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Abstract

Predictive Models for Blockchain,
Cryptocurrency, and Derivatives Market

Huisu Jang
Department of Industrial Engineering
and Naval Architecture

The Graduate School
Seoul National University

This dissertation aims to conduct the empirical analysis for the financial deriva-
tive and cryptocurrency market and to develop analytical techniques based on
machine learning models suitable for prediction and estimation of each field. In
the financial derivative market, a Markov chain Monte Carlo (MCMC) methods
employ the candidate probability distribution nearest to the target probability
distribution to acquire sample distributed from the posterior density. Choice of
the candidate probability distribution affects the practical convergence speed
of the MCMC methodology and the fitness of the sample. In this dissertation,
we propose a MCMC framework possible to samples from the candidate dis-
tribution nearest to the target probability density without the specification of
the candidate distribution. We confirm that the jump diffusion models and
Bayesian neural networks have the best performance in estimating and predict-

ing given the data of the recent day for the model estimation given S&P index



options in 2012. Especially, the jump diffusion model has a very high perfor-
mance in terms of domain adaptation between the American option and the
European option. This difference is reflected in the fact that the jump diffusion
model is based on the common asset of the American option and the Euro-
pean option. Based on this empirical precedent study, we proposed a machine
learning model called generative Bayesian neural network (GBNN) to overcome
the disadvantages of the machine learning model. GBNN maximizes posterior
probability through the GBNN obtains prior information from the GBNN data
learned up to the previous day, and learns likelihood probability from actual
trading data of learning day. We identify that the GBNN model outperform
other benchmark models in terms of model prediction. Bitcoin is a successful
cryptocurrency, and it has been extensively studied in fields of economics and
computer science. In this dissertation, we analyze the time series of Bitcoin
price with a BNN using Blockchain information in addition to macroeconomic
variables. We conduct the empirical study that compares the Bayesian neural
network with other linear and non-linear benchmark models on modeling and
predicting the Bitcoin process. Our empirical studies show that BNN performs
well in predicting Bitcoin price time series and explaining the high volatility of
the Bitcoin price in Aug. 2017. In addition, we suggested the enhanced GRU
model for correlation analysis between cryptocurrency markets. Assuming that
the gate value obtained from the GRU model is the parameter of the VAR
model, it makes possible to visualize the correlation between various alterna-
tive currencies in the cryptocurrency market. As a result, it is confirmed that

there is a very significant correlation between the currencies separated from the

ii



existing currencies and the existing currencies.

Keywords: financial market analysis, Bayesian neural networks, machine learn-
ing, time-series analysis, Markov chain Monte Carlo

Student Number: 2015-30239
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Chapter 1

Introduction

1.1 Financial derivative market analysis

Since the seminal work by Black and Scholes (Black & Scholes, |1973) on option

pricing in the early 1970’s, many alternative option pricing models have emerged
to address key stylized facts for option markets, such as volatility smile, fat tail,

and volatility clustering. Most of the successful option models are financial jump

models (Carr et al., 2003} Koul 2002; D. B. Madan et al., [1998; Merton, (1976}

Nualart et al., 2001) where exact parametric formulas for pricing options are

available and can be ready to calibrate to the market data, mostly European
option prices, which can be executed only at maturity. American options cannot
be priced by the exact closed form since the value of American options includes
the right to decide freely to terminate the transaction. Numerous pieces of
literature have been studied to circumvent the exact value of American options

by employing simulation technology and the assumption of discrete exercise

time (Blair et al., [2010; Ederington & Guan, 2002} Fengler} 2006} [Kim| 2009}

Xu & Taylor], [1995; Benko et al., 2007 [Fengler, 2009; BARONE-ADESI
‘Whaley, 1987; Longstaff & Schwartz, [2001)).

