 0.5036 0.5184 0.4175 0.4429 
RUS 0.6007 0.5090 0.5048 0.4486 0.4566 
SWE 0.5023 0.6066 0.5008 0.4475 0.4295 
USA 0.6263 0.3419 0.4567 0.4593 0.4624 
ZAF 0.6258 0.5040 0.5319 0.3687 0.4035 

Note: The bolded numbers indicate that market has long-range dependence with 5% 
statistical significance 
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Table B.4 Results of overall degree of multifractality of all countries with 
various periods 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.1086 0.1847 0.2081 0.2852 0.1655 
AUS 0.0597 0.2176 0.3677 0.1818 0.2037 
BEL 0.0380 0.1497 0.2738 0.3545 0.2189 
BRA 0.0851 0.1530 0.1947 0.2166 0.1383 
CAN 0.0941 0.1961 0.3256 0.2096 0.1877 
CHE 0.1657 0.1341 0.2987 0.2931 0.3486 
CHL 0.2216 0.3385 0.5475 0.3328 0.2108 
CHN 0.0320 0.3745 0.2283 0.1364 0.1452 
CZE 0.1138 0.4421 0.3633 0.2553 0.2203 
DEU 0.1463 0.1524 0.3411 0.1295 0.2006 
DNK 0.1139 0.1783 0.2058 0.1133 0.2828 
ESP 0.1594 0.2105 0.3534 0.2535 0.2655 
FIN 0.0342 0.1155 0.1900 0.2262 0.2061 
FRA 0.1073 0.1321 0.3458 0.2407 0.2434 
GBR 0.1246 0.1740 0.2714 0.2740 0.2937 
GRC 0.1351 0.0746 0.4975 0.1559 0.3283 
HKG 0.0448 0.1448 0.1873 0.2937 0.1619 
IDN 0.1097 0.1347 0.3353 0.2854 0.2621 
IND 0.0541 0.1289 0.2368 0.2610 0.1907 
IRL 0.0986 0.2811 0.2355 0.1372 0.2392 
ISR 0.0570 0.2355 0.2748 0.1954 0.1565 
ITA 0.1492 0.0855 0.1950 0.2632 0.2377 
JPN 0.2565 0.1813 0.3202 0.3934 0.2394 
KOR 0.0852 0.1854 0.3701 0.2533 0.1803 
MEX 0.1394 0.1235 0.2633 0.3020 0.2780 
NLD 0.0288 0.2204 0.2641 0.2348 0.2211 
NZL 0.0397 0.0753 0.1570 0.2287 0.0472 
PAK 0.2554 0.2590 0.9456 0.1816 0.2546 
PHL 0.1482 0.2490 0.2452 0.1590 0.2110 
PRT 0.2895 0.1108 0.4958 0.2724 0.1616 
RUS 0.0660 0.3634 0.3392 0.1707 0.1988 
SWE 0.0747 0.2035 0.1766 0.2330 0.1453 
USA 0.0563 0.1031 0.2216 0.3387 0.2475 
ZAF 0.0816 0.4064 0.1713 0.2698 0.1799 

