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Abstract

Predictive Models for Blockchain,

Cryptocurrency, and Derivatives Market

Huisu Jang

Department of Industrial Engineering

and Naval Architecture

The Graduate School

Seoul National University

This dissertation aims to conduct the empirical analysis for the financial deriva-

tive and cryptocurrency market and to develop analytical techniques based on

machine learning models suitable for prediction and estimation of each field. In

the financial derivative market, a Markov chain Monte Carlo (MCMC) methods

employ the candidate probability distribution nearest to the target probability

distribution to acquire sample distributed from the posterior density. Choice of

the candidate probability distribution affects the practical convergence speed

of the MCMC methodology and the fitness of the sample. In this dissertation,

we propose a MCMC framework possible to samples from the candidate dis-

tribution nearest to the target probability density without the specification of

the candidate distribution. We confirm that the jump diffusion models and

Bayesian neural networks have the best performance in estimating and predict-

ing given the data of the recent day for the model estimation given S&P index
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options in 2012. Especially, the jump diffusion model has a very high perfor-

mance in terms of domain adaptation between the American option and the

European option. This difference is reflected in the fact that the jump diffusion

model is based on the common asset of the American option and the Euro-

pean option. Based on this empirical precedent study, we proposed a machine

learning model called generative Bayesian neural network (GBNN) to overcome

the disadvantages of the machine learning model. GBNN maximizes posterior

probability through the GBNN obtains prior information from the GBNN data

learned up to the previous day, and learns likelihood probability from actual

trading data of learning day. We identify that the GBNN model outperform

other benchmark models in terms of model prediction. Bitcoin is a successful

cryptocurrency, and it has been extensively studied in fields of economics and

computer science. In this dissertation, we analyze the time series of Bitcoin

price with a BNN using Blockchain information in addition to macroeconomic

variables. We conduct the empirical study that compares the Bayesian neural

network with other linear and non-linear benchmark models on modeling and

predicting the Bitcoin process. Our empirical studies show that BNN performs

well in predicting Bitcoin price time series and explaining the high volatility of

the Bitcoin price in Aug. 2017. In addition, we suggested the enhanced GRU

model for correlation analysis between cryptocurrency markets. Assuming that

the gate value obtained from the GRU model is the parameter of the VAR

model, it makes possible to visualize the correlation between various alterna-

tive currencies in the cryptocurrency market. As a result, it is confirmed that

there is a very significant correlation between the currencies separated from the

ii



existing currencies and the existing currencies.

Keywords: financial market analysis, Bayesian neural networks, machine learn-

ing, time-series analysis, Markov chain Monte Carlo

Student Number: 2015-30239
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Chapter 1

Introduction

1.1 Financial derivative market analysis

Since the seminal work by Black and Scholes (Black & Scholes, 1973) on option

pricing in the early 1970’s, many alternative option pricing models have emerged

to address key stylized facts for option markets, such as volatility smile, fat tail,

and volatility clustering. Most of the successful option models are financial jump

models (Carr et al., 2003; Kou, 2002; D. B. Madan et al., 1998; Merton, 1976;

Nualart et al., 2001) where exact parametric formulas for pricing options are

available and can be ready to calibrate to the market data, mostly European

option prices, which can be executed only at maturity. American options cannot

be priced by the exact closed form since the value of American options includes

the right to decide freely to terminate the transaction. Numerous pieces of

literature have been studied to circumvent the exact value of American options

by employing simulation technology and the assumption of discrete exercise

time (Blair et al., 2010; Ederington & Guan, 2002; Fengler, 2006; Kim, 2009;

Xu & Taylor, 1995; Benko et al., 2007; Fengler, 2009; BARONE-ADESI &

Whaley, 1987; Longstaff & Schwartz, 2001).
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Figure 1.1 Derivative market analysis based on econometric and AI models

The tremendous increase in computing power and data storage during the

last decade has resulted in the rapid development of machine learning and data

mining with diverse applications in economics, finance, science, engineering,

and technology. In the finance area, machine learning models have elicited con-

siderable attention from many researchers because of their predictive power.

Yao and Tan (2000b) demonstrated that Nikkei 225 index future options in

1995 were better predicted by neural networks using the back-propagation al-

gorithm than the traditional Black-Scholes models. Gençay and Qi (2001a)

showed that generalization for pricing and hedging derivatives can be improved

by the Bayesian regularization techniques and verified empirically for S&P 500

index daily call options from January 1988 to December 1993. Wang (2011a)
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reported that support vector regression (SVR) improved the forecast accuracy

for the daily currency market data of AUD/USD, EUR/USD, USD/JPN, and

GBP/USD options from January to July in 2009. Kazem et al. (2013) presented

support vector regression methods optimized by chaotic firefly algorithm out-

performs several methods of SVR for NASDAQ quotes, Intel (from 9/12/2007

to 11/11/2010), National Bank shares (from 6/27/2008 to 8/29/2011) and Mi-

crosoft (from 9/12/2007 to 11/11/2011) daily closed stock prices. Xiong et al.

(2014) tuned the parameters of multi-output support vector regression using

firefly algorithm and compared the proposed SVR methods with other existing

methods for forecasting the market indexes, S&P 500, Nikkei 225, and FTSE

100 indexes. Figure 1.1 shows the derivative market analysis based on econo-

metric and AI models according to time line.

Although a considerable number of studies have been conducted to eluci-

date financial option markets by applying either econometric financial models

or machine learning models, there are few studies considering two types of the

models jointly. In this dissertation, an intensive empirical study is conducted

to compare econometric models with state-of-the-art machine learning mod-

els especially concentrating on the American option pricing analysis relatively

having the limitation in only use traditional econometric models. In addition

to empirical studies, we suggested the proposed MCMC methodologies to pa-

rameter calibration of time series models to acquire suitable parameters. We

propose a generative Bayesian machine learning model to improve the options

market predictability.
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1.2 Cryptocurrency market analysis

In this dissertation, the cryptocurrency market refers to the decentralized cryp-

tocurrency market produced by the entire cryptocurrency system collectively,

based on the underlying technical system created by Satoshi Nakamoto. The

decentralized cryptocurrency, without the intrinsic value, is valued by shared

ledger among participants unlike fiat currencies, which are valued by the central

banking and economic system like the Federal Reserve System (FRB) capable of

controlling the money supply. It is inevitable to consider the mechanism of the

’shared ledger’ techniques, ’Blockchain’, for the cryptocurrency analysis, since

the Blockchain techniques are directly involved in the supply and demand of

the cryptocurrency. Currently, there is very little research dedicated to the first

currency market rooted in the technology other than small amounts of studies

about the Bitcoin by employing existing econometric technologies.

Numerous studies have been conducted recently on modeling the time series

of Bitcoin prices based on existing econometric models under the assumption

the Bitcoin is regarded as a general market variable. Generalized Autoregres-

sive Conditional Heteroskedasticity (GARCH) volatility analysis is performed

to explore the time series of Bitcoin price (Dyhrberg, 2016a),(Katsiampa, 2017).

Various studies on statistical or economical properties and characterizations of

Bitcoin prices refer to its capabilities as a financial asset; these research focus

on statistical properties (Bariviera et al., 2017; Chu et al., 2015), inefficiency of

Bitcoin according to efficient market hypothesis (Urquhart, 2016; Nadarajah &

Chu, 2017), hedging capability (Dyhrberg, 2016b; Bouri et al., 2017), specula-
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tive bubbles in Bitcoin (Cheah & Fry, 2015), the relationship between Bitcoin

and search information, such as Google Trends and Wikipedia (Kristoufek,

2013), and wavelet analysis of Bitcoin (Kristoufek, 2015).

Relatively few studies have thus far been conducted on estimation or pre-

diction of Bitcoin prices. Ciaian et al. (2016) evaluates Bitcoin price formation

based on a linear model by considering related information that is categorized

into several factors of market forces, attractiveness for investors, and global

macro-financial factors. They assume that the first and second factors men-

tioned above significantly influence Bitcoin prices but with variation over time.

The same researchers limit the number of regressors to facilitate linear model

analysis. McNally (2016) predicts the Bitcoin pricing process using machine

learning techniques, such as recurrent neural networks (RNNs) and long short-

term memory (LSTM), and compare results with those obtained using autore-

gressive integrated moving average (ARIMA) models. A machine trained only

with Bitcoin price index and transformed prices exhibits poor predictive per-

formance. I. Madan et al. (2015) compares the accuracy of predicting Bitcoin

price through binomial logistic regression, support vector machine, and random

forest.

There are few practical and systematic empirical studies on the analysis of

cryptocurrency markets. We conduct practical analysis on modeling and pre-

dicting of the Bitcoin process by employing a Bayesian neural network (BNN),

which can naturally deal with increasing number of relevant features in the

evaluation based on Blockchain information. We also try to account for the

remarkable coupling of other cryptocurrencies with the Bitcoin by employing
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the enhanced GRU framework.

1.3 Aims of the Dissertation

This dissertation aims to investigate the intensive analysis for financial deriva-

tive market and cryptocurrency market and to develop analytic technologies

based on AI strategies suitable for prediction and estimation of each field. We

evaluate the suitability of the econometric models and the data-driven machine

learning models for each specific market analysis by bringing major two cri-

teria of model validity and model predictability. Model validity considers the

in-sample error value and parameter calibration results, and model predictabil-

ity will verify that the model forecasts reasonable prices for the out-of-sample.

In addition to the intensive empirical study to compare econometric models

with state-of-the-art machine learning models, we propose the machine learn-

ing models suitable for market analysis based on the advantages and limitations

of each econometric and machine learning models acquired from the precedence

studies. We conducted parallel studies for the each index options market and

the cryptocurrency market.

In Chapter 2, econometric models and statistical machine learning models

used in this dissertation are summarized at first.

In Chapter 3, we propose the generative Markov chain Monte Carlo (MCMC)

framework for parameter calibration of state space models. It achieves more sta-

ble parameter estimation of considered econometric models. Then, an intensive

empirical study is conducted to compare two methods in terms of model esti-
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mation, prediction, and domain adaptation using S&P 100 American/European

put options. Results indicated that econometric jump models demonstrate bet-

ter prediction performance than the best-performing machine learning mod-

els, and the estimation results of the former are similar to those of the latter.

The former also exhibited significantly better domain adaptation performance

than the latter regardless of domain adaptation techniques in machine learning.

Lastly, we propose a generative Bayesian neural network model that incorpo-

rates a prior reflecting a risk-neutral pricing structure to be consistent with the

extreme option prices. Proposed model can acquire the information under the

extreme region where there are a few observations in real data by considering

artificial prior information from the econometric model. Chapter 4 included a

real data application to compare the proposed model with other state-of-the-art

methods in terms of model estimation and prediction using S&P 100 American

put options data from 2003 to 2012.

In Chapter 4, we investigate the cryptocurrency market analysis based on

the real data empirical study of Bitcoin. We conduct the empirical study that

compares the Bayesian neural network with other linear and non-linear bench-

mark models on modeling and predicting the Bitcoin process. Our empirical

studies show that BNN performs well in predicting Bitcoin price time series

and explaining the high volatility of the recent Bitcoin price. We also the en-

hanced GRU framework based on the Vector Autoregressive (VAR) model to

reveal the relationships of several cryptocurrencies and shows the correlation be-

tween several cryptocurrencies over time by conducting real data experiments

based on the eight types of cryptocurrency data. There has been limited re-
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search on the machine learning framework of interpretable data based. This

dissertation focuses on visualizing and interpreting meaning from the data by

developing a machine learning based model easy to interpret. This dissertation

can contribute to the primary data analysis for the cryptocurrency market.

Finally, we discuss the contributions and future works of this dissertation

in Chapter 5.

1.4 Outline of the Dissertation

To achieve the aims of the dissertation, the rest of this dissertation is organized

as the following Table 1.1. Table 1.1 summarizes analysis market fields and

analysis scopes in the entire discussion.

Table 1.1 Analysis market fields and scopes in the dissertation

Market fields Analysis scope Included chapter

Empirical comparison study Chapter 3.2

Options
Model validity Chapter 3.3

market

Model predictability Chapter 3.4

Empirical comparison study Chapter 4.3
Cryptocurrency

market
Model validity Chapter 4.4
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Chapter 2

Literature Review

2.1 Review of Financial Econometric Models

2.1.1 Time series models

Financial jump models divide into finite-activity jump-diffusion processes and

infinite-activity exponential Lévy processes, respectively. The former includes

the Merton model with finitely Gaussian jumps (Merton, 1976) and the Kou

model with double exponential jumps (Kou, 2002). The latter includes the Vari-

ance Gamma (VG) (D. B. Madan & Seneta, 1990; D. B. Madan et al., 1998), the

(Generalized) Hyperbolic model or the Normal Inverse Gaussian(NIG) (Eberlein

et al., 1995; Barndorff-Nielsen, 1997), the CGMY (named after Carr, German,

Madan and Yor) (Carr et al., 2003), and Meixner model (Nualart et al., 2001).

A representative jump model we consider in this paper is the CGMY model

(also called truncated Lévy flights) which is an infinite activity exponential-

Lévy process (Carr et al., 2003) given by the following risk-neutral stock price

process

St = S0exp((r − q)t+Xt(ν) + ωt)
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where r and q represent the constant continuously compounded interest rate

and dividend yield respectively, Xt(ν)t≥0 is a Lévy process. Lévy measure ν,

and ω is instituted to guarantee the martingale property for the price process.

Lévy measure of the CGMY model takes the form of

ν(x) =
c

(−x)1+Y
eλ−x1x<0 +

c

x1+Y
e−λ+x1x>0

It is of finite variation if 0 ≤ Y < 1 and of infinite variation if Y ≥ 1.

There are 4 parameters θ = (c, Y, λ−, λ+): c determines the overall and

relative frequency of jumps, λ−, λ+ represent the tail behavior of the Lévy

measure, Y shows the local behavior of the process (how the price evolves

between big jumps).

The characteristic function of the model is sufficient to apply numerical

approximation for pricing options. The characteristic function Φs(z) of st =

ln(St/S0) is represented by

Φs(z) = E[eizst ] = et(iz(r−q+ω)+tcΓ(−Y )((λ+−iz)Y −λY++(λ−+iz)Y −λY−) (2.1)

and

ω = cΓ(−Y )((λ+ − 1)Y − λY+ + (λ− + 1)Y − λY−)

where 0 < Y < 1 or Y > 1 and Γ(−Y ) means a gamma function value of −Y .

The Kou model (Kou, 2002) is a econometric jump model that includes a

jump term with known distribution of jump sizes that describes abnormal rare

market events. The dynamics of stock price is given by the following stochastic

differential equation(SDE):

dSt
St

= (γ − q)dt+ σdWt + d(

N(t)∑
i=1

(Vi − 1))
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where γ and q represent the constant continuously compounded interest rate

and dividend yield respectively, Wt is a Brownian motion, N(t) is a Poisson

processes with parameter λ, and Vt is a sequence of i.i.d. non-negative ran-

dom variables. The distribution Yt = ln(Vt) of jump sizes is an asymmetric

exponential as follows:

pY (x) = pλ+e
−λ+x1x>0 + (1− p)λ−eλ−x1x<0

where the tail behavior of positive and negative jump sizes distribution is con-

sidered by λ± > 0 and p ∈ [0, 1] represents the probability of an upward jump.

There are 5 parameters θ = (λ, λ+, λ−, p, σ): λ, jump intensity, λ+, λ−, p,

parameters of each jump size distribution, and σ, diffusion volatility. The char-

acteristic function Φs(z) of st = ln(St/S0) is given by

Φs(z) = E[eizst ] = e
t(iz(r−q+ω0)− 1

2
z2σ2+λ(p

λ+
λ+−iz+(1−p) λ−

λ−−iz−1))
(2.2)

and

ω0 = −1

2
σ2 + λ

(
1− p λ+

λ+ − 1
− (1− p) λ−

λ− + 1

)
In this dissertation, the parameters of the CGMY model are calibrated from

minimizing the mean squared error between true prices and estimated prices.

Pricing the American option prices can be achieved by applying the Fourier

Cosine method or solving the linear complementarity problem (LCP). (Kwon

& Lee, 2011) suggested the implicit method coupled with the operator splitting

method to preserve the second order accuracy in the time and spatial variables.

The numerical method called the implicit method with three time level has the

advantage that it avoids the iteration we need to solve the dense linear system
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at each time step. Then the prices of the American options can be evaluated

with the computational complexity of O(MN log2M) operations where M is

the number of spatial steps and N is the number of time steps. The Fourier

Cosine method is one of the efficient pricing methods for the European options

(Fang & Oosterlee, 2008). They also propose the Fourier-Cosine series method

for pricing early-exercise and discrete barrier options (Fang & Oosterlee, 2009).

The computational complexity is O((M-1)NlogN) with a number of the series

expansion, N, the number of monitoring dates, M. They dose not present the

parameter estimation results of the proposed method in the literature.

In financial time series analysis, time-varying volatility is often considered to

mitigate the drawbacks of the deterministic volatility by employing the stochas-

tic volatility (SV) models. We consider the representative two SV models: the

Heston model (Heston, 1993) and the generalized autoregressive conditional

heteroskedasticity (GARCH) model (Bollerslev, 1986). The Heston model as-

sumes that the asset price, St, and the instantaneous variance, vt at time t are

determined by the following process:

dSt = µStdt+
√
vtStdW

1
t

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t

where dW 1
t and dW 2

t are Wiener processes with correlation ρ and the parameter

set, (µ, κ, θ, η), describes the rate of return, the reverting rate of variance, the

long run average price variance, and the volatility of the volatility.

We consider the standard GARCH(1,1) model, which assumes that the

randomness of the variance process varies with the variance. The standard
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GARCH(1,1) model is similar to the Heston model except that the square root

value is removed from the process of variances. The processes of GARCH(1,1)

model are as follows:

dSt = µStdt+
√
vtStdW

1
t

dvt = κ(θ − vt)dt+ ηvtdW
2
t

where dW 1
t and dW 2

t are independent Wiener processes and the parameter set,

(µ, κ, θ, η), describes the rate of return, the reverting rate of variance, the long

run average price variance, and the volatility of the volatility.

Calibration issue of stochastic volatility models is challenging since the

volatility process of an asset return is not directly observed. (Bakshi et al.,

1997) used implied volatilities and cross-sectional information in option prices

with different maturities and strike prices to estimate the asset return and

stochastic volatility process. We followed the two-step calibration procedure

applied in (AitSahlia et al., 2010; Zhang & Shu, 2003): first, structural param-

eters of the underlying asset is approximated by the indirect inference methods

from (Gourieroux et al., 1993), and the rest parameters for option pricing are

estimated based on least-squares by using market European options. After the

calibration, we employ the least-squares Monte-Carlo (LSM) method to price

American options to avoid the stability problem of partial differential equations.