A & Tl 8} 3



1970 1990 Dot-com Bubble 2000 2005 Financial crisis 2010
| Blackand Scholes, 1973 [|  Xu and Taylor, 1995 | Buairetal, 2001 | Fengler, 2005 I Andrieu, 2010
| Merton, 1976 | Ederington | Benkoetal, 2007 | Chopin, 2013
| Barone-Adesi and Guan, 2002 | Kim, 2009
and Whaley, 1987 | Longstaf | Fengler, 2009
and Schwartz, 2001
| Kou, 2002
| Caretal, 2003
I Hutchisonetal, 1994 || Yao et al, 2000 | Hanand Lee, 2008 | Wang, 2011
| Lajbcygier | Genccay and Qi, l Kazem et al., 2013
and Conner, 1997 2001
| YangandLee, 2011
| Maliaris and
| Parkand Lee, 2012

Salchenberger, 1998

Figure 1.1 Derivative market analysis based on econometric and Al models

The tremendous increase in computing power and data storage during the
last decade has resulted in the rapid development of machine learning and data
mining with diverse applications in economics, finance, science, engineering,
and technology. In the finance area, machine learning models have elicited con-

siderable attention from many researchers because of their predictive power.

'Yao and Tan| (2000b) demonstrated that Nikkei 225 index future options in

1995 were better predicted by neural networks using the back-propagation al-

gorithm than the traditional Black-Scholes models. |Gengay and Qi (2001a))

showed that generalization for pricing and hedging derivatives can be improved

by the Bayesian regularization techniques and verified empirically for S&P 500

index daily call options from January 1988 to December 1993. (2011a))

Ralks L
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reported that support vector regression (SVR) improved the forecast accuracy
for the daily currency market data of AUD/USD, EUR/USD, USD/JPN, and
GBP/USD options from January to July in 2009. |Kazem et al. (2013)) presented
support vector regression methods optimized by chaotic firefly algorithm out-
performs several methods of SVR for NASDAQ quotes, Intel (from 9/12/2007
to 11/11/2010), National Bank shares (from 6,/27/2008 to 8/29/2011) and Mi-
crosoft (from 9/12/2007 to 11/11/2011) daily closed stock prices. Xiong et al.
(2014) tuned the parameters of multi-output support vector regression using
firefly algorithm and compared the proposed SVR methods with other existing
methods for forecasting the market indexes, S&P 500, Nikkei 225, and FTSE
100 indexes. Figure [I.1] shows the derivative market analysis based on econo-

metric and Al models according to time line.

Although a considerable number of studies have been conducted to eluci-
date financial option markets by applying either econometric financial models
or machine learning models, there are few studies considering two types of the
models jointly. In this dissertation, an intensive empirical study is conducted
to compare econometric models with state-of-the-art machine learning mod-
els especially concentrating on the American option pricing analysis relatively
having the limitation in only use traditional econometric models. In addition
to empirical studies, we suggested the proposed MCMC methodologies to pa-
rameter calibration of time series models to acquire suitable parameters. We
propose a generative Bayesian machine learning model to improve the options

market predictability.



1.2 Cryptocurrency market analysis

In this dissertation, the cryptocurrency market refers to the decentralized cryp-
tocurrency market produced by the entire cryptocurrency system collectively,
based on the underlying technical system created by Satoshi Nakamoto. The
decentralized cryptocurrency, without the intrinsic value, is valued by shared
ledger among participants unlike fiat currencies, which are valued by the central
banking and economic system like the Federal Reserve System (FRB) capable of
controlling the money supply. It is inevitable to consider the mechanism of the
‘shared ledger’ techniques, 'Blockchain’, for the cryptocurrency analysis, since
the Blockchain techniques are directly involved in the supply and demand of
the cryptocurrency. Currently, there is very little research dedicated to the first
currency market rooted in the technology other than small amounts of studies

about the Bitcoin by employing existing econometric technologies.

Numerous studies have been conducted recently on modeling the time series
of Bitcoin prices based on existing econometric models under the assumption
the Bitcoin is regarded as a general market variable. Generalized Autoregres-
sive Conditional Heteroskedasticity (GARCH) volatility analysis is performed
to explore the time series of Bitcoin price (Dyhrberg, |2016a),(Katsiampal, 2017)).
Various studies on statistical or economical properties and characterizations of
Bitcoin prices refer to its capabilities as a financial asset; these research focus
on statistical properties (Bariviera et al., [2017; (Chu et al., 2015), inefficiency of
Bitcoin according to efficient market hypothesis (Urquhart, 2016; Nadarajah &

Chu, 2017)), hedging capability (Dyhrberg, 2016b; Bouri et al., [2017)), specula-



tive bubbles in Bitcoin (Cheah & Fry, 2015), the relationship between Bitcoin
and search information, such as Google Trends and Wikipedia (Kristoufek,
2013), and wavelet analysis of Bitcoin (Kristoufek, 2015).