Note: The bolded numbers indicate that market has multifractal feature with 5% 
statistical significance 
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Table B.5 Results of uptrend degree of multifractality of all countries with 
various periods 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.1147 0.1081 0.2796 0.4335 0.1246 
AUS 0.1285 0.1441 0.3193 0.2502 0.2093 
BEL 0.1320 0.1254 0.2285 0.2986 0.2027 
BRA 0.1052 0.1637 0.2988 0.2152 0.1202 
CAN 0.2172 0.1554 0.3918 0.1725 0.1772 
CHE 0.1590 0.1008 0.3169 0.3929 0.2113 
CHL 0.1703 0.1967 0.4158 0.3093 0.2359 
CHN 0.1916 0.3779 0.2602 0.1871 0.0665 
CZE 0.2203 0.4299 0.3504 0.0928 0.1914 
DEU 0.1724 0.1431 0.3062 0.3238 0.2146 
DNK 0.1429 0.1188 0.1598 0.2033 0.2209 
ESP 0.1689 0.1459 0.2884 0.3502 0.2745 
FIN 0.1553 0.0942 0.1185 0.1795 0.2006 
FRA 0.1745 0.0905 0.3234 0.3366 0.2455 
GBR 0.1738 0.1307 0.3230 0.3550 0.3137 
GRC 0.1838 0.0539 0.3992 0.1884 0.2794 
HKG 0.1342 0.1173 0.0938 0.3269 0.2437 
IDN 0.1397 0.0839 0.3025 0.2588 0.2486 
IND 0.1076 0.1158 0.1957 0.2653 0.1800 
IRL 0.2122 0.2089 0.3206 0.1119 0.1020 
ISR 0.0341 0.1861 0.2681 0.2538 0.1114 
ITA 0.2337 0.0378 0.3064 0.3748 0.2273 
JPN 0.2716 0.2405 0.4109 0.2220 0.2208 
KOR 0.0904 0.2182 0.4418 0.3361 0.1374 
MEX 0.2008 0.1336 0.2292 0.2601 0.2772 
NLD 0.1423 0.2040 0.2927 0.2957 0.2678 
NZL 0.0895 0.0677 0.3021 0.1978 0.0320 
PAK 0.3228 0.2280 0.4184 0.1792 0.2388 
PHL 0.1593 0.2232 0.2171 0.0703 0.1608 
PRT 0.3137 0.1114 0.3863 0.3948 0.1462 
RUS 0.1079 0.2632 0.4292 0.1652 0.1446 
SWE 0.1122 0.2013 0.2703 0.2959 0.1567 
USA 0.1598 0.0248 0.2387 0.3658 0.2302 
ZAF 0.2385 0.3387 0.2538 0.2724 0.1982 

Note: The bolded numbers indicate that market has multifractal feature with 5% 
statistical significance 
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Table B.6 Results of downtrend degree of multifractality of all countries with 
various periods 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.2269 0.2757 0.1323 0.1255 0.2315 
AUS 0.0678 0.2952 0.4046 0.2708 0.2297 
BEL 0.1254 0.3189 0.3479 0.4482 0.3346 
BRA 0.1439 0.1585 0.2381 0.2007 0.1936 
CAN 0.1529 0.1847 0.1688 0.2580 0.3554 
CHE 0.2051 0.3611 0.4512 0.3898 0.4919 
CHL 0.2993 0.5276 0.6003 0.4713 0.2184 
CHN 0.0451 0.3552 0.1617 0.1159 0.2534 
CZE 0.0954 0.4607 0.3574 0.3445 0.2211 
DEU 0.2463 0.2736 0.3724 0.3565 0.2658 
DNK 0.2148 0.3061 0.2261 0.1627 0.3334 
ESP 0.2067 0.2934 0.4682 0.2594 0.2936 
FIN 0.1127 0.3500 0.2602 0.2783 0.2584 
FRA 0.1534 0.2489 0.4147 0.2144 0.2544 
GBR 0.1967 0.3814 0.3087 0.1761 0.3160 
GRC 0.1533 0.3862 0.3544 0.1653 0.3508 
HKG 0.1641 0.2229 0.3103 0.2734 0.1508 
IDN 0.2895 0.3660 0.4023 0.3698 0.4462 
IND 0.0749 0.2498 0.2561 0.2062 0.2239 
IRL 0.1448 0.4746 0.2307 0.2132 0.3746 
ISR 0.1580 0.3347 0.3129 0.2980 0.2939 
ITA 0.1856 0.2395 0.2016 0.2170 0.2315 
JPN 0.1500 0.2525 0.2795 0.3649 0.2550 
KOR 0.1606 0.1213 0.2641 0.4596 0.2568 
MEX 0.2852 0.3548 0.2893 0.3505 0.2899 
NLD 0.1474 0.3519 0.3498 0.1978 0.2757 
NZL 0.1871 0.0866 0.1497 0.3561 0.0607 
PAK 0.5165 0.4606 1.1116 0.2627 0.2815 
PHL 0.2379 0.4399 0.3022 0.3647 0.3171 
PRT 0.2128 0.0812 0.6992 0.3143 0.1852 
RUS 0.1092 0.3416 0.4693 0.3253 0.3426 
SWE 0.2030 0.3784 0.2093 0.2128 0.2523 
USA 0.3140 0.2910 0.2505 0.3143 0.3574 
ZAF 0.2260 0.4704 0.2836 0.2365 0.1113 