In what follows we shall provide a selective overview of some popular clas-

sical American option pricing methods in financial studies.
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2.1.2 Option pricing methods

Regression approaches introduced by (Longstaff & Schwartz, 2001) have applied

to estimate the continuation values of American or other exotic options(Clément

et al., 2002; Tsitsiklis & Van Roy, 2001). The approach assumes that the options

can be exercised at m discrete time set 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm = T , where T

is the expiration date. The method starts with N random paths {Snti(ωn)|i =

1, · · · ,m} according to Markov chain for 1 ≤ n ≤ N and determines option

values by rolling-back on these paths. The value of American option, V (ti), at

each time step ti is then defined recursively by the following forms,

V (ti) = max[X(ti),E(V (ti+1|F(ti))], i = 1, . . . ,m− 1. (2.3)

where X(ti) means that the immediate payoff at time ti, and F(ti) is the σ-

algebra until time ti. The conditional expectation of continuation value for each

path, which is the value of holding rather than exercising, is given by C(ω, ti)

and is estimated by the fitted values of the following regression:

C(ω, ti) =
∑
j=0

βjBj(Sti(ω)), (2.4)

where βj is the coefficients of the regression function, and Bj(·) is the basis

functions with the underlying asset value Sti at time ti. There are many possi-

ble choices of basis functions such as Laguerre, Hermite, Legrendre, and Jacobi

polynomials. In this experiment, we adopt the Laguerre poynomials of the sec-
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ond term:

B0(S) = exp(−S/2)

B1(S) = exp(−S/2)(1− S)

B2(S) = exp(−S/2)(1− 2S + S2/2)

...

Bn(S) = exp(−S/2)
eS

n!

dn

dSn
(Sne−S)

(2.5)

The ordinary least-square regression calculates the estimates of regression co-

efficients at each time ti. The price of the American option is then calculated

by averaging F (ω, 0) over all ω paths.

Barone-Adesi and Whaley model is one of the most widely used analytic ap-

proximation method for pricing American options (BARONE-ADESI & Wha-

ley, 1987). In Barone-Adesi Whaley models, American option values are ex-

pressed as a sum of European option values and early exercise premium, and

can be obtained by computing critical values where American and European

put option values are indifferent. The model assumes that the underlying pro-

cess follows a geometric Brownian motion with constant volatility σ as with

(Black & Scholes, 1973), and that the risk free interest rate, r, and the cost of

carrying the underlying, b, which is equal to the difference with risk free rate

and the dividend yield, d (i.e., b = r − d) are all constants.

We define the early exercise premium with expiration date T , and strike

price K as

v(S,K) = PAmerican(S, T )− PEuropean(S, t) = h(T − t)f(S,K)

by choosing h(T−t) = 1−e−r(T−t). Then the approximate value of an American
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put option is

PAmerican(S, T ) =

 PEuropean(S, T ) +A1

(
S
S∗

)q1
, when S > S∗

X − S, when S ≤ S∗
(2.6)

where S∗ is the critical underlying value below which the option should be

exercised and can be calculated numerically by solving following equation

X − S∗ = PEuropean(S∗, t)− S∗

q1
[1− e(b−r)(T−t)N [−d1(S∗)]]

The other variables are given by

q1 =
1

2

[
−(

2b

σ2
− 1)−

√
(
2b

σ2
− 1)2 +

8r

hσ2

]

A1 = −
(
S∗

q1

)
(1− e(b−r)(T−t)N [−d1(S∗)])

d1(S) =
ln(S/K) + (b+ σ2)(T − t)

σ
√
T − t

Note that A1 > 0 since q1 < 0, S∗ > 0, and N [−d1(S∗)] < e−b(T−t).

Option pricing using implied and local volatility have shown superior pre-

dictive power (Blair et al., 2010; Ederington & Guan, 2002; Fengler, 2006; Kim,

2009; Xu & Taylor, 1995).

The ad hoc Black-Scholes method employs the implied volatilities smoothed

across strike prices and time to maturity that are plugged back into the Black-

Scholes formula to cope with the volatility smile effects. It is one of the most

widely used option evaluation techniques among practitioners for its consis-

tently impressive empirical performance of option evaluation. Brandt and Wu

(2002) demonstrated that the ad hoc Black-Scholes outperformed the determin-

istic volatility function models in evaluating FTSE 100 index options. Heston
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and Nandi (2000) compared the ad hoc approaches with GARCH models.

Christoffersen and Jacobs (2004) reported that the ad hoc methods with daily

parameter update is better than Heston (1993)’s model for in sample and out

of sample.

The ad hoc Black-Scholes methods approximate the surface of implied volatil-

ities by a regression against a polynomial function of the strike prices and time

to maturities of the options,

σ̂IV = β0 + β1K + β2T + β3KT + ε ε ∼ N(0, 1) (2.7)

where K is the strike price and T is the time to maturity. Approximated implied

volatilities σ̂IV have no sensible interpretation, but when plugged back into the

Black-Scholes formula it gives the option value, that is,

BS(K,T, S, r, σ̂IV (K,T )) (2.8)

where the strike price, K, the expiration date, T , the underlying value, S, the

risk-free rate, r, and the approximated volatility, σ̂IV (K,T ) from the regres-

sion. It is different from the true own implied volatility for each option values,

nevertheless, is believed to capture some implication of a free parameter across

concurrent options. Berkowitz et al. (2010) showed that asymptotic argument

is valid for American options if the volatilities are estimated from American

options.

Local fit with more flexible nonparametric smoothing methods have recently

been employed for functional flexiblility (Benko et al., 2007; Fengler, 2006,

2009). Unlike the case of popular parametric stochastic volatility models that
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always satisfy the no-arbitrage conditions, implied volatility surfaces requires

some constraints to be arbitrage-free.

Local volatility is defined as the function of the underlying asset price and at

any given time. Additionally, we assume that the underlying asset is consistent

with the following stochastic process:

dSt = (r − δ)Stdt+ σ(St, t)dW
Q
t (2.9)

Dupire (1997) and Gatheral (2011) formulated the local volatility function by

giving the total implied variance. The total implied variance(TIV) is defined

as v(y, T ) = σ2
IV (y, T )T with the implied volatility, σIV (·, ·), the log-forward

moneyness, y = ln(K/FT ), FT is the forward price, and , the time to maturity,

T . Then the local volatility surfaces satisfies the following equation:

σ2(T, FTS0e
y) =

∂v
∂T (T, y)

1− y
v
∂v
∂y (T, y)− 1

4(1
4 + 1

v −
y2

v )∂v∂y
2
(T, y) + 1

2
∂2v
∂y2 (T, y)

(2.10)

There are several nonparametric smoothing methods to estimate the local volatil-

ity surface by employing the polynomials, piecewise polynomials, and functional

forms (Dumas et al., 1998; Benko et al., 2007; Hastie et al., 2009; Fengler,

2006). We utilized a bivariate local quadratic kernel smoothing easy to acquire

the derivatives of the total implied variances, v(y, T )(Benko et al., 2007; Fen-

gler, 2006). Then it can be estimated by optimizing the following minimization

problem,

min
β

m∑
i=1

n∑
j=1

(β0 + β1(yi − y) + β2(Tj − T ) + β3(yi − y)(tj − t)

+ β4(yi − y)2 − v(yi, T,j ))2K(yi − y, Tj − T )

(2.11)
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where {(yi, Tj , v(yi, Tj)); i = 1, · · · ,m, j = 1, · · · , n} is the given data set,

β = (β0, · · · , β4)T is the coefficients of estimates, andK(y, T ) = Ki1(y)Ki2(T ) =

exp(−y2/(2i21))/(i1
√

2π) exp(−T 2/(2i22))/(i2
√

2π) is the bivariate kernel func-

tions. To calculate the local volatility, the derivatives of the total implied vari-

ances can be easily obtained from the estimation results:

v̂(y, T ) = β̂0(y, T ),
∂v̂(y, T )

∂y
= β̂1(y, T ),

∂v̂(y, T )

∂T
= β̂2(y, T ),

∂2v̂(y, T )

∂y∂T
= β̂3(y, T ),

∂2v̂(y, T )

∂y2
= 2β̂4(y, T ).

MC simulations are performed under the above local volatility model, and

the fast Fourier transform with the Heston’s model to price the option prices.

In current experiment, we put the implied volatilities of OEX put options from

the Optionmetrics database by the Wharton Research Data Services.

2.2 Review of Statistical Machine Learning Models

In this section, state-of-the-art machine learning models, such as artificial NNs,

support vector machines, and GPs, are briefly reviewed as below.

2.2.1 Artificial neural networks

An artificial neural network (ANN) popularized after mid-1980s and now in

the 2010s with another name of deep learning has been successful in many

applications such as image recognition, speech recognition, natural language

processing, and financial time series (Murphy, 2012). The structure of an ANN

which mimics human brain structure consists of several connected layers where

19



each layer is the aggregate of neurons which are connected to each other. Layers

except for the input and output layer are referred to the hidden layer where

each hidden or output layer represents mathematically a nonlinear function of

the linear combination of the neuron node values that are delivered forward

from input nodes or hidden nodes. The employed nonlinear function is referred

as activation function such as hyperbolic tangent or logistic function. See Figure

2.1 below. The function form of the trained ANN model in this network diagram

Figure 2.1 Deep neural network with two-hidden-layers.

is represented as,

ff(x,w) = σ(

k∑
j=1

w
(3)
j h2(

m∑
i=1

w
(2)
ji h1(

l∑
t=1

w
(1)
it xt + w

(1)
i0 ) + w

(2)
j0 ) + w

(3)
0 ) (2.12)

where w
(k)
ij in the set of weight vectors w means a weight between the j-th

variable in the (k − 1)-th hidden layer and the i-th variable in the k-th hidden

layer, the 0-th hidden layer refer to the input layer, the last k-th hidden layer is

the output layer, hi(·) is the i-th hidden activation function, σ(·) is the sigmoid

function of the output layer for the regression, and each xt means the t-th
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variable in the input vector x.

Backpropagation algorithm is the most popular gradient descent method to

train the model by changing the weights of neural networks to reduce the chosen

error function between the model predicted value and the true output, generally

mean squared error. The gradient value use in this algorithm takes the form of

a product of each partial derivative element of which the total value is rapidly

shrinking to zero when the number of partial derivative terms is increasing,

thereby causing frequently a vanishing gradient problem in training multilayer

neural networks or deep neural networks.

Bayesian neural network is another popular class of neural networks pro-

posed to mitigate the over-fitting problem (Burden & Winkler, 2009; MacKay,

1992) by adding a Bayesian regularization term to objective function as follows:

F = β
∑
||y − f(x,w)||2 + α

∑
||w||2 (2.13)

where F is the objective function, y is the output data, and w is the weights

of the network which are random variables with a density function given by

P (w|D, f) =
P (D|w, f)P (w|f)

P (D|f)
(2.14)

where D is the training data for neural networks. Levenburg-Marquardt algo-

rithm are used to find the weights of networks to achieve minimization of the

objective function (Foresee & Hagan, 1997) and determines regularization pa-

rameters α and β by approximating the Hessian matrix of objective function

at the minimum point. This technique increases the robustness of the model by

mitigating the local minimum problem.
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2.2.2 Bayesian neural networks

Bayesian neural networks (BNN) is a transformed Multilayer perceptron (MLP)

which is a general term for ANNs in the fields of machine learning. The networks

have been successful in many application such as image recognition, pattern

recognition, natural language processing, and financial time series (Murphy,

2012). It becomes known that much effective to represent the complex time

series than the conventional linear models, i.e. autoregressive and moving av-

erage, etc. The structure of a BNN is constructed with a number of processing

units classified into three categories: an input layer, an output layer, and one

or more hidden layers.

Specifically, neural networks containing more than one hidden layers can

solve the exclusive OR (XOR) problem, which cannot be solved by a single layer

perceptron (Minsky & Papert, 1969). Different from a single layer perceptron,

which can only be linearly separated, they solve XOR problems by introducing

backpropagation algorithms and hidden layers. The hidden layer mapping the

original data to a new space transforms data that cannot be linearly separated

into linearly separable data.

Weights of a BNN must be learned between the input-hidden layer and

hidden-output layer. Backpropagation refers to the process in which weights

of hidden layers are adjusted by the error of hidden layers propagated by the

error of the output layer. An optimization method called delta rule is used to

minimize the difference between a target value and output value when deriving

backpropagation algorithm. In general, BNNs minimize the sum of the following
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errors, EB, using backpropagation algorithm and delta rule.

EB =
α

2

N∑
n=1

K∑
k=1

(tnk − onk)2 +
β

2
wT
BwB (2.15)

where EB is the sum of the errors, N is the number of the training variables, K

is the size of the output layer, tnk is the k-th variable of the n-th target vector,

onk is the k-th output variable of the n-th training vector, α and β are the

hyper-parameter, and wB is the weights vector of the Bayesian neural network.

A BNN is a non-linear version of ridge regression, which is largely based

on the Bayesian theory for neural networks. Unlike conventional neural net-

works that maximize marginal likelihood, BNN is a machine maximizing the

value of posterior through an application of the Bayes’ theory. The elements

added to the error term cause the machine to learn by selecting a weight with

high importance even when the number of total weights is reduced rather than

distributed to a large number of weights.

2.2.3 Support vector regression

Support vector machine (SVM) is a state of the art kernel machine learn-

ing method and is successfully applied to nonlinear classification, regression,

and clustering problems (Vapnik, 2013). Given a set of observations D =

{(xi, yi)}Ni=1, support vector regression (SVR) model aims at finding a regres-

sion function value f(xi) that has smaller deviation than predetermined ε from

the targets yi. Specifically, SVR begins with nonlinear functions f of the form

f(x) = 〈w,Φ(x〉+ b (2.16)
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where 〈, 〉 denotes the inner dot product and Φ is a nonlinear map from an

input space into a feature space. Then it try to find the flatness which can be

achieved by minimizing the weight norm subject to the deviation is at most ε

as follows.

minimize
1

2
||w||2 + C

l∑
i=1

(ξi + ξ∗i )

subject to yi − 〈w,Φ(xi)〉+ b) ≤ ε+ ξi

〈w,Φ(xi)〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(2.17)

where the constant C > 0 is concerned with the trade off between the flatness

of f and the amount up to which deviations larger than ε are tolerated. In this

formulation, slack variables ξi, ξ
∗
i allow some error bigger than ε to deal with

infeasible constraints of the problem. This primal optimization problem can be

efficiently solved using the so-called kernel tricks by solving its dual problem as

maximize − 1

2

l∑
i,j=1

(αi − αi∗)(αj − αj∗)k(xi,xj)

− ε
l∑

i=1

(αi + αi∗) +

l∑
i=1

yi(αi − αi∗)

subject to
l∑

i=1

(αi − αi∗) = 0

αi, αi∗ ∈ [0, C]

(2.18)

where a kernel defined by k(x,x′) := 〈(Φ(x),Φ(x′)〉 is used instead of Φ(.)

explicitly. In this paper, we adopt the most popular RBF kernel which is defined
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by

k(xi,xj) = exp(−γ||xi − xj||2), γ > 0 (2.19)

(See more details in (Vapnik, 2013).)

2.2.4 Gaussian process

Gaussian process (GP) is a state of the art Bayesian kernel regression model

and is defined by a collection of random variables, any finite number of which

have a joint Gaussian distribution (Rasmussen & Williams, 2006). A GP f(x)

for an observed input x is regarded as function value vector sampled from a

multivariate Gaussian distribution over the space of functions. It has a mean

function m(x) and a covariance function k(x,x′) given by

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

(2.20)

Given a set of observations D = {(xi, yi)}Ni=1, the joint distribution of y =

(y1, ..., yN )T , the covariance of y is represented by

cov(y) = K + σ2I (2.21)

where K is an N × N covariance matrix with its ij-th component k(xi,xj).

Gaussian process has the following joint distribution of y and f∗ = f(x∗) for a

new input x∗; (
y

f∗

)
∼ N (0,

K + σ2I kT∗

k∗ k∗∗

), (2.22)

25



where k∗∗ = k(x∗,x∗),k∗ = (k(x1,x
∗), ..., k(xN,x

∗))T . The conditional distri-

bution of f∗ given D then follows the Gaussian distribution as

f ∗ |D ∼ N (kT∗ (K + σ2I)−1y, k∗∗ − kT8 (K = σ2I)−1k∗) (2.23)

Now, we can check that the posterior variance k∗(x,x′) is independent of y.

There are several widely used covariance functions k(x,x′) whose choice is quite

dependent on the characteristics of the problems. We chose the ”Matérn class”

as covariance functions in our experiments as (G.-S. Han & Lee, 2008), which

is given by

k(x,x′) =
1

Γ(ν)2ν−1
[

√
2ν

l
||x− x′||]νKν(

√
2ν

l
||x− x′||) (2.24)

where ν and l are positive parameters, and Kν is a modified Bessel function

with ν which controls the degree of smoothness. The complete specification of

the GP can be achieved by maximizing the marginal log likelihood over hyper-

parameter θ = (ν, l):

lnP(y|D, θ) = −1

2
yT (K = σ2I)−1y − 1

2
ln|K + σ2I| − N

2
log2π (2.25)

(See (Rasmussen & Williams, 2006) for more details on the GP.)
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Chapter 3

Predictive Models for the Derivatives

Market

3.1 Chapter Overview

Machine learning models, which are equipped with outstanding predictability,

have applied to financial forecasting, especially in financial derivatives market.

Most machine learning methods forecasted the prices of financial derivatives

with the expectation that the process of underlying assets will be represented

implicitly as a learning function of input variables without the explicit form

of return processes. Successful machine learning models for predicting financial

derivatives include artificial neural networks (NNs) (Hutchinson et al., 1994;

Lajbcygier & Connor, 1997; Malliaris & Salchenberger, 1996; Yao & Tan, 2000a;

Gençay & Qi, 2001b), support vector machines(Wang, 2011b; Kazem et al.,

2013), and Gaussian processes (GPs) (G.-S. Han & Lee, 2008; Yang & Lee,

2011; Park & Lee, 2012; J. Han et al., 2016). These models have also considered

different types of available market information, but did not consider explicit

formulation for underlying processes.

Econometric financial jump models, such as affine jump-diffusion or infinite
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activity Lévy processes, are alternative models that have been applied success-

fully for derivatives pricing and predictions (Carr et al., 2003; Kou & Wang,

2004; D. B. Madan & Seneta, 1990; D. B. Madan et al., 1998; Merton, 1976;

Nualart et al., 2001; Schmitz et al., 2014). These models have been relatively

successful in the valuation of contingent claims because of the ability to address

volatility smile, fat tail, and volatility clustering with jumps. Econometric fi-

nancial jump models, such as the CGMY or Kou models, explicitly formulate

a return process of underlying assets, whereas machine learning models express

the process of underlying assets implicitly from the learned model.

First of all, we propose a novel MCMC methodology based on the gen-

erative model. Similar to the particle MCMC method (Andrieu et al., 2010),

the proposed method aims to acquire the sample set from posterior distribu-

tion by sampling the approximated posterior instead of estimating the exact

posterior density function. In this dissertation, we suggest a generative model

sampler based on variational inference and provide the theories that support

the argument.