Relatively few studies have thus far been conducted on estimation or pre-
diction of Bitcoin prices. |Ciaian et al.| (2016]) evaluates Bitcoin price formation
based on a linear model by considering related information that is categorized
into several factors of market forces, attractiveness for investors, and global
macro-financial factors. They assume that the first and second factors men-
tioned above significantly influence Bitcoin prices but with variation over time.
The same researchers limit the number of regressors to facilitate linear model
analysis. McNally| (2016) predicts the Bitcoin pricing process using machine
learning techniques, such as recurrent neural networks (RNNs) and long short-
term memory (LSTM), and compare results with those obtained using autore-
gressive integrated moving average (ARIMA) models. A machine trained only
with Bitcoin price index and transformed prices exhibits poor predictive per-
formance. |I. Madan et al. (2015 compares the accuracy of predicting Bitcoin
price through binomial logistic regression, support vector machine, and random
forest.

There are few practical and systematic empirical studies on the analysis of
cryptocurrency markets. We conduct practical analysis on modeling and pre-
dicting of the Bitcoin process by employing a Bayesian neural network (BNN),
which can naturally deal with increasing number of relevant features in the
evaluation based on Blockchain information. We also try to account for the

remarkable coupling of other cryptocurrencies with the Bitcoin by employing



the enhanced GRU framework.

1.3 Aims of the Dissertation

This dissertation aims to investigate the intensive analysis for financial deriva-
tive market and cryptocurrency market and to develop analytic technologies
based on Al strategies suitable for prediction and estimation of each field. We
evaluate the suitability of the econometric models and the data-driven machine
learning models for each specific market analysis by bringing major two cri-
teria of model validity and model predictability. Model validity considers the
in-sample error value and parameter calibration results, and model predictabil-
ity will verify that the model forecasts reasonable prices for the out-of-sample.
In addition to the intensive empirical study to compare econometric models
with state-of-the-art machine learning models, we propose the machine learn-
ing models suitable for market analysis based on the advantages and limitations
of each econometric and machine learning models acquired from the precedence
studies. We conducted parallel studies for the each index options market and
the cryptocurrency market.

In Chapter 2, econometric models and statistical machine learning models
used in this dissertation are summarized at first.

In Chapter 3, we propose the generative Markov chain Monte Carlo (MCMC)
framework for parameter calibration of state space models. It achieves more sta-
ble parameter estimation of considered econometric models. Then, an intensive

empirical study is conducted to compare two methods in terms of model esti-



mation, prediction, and domain adaptation using S&P 100 American/European
put options. Results indicated that econometric jump models demonstrate bet-
ter prediction performance than the best-performing machine learning mod-
els, and the estimation results of the former are similar to those of the latter.
The former also exhibited significantly better domain adaptation performance
than the latter regardless of domain adaptation techniques in machine learning.
Lastly, we propose a generative Bayesian neural network model that incorpo-
rates a prior reflecting a risk-neutral pricing structure to be consistent with the
extreme option prices. Proposed model can acquire the information under the
extreme region where there are a few observations in real data by considering
artificial prior information from the econometric model. Chapter 4 included a
real data application to compare the proposed model with other state-of-the-art
methods in terms of model estimation and prediction using S&P 100 American

put options data from 2003 to 2012.

In Chapter 4, we investigate the cryptocurrency market analysis based on
the real data empirical study of Bitcoin. We conduct the empirical study that
compares the Bayesian neural network with other linear and non-linear bench-
mark models on modeling and predicting the Bitcoin process. Our empirical
studies show that BNN performs well in predicting Bitcoin price time series
and explaining the high volatility of the recent Bitcoin price. We also the en-
hanced GRU framework based on the Vector Autoregressive (VAR) model to
reveal the relationships of several cryptocurrencies and shows the correlation be-
tween several cryptocurrencies over time by conducting real data experiments

based on the eight types of cryptocurrency data. There has been limited re-



search on the machine learning framework of interpretable data based. This
dissertation focuses on visualizing and interpreting meaning from the data by
developing a machine learning based model easy to interpret. This dissertation
can contribute to the primary data analysis for the cryptocurrency market.
Finally, we discuss the contributions and future works of this dissertation

in Chapter 5.