Note: The bolded numbers indicate that market has multifractal feature with 5% 
statistical significance 
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Appendix C 
Figure C. Time-varying asymmetric 𝐻(2) and degree of multifractality with stock index. Blue line is overall, red line is up-
trend, yellow line is down-trend and purple line is stock index. Vertical lines are for dividing the period.
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Appendix D 
Table D.1 Correlation between stock index and the overall Hurst exponent 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.0167 -0.5068* -0.5415* 0.0848 -0.0916 
AUS 0.1122 -0.6857** 0.0944 0.6176** 0.6199** 
BEL 0.4348* 0.4130* 0.0995 0.4377* 0.6906** 
BRA 0.1447 -0.4939* 0.6568** -0.0916 0.2528 
CAN 0.4410* 0.0567 0.8422** -0.4934* 0.6185** 
CHE 0.4309* -0.2326 0.7236** -0.5816* 0.5406* 
CHL -0.4435* -0.3081* 0.2156 -0.7193** 0.4126* 
CHN -0.2472 -0.4292* -0.5861* 0.4140* -0.0649 
CZE 0.0209 -0.4038* 0.4101* -0.3574* 0.3725* 
DEU 0.2638 -0.5704* 0.5771* -0.3535* 0.5925* 
DNK 0.2002 -0.3379* 0.6420** -0.5697* 0.3282* 
ESP 0.2453 -0.0875 0.5669* 0.4492* 0.6455** 
FIN 0.1151 -0.6883** -0.0981 -0.0447 0.5013* 
FRA 0.3478* 0.4049* 0.6900** 0.3480* 0.6853** 
GBR 0.3712* -0.4715* 0.1447 -0.0022 0.5072* 
GRC 0.2753 0.1282 0.4656* 0.3139* 0.6720** 
HKG 0.2862 -0.5816* 0.7550** 0.4898* 0.4289* 
IDN -0.7144** -0.7149** -0.4551* -0.4112* -0.4204* 
IND 0.0980 -0.0618 0.4046* 0.2595 -0.2823 
IRL 0.2598 -0.8108** 0.0539 0.1337 0.3935* 
ISR 0.2122 -0.4847* 0.5503* -0.7363** 0.2583 
ITA 0.1847 -0.6396** 0.1270 0.6978** 0.4495* 
JPN 0.0854 -0.1931 0.7966** 0.2189 -0.2421 
KOR 0.0269 -0.2889 0.1564 0.2097 -0.0072 
MEX -0.2755 -0.4716* 0.6354** -0.5066* 0.0371 
NLD 0.3960* -0.2676 0.7509** -0.1730 0.3078* 
NZL 0.2407 -0.5408* 0.2726 -0.5425* 0.8279** 
PAK 0.0224 -0.6361** -0.2368 -0.0517 0.1694 
PHL -0.6128** -0.1617 -0.0393 0.2575 -0.2562 
PRT 0.3464* 0.6463** 0.5316* 0.5329* 0.1307 
RUS 0.1065 -0.4748* 0.6781** -0.1621 -0.1161 
SWE 0.3387* -0.4283* -0.0278 0.4763* 0.6536** 
USA 0.3573* -0.8474** 0.5576* -0.1612 0.5169* 
ZAF -0.2276 -0.5840* 0.8297** 0.0053 0.5250* 
Mean 0.1135 -0.3457* 0.3307* -0.0003 0.3134* 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively 
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Table D.2 Correlation between stock index and the up-trend Hurst exponent 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.0538 -0.3097* 0.4913* 0.0825 -0.0838 
AUS 0.3129* -0.5569* 0.4868* 0.3241* 0.8028** 
BEL 0.6238** -0.0083 0.7648** 0.8079** 0.6783** 