The following fundamental issues relevant in practical application will be

discussed. First, In-sample estimation errors between present market and model

prices calibrated from current or previous prices are compared to verify current

or previous market information for each model quantitatively. Second, we mea-

sure out-of-sample prediction errors in advance for the next one day and seven

days, and investigate the consistency interval of calibrated models with the

market to evaluate each model based on price forecasting capability. We also

consider the amount of past market information required to build each model
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for market prediction. Finally, the performance of domain adaptation is evalu-

ated with the differences of in-sample training data and out-of-sample test data

domains. In this empirical study, European options are used for the former

training domain and American options for the latter test domain. The model

should consider domain adaptation suitability for elucidating the structure of

different option markets consistently with the same underlying conditions.

Conventional machine learning models are very effective in estimating the

cross sectional option prices well in the data area covered by the training data,

but often fail to represent the option prices outside that area. This is one of the

major handicaps for applying machine learning models to option pricing and

forecasting. In this chapter, we propose a generative Bayesian neural networks

model for risk-neutral option pricing to overcome the limitation of conventional

machine learning methods.

Lastly, we conducted a comprehensive empirical study to compare state-

of-the-art American option pricing models with machine learning models with

respect to model validity and model predictability for American index options

using the S&P 100 index American put options from 2003 to 2012. We addressed

the following fundamental questions.

- Does each model have the capability to incorporate current or previous

market information well? Good fit to market prices is essential for a good

model to be consistent with the markets. This fit can be verified quantita-

tively by comparing the in-sample estimation errors between the present

market prices and the model prices calibrated from current or previous
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prices.

- Can each model predict future prices well? Predictability is one of the

most important criteria to assess calibrated models. Predictability is eval-

uated by computing the out-of-sample prediction errors of the models for

1 day ahead.

- Can a machine learning model generate fair prices in the deep ITM (in the

money) or deep OTM (out of the money) options as classical American

option pricing models can? Capability to generate fair option prices in

the domain of few transactions is a barometer for the model to elucidate

consistently the financial structure of option markets.

The rest of this chapter is organized as follows. Section 2 presents the pro-

posed generative model sampler. Section 3 evaluates the estimation and predic-

tion performance for the American option data. Section 4 proposed the gener-

ative Bayesian neural network to overcome the limitation of machine learning

methods and described the empirical experiment. Section 5 provides the con-

clusions of this chapter.

30



3.2 A Generative Model Sampler for Inference in State

Space Model

3.2.1 Backgrounds

Inference in state space models

In this study, we focus on a generic state space model (SSM), a non-linear

non-Gaussian hidden Markov model (HMM). A generic SSM model consists of

given static parameter, θ ∈ ×, and the following three probability distributions:

an initial probability, h(·|θ), a transition probability, f(·|x, θ), and an emission

probability, g(·|x, θ). Figure 3.1 describes the scheme of a structure of a generic

SSM.

Figure 3.1 Scheme of a state space model

A generic SSM includes two types of variable, one is the visible variable

y = {y0,y1, ...,yT ; yi ∈ YM , 0 ≤ i ≤ T} we can observe, another is the latent

variable x = {x0,x1, ...,xT ; xi ∈ XN , 0 ≤ i ≤ T}. Subscribe of each component

means the time step. Hereafter, we shall use x or y to denote the whole process

of each variable x0:T or y0:T for the brevity. Above mentioned three probability
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define the several relationships between variables under the SSM structure. A

whole process of the latent variable x is characterized by an initial probability

x0 ∼ h(·|θ) and a transition probability

xt+1|xt ∼ f(·|xt, θ).

Each observation yt is assumed to be conditionally independent given each

latent variable xt with their emission probability density:

yt|xt ∼ g(·|xt, θ).

Therefore the joint density given the static parameters θ can be represented by

the following form:

p(y,x|θ) = h(x0|θ)
T−1∏
t=0

f(xt+1|xt, θ)
T∏
t=0

g(yt|xt, θ).

In this context, our study aims to investigate Bayesian inference given

the observed variable time series y. We consider most general non-linear non-

Gaussian SSM structure, which is hard to address the closed form for the pos-

terior distribution: p(x|θ,y) or p(x, θ|y). Therefore most studies resort to ap-

proximate the posterior distribution directly or indirectly by several practical

technologies such as MCMC methodologies. Further on, we suggest the novel

and model-agnostic MCMC methodologies combined with a generative model

to perform Bayesian inference to any general state space model. We will inves-

tigate a posterior distribution ,p(x|θ,y) ∝ p(y,x|θ) when we know parameter

θ. Even the parameters θ are unknown, we also perform Bayesian inference and

parameter estimation adequate to the observations y by evaluating a posterior

distribution p(x, θ|y) ∝ p(y,x|θ)p(θ) through our proposed methods.
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Bayesian inference with MCMC methodologies

Inferences associated with state space models have been studied in a variety of

approaches, such as confining to constrained models or applying to more general

models with mitigated theoretical parts. In cases of linear Gaussian state space

models and finite hidden Markov models, inference can be possible efficiently

by sampling exactly from the posterior density with developed techniques such

as a Kalman filter or constrained Gibbs sampling (Durbin & Koopman, 2002;

Carter & Kohn, 1994; Fruhwirth-Schnatter, 1995). We do not discuss the case

of constrained model here.

In this study, we focus on the Bayesian inference in a general state space

model. Several studies have discussed the inference problem under the generic

state space model, which is more suitable for applications but generally more

difficult to inference (Doucet & Johansen, 2009; Poyiadjis et al., 2011; Andrieu

et al., 2010). Sampling from the posterior distribution p(θ,x|y) is a main task of

Bayesian inference whereby an entire sample can be composed by alternatively

updating state components x and stable parameters θ conditional on each other.

This method is very similar to the usual Gibbs sampling method, but it has

biased results because of the high dependence between latent variables x and

parameters θ (Papaspiliopoulos et al., 2007). Recent studies have considered

the sequential Monte Carlo (SMC) method to address this issue. Combined

algorithm with SMC methods and MCMC approaches have been developed

in the literature (Gilks & Berzuini, 2001; Andrieu et al., 2010; Chopin et al.,

2013; Fulop & Li, 2013). In particular, Andrieu et al. (2010) suggested a explicit
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method to obtain samples from the posterior rather that the probability density

value of it to overcome the main drawbacks of SMC (Fearnhead, 2002; Storvik,

2002), where SMC methods concentrate on specific particle to deteriorate the

rejuvenation step as over the time steps. Estimation of the marginal likelihood

for the model can be provided as a by-product by the MCMC methodologies

(Chopin et al., 2013) combining the particle filtering technique and iterated

batch importance sampling developed for parameter posterior evaluation by

(Chopin, 2002). Fulop and Li (2013) also independently proposed a similar

methodology.

Variational inference

Inference is the main algorithmic problem to account for the visible data. The

range of the discussion about the data is restricted by the model assumption

based on the knowledge and critical questions to data analysis. Then, we dis-

cover the pattern of the data under the restricted model through the inference.

Inference answers the question: ”what does the model describe about this data?”

Variational inference (VI) gives general and scalable approaches to the process

of inference. Consider the following probabilistic model a joint distribution of

hidden variables x and visible variables y

p(x,y).

When we want to inference about the hidden variables, the posterior distri-

bution is the conditional distribution of the hidden variables x given observed
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variables y

p(x|y) =
p(x,y)

p(y)
.

A denominator of the conditional distribution is intractable for most inter-

esting model assumptions. It causes to approximate the posterior inference.

VI brings in a variational family of distributions q(x, ν) over the latent vari-

ables x to turn the inference into the optimization problem. For the variational

parameter ν, the optimization problem finds the optimal solution q∗(x, ν), which

is an element of the variational family minimizing the given objective function

Kullback-Leibler (KL) divergence. KL divergence is a distance between the true

posterior p(x|y) with the approximated posterior q(x, ν) (MacKay, 2003; King-

man, 1970):

KL(q(x), p(x|y)) = Eq
[
log

q(x)

p(x|y)

]
For the brevity, notation of the variational parameter ν is omitted. We can-

not minimize the KL divergence exactly, but we can achieve the same goal

by maximizing the evidence lower bound (ELBO), which is a lower bound on

the marginal distribution log p(y). KL divergence can be decomposed as the

following form:

KL(q(x), p(x|y)) = Eq
[
log

q(x)

p(x|y)

]
= Eq[log q(x)]− Eq[log p(x|y)]

= Eq[log q(x)]− Eq[log p(x,y)] + log p(y)

= −(Eq[log p(x,y)]− Eq[log q(x)]) + log p(y)

Therefore, maximizing the ELBO Eq[log p(x,y)]− Eq[log q(x)] is equivalent to
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minimizing the KL divergence. General variational inference framework aims

to maximizing the ELBO term efficiently based on the visible data set {y}1:T .

3.2.2 Proposed methods: generative model sampler

A generative model is a way of extracting samples from an undefined target

density by learning the machine from available data related to the target den-

sity. A generative model could be acquired by two different approaches: a vari-

ational autoencoder (VAE) is employed when the target density has explicit

relationships with other observable densities(Kingma & Welling, 2013; Kingma

et al., 2014; Rezende et al., 2014), and a generative adversarial network (GAN)

generates samples directly from implicit target densities(Radford et al., 2015;

Goodfellow et al., 2014). Several kinds of research have been studied to obtain

more accurate and meaningful samples through the combination of two ap-

proaches. Several kinds of research have been studied to obtain more accurate

and meaningful samples through the combination of two approaches(Maaløe et

al., 2016; Makhzani et al., 2015; Mescheder et al., 2017; Ranganath et al., 2016).

In this study, we propose a modified version of the Mescheder et al. (2017)’s

adversarial variational Bayes (AVB) application to extract samples from the

posterior of latent variables generally difficult to clarify.

The marginal likelihood of visible variables, y, is always greater than the

sum of the expected value of the log likelihood, p(y|x), for the approximate

posterior distribution, q(x|y), of latent variables, x, and the Kullback-Leibler

(KL) divergence value, which means the distance between the approximate pos-

terior density, q(x|y), and the prior density of latent variables, p(x), (Kingma
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& Welling, 2013; Rezende et al., 2014). The following inequality shows this

relationship.

log p(y) ≥ −KL(q(x|y), p(x)) + Eq(x|y)[log p(y|x)] (3.1)

The value of KL has the maximum value when q(x|y) = p(x|y), and both

sides of the above inequality 3.1 become equal. Because it is practically difficult

to find a q(x|y) where q(x|y) = p(x|y), we obtain an approximation of the

posterior p(x|y) by finding the estimated distribution q(x|y) which maximizes

the following equation.

log p(y) = max
q
−KL(q(x|y), p(x)) + Eq(x|y)[log p(y|x)]

= max
q

Eq(x|y)[log p(x)− log q(x|y) + log p(y|x)] (3.2)

Consider a real-valued discriminative networks T to circumvent the prob-

lem of calculating a probability density function value of approximated posterior

q(x|x). Proposed discriminator which has the opposite way to the Mescheder et

al. (2017)’s AVB enables the convergence theories of proposed MCMC method-

ologies proved in later section. T has the following objective function for a given

q(x|x), and the sigmoid function, σ(x) = (1 + exp−x)−1:

max
T

Ep(x)[log σ(T )] + Eq(x|y)[log(1− σ(T ))] (3.3)

Theorem 1 shows that the optimal discriminator T includes the probability

density function value q(x|y) impossible to calculate practically.

Theorem 1. The optimal discriminator T is log p(x)− log q(x|y).
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Proof. Proof.

Ep(x)[log σ(T )] + Eq(x|y)[log(1− σ(T ))]

=

∫
x

(p(x) log σ(T ) + q(x|y)[log(1− σ(T ))])

Under the fixed x, the probability density function values are constant. Since

the objective function is convex to σT defined between 0 and 1, the optimal is

acquired from the point where the first derivative has zero value. Therefore, the

optimal σ(T∗) is p(x)
p(x)+q(x|y) . Lastly, the optimal T∗ is log p(x)− log q(x|y).

Now, we can acquire the estimated marginal likelihood and samples from the

approximate posterior by maximizing the objective equation 3.2 which replaces

log p(x)− log q(x|y) with T̂ practically estimated by maximizing the objective,

equation 3.3. The MCMC methodologies we propose in the next section have

a similar structure to PMCMC algorithms, but have the biggest difference in

replacing samples from SMC with samples from the generative model. Sam-

ples obtained by the generative model give the following characteristics to the

proposed algorithm. We employs a neural networks as the generative model

under the well-known fact that any continuous function can be approximated

arbitrarily well by a neural network with a single hidden unit.

Using the estimate of the discriminator T∗ obtained from the result of The-

orem 1, Proposition 1 gives the estimated value of evidence p̂(y), which will be

practically employed in the proposed MCMC methodologies.

Proposition 1. The evidence p̂y is estimated by Eq̂(x|y)[expT∗p(y|x)].

Proof. Proof.

log p̂(y) = Eq̂(x|y)[log p(x)− log q(x|y) + log p(y|x)]

= Eq̂(x|y)[T ∗+ log p(y|x)]

Therefore, p̂(y) = expEq̂(x|y)[T ∗+ log p(y|x)].
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Most important achievement of embedding generative model is to implement

a model-agnostic structure. We will explain in detail by the following example.

Consider a situation where the latent variables, x, of equation 3.2 composed of

two subdivided groups of latent variables: x1 is easy to extract from the prior

distribution and x2 is hard to extract from the prior distribution. Then the

equation 3.2 can be rewritten as:

log p(y) = max
q

Eq(x1,x2|y)[log p(x1,x2)− log q(x1,x2|y)+ log p(y|x1,x2)] (3.4)

The whole latent variable set, (x1,x2), is hard to extract from the prior distri-

bution, p(x1,x2). However, we can rewrite the prior distribution as recursive

form as the above equation 3.4:

log p(x1,x2) = max
q2

Eq2(x1|x2)[log p(x1)− log q2(x1|x2) + log p(x2|x1)] (3.5)

The above equation causes the introduction of T2 in the same manner of that

of T1 without loss of generality. Learned T2 is replaced to the above equation to

acquire sample set, (x1,x2), distributed under the prior distribution, p(x1,x2).

Next process is exactly the same as the basic process above: 1) Learn the dis-

criminator T1, and 2) Learn the posterior distribution, q(x1,x2|y). Therefore,

the proposed method can be applied to any model with many latent variables

and unknown parameters because of the possibility to divide latent variables

continuously in a generative model. This feature also gives real practitioner the

degree of freedom to model structure for practical application.

3.3 Machine Learning versus Econometric Models in

Predictability of Financial Options Markets

3.3.1 Data description and experimental design

Econometric jump and machine learning models are evaluated in terms of esti-

mation, prediction, and domain adaptation performance by using the daily S&P

100 Index American / European put options. Two types of option domains ex-

ist: S&P 100 options with American-style exercise (ticker symbol OEX), and
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S&P 100 options with European-style exercise (ticker symbol XEO). An ex-

perimental study is conducted using the S&P 100 Index American / European

option data for 2012 when the effects of the recent global crisis were assumed to

be maximum marginal. We considered the options with maturity from 7 to 90

days as in the literature. The option prices for very short maturity or continu-

ing long expiration tend to be biased from low-time premium and measurement

errors. The statistical summary of empirical data is demonstrated in Table 3.1.

For brevity, an input variable, moneyness, is adopted as the ratio of spot price

to strike price and maturity.

There are two representative econometric jump models, namely, Kou and

CGMY (Kou, 2002; Carr et al., 2003) and five state-of-the-art machine learning

models, including NNs, Bayesian NNs, deep NNs, SVR, and GP, for regression.

The performance results of each model are evaluated based on the following

widely used metrics.

(1) The mean absolute percentage error (MAPE), 1
N

∑N
n=1(|en|/Cmarketn , stands

for the percentage error of the model.

(2) The mean percentage error (MPE), 1
N

∑N
n=1(en/C

market
n ), represents the

error direction of the model.

(3) The mean absolute error (MAE), 1
N

∑N
n=1 |en|, measures the error mag-

nitude of the model.

(4) The root mean squared error (RMSE),
√

1
N

∑N
n=1(en)2, means the stan-

dard error of the model.

where N is the total number of options and en = Cmarketn −Cmodeln is the model

misspecification error where Cmodeln is the model estimated price, and Cmarketn

is the market price for the n-th options .

Figure 3.2 shows the entire scheme of data usage for model estimation and

prediction. We used 1-, 7-, and 30-day option prices for nonparametric machine

learning models, and only 1-day option prices for parametric jump models for
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Table 3.1 Summary statistics of the S&P 100 index American/European put

options. This table reports average and standard deviation of option price with

the number of observations for each category.

Maturity

< 30 30 - 60 > 60 All

Std. Std. Std. Std.

moneyness Mean dev. Mean dev. Mean dev. Mean dev.

S&P100 index American put options by moneyness and maturities

<0.94
price 60.52 21.34 53.13 15.99 74.38 24.56 60.64 21.48

Observation 55 32 18 105

0.94 - 0.97
price 28.48 5.02 31.12 4.76 35.31 4.32 29.76 5.29

Observation 256 107 33 396

0.97 - 1.00
price 13.18 4.28 17.72 3.62 22.63 3.47 15.86 5.05

Observation 691 497 137 1325

1.00 - 1.03
price 4.82 2.34 10.39 2.82 15.71 2.82 8.44 4.58

Observation 882 773 232 1887

1.03 - 1.06
price 2.33 1.10 5.63 2.11 10.58 2.31 4.94 3.16

Observation 493 631 152 1276

>1.06
price 1.62 0.59 2.56 1.39 3.98 2.44 2.78 1.80

Observation 249 1317 488 2054

All
price 9.72 11.61 8.58 8.52 12.07 12.15 9.53 10.41

Observation 2626 3357 1060 7043

S&P100 index European put options by moneyness and maturities

<0.94
price 48.61 8.52 63.83 16.35 51.59 4.03 56.38 14.32

Observation 10 13 4 27

0.94 - 0.97
price 30.94 6.49 33.04 5.28 38.19 6.89 32.76 6.39

Observation 39 39 11 89

0.97 - 1.00
price 10.30 4.40 16.45 4.19 23.16 4.59 13.37 5.98

Observation 305 164 44 513

1.00 - 1.03
price 4.14 2.65 9.95 3.16 15.48 3.11 6.34 4.40

Observation 628 254 51 933

1.03 - 1.06
price 1.51 1.19 5.21 2.01 10.78 2.88 2.95 2.85

Observation 464 185 32 681

>1.06
price 0.63 0.68 2.54 1.51 4.78 2.97 1.63 1.84

Observation 433 269 59 761

All
price 4.47 6.57 9.73 10.17 15.23 10.87 6.81 8.80

Observation 1879 924 201 3004

simplicity. Unlike the machine learning models that require large amounts of

data for efficient learning, parametric jump models can calibrate the model with

a small amount of market data. Using the calibrated models, we compared the

prediction performance of 1 day ahead and 7 days ahead, thereby generating

six cases of prediction results in total. We considered the model prediction of

the next 7 days in addition to the next 1 day, given that the model with a

considerable predictive power for both 1-day ahead and 7-day ahead prediction

is advantageous for hedging or portfolio managing purposes and for reducing
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inefficiency from adapting a model frequently.