1.4 Outline of the Dissertation

To achieve the aims of the dissertation, the rest of this dissertation is organized
as the following Table Table summarizes analysis market fields and

analysis scopes in the entire discussion.

Table 1.1 Analysis market fields and scopes in the dissertation

Market fields Analysis scope Included chapter

Empirical comparison study Chapter 3.2

Options
market Model validity Chapter 3.3
Model predictability Chapter 3.4
Cryptocurrency Empirical comparison study Chapter 4.3
market
Model validity Chapter 4.4
8 ¥



Chapter 2

Literature Review

2.1 Review of Financial Econometric Models

2.1.1 Time series models

Financial jump models divide into finite-activity jump-diffusion processes and
infinite-activity exponential Lévy processes, respectively. The former includes
the Merton model with finitely Gaussian jumps (Merton, |1976) and the Kou
model with double exponential jumps (Kou, |[2002). The latter includes the Vari-
ance Gamma (VG) (D. B. Madan & Seneta, [1990; D. B. Madan et al.,|1998), the
(Generalized) Hyperbolic model or the Normal Inverse Gaussian(NIG) (Eberlein
et al., 1995 Barndorff-Nielsen, 1997)), the CGMY (named after Carr, German,
Madan and Yor) (Carr et al., 2003)), and Meixner model (Nualart et al., |2001)).

A representative jump model we consider in this paper is the CGMY model
(also called truncated Lévy flights) which is an infinite activity exponential-
Lévy process (Carr et al., 2003) given by the following risk-neutral stock price

process

Sy = Spexp((r — @)t + Xy (v) + wt)



where r and ¢ represent the constant continuously compounded interest rate
and dividend yield respectively, X;(v)i>0 is a Lévy process. Lévy measure v,
and w is instituted to guarantee the martingale property for the price process.
Lévy measure of the CGMY model takes the form of

C

— A -
V(LU) = W@ :(:1x<0 + x1+Y€ +7]

>0

It is of finite variation if 0 <Y < 1 and of infinite variation if Y > 1.

There are 4 parameters § = (¢,Y,A_,A;): ¢ determines the overall and
relative frequency of jumps, A_, A\, represent the tail behavior of the Lévy
measure, Y shows the local behavior of the process (how the price evolves
between big jumps).

The characteristic function of the model is sufficient to apply numerical
approximation for pricing options. The characteristic function ®(z) of sy =

In(S¢/So) is represented by

(I)S(Z) _ E[eizst] _ 6t(iz(r—q+w)+tcl"(—Y)(()\+—iz)Y—)\I—l-()\,—l-iz)Y_)\)_/) (21)

and

w=c(=Y)( Ay — DY =X+ -+ )Y =AY

where 0 <Y <1lorY >1and I'(—Y) means a gamma function value of —Y.

The Kou model (Kou, 2002) is a econometric jump model that includes a
jump term with known distribution of jump sizes that describes abnormal rare
market events. The dynamics of stock price is given by the following stochastic

differential equation(SDE):

s N()
5 = (1 —a)dt+odWi+ d() (Vi—1))
i=1
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where v and ¢ represent the constant continuously compounded interest rate
and dividend yield respectively, W; is a Brownian motion, N(t) is a Poisson
processes with parameter A, and V; is a sequence of i.i.d. non-negative ran-
dom variables. The distribution Y; = In(V;) of jump sizes is an asymmetric

exponential as follows:
py () = pAre ™ Luno + (1 = p)A-e* "o

where the tail behavior of positive and negative jump sizes distribution is con-
sidered by Ay > 0 and p € [0, 1] represents the probability of an upward jump.