BRA 0.2003 -0.4738* 0.6552** 0.2031 0.2785 
CAN 0.4415* -0.2239 0.8813** -0.2697 0.5116* 
CHE 0.6399** -0.6304** 0.8162** 0.6678** 0.7477** 
CHL -0.2737 -0.0695 0.4575* -0.4643* -0.0231 
CHN 0.1676 0.4353* 0.7416** 0.2951 0.0333 
CZE 0.1430 -0.1543 0.6556** 0.5850* 0.2048 
DEU 0.5542* -0.3374* 0.8490** 0.0894 0.5482* 
DNK 0.3599* -0.5291* 0.8676** 0.2784 0.1627 
ESP 0.2344 -0.1112 0.7371** 0.3425* 0.5343* 
FIN 0.2928 -0.5547* 0.6256** 0.6581** 0.5784* 
FRA 0.4461* 0.1799 0.8409** 0.5456* 0.6945** 
GBR 0.4639* -0.6889** 0.2940 0.2244 0.5280* 
GRC -0.1674 -0.2347 0.7050** -0.1436 0.5132* 
HKG 0.2821 -0.4856* 0.6913** 0.1815 0.2497 
IDN -0.5618* -0.7427** 0.5451* -0.4846* 0.2542 
IND 0.2722 -0.5727* 0.5495* 0.1811 0.1823 
IRL 0.4500* -0.6717** 0.5585* 0.2904 0.3359* 
ISR 0.6401** 0.1499 0.8504** -0.1328 0.6482** 
ITA 0.0327 -0.6241** 0.4709* 0.4626* 0.4140* 
JPN 0.3057* 0.5056* 0.6551** 0.3682* -0.0838 
KOR 0.2370 0.0868 0.7769** 0.1936 0.0262 
MEX -0.1878 -0.5600* 0.4615* -0.3315* -0.1309 
NLD 0.4397* -0.1403 0.7794** 0.2593 0.2999 
NZL 0.3103* -0.7192** -0.2894 -0.4442* 0.6800** 
PAK 0.2098 -0.3798* 0.7603** -0.4429* 0.1491 
PHL -0.4775* -0.5141* -0.0589 0.1916 0.0717 
PRT 0.2994 0.3648* 0.8715** 0.6521** 0.1367 
RUS 0.3944* -0.1007 0.9005** -0.0846 0.0686 
SWE 0.4882* -0.4940* 0.7614** 0.6937** 0.5666* 
USA 0.4813* -0.8067** 0.6427** -0.1543 0.4462* 
ZAF -0.0774 -0.2019 0.6307** -0.0492 0.3349* 
Mean 0.2362 -0.2992 0.6302** 0.1640 0.3341* 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively 
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Table D.3 Correlation between stock index and the down-trend Hurst 
exponent 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.0053 -0.4156* -0.4253* 0.1102 -0.0237 
AUS 0.1165 -0.1824 0.2945 0.6882** 0.1091 
BEL 0.3977* 0.3862* -0.1470 0.0870 0.5058* 
BRA 0.0384 -0.0288 0.5391* 0.2001 0.0133 
CAN 0.3970* 0.3031* 0.6686** 0.1880 0.5071* 
CHE -0.0100 0.5647* -0.0332 -0.5064* -0.1403 
CHL -0.2866 0.4535* 0.1405 -0.3943* 0.4490* 
CHN -0.2871 -0.8096** -0.7774** 0.4170* 0.0053 
CZE 0.1455 0.0253 0.2948 -0.6779** 0.4518* 
DEU -0.1223 0.3226* 0.1851 -0.0165 0.5032* 
DNK -0.0195 0.3854* 0.2586 -0.2055 0.2248 
ESP 0.2858 0.4613* -0.1436 0.5747* 0.4585* 
FIN 0.2019 0.4117* -0.1151 -0.2356 0.2137 
FRA 0.3728* 0.5060* 0.1559 0.2456 0.4517* 
GBR 0.1904 0.5044* 0.3189* -0.2260 0.3178* 
GRC 0.6045** 0.5217* 0.5442* 0.0342 0.6586** 
HKG 0.0685 0.5245* 0.3627* 0.5871* 0.2167 
IDN -0.4687* -0.4783* -0.2434 0.3878* -0.4673* 
IND -0.3263* 0.4975* 0.5786* 0.4795* -0.3948* 
IRL 0.2172 -0.6719** -0.1152 0.2003 0.3882* 