Figure 3.2 Scheme of experiments for the model estimation and prediction.

3.3.2 Estimation and prediction performance

For econometric jump models, the model is calibrated each day by estimating

the parameter set that minimized the mean squared error of the actual market

price and the model price calculated by the abovementioned method using OEX

put option prices. A final set of calibrated parameters is obtained to be used

for prediction. For machine learning models, the model is trained using the

given data set (1-day, 7-day, or 30-day OEX put option prices) as stated in

the previous section and obtained the final calibrated model to be used for

predicting future option prices.

Table 3.2 shows the summary of estimation results for each model. Most mod-

els have acceptable estimation errors (in-sample errors), which are mostly near

10%. The estimation results of the Gaussian process model are excluded be-

cause it has practically zero estimation error by fitting exactly the option price

corresponding to its moneyness and maturity with the expense of over-fitting,

which resulted in poor prediction performance. Although most MPE values in
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Table 3.2 Estimation performance. This table reports Estimation errors for S&P

100 OEX put options of each category.

Panel: Estimation Errors

Model training day MAPE MPE MAE RMSE

Kou model 1day 0.0813 0.0081 0.6013 1.1935

CGMY model 1day 0.1156 0.0081 0.7466 1.0558

NN 1day 0.1053 0.0068 0.427 1.6048

7day 0.1232 0.0008 0.5676 1.333

30day 0.1708 -0.0221 0.825 1.1154

BNN 1day 0.0153 0.0049 0.0513 0.3436

7day 0.0614 -0.001 0.2743 0.3848

30day 0.1511 -0.0255 0.7442 0.9712

SVR 1day 0.1115 -0.0337 0.9329 2.1525

7day 0.0917 -0.0217 0.8678 2.3067

30day 0.1332 -0.0346 1.124 3.4782
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machine learning models are negative (overvalued), they are relatively small in

absolute values, thereby indicating unbiased direction similar with econometric

jump models. Table 5.1 presents the detailed results of model estimation errors

with respect to moneyness and time to maturity. In-the-money or at-the-money

options with short maturity have small estimation errors in both econometric

jump and machine learning models; the latter presents no noticeable differences

in maturities.

Specifically, machine learning models have small estimation errors for the

region with a few observations compared with econometric jump models, which

cause over-fitting in prediction. Moreover, no significant difference is observed

for the estimation errors between econometric jump models using data only from

previous one-day and machine learning models using data over long periods. The

results of estimation partially supported the assumption that current market

price generally included all information obtained previously.

Next, there are the prediction performances of each estimated model applied

to out-of-sample data. The prediction results have different accuracies for each

model, although most models have similar estimation errors, except for the GP

model. Table 3.3 shows the prediction results of each model applied to one day

and seven days ahead. Econometric jump models showed slightly better perfor-

mance in one-day and seven-day predictions than machine learning models. The

GP model showed the worst performance in prediction, although it showed the

best estimation performance triggered by over-fitting. Machine learning models

displayed mostly good prediction performance when they are trained from large

option data (i.e., 30-day option prices). Interestingly, econometric jump models

exhibited positive MPEs (or underpriced), whereas machine learning models

showed negative MPEs (or overpriced).

Table 5.2 and 5.3 summarize the detailed prediction results of one day ahead

and seven days ahead in respect to category of moneyness and maturity, respec-

tively. For all models, the ITM or OTM options with long maturity showed large
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Table 3.3 1-day & 7-day prediction performance. Panel A reports 1-day predic-

tion errors and panel B reports 7-day prediction errors for S&P 100 OEX put

options of each category.

Panel A: 1-day prediction errors

Model training day MAPE MPE MAE RMSE

Kou 0.1252 0.0012 0.8464 1.8336

CGMY 0.1551 0.0097 0.9406 1.3942

NN 1day 0.4801 -0.0228 2.2304 5.711

7day 0.196 -0.0131 0.9142 2.6771

30day 0.1851 -0.025 0.9199 1.4763

BNN 1day 0.2273 -0.0463 1.0701 3.4834

7day 0.1446 0.003 0.6927 1.6062

30day 0.1729 -0.0279 0.857 1.2734

SVR 1day 0.6675 -0.34 4.3862 7.9208

7day 0.6577 -0.3239 4.4614 8.1446

30day 0.2636 -0.0626 2.0063 5.2376

GP 1day 1.6801 -1.2734 7.358 11.0846

7day 1.6019 -1.2107 7.2128 11.0841

30day 0.4593 -0.2516 2.0381 5.0462

Panel B: 7-day prediction error

Model training day MAPE MPE MAE RMSE

Kou 0.1567 0.0146 0.9665 1.8509

CGMY 0.1872 0.0043 1.0832 1.5691

NN 1day 0.8574 -0.1391 4.0553 8.7374

7day 0.253 -0.008 1.1586 2.9318

30day 0.2023 -0.03 0.9965 1.5197

BNN 1day 0.3705 -0.0876 1.682 4.6454

7day 0.2456 -0.0002 1.1185 2.3619

30day 0.191 -0.0305 0.9542 1.3989

SVR 1day 1.0081 -0.5022 6.3333 10.6667

7day 1.0587 -0.5473 6.5537 10.996

30day 0.2857 -0.077 2.2053 10.2228

GP 1day 1.6517 -1.2418 7.3901 11.2432

7day 1.5997 -1.2033 7.2809 11.1789

30day 0.5022 -0.2699 2.1207 5.9068
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relative prediction errors (MAPE and MPE). The prediction error for machine

learning models increased with the volume of traded options relative to that

of econometric jump models, which explained the best overall prediction per-

formance of econometric jump models over Bayesian NNs; however, the latter

showed fewer prediction errors than the former in terms of the options with

long maturities of small-traded volumes. Compared with other training data,

machine learning models trained by 30-day data improved the performance of

the model in predicting option prices 7 days ahead, although the difference

between the models using the 7-day and 30-day data is not significant in pre-

dicting option prices of the next day. By contrast, econometric jump models

displayed similar range of relative prediction errors for each category of mon-

eyness and maturity, which implied that the characteristics of return stochastic

process used for the model did not change much over the time period of our

interest and achieved stable performance in the 7-day and 1-day predictions.

3.3.3 Robustness and Domain Adaptation Performance of the

Models

Parameters for econometric jump models and weights of machine learning mod-

els are gained through the estimation step. Weights of machine models can be

regarded as parameters which provide intact models without empty parameters

from the given market data like as parameters of econometric jump models

do. the hypothesis is assumed that well defined parameter from the estimated

model has only slight changes after every day update as long as the absence of

significant changes in the market. In this sense, the robustness of parameters

means that a set of the daily calibrated parameters or weights for a model is

confined to a relatively small region.

Given that the calibrated weights for a machine learning model are highly

dimensional, A multidimensional scaling method (MDS) Lattin et al. (2003)

is used to visualize the proximities of parameters or weights of each model.

Multidimensional scaling is a widely used dimension reduction method that
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transforms a set of high-dimensional observations into a set of low-dimensional

observations by approximately preserving the distances or dissimilarities be-

tween all pairs of observations.

Figure 3.3 Two dimensional MDS visualization of each parameters. Red ’o’:

corresponding 1-day parametric parameters. Blue ’*’: corresponding 1-day non-

parametric parameters.

To illustrate our results, MDS is applied to the calibrated parameters of the

Kou model and to the calibrated weights of the Bayesian NN model; the dimen-

sions of the two are 4 and 246, respectively. The constructed 2D MDS visualizes

the 2D locations of daily parameters or weights of each model. Figure 3.3 shows

a typical plot for the 2D MDS visualization of the econometric jump model and

the machine learning model. The two types of models present a different trend.

The Kou model parameters, represented by red ”o”s, are mostly confined to a

small range of regions. The Bayesian neural network model weights, represented
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by blue ”*”s, are widely scattered with no noticeable patterns. The Bayesian

neural network model weights, represented by blue ”*”s, are widely scattered

with no noticeable patterns. This result implies that econometric jump model

parameters are more stable and robust than machine learning model parame-

ters.

As one of the transfer learning in machine learning fields, domain adaptation

aims to learn in the test domain, which is not used in training, with the infor-

mation in training domain(Ben-David et al., 2010; Pan & Yang, 2010). Studies

in this area have been conducted in such a way that source knowledge distri-

butions are adjusted in a manner similar to new target knowledge distributions

(Gong et al., 2012; Patricia & Caputo, 2014).

We compared the domain adaptation performance of the models by predict-

ing American put option prices of the following day using models calibrated

from current European put option prices. Different types of options reflected

different demands and interests of investors obtaining from different payoffs and

acquired information. The requirement for domain adaptation in option mar-

kets occurs naturally when different types of options have the same underlying

assets. Hence, a model calibrated from one type of options should be adapted

to predict another type of options.

Table 3.4 1-day domain-adaptation performance. This table reports 1-day

domain-adaptation errors of each model. Each model is trained by European

S&P 100 XEO put options and tested by American S&P 100 OEX put options.

Model MAPE MPE MAE RMSE

Kou model 0.1517 -0.0244 1.0418 1.8085

CGMY model 0.1722 -0.3082 2.2802 2.3055

NN 0.5425 -0.0046 2.3463 5.4485

BNN 0.1849 -0.0927 0.9867 3.3072

SVR 0.6683 -0.3398 4.3999 7.9467

GP 1.5873 -1.2362 6.8157 10.574

48



Table 3.4 shows that econometric jump models exhibit better domain adapta-

tion performance than machine learning models, although all the models show

worse performance with different domains than with the same domain as ex-

pected. Notably, the performances of econometric jump models with different

domains are still better than those of machine learning models with the same

domain. Thus, we may use domain adaptation algorithms, such as sample se-

lection bias in covariate shift, learning shared representations, or feature-based

supervised adaptation, (see (Ben-David et al., 2010; Pan & Yang, 2010) and

the references therein for more details) for machine learning models to enhance

performance. However, theoretically, prediction performance using different do-

mains cannot be better than that using the same domain, (see the proof in

(Ben-David et al., 2010; Pan & Yang, 2010)); thus, econometric jump models

are superior to machine learning ones in terms of domain adaption performance.

In addition, the relatively small prediction errors of the parametric models

adopting different domains show that their underlying risk-neutral dynamics of

returns provide suitable and consistent models to explain the two different types

of option markets well. The results of domain adaptation takes into account dif-

ferent fundamental approaches of two categories; the existence of explicit form

of the underlying process. In case of econometric jump models, the explicit un-

derlying process, such as kou model, plays the role as a bridge between two

domains. Model parameters from one domain transform the information com-

patible to the other domain by adapting explicit underlying process. On the

other hand, machine learning methods without intermediate factors have to

employ further techniques which adjust distributions between domains (Gong

et al., 2012; Patricia & Caputo, 2014). For financial derivative pricing purposes,

domain adaptation is possible without the introduction of additional technolo-

gies under the explicit underlying process.

Table 5.4 shows the detailed domain adaptation results of 1-day-ahead pre-

diction in each category of moneyness and maturity. The result is similar to
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those of 1-day-ahead and 7-day-ahead prediction errors, but more dramatic.

3.4 A Generative Bayesian Neural Networks Model

for Risk-Neutral Option Pricing

3.4.1 Proposed method

Figure 3.4 presents the daily option prices traded with the 15 expiration date.

In general, the options in the extreme area defined above are not traded fre-

quently. Figure 3.4 shows that the pricing methodology based on the CGMY

model provides consistent price estimates, but Bayesian NN has poor predic-

tion performance in the extreme domain (i.e., the region where there are no

currently actual transactions). The reason why the Bayesian NN fails to give a

consistent shape is that there is no data to learn at the extreme region. It is

the main drawback of conventional machine learning models that they almost

always fail to represent the area with few data.

To overcome this problem, we propose a generative Bayesian learning model

with a prior incorporating a financial structure such as law of one price as

follows. Given a data set D = {(xti, yti)| i = 1, ..., nt, t = 0, 1, ..., `}, we assume

that the conditional distribution of the output option value yt at time t is given

by

yti = f(xti,w) + εi, ∀i = 1, ..., nt, (3.6)

or equivalently, p(D|w) =

nt∏
i=1

N (yti − f(xti,w), σ2) (3.7)

where f(xt,w) is a neural network model with weight vector w to be estimated

and εi is an additive Gaussian noise N (0, σ2) with mean zero and variance σ2

arising from market frictions. We define a generative prior probability distribu-

tion over the weight vector w at time t as

p(w|wt−1) =

ν∏
k=1

N (f(xk,w)− f(xk,w
t−1), σ2

0), (3.8)
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(a)

(b)

Figure 3.4 (a) Put option prices and (b) implied volatilities according to the

moneyness with the same expiration date estimated from the CGMY model

and the Bayesian Neural Network model.
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which implies that under this prior, the new option values at some deep ITM

or deep OTM samples xk, k = 1, ..., ν are similar to the previous option values

f(xk,w
t−1) up to an additive Gaussian noise with mean zero and variance σ2

0.

The Bayes’s rule leads to the posterior probability distribution over the

weight vector w at time t given by

ln p(w|D) = ln p(D|w) + ln p(w|wt−1)− ln p(D)

=

nt∑
i=1

lnN (yti − f(xti,w), σ2) +

ν∑
k=1

lnN (f(xk,w)− f(xk,w
t−1), σ2

0) + const.

= − 1

2σ2

nt∑
i=1

(f(xti,w)− yi)2 − 1

2σ2
0

ν∑
k=1

(f(xk,w)− f(xk,w
t−1))2 + const.

The maximum a posteriori (MAP) estimator for the weight vector w can then

be equivalently achieved by finding the minimum value of the following objective

function

E(w) =

nt∑
i=1

(f(xti,w)− yi)2 + λ
ν∑
k=1

(f(xk,w)− f(xk,w
t−1))2 (3.9)

where λ = σ2/σ2
0 is a user-controlled parameter and ν is the number of prior

samples. The second term in equation (3.9) represents a penalty term imposing

the model does not fluctuate from the previous updates. Appropriate prior

samples are generated from the previous model in a way that avoids the pricing

bias for the extreme ITM or OTM options rarely traded and maintains the

distribution of trading frequency. They are then used to train the model by

augmenting the training data.

Regarding to the initial choice of the weight vector w0 at time t = 0, we

prefer to train the model using an artificial sample generated from a risk-neutral

financial option model such as CGMY model to guarantee the no-arbitrage

conditions for deep ITM or OTM options. Then we update the weight vector

wt at the next time t > 0 by using both the training data at time t and

some prior samples for the deep ITM and deep OTM option data that are

simulated from the GBNN at time t − 1. We’d like to achieve the following

goals in the proposed learning algorithm. First, the proposed model is expected
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to learn reasonable prices that satisfy economic conditions such as no-arbitrage

by incorporating prior information obtained from risk-neutral financial option

models. Second, the proposed method is expected to self-evolve by tuning to an

updated prior samples generated on the previous machine. The entire procedure

of the proposed method is summarized in Algorithm 1.

Algorithm 1 Generative Bayesian neural network (GBNN)

Require: Given a data set D = {(xti, yti)| i = 1, ..., nt, t = 0, 1, ..., `}; set ν the

number of prior samples. For the initial prior sampling, generate ν-prior

samples S0 = {(xk, f(xk; w
0))| k = 1, ..., ν} where f(xk; w

0)) is the option

values predicted by the risk-neutral financial model such as CGMY model.

Ensure: trained GBNN f(x; w)

1: for t = 1 : ` do

2: {Step 1} Prior sampling

3: Generate ν-prior samples S = {(xk, f(xk; w
t−1))| k = 1, ..., ν} from the

GBNN f(x; wt−1) where xk is the pair of moneyness and maturity for

the deep ITM and the deep OTM options a user provided.

4: {Step 2} Learning the GBNN

5: for t = 1 : nt do

6: Input Dt = {(xti, yti)| i = 1, ..., nt} ∪ {(xk, f(xk; w
t−1))| k = 1, ..., ν}

7: Output Train GBNN f(x; w) using an augmented data set Dt and set

the new updated weight vector as wt.

8: end for

9: end for

Figure 3.5 shows that the proposed GBNN fits well to the extreme ITM or

OTM option prices and self-evolves consistently with that of financial option

models at those extreme options for the next three months with no corrections.
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Figure 3.5 Evolving process of proposed machine learning models through the

times

3.4.2 Empirical Studies

We compared the models introduced in the previous sections in terms of their

capabilities for calibration, and prediction using the S&P 100 index Ameri-

can/European put options. First, we described the data for the empirical stud-

ies. Second, we compared the in-sample estimation errors of each models to

evaluate their validity and the out-of-sample prediction errors using the cali-

brated models to verify their predictive power for option pricing.

Summary of the data

We used daily market data from the S&P 100 index options. The S&P 100

index is a weighted stock market index of the largest and most established

100 companies in the S&P 500 updated by Standard & Poor’s. The S&P 100

index option contract has an underlying value that is equal to the value of

the S&P 100 index and offers two different types of option domains: S&P 100

options with American-style exercise (ticker symbol OEX) and S&P 100 op-

tions with European-style exercise (ticker symbol XEO). Since 1983, investors
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have used OEX to adjust their equity portfolio exposure, and more than one

billion OEX options have been traded. In July 2001, CBOE introduced cash-

settled S&P 100 options (ticker symbol XEO) with European-style exercise. The

exercise-settlement value is calculated using the reported closing sales price in

the primary market of each component stock on the last business day before

the expiration date or on the day the expiration notice is properly submitted

if exercised before expiration. We used the OEX put option data traded from

2003 to 2012 for our experiments. According to CBOE reports, OEX options

are considerably more actively traded during whole periods than XEO options,

and put option contract volume is considerably larger than that of the call op-

tion.

We used simple moneyness, κ, which is the ratio of spot price to strike price,

to describe the relative position of the present price of an underlying to the

strike price of an option. the moneyness used for the empirical analysis ranges

from 0.4909 to 1.8568 as the maturity and trading day changes. We performed

the conventional data pre-processing step in literature to eliminate distortion

in the experiment. Options with less than 7 or more than 90 days to expi-

ration were removed from the data. Short time-to-maturity τ tends to cause

distortion because of low time premium and bid-ask spread; meanwhile, long

expiration may cause biases and measurement errors. The summary statistics,

such as average price and standard deviation of OEX options in accordance

with time-to-maturity and moneyness, have been provided in Table 3.5.