There are 5 parameters 0 = (A, Ay, A_,p,0): A\, jump intensity, Ay, A_,p,
parameters of each jump size distribution, and o, diffusion volatility. The char-
acteristic function ®4(z) of s; = In(S¢/Sp) is given by

. A A
_ et(w(T*quwo)f%zonH\(p imt1-p) =z —1)

(2.2)

and

— Lot ya(1- .
Wo =Tt ( Pyt ¢ p>>\_+1>

In this dissertation, the parameters of the CGMY model are calibrated from
minimizing the mean squared error between true prices and estimated prices.
Pricing the American option prices can be achieved by applying the Fourier
Cosine method or solving the linear complementarity problem (LCP). (Kwon
& Lee, 2011) suggested the implicit method coupled with the operator splitting
method to preserve the second order accuracy in the time and spatial variables.
The numerical method called the implicit method with three time level has the

advantage that it avoids the iteration we need to solve the dense linear system
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at each time step. Then the prices of the American options can be evaluated
with the computational complexity of O(M N log, M) operations where M is
the number of spatial steps and N is the number of time steps. The Fourier
Cosine method is one of the efficient pricing methods for the European options
(Fang & Oosterleel 2008). They also propose the Fourier-Cosine series method
for pricing early-exercise and discrete barrier options (Fang & Oosterlee] |2009).
The computational complexity is O((M-1)NlogN) with a number of the series
expansion, N, the number of monitoring dates, M. They dose not present the
parameter estimation results of the proposed method in the literature.

In financial time series analysis, time-varying volatility is often considered to
mitigate the drawbacks of the deterministic volatility by employing the stochas-
tic volatility (SV) models. We consider the representative two SV models: the
Heston model (Heston, 1993)) and the generalized autoregressive conditional
heteroskedasticity (GARCH) model (Bollerslev, [1986]). The Heston model as-
sumes that the asset price, S¢, and the instantaneous variance, vy at time ¢ are

determined by the following process:

dSt = MStdt-i‘\/thStthl

dvy = k(6 —v)dt + n\/QTtdWE

where dW}! and dW? are Wiener processes with correlation p and the parameter
set, (u, K, 60,n), describes the rate of return, the reverting rate of variance, the
long run average price variance, and the volatility of the volatility.

We consider the standard GARCH(1,1) model, which assumes that the

randomness of the variance process varies with the variance. The standard
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GARCH(1,1) model is similar to the Heston model except that the square root
value is removed from the process of variances. The processes of GARCH(1,1)

model are as follows:

dsS; = /,LStdt—F\/thStthl

dvi = k(0 —vy)dt + nudW}?

where dW,! and dW}? are independent Wiener processes and the parameter set,
(u, k,0,1m), describes the rate of return, the reverting rate of variance, the long

run average price variance, and the volatility of the volatility.

Calibration issue of stochastic volatility models is challenging since the
volatility process of an asset return is not directly observed. (Bakshi et al.,
1997)) used implied volatilities and cross-sectional information in option prices
with different maturities and strike prices to estimate the asset return and
stochastic volatility process. We followed the two-step calibration procedure
applied in (AitSahlia et al., 2010; Zhang & Shul 2003): first, structural param-
eters of the underlying asset is approximated by the indirect inference methods
from (Gourieroux et al., [1993), and the rest parameters for option pricing are
estimated based on least-squares by using market European options. After the
calibration, we employ the least-squares Monte-Carlo (LSM) method to price

American options to avoid the stability problem of partial differential equations.

In what follows we shall provide a selective overview of some popular clas-

sical American option pricing methods in financial studies.
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2.1.2 Option pricing methods

Regression approaches introduced by (Longstaft & Schwartz, 2001) have applied
to estimate the continuation values of American or other exotic options(Clément
et al., 2002; Tsitsiklis & Van Roy}, 2001)). The approach assumes that the options
can be exercised at m discrete time set 0 < t1 <ty < ... < t,, =T, where T
is the expiration date. The method starts with N random paths {S}' (wn)|i =
1,-+--,m} according to Markov chain for 1 < n < N and determines option
values by rolling-back on these paths. The value of American option, V (¢;), at

each time step ¢; is then defined recursively by the following forms,

V(tz) = max[X(tz-), E(V(t7;+1’}—(ti))], 1=1,....m—1. (2.3)

where X (¢;) means that the immediate payoff at time ¢;, and F(t;) is the o-
algebra until time ¢;. The conditional expectation of continuation value for each
path, which is the value of holding rather than exercising, is given by C(w,t;)

and is estimated by the fitted values of the following regression:

Z 8;B;(St, (w (2.4)

where 3; is the coefficients of the regression function, and Bj(-) is the basis
functions with the underlying asset value S, at time ¢;. There are many possi-
ble choices of basis functions such as Laguerre, Hermite, Legrendre, and Jacobi

polynomials. In this experiment, we adopt the Laguerre poynomials of the sec-
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ond term:

Bo(S) = exp(~5/2)

B1(S) = exp(=5/2)(1 - 5)

Bo(S) = exp(—8/2)(1 — 25 4 5?/2) (2.5)
e d
B,(S) = exp(—S/Q)E@(S”e_S )

The ordinary least-square regression calculates the estimates of regression co-
efficients at each time ¢;. The price of the American option is then calculated
by averaging F'(w,0) over all w paths.