ISR -0.5331* -0.7223** 0.5389* -0.2777 -0.6366** 
ITA 0.5425* -0.1299 -0.1813 0.6325** 0.3568* 
JPN 0.1686 -0.1374 0.7400** -0.1327 -0.1458 
KOR -0.0043 -0.2658 -0.4143* 0.4845* 0.0264 
MEX -0.3469* 0.6714** 0.6927** -0.1305 0.2747 
NLD 0.3680* 0.2699 0.7345** 0.0967 0.2201 
NZL 0.0048 -0.2658 0.6872** -0.2585 0.3264* 
PAK 0.1083 -0.4902* -0.6448** 0.4712* 0.2021 
PHL -0.3158* 0.4833* 0.3888* 0.3115* -0.2427 
PRT 0.4313* 0.7607** 0.1183 0.4276* 0.2126 
RUS -0.0690 -0.1733 -0.1179 0.3163* -0.2858 
SWE -0.0180 0.0044 -0.4280* 0.0127 0.5001* 
USA 0.0696 0.7780** 0.4316* 0.0069 0.2081 
ZAF -0.3003* 0.3058* 0.6359** -0.0994 0.4237* 
Mean 0.0478 0.1285 0.1624 0.1117 0.1732 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively  
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Table D.4 Correlation between stock index and overall degree of 
multifractality 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG -0.0130 0.1576 0.5230* -0.2210 0.2855 
AUS 0.1310 -0.2250 -0.1029 -0.6195** 0.5535* 
BEL -0.3167* 0.1441 -0.0461 0.2011 -0.0716 
BRA 0.2787 0.4604* -0.4882* 0.3059* 0.1694 
CAN 0.0595 0.0714 -0.2918 -0.4169* -0.1169 
CHE 0.1219 0.2116 -0.5615* 0.1273 0.4021* 
CHL -0.0811 -0.2354 -0.4797* 0.2432 -0.0542 
CHN 0.1464 -0.4622* -0.3058* -0.1769 0.6837** 
CZE -0.2905 0.0659 -0.6807** 0.2823 -0.4258* 
DEU 0.3244* 0.0605 -0.0562 0.1333 0.1841 
DNK 0.1034 -0.3729* 0.2364 0.5772* -0.1858 
ESP -0.1354 0.5999* -0.1528 0.1110 -0.1735 
FIN -0.0992 -0.3222* -0.2920 0.1078 0.4866* 
FRA -0.3113* -0.2662 -0.5646* 0.0467 -0.0416 
GBR 0.0284 0.0912 -0.3283* -0.0896 -0.0919 
GRC -0.2341 -0.0070 0.1513 0.2318 -0.5998* 
HKG -0.0764 -0.5607* -0.3702* -0.1015 0.0267 
IDN 0.0647 -0.3321* -0.0693 0.2425 0.3577* 
IND 0.1485 -0.5876* -0.1979 -0.6201** 0.4120* 
IRL 0.0024 0.3162* 0.0203 -0.2909 0.2744 
ISR 0.0615 0.4137* 0.0683 -0.1646 0.2830 
ITA -0.3573* 0.2442 -0.3571* 0.2406 -0.1869 
JPN 0.1878 0.2969 -0.4194* -0.2894 0.4849* 
KOR 0.2356 0.2218 -0.3502* -0.1750 0.2764 
MEX 0.2098 -0.0302 0.1504 -0.3947* -0.3674* 
NLD 0.0435 0.6287** -0.2757 0.1767 0.4050* 
NZL -0.3507* 0.1968 -0.4283* 0.2449 -0.7010** 
PAK -0.1356 0.5693* -0.9134** -0.6121** 0.6309** 
PHL 0.0353 -0.4633* -0.8357** 0.1421 0.2473 
PRT -0.2251 -0.6300** -0.6894** -0.3427* -0.5530* 
RUS -0.3618* -0.4943* -0.5544* -0.1316 -0.0599 
SWE 0.1403 0.0829 -0.1938 -0.1824 0.2142 
USA 0.3133* -0.4278* -0.4480* -0.0891 0.0898 
ZAF -0.1573 -0.2373 -0.5529* -0.1970 0.1919 
Mean -0.0150 -0.0241 -0.2899 -0.0500 0.0891 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively 
  