The average option price over the period is 9.53 for American-style OEX

options. The number of observations is large for the ATM options (moneyness

range of 0.97-1.03) with short maturity and small for OTM options (moneyness

greater than 1.03) with 30-60 days maturity or longer. The variances of option

prices traded in the money (ITM) are relatively large while they decreases as

simple moneyness κ increases. Table 3.6 shows the trading volumes of OEX

options. The total volume has been significantly increased during the financial

crisis especially for OTM and ITM options.
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Table 3.5 Summary statistics of the S&P 100 index American put options from

2003 to 2012. This table reports average and standard deviation of option price

with the number of observations for each categories.

Maturity

< 30 30 - 60 > 60 All

Std. Std. Std. Std.

moneyness Mean dev. Mean dev. Mean dev. Mean dev.

S&P100 index American put options by moneyness and maturities

<0.94
price 63.87 36.98 69.53 41.29 80 45.99 68.68 40.62

Obs. 2076 1824 744 4644

0.94 - 0.97
price 27.12 5.63 30.08 6.02 34.14 7.08 29.18 6.42

Obs. 2858 2390 751 5999

0.97 - 1.00
price 13.2 4.88 17.42 5.67 21.31 6.73 16.22 6.24

Obs. 6129 6189 2179 14497

1.00 - 1.03
price 5.57 3.67 10.34 5.12 14.29 6.22 9.33 5.85

Obs. 6255 7618 3205 17078

1.03 - 1.06
price 3.56 2.91 6.27 4.35 9.56 5.38 6.13 4.71

Obs. 3880 6718 2644 13242

>1.06
price 2.76 2.34 3.65 3.07 4.9 3.93 3.85 3.31

Obs. 4829 16283 8094 29206

All
price 13.56 19.94 11.87 17.28 13.75 19.09 12.78 18.53

Obs. 26027 41022 17617 84666

We considered three classical financial models, the CGMY model, the Hes-

ton model, and the GARCH(1,1) model. To acquire the American option prices,

we selected several pricing methods, namely, the least squares Monte Carlo

method (LSM), the Barone-Adesi Whaley methods (BW), the ad-hoc Black-

Scholes model (AH-BS), the ad-hoc local volatility model (AH-LV) to compare

the performance of them with those of state-of-the-art machine learning mod-

els such as the Bayesian neural networks (BNN), the support vector regression

(SVR), the Gaussian processes (GP), and the generative Bayesian neural net-

works (GBNN). We evaluated the performance result of each model according

to the four widely used metrics.

(1) The mean absolute percentage error (MAPE), (
∑N

n=1 |εn|/Cmktn )/N , stands

56



Table 3.6 Trading volumes of S&P index American put options for each year in

respect to the moneyness(κ) and time to maturities(τ). We divide moneyness

into three ranges: ; (1) ITM(In the money), κ < 0.97; (2) ATM(At the money),

0.97 ≤ κ < 1.03; (3) OTM(Out of the money), κ ≥ 1.03.

Panel A: Trading volume by κ

year ITM ATM OTM

2003 1111 2861 4551

2004 608 3171 3102

2005 530 3247 2183

2006 377 3538 2337

2007 815 3897 4549

2008 2680 3164 6362

2009 1661 2488 5848

2010 1381 2965 5052

2011 979 3045 5145

2012 501 3199 3319

Panel B: Trading volume by τ

τ <30 30-60 τ >60 All

2391 4032 2100 8523

1786 3332 1763 6881

1510 2845 1605 5960

1496 3011 1745 6252

2699 4531 2031 9261

4313 5694 2199 12206

3031 4990 1976 9997

2891 4711 1796 9398

3299 4525 1345 9169

2611 3351 1057 7019

for the percentage error of the model.

(2) The mean percentage error (MPE), (
∑N

n=1 εn/C
mkt
n )/N , represents the

error direction of the model.

(3) The mean absolute error (MAE), (
∑N

n=1 |εn|)/N , measures the error mag-

nitude of the model.

(4) The root mean squared error (RMSE),
√

(
∑N

n=1(εn)2)/N , means the stan-

dard error of the model.

where N is the total number of options and εn = Cmktn − Cmodeln is the model

misspecification error where Cmodeln is the model estimated price, and Cmktn is

the market price.

Estimation performance

We investigated whether classical financial models and machine learning models

can be estimated to a given market data well, which is a prerequisite for a good

model to be consistent with the current market information. We used the one
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day option prices to calibrate each model and calculated its in-sample error

for each day. Then we reported the estimation errors with three different time

domains: pre-crisis from 2003 to 2006, financial crisis from 2007 to 2009, post-

crisis from 2010 to 2012.

Table 3.7 shows a summary of the estimation results of each model. Most

models have acceptable estimation errors (in-sample errors) mostly near 10%

based on MAPE. We excluded the estimation result of the Gaussian process

model in this table because it has almost zero estimation error at the expense

of over-fitting, often resulting in poor prediction performance. For the ITM

options during the financial-crisis in panel B, some machine learning models

such as support vector regression and Bayesian neural networks show relatively

large estimation errors, partly due to extrapolated option prices. In contrast,

a generative Bayesian neural network overcomes such problem by adapting to

no-arbitrage conditions. The machine learning models show relatively larger

estimation errors during the financial crisis period than those of the classical

American option pricing models. In the estimation phase, Weird or unusual

market situation makes the former react more actively than the latter.

Table 5.5 presents the detailed results of model estimation errors with re-

spect to moneyness and time to maturity for all of the four evaluation measures.

In-the-money or at-the-money options with short maturity have small estima-

tion errors in both the classical models and machine learning models; the latter

presents no noticeable differences in maturities. Notably, the machine learn-

ing models have small calibration errors for the region with a few observations

unlike the parametric jump models, which cause over-fitting in prediction.

Prediction performance

The differences in the overall estimation errors between the machine learning

models and classical American option pricing models are not significant, except

during the financial crisis period. We then examined the prediction performance
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Table 3.7 Estimation performance. This table reports MAPE and RMSE for

S&P 100 index American put options of each categories with respect to the

ratio of the spot to the strike prices. We divide moneyness into three ranges: ;

(1) ITM(In the money), κ < 0.97; (2) ATM(At the money), 0.97 ≤ κ < 1.03; (3)

OTM(Out of the money), κ ≥ 1.03. GBNN is the generative Bayesian neural

networks; BNN is the Bayesian neural networks; SVR is the support vector

regression; CGMY is the estimated result under the CGMY model; AH-BS is

the ad-hoc Black-Scholes model; AH-LV is the ad-hoc local volatility model.

Panel A: Estimation error during the pre-crisis, from 2003 to 2006.

MAPE

Model ITM ATM OTM All

GBNN 0.0409 0.1098 0.199 0.1426

BNN 0.0506 0.1863 0.3418 0.2419

SVR 0.2171 0.1965 0.2024 0.201

CGMY 0.0649 0.1344 0.2524 0.1789

AH-BS 0.054 0.0849 0.2288 0.1457

AH-LV 0.0538 0.0853 0.2308 0.1468

RMSE

ITM ATM OTM All

2.1862 1.4548 1.0964 1.4378

2.268 1.3173 1.2345 1.4264

9.1274 1.9676 0.6201 3.487

2.3526 1.786 1.0893 1.6081

1.9092 1.0538 0.8097 1.0753

1.9066 1.0584 0.817 1.0791

Panel B: Estimation error during the financial-crisis, from 2007 to 2009.

MAPE

Model ITM ATM OTM All

GBNN 0.0403 0.1269 0.177 0.1385

BNN 0.0464 0.1629 0.4304 0.2861

SVR 0.1537 0.1499 0.202 0.1783

CGMY 0.0435 0.0999 0.2013 0.1388

AH-BS 0.0383 0.0639 0.2203 0.1435

AH-LV 0.0381 0.0631 0.2199 0.143

RMSE

ITM ATM OTM All

4.9511 3.5672 2.5193 3.4489

5.219 2.0649 2.0744 3.0254

24.372 2.5602 0.9702 11.8373

2.6952 1.8563 1.4546 1.8919

2.5082 1.438 1.3075 1.6146

2.4865 1.4425 1.2997 1.6057

Panel C: Estimation error during the post-crisis, from 2010 to 2012.

MAPE

Model ITM ATM OTM All

GBNN 0.0345 0.1045 0.1813 0.1338

BNN 0.0531 0.1833 0.3916 0.2788

SVR 0.212 0.198 0.2127 0.2068

CGMY 0.07 0.1423 0.2677 0.2011

AH-BS 0.0391 0.0686 0.2469 0.1596

AH-LV 0.0393 0.0692 0.2482 0.1605

RMSE

ITM ATM OTM All

2.6295 1.7108 1.4304 1.7562

2.7483 1.6744 1.5986 1.7962

13.057 2.5955 0.8212 4.8883

3.1047 2.3552 1.4561 2.0577

1.9105 1.2545 1.0699 1.267

1.9007 1.2556 1.0701 1.2644

of each trained model applied to out-of-sample data by comparing its predictive

performance of 1 day ahead. GBNN is the generative Bayesian neural networks;
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BNN is the Bayesian neural networks; SVR is the support vector regression; GP

is the Gaussian processes; CGMY is the prediction results under the CGMY

model; LSM-BS is the least squares Monte Carlo (LSM) approach under the

Black-Scholes model; LSM-GARCH is the least squares Monte Carlo (LSM)

approach under the GARCH model; LSM-Heston is the least squares Monte

Carlo (LSM) approach under the Heston model; BW is the Barone-Adesi Wha-

ley methods; AH-BS is the ad-hoc Black-Scholes model; AH-LV is the ad-hoc

local volatility model. Table 3.8 shows the prediction results of each model.

Figure 3.6 The yearly total RMSE performance of each models.

Generative Bayesian neural networks outperformed the other models in over-

all prediction accuracy as shown in Figure 3.6. The GBNN also shows a quite

robust performance compared with other machine learning models. Notably,

all the models show relatively large prediction errors during the financial crisis

period. The GP model shows the worst performance in prediction, although it

shows the best calibration performance triggered by over-fitting.
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Table 3.8 Prediction performance. Table reports MAPE and RMSE for S&P

100 index American put options of each categories with respect to the ratio

of the spot to the strike prices. We divide moneyness into three ranges: ; (1)

ITM(In the money), κ < 0.97; (2) ATM(At the money), 0.97 ≤ κ < 1.03; (3)

OTM(Out of the money), κ ≥ 1.03.

Panel A: Prediction error during the pre-crisis, from 2003 to 2006.
Panel A: MAPE

Model ITM ATM OTM All

GBNN 0.0477 0.1139 0.206 0.149

BNN 0.1016 0.2066 0.3557 0.2623

SVR 0.251 0.2802 0.5241 0.3849

GP 0.4861 0.5031 2.0351 1.174

CGMY 0.064 0.3133 0.4936 0.3724

LSM-BS 0.3606 0.56 0.7895 0.6422

LSM-GARCH 0.0737 0.3235 0.5937 0.4189

LSM-Heston 0.2966 1.3449 1.7322 1.4159

BW 0.1007 0.3619 0.6855 0.4795

AH-BS 0.1059 0.2869 0.6528 0.4132

AH-LV 0.1115 0.2845 0.642 0.4063

Panel B: RMSE

ITM ATM OTM All

2.2307 1.1336 0.728 1.1663

5.2196 1.6207 1.2922 2.3009

11.6961 2.6816 1.5816 4.746

19.3942 4.6159 5.5548 8.1979

2.2297 2.7024 1.4492 2.2149

12.8136 6.7059 4.1986 6.721

3.0750 3.4207 2.9134 3.1763

8.9468 8.3623 4.7188 7.0627

4.033 4.5893 3.1919 3.9865

6.4595 2.6646 2.2092 3.5679

6.8498 2.7997 2.248 3.6749

Panel B: Prediction error during the financial-crisis, from 2007 to 2009.
Panel A: MAPE

Model ITM ATM OTM All

GBNN 0.0608 0.1375 0.2373 0.1767

BNN 0.0903 0.189 0.4562 0.3148

SVR 0.1985 0.261 0.6152 0.4394

GP 0.4387 0.3911 2.8442 1.6998

CGMY 0.1677 0.6515 0.5604 0.5568

LSM-BS 0.3163 0.5622 0.8186 0.6585

LSM-GARCH 0.1028 0.3906 0.8612 0.5941

LSM-Heston 0.1764 0.8209 1.0179 0.8202

BW 0.1328 0.4731 0.8105 0.597

AH-BS 0.088 0.2991 0.8133 0.5383

AH-LV 0.0913 0.3062 0.8115 0.54

Panel B: RMSE

ITM ATM OTM All

10.0039 3.9517 2.94 5.4924

12.6347 2.5384 2.2733 6.3454

30.1629 4.1149 2.6394 14.7507

41.2363 6.6496 11.8471 21.3966

5.823 7.5397 2.9603 5.8118

17.9526 11.4083 6.2008 10.6835

6.5499 8.3248 6.3366 7.0857

8.9899 9.2932 5.5659 7.4803

7.4988 10.0874 6.3224 7.9046

4.9226 4.1446 3.5178 3.9758

6.4445 4.7103 3.6754 4.5792

Panel C: Prediction error during the post-crisis, from 2010 to 2012.
Panel A: MAPE

Model ITM ATM OTM All

GBNN 0.045 0.1142 0.2391 0.1667

BNN 0.1006 0.2099 0.4266 0.315

SVR 0.2611 0.318 0.693 0.5097

GP 0.4636 0.4595 2.255 1.4046

CGMY 0.0628 0.3484 0.5471 0.425

LSM-BS 0.191 1.4579 2.4174 1.8232

LSM-GARCH 0.0632 0.2463 0.7562 0.4868

LSM-Heston 0.2307 1.2878 1.3858 1.2354

B-W 0.1083 0.9957 1.4524 1.1378

AH-BS 0.1048 0.3475 0.8959 0.6101

AH-LV 0.1109 0.3434 0.8931 0.6078

Panel B: RMSE

ITM ATM OTM All

3.6036 1.8372 1.6229 2.1386

8.4125 2.3171 1.9041 4.0556

18.5397 4.0382 2.5583 7.917

25.5683 5.8726 7.0698 11.4126

2.461 3.5599 2.1684 2.8416

8.8681 13.3928 8.7525 10.7795

3.3124 4.3034 4.1397 4.1512

9.0887 9.3133 4.8895 7.3842

4.7103 9.1892 5.6676 7.161

4.517 4.0779 3.3299 3.7606

6.868 4.3137 3.4275 4.3508
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Table 3.8 shows that the GBNN methods has better prediction performance

for OTM and ATM options than the CGMY methods except for ITM options.

For instance, the GBNN method shows the corresponding ITM, ATM, OTM

prediction accuracies are 3.6036, 1.8372, and 1.6229 for the post-crisis period.

The CGMY model shows that the corresponding accuracies are 2.461, 3.5599,

and 2.1684 for the same period. When considering the trading volume of ITM

options is not large in the market as a whole as can be seen in Table 3.6,

the high accuracy of the ATM and OTM regions is a prominent advantage of

the GBNN. Based on the MAPE measure, the predictability of GBNN model

is superior to that of the CGMY model. Because MAPE measures the ratio

of error considering the size of the price, MAPE is a suitable for evaluating

American option prices that range widely like from $1 to $100.

Given the stochastic volatility process, the LSM methods under the GARCH(1,1)

and Heston model shows improved prediction accuracies than the LSM under

the BS model. Albeit in considering stochastic volatilities, prediction accuracies

under the stochastic volatility models are lower than the CGMY model. This

seems to be due to the calibration process of the stochastic volatility model,

which utilizes only the return asset and European options, unlike that of the

CGMY model which considers the American option. In particular, the Hes-

ton model has worse performance than other stochastic volatility model, the

GARCH(1,1) model. It may be caused from that the complicated calibration

process has several local solution problem by introducing correlation parameter

between return and volatility processes.

Table 5.6 summarizes the detailed prediction results in each category of

moneyness and maturity, respectively. The machine learning models show a

trend of decreasing prediction errors as the moneyness increases, while the clas-

sical American option models show no discernible trend. Lower prediction ac-

curacy of the machine learning models for the ITM options is partly due to the

fewer observations to train the models.

We measured the forecasting performance of future 7-day based on the data

which is used for estimating the model. We have excluded other methodologies
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Table 3.9 Prediction performance for 7-day ahead. Table reports MAPE and

RMSE for S&P 100 index American put options of each categories with respect

to the ratio of the spot to the strike prices. We divide moneyness into three

ranges: ; (1) ITM(In the money), κ < 0.97; (2) ATM(At the money), 0.97 ≤
κ < 1.03; (3) OTM(Out of the money), κ ≥ 1.03. GBNN is the generative

Bayesian neural networks; CGMY is the prediction results under the CGMY

model.

Panel A: Prediction error during the pre-crisis, from 2003 to 2006.

Panel A: MAPE

Model ITM ATM OTM All

GBNN 0.0505 0.1362 0.2784 0.1902

CGMY 0.1649 0.5631 1.0272 0.7298

Panel B: RMSE

ITM ATM OTM All

4.5525 1.4462 1.1876 1.8843

6.6954 6.7178 4.7920 5.9439

Panel B: Prediction error during the financial-crisis, from 2007 to 2009.

Panel A: MAPE

Model ITM ATM OTM All

GBNN 0.0859 0.2445 0.4328 0.3182

CGMY 0.1576 0.6724 0.6266 0.5636

Panel B: RMSE

ITM ATM OTM All

10.6135 4.1154 3.5251 5.5029

6.8005 8.5670 5.3630 6.7210

Panel C: Prediction error during the post-crisis, from 2010 to 2012.

Panel A: MAPE

Model ITM ATM OTM All

GBNN 0.0555 0.1460 0.3417 0.2386

CGMY 0.1158 0.4404 0.6487 0.5145

Panel B: RMSE

ITM ATM OTM All

6.5430 2.7443 2.3762 3.2803

5.0639 5.8230 4.5005 5.1183
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that showed relatively lower accuracy in the 1-day ahead prediction than the

GBNN and CGMY models. Table 3.9 shows that the GBNN methods actually

slightly outperform the CGMY model for the each range. Table 5.7 summarizes

the detailed prediction results in each category of moneyness and maturity, re-

spectively. The prediction results suggest that the parameters of the GBNN

method are appropriately estimated given that the 7-day ahead out-of-sample

performance may actually turn out to be fairly satisfactory. As an out-of-sample

window is longer, the velocity of decreasing prediction performance is faster for

the CGMY model than the GBNN model.