Barone-Adesi and Whaley model is one of the most widely used analytic ap-
proximation method for pricing American options (BARONE-ADESI & Wha-
ley, (1987). In Barone-Adesi Whaley models, American option values are ex-
pressed as a sum of European option values and early exercise premium, and
can be obtained by computing critical values where American and European
put option values are indifferent. The model assumes that the underlying pro-
cess follows a geometric Brownian motion with constant volatility ¢ as with
(Black & Scholes, |1973)), and that the risk free interest rate, r, and the cost of
carrying the underlying, b, which is equal to the difference with risk free rate
and the dividend yield, d (i.e., b = r — d) are all constants.

We define the early exercise premium with expiration date T', and strike

price K as
U(Su K) = PAmerican(Sy T) - PEuropean(Sa t) = h(T - t)f(S, K)

by choosing h(T'—t) = 1—e~"(T=%)_ Then the approximate value of an American
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put option is

PEuropean(S, T) + A (%)Ql , when S > S*

PAmerican(Sa T) = (26)

X -5, when § < §*

where S* is the critical underlying value below which the option should be
exercised and can be calculated numerically by solving following equation

X — 5" = Pruropean(S*,t) — i[1 — eI N[ g, (5)]]
q1

The other variables are given by

1 2b 2b 8r
N B S VLAY
g 2 [ (02 1) \/(02 D+ h02]

A = — <S*> (1 — TN [—dy (S*)])

In(S/K) + (b4 o) (T —t)
oVT —t

Note that A; > 0 since ¢; < 0, S* > 0, and N[—d;(S*)] < e ?T—1),

di(S) =

Option pricing using implied and local volatility have shown superior pre-

dictive power (Blair et al., 2010; Ederington & Guan, 2002; Fengler} 2006; [Kim,

2009; | Xu & Taylor} 1995).

The ad hoc Black-Scholes method employs the implied volatilities smoothed
across strike prices and time to maturity that are plugged back into the Black-
Scholes formula to cope with the volatility smile effects. It is one of the most

widely used option evaluation techniques among practitioners for its consis-

tently impressive empirical performance of option evaluation. |Brandt and Wul

(2002)) demonstrated that the ad hoc Black-Scholes outperformed the determin-

istic volatility function models in evaluating FTSE 100 index options.
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and Nandi| (2000) compared the ad hoc approaches with GARCH models.

(Christoffersen and Jacobs| (2004)) reported that the ad hoc methods with daily

parameter update is better than (1993)’s model for in sample and out

of sample.

The ad hoc Black-Scholes methods approximate the surface of implied volatil-
ities by a regression against a polynomial function of the strike prices and time

to maturities of the options,

6rv = Bo+ 1K + BT + B3KT +¢ e~ N(0,1) (2.7)

where K is the strike price and T is the time to maturity. Approximated implied
volatilities 67y have no sensible interpretation, but when plugged back into the

Black-Scholes formula it gives the option value, that is,

BS(K,T,S,r,orv(K,T)) (2.8)

where the strike price, K, the expiration date, T, the underlying value, S, the
risk-free rate, r, and the approximated volatility, 67y (K,T) from the regres-
sion. It is different from the true own implied volatility for each option values,

nevertheless, is believed to capture some implication of a free parameter across

concurrent options. Berkowitz et al.| (2010) showed that asymptotic argument

is valid for American options if the volatilities are estimated from American
options.

Local fit with more flexible nonparametric smoothing methods have recently

been employed for functional flexiblility (Benko et al., 2007 [Fengler, 2006]

2009)). Unlike the case of popular parametric stochastic volatility models that

’ Rk e
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always satisfy the no-arbitrage conditions, implied volatility surfaces requires
some constraints to be arbitrage-free.