 

147 
 

Table D.5 Correlation between stock index and up-trend degree of 
multifractality 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG -0.2117 0.2451 -0.5687* -0.2186 0.2471 
AUS 0.0219 0.0280 -0.4890* -0.5281* 0.7124** 
BEL -0.5106* 0.5586* -0.4630* -0.6066** -0.4916* 
BRA 0.0397 -0.0260 -0.7239** -0.1795 -0.2841 
CAN -0.0744 0.3773* -0.7523** -0.4406* 0.0057 
CHE -0.4138* 0.5027* -0.7389** -0.5837* -0.3244* 
CHL -0.0629 -0.2659 -0.5188* 0.2160 -0.0306 
CHN -0.1193 -0.6527** -0.6068** -0.3093* 0.4575* 
CZE -0.2979 0.0569 -0.8384** -0.7163** -0.3721* 
DEU -0.1571 0.2205 -0.6208** -0.1615 -0.2207 
DNK -0.0474 0.0177 -0.3558* -0.1475 0.0548 
ESP -0.1593 0.6332** -0.6172** -0.1026 -0.1933 
FIN -0.1615 0.2795 -0.3315* -0.6524** 0.3915* 
FRA -0.4446* 0.0466 -0.8266** -0.4330* -0.1836 
GBR -0.1013 0.3741* -0.7021** -0.2940 -0.1416 
GRC -0.0668 0.3044* -0.1467 -0.7596** -0.5239* 
HKG -0.2733 -0.5383* -0.7938** 0.1118 -0.1819 
IDN 0.1574 -0.1471 -0.7225** 0.1422 0.0465 
IND -0.0326 -0.2126 -0.5256* -0.5825* 0.4747* 
IRL -0.2073 0.4131* -0.3074* -0.4004* 0.2810 
ISR -0.1757 -0.3950* -0.3013* -0.4287* 0.1206 
ITA -0.2661 0.3878* -0.6671** -0.1185 -0.4355* 
JPN 0.0041 0.0518 -0.6435** -0.0749 0.3844* 
KOR 0.0371 0.1789 -0.7410** -0.1002 0.1807 
MEX 0.0115 0.1273 -0.7000** -0.3633* -0.0823 
NLD -0.2488 0.6080** -0.7253** -0.2958 0.1536 
NZL -0.3700* 0.1158 -0.0567 0.2783 -0.6254** 
PAK -0.2237 0.4539* -0.9220** -0.3142* 0.4806* 
PHL -0.0537 -0.1911 -0.8223** 0.1676 0.2622 
PRT -0.1951 -0.1941 -0.7913** -0.6067** -0.6065** 
RUS -0.5510* -0.5836* -0.8990** 0.0313 0.0815 
SWE -0.0742 0.2797 -0.6073** -0.6282** 0.3149* 
USA -0.0488 0.0730 -0.6988** -0.1865 0.0758 
ZAF -0.2766 -0.4541* -0.4855* -0.2227 0.0975 
Mean -0.1634 0.0786 -0.6091** -0.2797 0.0037 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively 
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Table D.6 Correlation between stock index and down-trend degree of 
multifractality 