We also reveal that the proposed GBNN method has advantages over the

CGMY model in terms of computation time and model consistency to highlight

the suitability of the proposed GBNN for practical application. We have demon-

strated that the calibration and pricing time for the GBNN model, the Fourier

cosine method and LCP method under the CGMY model. The computer used

for all experiments has an Intel(R) Core(TM) i7-4820K CPU @ 2.70GHz with

64.0 GB; The code is written in MATLAB R2017a.

We employed the 4-point Richardson extrapolation on Bermudan puts with

512 series expansion and 5 monitoring dates to approximate American put op-

tions by using Fang and Oosterlee methods. We also considered 1024 time and

40 spatial steps for the LCP pricing methods. In the Calibration phase, the

LCP and Fourier Cosine methods take more than two hours to estimate the

parameter sets while the GBNN model is trained within one minute given the

daily data. This result seems to be caused from that the nonlinear optimization

procedure included in the calibration process using the American options. The

CGMY model assumed that the volatility process is deterministic, which also

has a small number of parameters available to account for the process of under-

lying. However, it seems that the constrained model with the meaningful param-

eters makes it difficult to optimize the suitable model for the market data. One

way to overcome these drawbacks is to solve the easier optimization problem

by mitigating the restrictions of the model. For example, there is a stochastic
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volatility model considering volatility as a stochastic variable and a local volatil-

ity model, which regards the market volatility as a conditional expectation of an

instantaneous volatility (Gatheral, 2011). The GBNN model alleviates the con-

straints of the model by as much as the machine learning while trying to derive

from the data the assumptions such as the no-arbitrage assumption that can

be obtained from the model. It seems to be suitable for the practical purposes,

such as to learn for predicting the next day option prices, since the GBNN has

shorter calibration time than other methods under the CGMY model. Corre-

sponding pricing times of the GBNN, COS-CGMY, LCP-CGMY are 0.01349,

0.3012, and 0.2975 seconds. There is no significant difference in pricing time

between models. A similar pricing time for the LCP and COS methods seems

to have resulted from requiring four independent Bermudan option pricing for

American options with the Fourier cosine method.

Table 3.10 The mean and standard deviation of RMSE for 1-day and 7-day pre-

diction given 50 independent trial. Table reports mean and standard deviation

of RMSE for 1-day and 7-day prediction of American put options from 50 inde-

pendent trial. GBNN is the generative Bayesian neural networks; LCP-CGMY

is the LCP methods under the CGMY model.

1-day prediction 7-day prediction

Model Mean stdev. Mean stdev.

GBNN 1.0094 0.1870 1.4312 0.1324

LCP-CGMY 2.3320 2.3404 3.5937 2.7689

COS-CGMY 2.5299 3.9868 3.1828 2.9136

We also have compared the consistency of the estimated parameters for the

prediction from the additive empirical analysis. We performed 50 independent

calibrations using the same data and acquired 1-day and 7-day ahead prediction

results from the 50 estimated parameter sets, respectively. Table 3.10 demon-
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strates that the means and standard deviations of RMSEs from 50 prediction

results. As can be seen in Table 3.10, the prediction performance of the CGMY

model has a very large variance compared to GBNN, and from Figure 3.7 we can

also see that the RMSE is very large at several iterations. This suggest that the

CGMY model often reaches at the local solution during the calibration process,

resulting in parameter estimation that is not suitable for the prediction. This

result supports that the GBNN is a more consistent method for price prediction

than the pricing methods under the CGMY model.

Figure 3.7 Fifty independent RMSE performance of each models.

3.5 Chapter Summary

Financial modeling is a matter of grave concern in the financial industry, and

many researchers have struggled to elucidate complicate financial markets by

proposing classical option models (e.g., Barone-Adesi Whaley methods, LSM
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methods, and ad-hoc methods) and machine learning models (e.g., artificial

NNs, support vector machines, and GPs).

In this chapter, we proposed a generative model sampler based on variational

inference to overcome the calculation limitation of explicit posterior probabil-

ity density by generating a sample from the posterior distribution. Then, the

validity of each model is investigated to elucidate the structure of option mar-

kets by comparing the performance of the models in terms of model calibration,

prediction, and domain adaptation using the S&P 100 American/European put

options.

First, the econometric jump models in model calibration using only the in-

formation of the previous day exhibited valid calibration results similar with

those of the best-performing machine learning models, which used considerable

information from the previous seven days. Second, econometric jump models

for the model prediction of the one day and seven days ahead exhibited better

performance than machine learning models. The price forecasts of the former

for the next day or seven days were stable, whereas the latter decreased rapidly

with the increase of prediction period. The robustness of the calibrated pa-

rameters for the former relative to the calibrated weights of the latter implied

that the return processes of econometric jump models are stable over some

periods and validated the better prediction results of the former than the lat-

ter. Finally, econometric jump models displayed successful domain adaptation

performance, whereas the machine learning models did not. The latter failed

to recognize the difference between American and European options and could

not satisfactorily improve prediction accuracy regardless of adopted domain

adaptation techniques for machine learning. From the empirical study, we con-

cluded that econometric jump models can exhibit better performance of model

estimation, prediction, and domain adaptation than machine learning models

given the same information, such as expiration date and strike prices of con-

tingent claims. Hence, machine learning models should integrate prior knowl-

edge, such as no-arbitrage conditions, to avoid price distortions and to increase

predictability. They should also develop a mechanism for generating the price
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process explicitly to improve domain adaptability, which we will study in the

next chapter.

Based on the empirical result, we suggested the use of the generative Bayesian

neural networks incorporating prior consistent with no-arbitrage pricing struc-

ture. First, in the model calibration, the classical American option models

showed slightly better calibration results than the machine learning models

and particularly noticeable differences during the financial crisis periods. The

latter showed more sensitive reaction to the unusual market situations than the

former. Second, in the model prediction of 1 day ahead, most machine learning

models showed overall better performance than the classical American option

models. Especially, a generative Bayesian neural network model showed the

best overall performance. For the prediction results of 7-day ahead, the genera-

tive Bayesian neural network is superior to the CGMY model. It suggests that

GBNN’s robustness to the long-time window of the learned weight. This sup-

ports the need to use a prior information incorporating some financial market

structures such as no-arbitrage constraints to the learning models.

Overall, we conclude that machine learning models can obtain a quantitative

representation of option pricing more effectively than classical American option

models given the same information, such as expiration date and strike prices of

contingent claims. One can take advantage of machine learning models in the

financial sector by incorporating more information and input variables, such as

documents or sentiments, which needs to be further investigated.
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Chapter 4

Predictive Models for Blockchain and

Cryptocurrency Market

4.1 Chapter Overview

Bitcoin is a successful cipher currency introduced into the financial market

based on its unique protocol and Nakamoto’s systematic structural specification

(Nakamoto, 2008). Unlike existing fiat currencies with central banks, Bitcoin

aims to achieve complete decentralization. Participants in the Bitcoin market

build trust relationships through the formation of Blockchain based on cryp-

tography techniques using hash functions. Inherent characteristics of Bitcoin

derived from Blockchain technologies have led to diverse research interests not

only in the field of economics but also in cryptography and machine learning.

In this chapter, we train a Bayesian neural network based on the blockchain

and prices data for predicting the Bitcoin process and try to account for the

recent stochastic process shown in Figure 4.1, which has not been considered in

previous studies. A BNN includes a regularization term into the objective func-

tion to prevent the overfitting problem that can be crucial to our framework.

When the machine considers a lot of input variables, a trained machine can

be complex and suffer from the overfitting problem. BNN models showed their

effect to the financial derivative securities analysis (Gençay & Qi, 2001a). For-

mation of Blockchain, a core technology of Bitcoin, distinguishes Bitcoin from

other fiat currencies and is directly related to Bitcoin’s supply and demand. To
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Figure 4.1 Bitcoin daily price(USD), from Sep-11 2011 to Aug-22 2017

the best of our knowledge, in addition to macroeconomic variables, direct use

of Blockchain information, such as hash rate, difficulties, and block generation

rate, has not been investigated to describe the process of Bitcoin price. To fill

this gap, the current study systematically evaluates and characterizes the pro-

cess of Bitcoin price by modeling and predicting Bitcoin prices using Blockchain

information and macroeconomic factors.

After the bitcoin paved the way for the peer-to-peer decentralized cryptocur-

rency, several alternative cryptocurrencies are proposed to cope with perceived

limitations of the bitcoin. They generally aim to the peer-to-peer and decen-

tralization properties similar to the bitcoin and can be implemented via the

blockchain or through other forms such as a directed acyclic graph. They can

be launched by the forking in the existing cryptocurrency such as the bitcoin

cash, bitcoin gold and the ethereum classic. Because these cryptocurrencies

have essentially similar aspects, the analysis of the relationship between cryp-

tocurrencies can results in the valuable meaning and can be applied to the

clustering of the cryptocurrencies. Therefore, we proposed the enhanced GRU

model based on the VAR model to analyze and visualize the relationship be-

tween cryptocurrencies.
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4.2 Economics of Bitcoin and Blockchain

Barro’s model (Barro, 1979) provides a simple Bitcoin pricing model under

perfect market conditions as in (Ciaian et al., 2016). In this model, Bitcoin is

assumed to possess currency value and is exchangeable with traditional cur-

rencies, which are under central bank control and can be used for purchasing

goods and services. The total Bitcoin supply, SB, is represented by

SB = PBB (4.1)

where PB denotes the exchange rate between Bitcoin and dollar (i.e. dollar per

unit of Bitcoin), and B is the total capacity of Bitcoins in circulation.

The total Bitcoin demand depends on the general price level of goods or

services, P ; the economy size of Bitcoin, E; and the velocity of Bitcoin, V ,

which is the frequency at which a unit of Bitcoin is used for purchasing goods

or services. The total demand of Bitcoin,DB, is described as followed by:

DB =
PE

V
(4.2)

The market equilibrium with the perfect market assumption is acquired when

the supply and the demand of Bitcoin is the same amount. The equilibrium is

therefore achieved at

PB =
PE

V B
(4.3)

This equilibrium equation implies that in the perfect market, the Bitcoin price

in dollars is affected proportionally by the general price level of goods or ser-

vices multiplied by the economy size of Bitcoin, and inversely by the velocity

of Bitcoin multiplied by the capacity of the Bitcoin market. The general price

level of goods or services, P , can be determined indirectly from the global

macroeconomic indexes in actual markets. The exchange rate between several

fiat currencies and Bitcoin price describes the relationship between actual mar-

kets and Bitcoin market. The main difference between the Bitcoin market and

general currency markets originates from the fact that the Bitcoin is a ”virtual

currency based on Blockchain technologies”. Therefore, economic size, E; the
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velocity, V ; and the capacity of the Bitcoin market, B, are closely related with

several measurable market variables extracted from the Blockchain platform

and, which will be reviewed in the next subsection.

Decentralization is the value pursued by all cryptocurrencies as opposed

to general fiat currencies being valued by central banks. Decentralization can

be specified by the following goals: (i) Who will maintain and manage the

transaction ledger? (ii) Who will have the right to validate transactions? (iii)

Who will create new Bitcoins? The blockchain is the only available technology

that can simultaneously achieve these three goals. Generation of blocks in the

Blockchain, which is directly involved in the creation and trading of Bitcoins, di-

rectly influence the supply and demand of Bitcoins. Combination of Blockchain

technologies and the Bitcoin market is a real-world example of a combination

of high-level cryptography and market economies.

Figure 4.2 The formation of the Blockchain

We then describe in detail how the Blockchain can achieve the abovemen-

tioned goals in Bitcoin environment (Narayanan et al., 2016). A participant in

a Bitcoin network acts as a part of a network system by providing hardware

resources of their own computer, which is called a ”distributed system”. All

issuance and transaction of money are conducted through P2P networks. All

trading history is recorded in the Blockchain and shared by the network, and all

past transaction history is verified by all network participants. The unit called

”block”, which includes recent transactions and a hash value from the previous

”block”, creates irreversible data by a hash function, and is pointed out from

the next block. Figure 4.2 shows the general structure of Blockchain. It takes
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more than a certain amount of time to generate the block to make impossible

to forge all or part of the Blockchain. This algorithm is called proof of work

(PoW), and the difficulty is automatically set to ensure that the problem can

be solved within approximately 10 minutes. PoW also provides incentives to

motivate participants to maintain the value of Bitcoin by paying Bitcoin for

the participant who created the block.

PoW agreement algorithm comes with several inherent risks. First, the va-

lidity of the block can be intervened when the majority of total participants

is occupied by a group with a specific purpose called 51% problem. Second,

when the Blockchain is forked, a considerable amount of time is consumed to

form the agreed Blockchain until the longest chain is selected after generation

of several blocks. This condition causes a transaction delay because the transac-

tion cannot be completed during that time. Lastly, there may be the capacity

limit of the Blockchain or the performance limit of each node. Safety of the

current Blockchain can be monitored by observing measurable variables in the

Blockchain from https://blockchain.info/.

Considering that supply and demand of Bitcoin are affected directly or

indirectly by measurable variables involved in the formation of a Blockchain,

the current study evaluates several variables related to Blockchain formation

as features of the Bitcoin pricing process. Section IV describes in detail the

variables exploited in empirical experiments.

4.3 An Empirical Study on Modeling and Prediction

of Bitcoin Prices Based on Blockchain Information

4.3.1 Data Specification and Structure of the Experiment

Figure 4.1 shows the time series of Bitcoin price obtained from https:// bit-

coincharts.com/markets/, where the value of 1-Bitcoin, which was about $ 5

in September 2011, approximates $ 4,000 in August 2017. During this period,

market volatility with enormous price changes in Bitcoin becomes exceptional
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compared with that in traditional currency markets. It is evident that standard

economic theories are insufficient to account for the impressive price devel-

opment and volatility of Bitcoin (Kristoufek, 2013). Bitcoin markets do not

possess purchasing power nor interest rate parity. In particular, Bitcoin is an

actual implementation of decentralization issued under the consent of partici-

pants and not the central bank. This fact suggests that the need for completely

new determinants of Bitcoin price: the Blockchain information that includes

relevant features as main determinants for pricing Bitcoin. Blockchain data

used for empirical analysis can be collected from https://blockchain.info/. Ta-

ble 4.1 presents the Blockchain data and macroeconomic variables to be used

in predicting the evolution of Bitcoin prices.

Table 4.1 Data for the empirical study

Data category Data

Response var.
prices or log prices of Bitcoin(USD),

vol. or log vol. of Bitcoin(USD)

Blockchain

information

Trading vol.(USD,CNY), avg. block size,

transactions/block, median confirm. time,

hash rate, difficulty,

cost % of trans., miners’ rev.,

confirmed trans., total num. of uniq. Bitcoin

Macro economic

development

S& P500, Eurostoxx, DOW30, NASDAQ,

Crude oil, SSE, Gold, VIX, Nikkei225, FTSE100

Global

currency

ratio(·/USD)

GBP, JPY, CHF, CNY, EUR

Several blockchain variables are considered as follow:
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? Average block size (MB): the size of a block verified by all participants.

? Transactions per block: average number of transactions per block.

? Median confirmation time: the median time for each transaction to

be accepted into a mined block and recorded to the ledger.

? Hash rate: estimated number of Tera (trillion) hashes per a second all

miners (market participants to solve a hash problem for making a block)

is performing.

? Difficulty: next difficulty =(previous difficulty ∗2016∗10 minutes)/(time

to mine last 2016 blocks)

? Cost % of a transaction: miners’ revenue as the percentage of the

transaction volume.

? Miners revenue: Total value of coin-base block rewards and transaction

fees paid to miners.

? Confirmed transaction: the number of confirmed the validity of trans-

actions per day.

? Total number of a unique Bitcoin: market capitalization of Bitcoin.

By employing ordinary least square (OLS) estimation, (van Wijk, 2013)

demonstrates that the Dow Jones index, the euro-dollar exchange rate, and

WTI oil price influence the value of Bitcoin price in the long run. We also

consider several variables such as S& P500, Eurostoxx, DOW30, NASDAQ,

Crude oil, SSE, Gold, VIX, Nikkei225, and FTSE100, which associated with

global macroeconomic development.

Given that Bitcoin is related to traditional currency markets in addition to

the cryptocurrency market itself based on digital cryptography, we take into

account the exchange rates between global monetary markets; exchange rates

are basic factors in the analysis of traditional currency markets. We specifically
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use exchange rates between major fiat currencies (GBP, JPY, CHF, CNY, EUR)

and the dollar because these rates are most likely to affect the Bitcoin price.

In summary, we cover the daily data from Sep 11, 2011, to Aug 22, 2017 in

the empirical analysis by employing both the traditional determinants of cur-

rency markets, such as global macro-economic development and the features

endowed from the cryptocurrency. This experiment, which has not been per-

formed in previous studies, primarily aims to discover the main features that

can explain the recent highly volatile Bitcoin process.

Table 4.2: Summary statistics of the data

Data category Whole range Recent 2 years

mean stdev. mean stdev.

Bitcoin price (USD) 458.32 606.2 901.96 804.0

log of Bitcoin price (USD) 5.04 1.92 6.52 0.71

Volatility 10.75 25.06 21.83 38.88

Trading volatility (BTC) 6.66∗104 5.82∗104 7.15∗104 5.21∗104

Trading volatility (USD) 3.36∗107 6.59∗107 6.96∗107 9.77∗107

Average block size 3.94∗105 3.21∗105 7.84∗105 1.65∗105

Transactions per block 751.81 625.03 1507.61 389.58

Median confirmation time 9.15 3.59 10.21 3.44

Hash rate 8.14∗106 1.41∗106 2.18∗106 1.68∗106

Difficulty 1.08∗1011 1.86∗1011 2.9∗1011 2.21∗1011

Miners revenue (%) 2.7 2.17 1.04 0.42

Miners revenue (USD) 1.36∗106 1.38∗106 2.16∗106 1.57∗106

Confirmed transac. per day 1.14∗105 9.29∗104 2.26∗105 5.83∗104

S&P 500 1851.29 346.26 2169.8 166.84

Eurostoxx 2977.97 413.73 3208.97 235.1

Dow Jones 30 1.64∗104 2.59∗103 1.87∗104 1.71∗103

Nasdaq 4279.47 1029.08 5289.29 543.53

76



Table 4.2: Summary statistics of the data

Data category Whole range Recent 2 years

mean stdev. mean stdev.

Crudeoil 73.53 25.21 45.23 5.98

SSE 2706.43 633.03 3140.39 223.83

Gold 1356.01 201.03 1218.72 78.67

VIX 16.02 5.09 15.12 4.65

Nikkei225 1.50∗104 3.87∗103 1.82∗104 1.46∗103

FTSE100 6444.86 549.54 6704.23 531.92

USD/CNY 6.37 0.25 6.65 0.2

USD/GBP 0.67 0.06 0.74 0.06

USD/JPY 102.36 14.67 112.4 6.44

USD/EUR 0.82 0.08 0.91 0.03

USD/CHF 0.95 0.04 0.99 0.02

Table 4.3.1 shows summary statistics of response variables, Blockchain-

related variables, global macroeconomic indexes, and international exchange

rates used in empirical analysis from September 13, 2011, to July 21, 2017. Sev-

eral notable points are considered in the empirical analysis. As shown in Table

4.3.1, response variables and Blockchain related variables in the last two years

are considerably more variable than other categories such as global macroeco-

nomic indexes and international exchange rates. Bitcoin prices and volatilities

have nearly doubled over the past two years. In addition, Blockchain data ex-

hibit a significant increase in trading volume and size per a block and a huge

reduction in miner’s profit and the hash rate.