Countries Total Pre-crisis 
Subprime-

crisis 
European-

crisis 
Post-crisis 

ARG 0.4090* -0.4144* 0.6307** -0.2323 0.4745* 
AUS -0.1837 -0.5001* 0.3003* 0.1757 -0.5416* 
BEL 0.1200 0.1200 -0.3051* 0.4701* 0.2218 
BRA 0.2380 0.5887* 0.4930* 0.5152* 0.2749 
CAN 0.3259* -0.1392 0.4252* 0.0390 0.1989 
CHE 0.3082* 0.6981** -0.3585* 0.4691* 0.3505* 
CHL -0.1553 0.7220** -0.3215* 0.2613 0.1354 
CHN 0.6101** 0.8791** 0.5479* 0.0726 0.8784** 
CZE 0.1646 0.6860** -0.3574* 0.4411* -0.3173* 
DEU 0.3012* 0.1882 0.2908 0.4098* 0.3050* 
DNK -0.1405 0.5334* 0.3352* 0.5391* -0.3809* 
ESP 0.1198 0.4995* 0.0507 0.3752* -0.1931 
FIN 0.2412 0.0051 -0.1026 0.3981* 0.2578 
FRA 0.0588 0.1564 -0.0405 0.3340* 0.1476 
GBR 0.0457 0.3952* 0.3172* 0.0583 -0.0254 
GRC -0.1039 0.5235* 0.4350* 0.6292** -0.6331** 
HKG 0.1226 -0.0216 0.5122* -0.0769 0.1684 
IDN -0.3682* 0.1623 0.5467* 0.7336** -0.1973 
IND -0.1256 -0.0121 0.4537* -0.2634 0.2016 
IRL 0.2764 0.0962 0.0157 -0.1983 0.0398 
ISR -0.1828 0.6466** -0.0485 0.1982 0.2830 
ITA 0.1422 0.3125* 0.0202 0.1899 0.1336 
JPN 0.4691* 0.2156 0.3400* -0.2514 0.7187** 
KOR 0.2292 0.0868 0.4313* -0.2270 0.2483 
MEX -0.1072 0.5909* 0.7081** -0.3049* -0.3147* 
NLD 0.3478* 0.5512* 0.6169** 0.5959* 0.5218* 
NZL -0.1474 0.2556 -0.4308* 0.3055* -0.3322* 
PAK -0.1430 0.4263* -0.8904** -0.2969 0.5763* 
PHL 0.0109 0.2123 -0.3359* -0.2373 -0.3974* 
PRT 0.2901 0.5868* -0.0737 -0.0774 -0.3016* 
RUS 0.0554 0.5440* 0.2310 0.2229 -0.1731 
SWE 0.0623 0.3594* 0.2852 0.3187* -0.1962 
USA 0.3383* 0.8730** 0.3353* 0.4456* -0.2727 
ZAF 0.0709 0.7410** -0.0558 -0.0457 0.1186 
Mean 0.1088 0.3402* 0.1471 0.1761 0.0582 

Note: * and ** indicate the absolute correlations greater than 0.3 and 0.6, 
respectively
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초    록 