On the other hand, there is little difference between the most recent two

years and the overall range in the volatility of the global exchange rate market as

well as the growth of the global macroeconomic market economy over the past

two years is much smaller than that of Bitcoin. These results provide empirical
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evidence for the fact that the recent volatility in Bitcoin prices stems mostly

from the Blockchain information directly involved in supply and demand of

Bitcoin and not from other macro-financial markets.

Most of the previous studies have focused on either modeling Bitcoin price

without considering its relationship to Blockchain information or identifying

only its “linear” relationship to macroeconomic factors. The present study at-

tempts to overcome these limitations by employing a Bayesian NN model that

can investigate nonlinear influences of each relevant feature of input variables,

the Blockchain information, and macroeconomic factors, on Bitcoin price for-

mation. To this end, we first train a Bayesian NN to model Bitcoin price for-

mation using given above-mentioned relevant features of the process. We have

evaluated Bayesian NN in terms of training and test errors by using the rep-

resentative non-linear methodologies, SVR, and the linear regression model as

the benchmark methods.

Next, we develop a prediction model of the near-future price of Bitcoin after

modeling the entire process. We configure forecasting models by the rollover

framework, which is generally applied to portfolio theory. Rollover strategy is

known as rolling a position forward which is closing out an old position and

establishing a new position in a contract of the portfolio with a long time

to maturity. In our experiments, the trained machine is closing out an old

information and acquiring new data according to the rollover framework over

time. Figure 4.3 shows a schematic rollover strategy employed in our empirical

studies. At the initial training step, the machine is learned with Ntrain training

data, and the prediction performance is measured using Ntest test data. Next,

after t′− t time from time t, the machine is trained using again the Ntrain data

from time t′ to update old learning data, and the performance of Ntest test data

is thereafter measured. The machine is trained through the entire range in this

way, and the average performance of prediction errors measured several times

is evaluated.

Learning the machine through the rollover framework aims to validate the

method of forecasting the next order of Ntest test data from Ntrain training
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Figure 4.3 the formation of the Blockchain

data. Given that the model employs time series in batch format, it is is faster

and easier to learn than other sequential neural networks models, LSTM or

RNN, and can reflect the flow of information that changes with time. The

rollover framework can be used to implement semi-online prediction models to

incorporate new information or shocks with short learning time.

4.3.2 Linear Regression Analysis

We first construct a linear model for analysis of Bitcoin price and address several

critical issues in assumptions of the linear regression model. A basic assumption

required for linear regression is the model assumption that linear relationships

exist between response variables and independent variables (Gujarati & Porter,

1999). Table 4.3.2 shows (linear) correlations between explanatory variables

and response variables. Each column represents linear correlation coefficients

of regressors for each response variable and the value in parentheses represents

the results of t-test for the null hypothesis that there is no linear relationship

between the two variables. We denote the null hypothesis-rejecting variables

as bold, based on a p-value of 0.05, and presented a t-value because the p-

value was as small as zero. We exclude the return as response variable because

almost all values of correlation coefficients of each explanatory variable are not

exceptionally significant for the return value of Bitcoin.
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Table 4.3: Correlation coefficients and (t-values) between the response and

independent variables.

Data category return price log(price) log(vol.)

Trading volatility (BTC)
0.064

(2.987)

0.071

(3.315)

0.123

(5.772)

0.245

(11.769)

Trading volatility (USD)
0.016

(0.745)

0.777

(57.485)

0.474

(25.071)

0.683

(43.549)

Average block size
0.001

(0.047)

0.663

(41.246)

0.744

(51.857)

0.404

(20.569)

Transactions per block
0.011

(0.512)

0.647

(39.518)

0.715

(47.63)

0.39

(19.725)

Median confirmation time
0.04

(1.864)

0.26

(12.54)

0.018

(0.838)

0.163

(7.694)

Hash rate
0.025

(1.165)

0.9

(96.16)

0.577

(32.902)

0.583

(33.419)

Difficulty
0.024

(1.118)

0.906

(99.686)

0.58

(33.159)

0.588

(33.856)

Miners revenue (%)
-0.034

(-1.584)

-0.34

(-16.838)

-0.51

(-27.613)

-0.24

(-11.514)

Miners revenue (USD)
-0.015

(-0.699)

0.92

(109.326)

0.76

(54.46)

0.625

(37.288)

Confirmed trans. per day
0.008

(0.373)

0.66

(40.915)

0.731

(49.891)

0.402

(20.447)

S&P 500
-0.006

(-0.279)

0.691

(44.52)

0.928

(116)

0.415

(21.243)

Eurostoxx
-0.008

(-0.373)

0.537

(29.647)

0.838

(71.523)

0.339

(16.782)

Dow Jones 30
0.002

(0.093)

0.746

(52.171)

0.916

(106.338)

0.454

(23.731)

Nasdaq
-0.007

(-0.326)

0.722

(48.599)

0.896

(93.973)

0.442

(22.948)
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Table 4.3: Correlation coefficients and (t-values) between the response and

independent variables.

Data category return price log(price) log(vol.)

Crudeoil
0.015

(0.699)

-0.401

(-20.386)

-0.545

(-30.273)

-0.264

(-12.747)

SSE
-0.018

(-0.838)

0.27

(13.06)

0.408

(20.813)

0.184

(8.718)

VIX
-0.051

(-2.378)

-0.384

(-19.369)

-0.544

(-30.194)

-0.215

(-10.253)

Nikkei225
-0.011

(-0.512)

0.553

(30.911)

0.884

(88.067)

0.346

(17.175)

FTSE100
0.016

(0.745)

0.67

(42.033)

0.843

(72.987)

0.396

(20.085)

USD/CNY
0.013

(0.605)

0.572

(32.477)

0.355

(17.685)

0.331

(16.336)

USD/GBP
0.019

(0.885)

0.584

(33.506)

0.477

(25.276)

0.339

(16.782)

USD/JPY
-0.018

(-0.838)

0.38

(19.133)

0.819

(66.475)

0.244

(11.718)

USD/EUR
-0.002

(-0.093)

0.344

(17.062)

0.496

(26.603)

0.208

(9.904)

USD/CHF
0.008

(0.373)

0.266

(12.851)

0.341

(16.894)

0.164

(7.743)

Gold
0.019

(0.885)

-0.396

(-20.085)

-0.858

(-77.795)

-0.241

(-11.565)

Next, we discuss the multicollinearity problem, which is often encountered

in linear regression analysis. Several statistical problems are caused from the

multicollinearity which is the situation that some regressors have a linear re-

lationship with other regressors. It can cause undesirable regression analysis:

very high R2 for some coefficients that are not statistically significant and their

t-statistics sensitive to data variation (Gujarati & Porter, 1999). One of the
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Table 4.4 VIF values of each explanatory variable for detecting the collinearity

proble

Data category VIF Data category VIF Data category VIF

Trading

vol.

(BTC)

1.5688

Trading

vol.

(USD)

3.45327

Avg.

block

size

33.2689

Trans.

per

block

36.7642

Median

conf.

time

2.1306 Hash rate 122.3453

Difficulty 150.3203

Miners

revenue

(%)

2.4462

Miners

revenue

(USD)

8.2981

Confirmed

trans.

per day

48.1753 S&P 500 730.6197 Eurostoxx 41.9197

Dow

Jones

30

402.9169 Nasdaq 304.5080 Crudeoil 22.8668

SSE 10.1965 Gold 21.4123 VIX 4.5702

Nikkei

225
128.2556 FTSE100 51.7874 USD/CNY 20.3706

USD/GBP 45.355 USD/JPY 58.1390 USD/EUR 43.6925

USD/CHF 7.7059

prescriptions for dealing with multicollinearity is to do a linear regression ex-

cept for variables with large VIF values, which is a sort of measure of the

linear relationship between variables (Gujarati & Porter, 1999). To remove re-

dundant variables for preventing the collinearity problems, we eliminate several

explanatory variables with large VIF values. Table 4.4 shows VIF values of each

explanatory variable. In this study, we have determined that the set of variables

excluding linear relationships is suitable for linear regression analysis to avoid

multicollinearity problem. We select 16 suitable discriminators after eliminat-
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ing variables with large VIFs and perform linear regression analysis on Bitcoin

log prices and log volatilities with these 16 discriminators. Removed variables

include the following: transactions per a block, difficulty of the hash function,

Nikkei225 index, S&P 500 index, Eurostoxx index, DOW30 index, NASDAQ,

and exchange rates of EUR and GBP. From these 16 regressors, we construct

two linear models, one for the log price and one for the volatility of Bitcoin

process. We then evaluate assumption fitness, say the residual assumption that

residual terms are independently and identically distributed.

Finally, we generate histograms residuals of each model to verify the residual

assumption by confirming it follows a normal distribution.

(a) Histogram for log-price (b) QQ plot for log-price

(c) Histogram for log-volatility (d) QQ plot for log-volatility

Figure 4.4 Residual evaluations for (a) Histogram, (b) Normal probability (QQ)

plot of the Bitcoin log price, and (c) Histogram, (d) Normal probability (QQ)

plot of the Bitcoin log volatility

Figure 4.4 (a) & (b) show that the Bitcoin log price satisfies the residual

assumption for linear regression: the histogram is bell-typed and symmetric and
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the QQ-plot shows a similar pattern with the normal distribution. By contrast,

Figure 4.4 (c) & (d) show that residuals of the linear model for log volatility of

Bitcoin do not follow a normal distribution with a positive-skewed histogram.

Time series of log volatility of Bitcoin is therefore unsuitable for linear analysis

except for the log price of Bitcoin due to the violation of each assumption.

Each linear model trained from a random 85% of whole data are disparate

from true log prices or log volatilities. Figure 4.5 demonstrates that predicted

log prices (volatilities) and a confidence interval of most recent 30 test data,

implying the unsuitability of the linear model in predicting the time series of

Bitcoin price. Figure 4.5 shows that most true values are out of the confidence

interval of the linear model. This means that the learned linear model does not

make an adequate prediction of the output value albeit in predicting trends in

little.

4.3.3 Estimation and Prediction Results of Bitcoin Price

We next perform time series analysis of Bitcoin prices using a BNN model and

compare with the benchmark models, which are the linear regression and the

SVR model. A total of 25 explanatory variables belonging to three categories

are employed as inputs for BNN learning. We also address another input set

that comprises 16 input variables by eliminating several unimportant variables

as mentioned in the previous subsection. We consider two response variables, log

price of Bitcoin and volatility of Bitcoin price, because extremely high volatility

is an important feature of Bitcoin. In general, volatility is a significant variable

assessed equally to the value of an option in economic analysis. We use log-scaled

values of both output response variables to account for the large difference

between Bitcoin value in the early period and its most recent value.

We train the BNN model through 10-fold cross-validation. To mitigate the

effect of how to divide the data, we repeated hold-out validation steps where
9
10N training data and 1

10N test data, given the total number of the data is N .

Where performances of each trained model are measured by root mean square
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(a) Bitcoin log-price

(b) Bitcoin log-volatility

Figure 4.5 Prediction results of (a) the Bitcoin log price and (b) the Bitcoin log

volatility

error (RMSE) and mean absolute percentage error (MAPE). Definitions of each
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evaluation criteria are as followings:

RMSE =

√∑N
i=1(yi − ŷi)2

N
(4.4)

MAPE =
1

N

N∑
i=1

|yi − ŷi
yi
| (4.5)

where N is the number of samples, yi is the i-th true objective value, and ŷi is

the i-th estimated value.

Table 4.5 Training error for the Bitcoin price formation

Response variable
Log

price

Log

volatility

Number of Input variable 26 16 25 16

Linear RMSE - 0.0913 - 0.4595

Regression MAPE - 0.0681 - 0.5905

Bayesian RMSE 0.0031 0.0047 0.1612 0.1717

NN MAPE 0.0119 0.0148 0.3314 0.3512

Support vec. RMSE 0.1453 0.1434 0.3810 0.3939

Regression MAPE 0.0325 0.0322 0.5411 0.6293

Table 4.5 and 4.6 summarize results of training errors and test errors, re-

spectively. We observe that BNN models outperform other models in terms of

RMSE and MAPE for predicting the log price of Bitcoin. Log price of Bitcoin is

learned exceptionally by the BNN model with training and test error of around

1% MAPE. In the case of log volatility, the prediction error of log volatility in

the test phase is slightly larger than that in the training phase. BNN model is

more reliable for describing the process of log volatility than other benchmark
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Table 4.6 Test error for the Bitcoin price formation

Response variable
Log

price

Log

volatility

Number of Input variable 26 16 25 16

Linear RMSE - 0.0935 - 0.4823

Regression MAPE - 0.0712 - 0.6263

Bayesian RMSE 0.0039 0.0069 0.2546 0.2325

NN MAPE 0.0138 0.0180 0.5090 0.5222

Support vec. RMSE 0.3201 0.2742 0.5487 0.5297

Regression MAPE 0.0428 0.0404 0.7232 0.8629

models. After eliminating redundant variables from linear correlation analy-

sis, the error value is relatively small when all 26 input variables are consid-

ered instead of the abridged 16 input variables. This condition implies that

removed variables may explain nonlinear relationships to adequately account

for response variables. SVR model shows poor performances in both training

and test phase. From this results, we can confirm that Bayesian NN is better

suited for the Bitcoin time series analysis than SVR albeit in they are included

the same nonparametric model.

Figure 4.6 shows the values of estimated response variables for the recent 30

test input data according to time indexes. We observe that the recent volatile

tendency is well expressed in terms of explanatory input variables. The case of

log price presents a tendency for underestimation when price rises and over-

estimation when the price falls. In the case of the log price, we can see that

all models predict the actual tendency of the price to some extent. On the

other hands, in terms of error size, it is confirmed that other models are larger
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than that of Bayesian neural networks. There is no tendency of over- or under-

estimate in all models. Bayesian neural networks tended to predict consistent

trends regardless of the number of inputs. In the case of volatility, the Bayesian

NN model predicts better the direction of volatility than other benchmark mod-

els, and neither of the four models tends to over or under-estimate.

Finally, we provide prediction results of the trained BNN under the rollover

framework. Rollover framework physically excludes old preceding data to reflect

that the previous information shrinks as training is repeated. The construction

method of the model in this subsection is fundamentally different from that of

the previous subsection. In the previous subsection, we have extracted part of

the entire data for training purpose, assuming that we have all data for the

entire time range. Although the method in the previous section is adequate to

assess how well the model has learned for the whole data, it is not appropriate

to predict future outcome from the historical data.

We train the machine using data obtained 200 days before the present day

and predict the current day’s price from the trained machine under the rollover

framework. Given that future data are not considered in the training phase,

we can infer that prediction performance may be inferior to that of the pre-

vious subsection. Table 4.7 presents prediction error for Bitcoin price under

the rollover framework. We note that overall performance is slightly poor com-

pared with the model construction in the previous subsection. Nevertheless,

prediction result for the log price of Bitcoin still maintains low error rates. By

contrast, prediction errors are almost doubled for log volatility outputs. Figure

4.7 shows plots of prediction results for the log price and log volatility of Bit-

coin. We show that log price is relatively well explained based on the employed

input variables and during sudden fluctuations. In the case of log volatility, the

discrepancy between true volatility and predicted volatility is relatively large,

but directionality is well approximated. In summary, the learned BNN models

can effectively describe the recent highly volatile Bitcoin price process and the

price in the entire range.
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(a) Bitcoin log-price

(b) Bitcoin log volatility

Figure 4.6 Test result plot of (a) the Bitcoin log price and (b) the Bitcoin log

volatility
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(a) Log value of the Bitcoin price

(b) Log volatility of the Bitcoin price

Figure 4.7 Prediction results of (a) the log value of the Bitcoin price and (b)

the log volatility of the Bitcoin price.
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Table 4.7 Prediction error for the Bitcoin price under the rollover framework

Response variable
Number of

input variable
RMSE MAPE

log 26 0.0256 0.0198

price 16 0.0244 0.0200

log 25 0.5750 0.8992

volatility 15 0.5114 0.6302

4.4 Enhanced GRU Framework for Correlation Anal-

ysis of Cryptocurrency Market

4.4.1 Enhanced GRU Framework

Recurrent Neural Network (RNN) is neural network model that is specialized

for time series sequential data. Its network structure is similar to multilayer

perceptron, but it contains previous hidden nodes as an inputs. Basic RNN

models with model F , input xt and hidden state ht for time step t, is given as

:

ht = F (xt, ht−1, θ) (4.6)

Equation 4.6 is called recurrent because ht−1 goes recurrently back to input in

the time t. Since ht−1 requires xt−1 as an input, this hidden state has the

information of whole past sequence (xt, xt−1, ..., x2, x1) as an input. There-

fore RNN is widely used in the tasks that requires time sequential concepts

in the model, such as neural machine translation(Cho et al., 2014) or speech

recognition(Graves et al., 2013).

However deep RNN models has challenge of long term dependencies(LeCun

et al., 2015). As RNN models gets deeper the model’s gradients will be propa-

gated over many times, and lead to gradient vanishing and exploding problem.

To solve this problem, long short-term memory (LSTM) model was suggested

by (Gers et al., 1999). The LSTM model uses the concept of gated RNN to solve
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long-term dependency problems and has been found very successfully in various

applications. However predicting time-series Bitcoin data has different structure

with other LSTM models, because whole dataset is composed as single time-

series data. It is hard to construct validation set, because we can not directly

apply validation methods such as cross-validation. In this dissertation, we sug-

gested the enhanced GRU framework for the multivariate time series analysis.

When we consider the following vector auto-regression (VAR)(1) model:

yt = φ0t + Φtyt−1 + at (4.7)

where yt is the target n-dim variable at time t, φ0t and Φt are parameters

for the VAR(1) model, and at is the shock at time t from the time invariant

distribution with mean 0 and the covariance matrix σ. In the VAR(1) model,

the parameter calibration is object to acquire suitable approximation of each

φ0t, Φt, and σ.The approximation can be achieved by the ordinary least square

(OLS) methods under the assumptions that the covariance matrix is positive

definite and the time series yt is weakly stationary. However, the OLS estimation

procedure is suffered from the above-mentioned assumptions and can be difficult

to calculate when the dimension of the target vector is increased.

Figure 4.8 Enhanced GRU framework for multivariate time series analysis

To overcome the drawback, we suggested the enhanced GRU framework for
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the multivariate time series analysis. This model overcomes the difficulties of

the existing VAR model estimation method by learning the components of the

lower triangular matrix and the diagonal matrix from each independent neural

network after performing the cholesky decomposition to satisfy the positive

definite condition of the correlation matrix. Coefficients dependent on the time

series vector was learned from the gate of GRU and tried to learn the change of

time series vector over time. Figure 4.8 described the enhanced GRU framework

for the multivariate time series analysis.