 
최근 다양한 금융위기 이후, 금융위험관리를 위한 금융시장 분석의 

중요성은 더욱 강조되고 있다. 금융시장은 과거의 모형으로 

설명하기 어려운 다양한 특성들을 가지고 있기 때문에 이를 

설명하기 위한 노력이 필요하다. 특히, 금융시장에서 나타나는 

멀티프랙탈 특성과 비대칭 상관관계에 대한 연구가 활발히 

진행되고 있다. 멀티프랙탈 특성은 스케일에 따라 변하지 않는 

자기유사성을 가진 프랙탈 특징이 다양하게 나타나는 것으로 

프랙탈 차원을 하나로 나타내기 어려운 구조이다. 이를 통해 

주식시장에서 나타나는 복잡성을 설명할 수 있다. 비대칭 

상관관계는 시황에 따라 달라지는 특성으로 금융시장의 비대칭 

구조를 나타낸다. 따라서 본 학위논문은 주식시장 데이터에서 

나타나는 멀티프랙탈 특성의 비대칭 상관관계에 대한 연구를 

진행하였다. 더불어, 비대칭 멀티프랙탈 특성을 이용하여 

주식시장의 비대칭 효율성을 측정해보았다. 먼저, 본 학위논문은 

멀티프랙탈 특성을 주가 지수의 추세에 따라 비대칭적으로 

측정하는 ‘Price-based Asymmetric Multifractal Detrended Fluctuation 

Analysis (A-MFDFA)’ 모형을 제시하였다. 기존의 모형이 

전체시장에 대해서만 멀티프랙탈 특성을 측정하였다면, 본 모형은 

주식시장을 지수의 추세를 기준으로 나누어 비대칭적인 특성을 

고려한 멀티프랙탈 특성을 측정하였다는 데에 강점이 있다. 또한 

제시된 모형을 이용하여 멀티프랙탈 특성의 원인, 비대칭 

멀티프랙탈 특성이 나타나는 원인을 알아보는 방법을 제시하였다. 

본 모형을 미국 금융시장 데이터에 적용한 결과, 미국 금융 시장에 
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비대칭 멀티프랙탈 특성이 있는 것을 확인하였고, 비대칭 

멀티프랙탈 특성의 원인이 상승국면일 경우 변동성의 자기상관성이, 

하강국면일 경우 확률 분포의 두꺼운 꼬리분포임을 밝혔다. 

시간변화에 따른 비대칭 멀티프랙탈 특성의 변화를 관찰한 결과, 

금융위기 기간에 상승국면 멀티프랙탈과 하강국면 멀티프랙탈의 

수치의 차이가 증가함을 보였다. 두 번째로, 본 학위논문은 

시뮬레이션 방법을 이용하여 제시한 ‘Price-based A-MFDFA’ 

모형이 비대칭 멀티프랙탈 특성을 성공적으로 잡아내는지 확인하고, 

어떠한 특성이 비대칭 멀티프랙탈 특성에 영향을 주는지 

알아보았다. 주식시장을 모방하기 위해 인위적으로 비대칭적인 

특성을 가지는 시계열을 몬테카를로(Monte-Carlo) 시뮬레이션을 통해 

만들어 낸 후, 제시된 모델을 이용하여 각 시계열의 비대칭 

멀티프랙탈 특성을 관찰하였다. 그 결과 제시된 모형은 인위적으로 

만들어진 비대칭 특성을 잘 나타내었다. 또한, 시계열의 자기상관성, 

시계열 분포의 왜도, 두꺼운 꼬리분포와 변동성의 자기상관성이 

비대칭 장기적 의존성과 멀티프랙탈 특성에 어떻게 영향을 주는지 

밝혔다. 마지막으로, 비대칭 장기 기억 현상과 멀티프랙탈 특성이 

존재하는지 알아보는 실험 방법론을 제시하였다. 기존의 시장 

효율성 측정값이 나타내지 못했던 시장 비효율성의 원인을 상승 

국면과 하강 국면의 멀티프랙탈 특성을 통해 알아보았다. 이를 34개 

국가의 금융 시장에 적용해 본 결과, 금융위기기간에 상승 국면과 

하강 국면의 장기 기억 현상 측정값과 멀티프랙탈 측정값의 차이가 

커지는 현상과 상승 국면의 멀티프랙탈 측정값이 주가 지수와 강한 

음의 상관관계를 가지는 현상을 관찰하였다. 비대칭 장기 기억 

현상과 수익률 간의 관계에 대해서도 관찰하였다. 결론적으로 본 

학위 논문은 전체 시장에 대해 사용했던 멀티프랙탈 특성 분석을 
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더 세분화하여 시황에 따른 비대칭 멀티프랙탈 특성 분석이 

가능하게 했다는 점에 의의가 있다. 과거의 전체 시장에 대한 

분석이 주식시장의 하락에 초점을 두었다면, 세분화된 비대칭 

멀티프랙탈 특성을 통해 주식시장이 상승할 때와 하락할 때 각각에 

대한 분석이 가능하게 된다. 따라서 금융 위험 관리에 대한 유용한 

정보가 시장 참여자들에게 제공될 것이다. 
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