4.4.2 Empricial Studies

In this empirical study, we consider the 30-minute price data from November

17, 2015 to November 17, 2017 for a total of eight cryptographic currencies such

as ETH, DASH, XRP, XMR, LTC, XEM, EMC2 and NXT.

We train the model by using a total of about 38000 historical data and test

the model by using the recent 2000 data. We considered the batch size is 45

days. It means that the GRU is trained with 45 batch data in a single iteration.

We trained the enhanced GRU sequentially with altcoins as input in the order

presented above. In other words, we use the 38000 training data of 45 batches

to train the GRU and measure the test performance of the trained machine for

the recent 2000 test data.

The following is an illustration of some of the predicted results. Figure 4.9a

shows that the Litecoin is better approximated than Dash. From Figure 4.9b, it

can be seen that the Dash is over-estimated at a constant rate, which does not

directly extract the output from the GRU but looks like a gap in the process of

performing a linear regression once more. It seems to be due to the difference

in units of LTC and DASH.

Figure 4.10 shows that the correlation matrix between the entire cryptocur-

rencies at a particular point in time. We can confirm that the correlation matrix

of shocks of cryptocurrencies price varies with time from the change of infor-

mation of GRU gate. Figure 4.10 shows that there is a covariance close to zero
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(a) Prediction results of the LTC

(b) Prediction results of the DASH

Figure 4.9 Prediction results of (a) Prediction results of the LTC and (b) Pre-

diction results of the DASH. Blue line is true price and Orange line is estimated

price

between variables at the beginning of learning. However, as the learning pro-

gresses, the value of the covariance matrix converges to the value corresponding

to the covariance of each variable. The variance of each variable ranges from

about 0.1 to 0.25, and the covariance matrix shows that ETH and XRP have

opposite behavior to other currencies. In particular, EMC2 and NXT have large

volatility with other currencies, which seems to be due to the low ratio of market

capitalization.
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(a) Covariance matrix result for 2017.09.12.

(b) Covariance matrix result (a) 2017.05.15.

Figure 4.10 Covariance matrix result (a) 2017.09.12 and (b) 2017.05.15.

4.5 Chapter Summary

Bitcoin is a successful cryptocurrency, and it has been extensively studied in

fields of economics and computer science. In this study, we analyze the time

series of Bitcoin price with a BNN using Blockchain information in addition to
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macroeconomic variables and address the recent highly volatile Bitcoin prices.

Given the data of the entire time range, experimental results show that the

BNN model learned with the selected features effectively describes processes

of Bitcoin log price and log volatility. Adoption of rollover framework experi-

mentally demonstrates the predictive performance of BNN is better than other

benchmark methods on log price and volatility processes of Bitcoin.

Through the empirical analysis, we have confirmed that the BNN model

describes the fluctuation of Bitcoin up to August 2017, which is relatively recent.

Unlike other benchmark models that fail directional prediction, the BNN model

succeeded in relatively accurate direction prediction. From these experimental

results, the BNN model is expected to have similar performance in more recent

data. As the variation of Bitcoin process gets attention, it is expected that the

expansion and application of the BNN model would be effective for the analysis

and prediction of the Bitcoin process.

Investigating nonlinear relationships between input functions based on net-

work analysis can explain analysis of Bitcoin price time series. Variability of

Bitcoin must be modeled and predicted more appropriately. This goal can be

achieved by adopting other extended machine learning methods or consider-

ing new input capabilities related to the variability of Bitcoin. Such study will

contribute to rich Bitcoin time series analysis in addition to existing Bitcoin

studies.

We have attempted to visualize the relationship between altcoins, in which

the creation principles are closely related, unlike the existing stock market with

independently issued stocks. To reveal the relationship, we have proposed the

enhanced GRU framework based on the VAR model. In the enhanced GRU

framework, the effect of each time series variable on each other is expressed

as a linear regression coefficient through the VAR model consisting of a vector

of time series of each alternative coin. In this case, each linear regression co-

efficient is dynamic parameters estimated through GRU and neural networks,

unlike the original VAR model. From the proposed framework, we have con-

firmed that there is a significant correlation between altcoins by investigating
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empirical analysis based on eight alternative coins. The correlation analysis of

cryptocurrencies is expected to contribute in part to the valuation of crypto-

graphic currencies that have not yet been established.

97





Chapter 5

Conclusion

5.1 Contributions

This dissertation attempts to analyze the financial derivatives market and the

cryptocurrency market using econometric models and machine learning mod-

els. Based on the results of systematic empirical experiments based on given

market data, each models have been evaluated based on market explanatory

ability and market prediction ability. We propose data-driven machine learning

methodologies to improve the market predictability for each market.

When the hidden variables in the econometric models such as the GARCH

model or the stochastic volatility model constitute a time series model sepa-

rately from the observation variables, the existing parameter calibration meth-

ods causes slow convergence speed and frequent local solution problems. In

particular, in the case of the general MCMC methodology where it is impossi-

ble to know the specific target probability distribution, it is an important factor

to determine a candidate probability distribution close to or similar to the tar-

get probability distribution for the overall performance improvement. In this

dissertation, we propose a MCMC framework that a large amount of samples

is extracted from the candidate probability distribution nearest to the target

probability distribution in terms of Kullback-Leibler (KL) distance by using the

generative model concept. It is possible to extract the samples in a very short

time, since the sample is acquired from the generative model. We have improved
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the disadvantages of the existing MCMC methodology, which is dependent on

the choice of the candidate probability distribution, by providing only samples

from the nearest probability distribution in terms of KL divergence instead of

suggesting a specific probability distribution.

Given S&P index option data in 2012, in-sample and out-of-sample are mea-

sured to compare model validity and predictability of the representative econo-

metric model, the CGMY and Kou model, and conventional machine learning

models such as artificial neural networks, Bayesian artificial neural networks,

support vector machines, and Gaussian process models. In the case of model

estimation, the jump diffusion models have the best performance in estimat-

ing the model using the data of the recent day, whereas the machine learning

model has the highest model estimation performance using the data of the last

week. On the other hand, the performance of the jump diffusion models and the

Bayesian artificial neural network were the best in forecast, and the performance

of the other machine learning decreased rapidly as the range of prediction in-

creased. Especially, it was confirmed that the jump diffusion model has a very

high performance in terms of domain adaptation between the American option

and the European option. This difference is reflected in the fact that the jump

diffusion model is based on the common asset of the American option and the

European option.

Based on this empirical precedent study, we proposed a machine learning

model called generative Bayesian neural network (GBNN) to overcome the dis-

advantages of the machine learning model. Since the general machine learning

methodology learns the model from the data, the performance decreases very

rapidly in the deep ITM or deep OTM domain with few data point when learn-

ing the model for the option market. During the initial learning, GBNN acquired

an appropriate price in any area by adding virtual price data from an arbitrarary

jump-diffusion model. When the next learning period comes, GBNN maximizes

posterior probability through the GBNN obtains pror information from the

GBNN data learned up to the previous day, and learns likelihood probability

from actual trading data of learning day. As a result, GBNN’s deep ITM and
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OTM areas have significantly improved estimation and prediction performance

and are much better than the jump-diffusion models unlike other machine learn-

ing models for the S & P 100 index American option data from 2003 to 2012.

In particular, in the previous study, GBNN showed that the model estimation

performance was very fast and stable compared to other methodologies, unlike

the general machine learning model, where the model fit performance is highly

volatile according to the applied data range in terms of model estimation. In

addition, we can confirm that the GBNN is much faster in terms of option price

calculation time for the fitted model. Econometric models calculate the option

price after given the asset value based on the obtained parameter even after the

model is formed. It reflect the characteristics of the artificial neural network

which shows very fast speed in the test side after the model is formed.

In recent years, a variety of cryptographic currencies have been developed,

beginning with the first cryptocurrency Bitcoin, which technically implemented

the concept of distributed ledger proposed by Satoshi Nakamoto in 2008. There

is a growing demand for new analytical technology as well as traditional market

analysis techniques for the cryptocurrency market, which has new and unique

features that have not been existing. In this dissertation, we use quantitative

data of Blockchain technically implemented decentralized branch to analyze

the representative cryptocurrency Bitcoin time series studied by previous lit-

erature based on conventional methodology of econometrics. Bayesian neural

networks considering block-chain data show higher predictive performance and

estimation performance than other benchmark models, and identify the recent

volatility of cryptography compared to previous studies. Correlation analysis

between cryptocurrencies is performed using the enhanced GRU model frame-

work, under the assumption that there will be a correlation between the prices

of cryptographic currencies since many altcoins derived from Bitcoin are tech-

nically developed from the same root code. The vector autoregressive (VAR)

model, which is a traditional market model, is based on the assumption that

the correlation between the variables is a linear model. Assuming that the gate

value obtained from the GRU model is the parameter of the VAR model, The
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covariance matrices of the cryptosystem are estimated through the artificial

neural network, which makes it possible to visualize the correlation between

various alternative currencies in the cryptographic market. As a result, it is

confirmed that there is a close correlation between alternative currencies. Es-

pecially, it is confirmed that there is a very significant correlation between the

currencies separated from the existing currencies and the existing currencies.

This dissertation has developed data-driven technologies for the time series

analysis of derivatives and cryptocurrency market, and conducted quantitative

analysis of the market. There has been limited research on the machine learning

framework of interpretable data based. This dissertation focuses on visualizing

and interpreting meaning from the data by developing a machine learning based

model easy to interpret. This dissertation can contribute to the analysis of time

series of recently formed cryptocurrency market. In addition, it is expected that

the application of the time series analysis framework of derivatives based on the

data can be applied to expand to the analysis of derivatives market with the

cryptocurrency underlying.

5.2 Future Work

Several limitation of the dissertation should be addressed in future work. First,

the econometric model for calculating the prior virtual prices used in the pro-

posed generative Bayesian neural network model should be updated with time.

It may cause that the GBNN can learn the wrong prior information if the

outdated econometric model does not reflect the current market information

after time. In this dissertation, we consider the prior knowledge obtained only

from the jump-diffusion model. The extended research topic can be considered

the GBNN when acquiring the prior information from the model considering

the variation of the volatility such as the stochastic volatility model or the

GARCH model was selected. In cryptocurrency market analysis, this study has

the limitation that only the quantitative data constituting the blockchain such

as the difficulty and the hash rate are considered. For a rich and systematic
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analysis of the money market, fundamental studies on the basic mechanisms of

blockchain technology and the analysis of the value of cryptography should be

accompanied.
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국문초록

본 논문은 전통적인 계량 경제 모형 및 기계 학습 모형을 활용하여 금융 파생상품

시장 및 암호화폐시장 분석을 수행하고자 하였다. 주어진 시장 데이터를 활용한

체계적인 경험적 실험 결과를 통해 시장 설명 능력 및 시장 예측 능력을 기반으로

기존연구에서다양하게활용되어온계량경제모형및기계학습모형을평가하여

각 모형의 한계를 파악하고 설명 및 예측 능력 향상을 위한 데이터 기반 기계 학습

방법론을 제안하였다.

GARCH 모형 및 확률 변동성 모형과 같은 계량 경제 모형 내에 은닉 변수가

관찰 변수와 개별적으로 시계열 모형을 구성하는 경우, 기존 모형의 모수 추정 방

법론은 느린 수렴 속도 및 빈번한 지역해 문제가 발생한다. 특히 일반적인 MCMC

방법론의 경우 구체적인 목표확률분포를 알 수 없지만 그와 비슷하거나 확률적으

로 가까운 후보확률분포를 선택하는 것이 전체 성능을 결정하는 중요한 요소이다

본 연구에서는 generative model이라는 개념을 사용하여 후보확률분포를 정확하

게 제안하는 대신, Kullback-Leibler (KL) distance 관점에서 목표확률분포와 가

까운 후보확률분포로부터 추출된 다량의 샘플을 제공함으로써 MCMC 방법론의

성능을 향상시키고자 하였다. Generative 모형으로부터 샘플을 얻기 때문에 매우

단시간에샘플을추출하는것이가능하고구체적인확률분포를제안하는대신 KL

divergence 관점에서 가까운 확률분포로부터 얻은 샘플만을 제공함으로써 기존의

후보확률분포에 의존적인 MCMC 방법론의 단점을 개선하였다.

또한 2012년의 S&P 100 인덱스 옵션데이터를 활용하여 대표적인 점프 발산

모형인 CGMY, Kou모형과 대표적인 기계학습 모형인 인공신경망, 베이지안 인

공신경망, 서포트 벡터머신, 가우시안 프로세스 모형들에 대하여 in-sample, out-

of-sample의 에러를 측정하여 모델 추정 및 예측 능력을 비교하였다. 모델 추정의

경우,점프발산모형은최근하루의데이터를사용하여모델을추정한성능이제일

좋은 반면 기계학습 모형은 최근 일주일 간의 데이터를 활용한 모델 추정 성능이

제일높은것으로나왔다.반면예측성능의경우,점프발산모형및베이지안인공

신경망의 성능이 비슷하게 가장 좋았으며, 다른 기계학습의 경우 예측하는 범위가

넓어질수록성능이빠르게떨어지는것을확인하였다.특히본연구에서는점프발
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산 모형이 아메리칸 옵션 및 유러피언 옵션 간의 도메인 적응 측면에서 매우 높은

성능을 보이는 것을 확인하였으며 이러한 차이는 점프 발산 모형이 아메리칸 옵션

및 유러피언 옵션이 공통된 자산을 기반으로 한다는 사실을 모형 내에 반영하고

있기 때문이라고 예상 할 수 있다. 이러한 경험적 선행 연구를 바탕으로, 생성적

베이지안 인공신경망 (GBNN) 이라는 모델을 제안함으로써 기계 학습 모형이 가

지고 있는 단점을 극복하고자 하였다. 일반적인 기계학습 방법론은 데이터로부터

모형을학습하기때문에옵션시장에관한모형을학습시킬때데이터가없는깊은

ITM 이나 깊은 OTM영역에서 성능이 매우 빠르게 감소한다. GBNN은 이 문제를

해결하기 위해 어떤 영역에서도 적절한 가격을 제안하는 임의의 발산모형으로부

터 얻어진 가상의 가격데이터를 GBNN의 초기 학습 시에 추가하였다. 다음 학습

시기가 왔을 때, GBNN은 전 날까지 학습된 GBNN의 데이터로부터 사전 확률

에 대한 정보를 얻으며 학습 날의 실제 거래 데이터로부터 우도확률 값을 얻어

사후 확률을 최대로 하는 모형을 학습하였다. 그 결과, 2003년부터 2012년 까지

S&P 100 인덱스 아메리칸 옵션 데이터에 대해 일반적인 기계학습 모형과는 달리

GBNN의 깊은 ITM 및 OTM 영역의 추정 및 예측 성능이 눈에 띄게 향상하였고

점프 확산 모형보다 매우 좋거나 비슷한 추정 및 예측 성능을 보였다. 특히 선행

연구에서 모형 적합 시 적용 데이터 범위에 따라 모형 적합 성능이 매우 변동성이

큰일반적인기계학습모형과는달리 GBNN은모형적합성능이다른방법론들에

비하여 매우 빠르고 안정적인 것을 확인할 수 있었다. 특히 독립된 50회의 모형

적합을 수행한 결과 매 모형 적합 시 결과 성능의 변동성이 매우 큰 점프 발산

모형에 비하여 GBNN의 경우 매 적합마다 일정한 성능 범위 안에 포함되는 것을

확인할 수 있었다. 또한 적합된 모형에 대해 옵션 가격 계산 시간 측면에서 GBNN

이 월등히 빠른 것을 확인할 수 있었는데 이는 모형이 형성된 뒤에도 얻어진 모수

를 기반으로 자산의 예측 값을 먼저 계산하고 주어진 가격 결정 방법을 통해 옵션

가격을 결정하는 계량 경제학 모형과는 달리 모형이 형성되고 난 뒤에는 테스트

측면에서 매우 빠른 속도를 보이는 인공 신경망의 특징을 반영한 것으로 보인다.

2008년사토시나카모토가제안한분산원장이라는개념을기술적으로구현한

최초의암호화폐인비트코인을필두로하여다양한종류의암호화폐가개발되면서

최근의 암호화폐시장이 형성되었다. 암호화폐시장은 기존에 없던 새로운 고유한

특징을 가지는 시장으로써 전통적인 시장 분석 기술뿐만 아니라 암호 화폐시장에

적합한 새로운 분석 기술에 관한 수요가 증가하고 있는 상황이다. 본 연구에서는
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기존의 전통적인 계량 경제학 방법론에 기반을 두는 선행 연구에서 나아가 분산

원장을 기술적으로 구현한 블록체인의 정량적인 데이터를 활용하여 대표적인 암

호화폐인 비트코인 시계열을 분석하였다. 블록체인의 데이터를 고려한 베이지안

인공신경망은다른벤치마크모형들에비해높은예측성능및추정성능을보였으

며선행연구들에비해최근의암호화폐의큰변동성을반영하는것을확인하였다.

비트코인으로부터 파생되는 많은 알트코인이 기술적으로는 같은 코드로부터 개발

되었기때문에암호화폐들간의가격사이에상관관계가있을것이라는가정하에

확장된 GRU 모형을 사용하여 화폐 간의 상관관계 분석을 수행하였다. 전통적인

시장 모형인 Vector Autoregressive (VAR)모형이 다변수간의 상관관계를 선형

모형으로 가정하는 것에 착안하여 GRU 모형으로부터 구해진 게이트 값을 VAR

모형의 모수로 가정하고 기존에 추정에 어려움이 있었던 매 시간의 충격파 간의

공분산행렬을인공신경망을통해추정함으로써암호화폐시장의다양한대안화폐

들 간의 상관관계의 시각화를 가능하게 하였다. 그 결과 대안 화폐들 간의 긴밀한

상관관계가존재한다는것을확인하였으며특히기존의화폐로부터분리되어나온

화폐와 기존 화폐간에 매우 유의미한 상관관계가 존재한다는 것을 확인하였다.

본 연구는 파생상품 및 가상화폐 시장분석을 위한 시계열 data-driven 기술을

개발하여 시장의 정량적인 해석에 관한 연구를 진행하였다. 데이터 기반의 학습

프레임워크에대한기존연구는의미분석에제한적으로진행되어왔으나본연구

는 해석이 용이한 데이터 기반 기계 학습 보형을 개발하여 데이터로부터의 의미를

시각화하고 해석하는데 집중하였다. 본 연구의 연구 결과를 기반으로 하여 최근

형성된 가상화폐 시장의 시계열 데이터 분석에 기여하는 것이 가능하며 나아가

가상화페 시장의 파생상품 시장 형성 시에 본 연구에서 다룬 파생상품의 시계열

분석 프레임 워크를 활용하여 확장 적용이 가능할 것으로 예상된다.

주요어: 금융시장분석, MCMC, 암호화폐시장, 기계학습, 베이지안 인공신경망,

시계열 모형 분석
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