Local volatility is defined as the function of the underlying asset price and at
any given time. Additionally, we assume that the underlying asset is consistent

with the following stochastic process:

dS; = (r — 8)Sydt + oSy, t)dW2 (2.9)

Dupire (1997) and |Gatheral (2011)) formulated the local volatility function by

giving the total implied variance. The total implied variance(TIV) is defined
as v(y, T) = o3, (y, T)T with the implied volatility, oy (,-), the log-forward
moneyness, y = In(K/Fr), Fr is the forward price, and , the time to maturity,

T. Then the local volatility surfaces satisfies the following equation:

o?(T, FrSpe¥) = (2.10)

) 1/1
1- 250 (Ty) — 5(5 +
There are several nonparametric smoothing methods to estimate the local volatil-

ity surface by employing the polynomials, piecewise polynomials, and functional

forms (Dumas et al. |1998; Benko et al. 2007; Hastie et al., [2009; [Fengler,

2006). We utilized a bivariate local quadratic kernel smoothing easy to acquire

the derivatives of the total implied variances, v(y,T)(Benko et al., 2007; Fen-

2006)). Then it can be estimated by optimizing the following minimization

problem,
mﬁin Z Z(ﬁo +B1(yi —y) + Ba(T; = T) + B3y — y)(tj — t)
po e (2.11)

+ 54(.% - y)2 - U(yia Ta] ))ZK(Z/@ - Y, 11] - T)
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where {(yi, T, v(yi,T})); i =1,---,m, j =1,---,n} is the given data set,
B = (Bo, - ,B4)T is the coefficients of estimates, and K (y, T) = K, (y) K, (T) =
exp(—y?/(2i3))/(i1v/27) exp(—T?/(2i3))/ (iav/27) is the bivariate kernel func-
tions. To calculate the local volatility, the derivatives of the total implied vari-

ances can be easily obtained from the estimation results:

@(va) = ﬁAO(va)a &)g/ﬁ = /él(va)a
aﬁ(yaT) _ A 82@(3/71—‘) _ A 826(3/71—‘) Y-
T = ﬁ?(yaT)v W - 63(?/)T)5 TyQ - 264(3/’T)

MC simulations are performed under the above local volatility model, and
the fast Fourier transform with the Heston’s model to price the option prices.
In current experiment, we put the implied volatilities of OEX put options from

the Optionmetrics database by the Wharton Research Data Services.

2.2 Review of Statistical Machine Learning Models

In this section, state-of-the-art machine learning models, such as artificial NN,

support vector machines, and GPs, are briefly reviewed as below.

2.2.1 Artificial neural networks

An artificial neural network (ANN) popularized after mid-1980s and now in
the 2010s with another name of deep learning has been successful in many
applications such as image recognition, speech recognition, natural language
processing, and financial time series (Murphy, 2012). The structure of an ANN

which mimics human brain structure consists of several connected layers where

19 -



each layer is the aggregate of neurons which are connected to each other. Layers
except for the input and output layer are referred to the hidden layer where
each hidden or output layer represents mathematically a nonlinear function of
the linear combination of the neuron node values that are delivered forward
from input nodes or hidden nodes. The employed nonlinear function is referred
as activation function such as hyperbolic tangent or logistic function. See Figure

below. The function form of the trained ANN model in this network diagram

Hidden layer 1

a 1
Hidden layer 2

2 1
input

output

Figure 2.1 Deep neural network with two-hidden-layers.

is represented as,

k m l
Frxw) = o 0P ha( 0P (Y wPe + w)) +wld) +wf?) (2.12)
1 t=1

]:1 1=

where wg-g) in the set of weight vectors w means a weight between the j-th
variable in the (k — 1)-th hidden layer and the i-th variable in the k-th hidden
layer, the O-th hidden layer refer to the input layer, the last k-th hidden layer is
the output layer, h;(-) is the i-th hidden activation function, o(-) is the sigmoid

function of the output layer for the regression, and each x; means the ¢-th
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variable in the input vector x.

Backpropagation algorithm is the most popular gradient descent method to
train the model by changing the weights of neural networks to reduce the chosen
error function between the model predicted value and the true output, generally
mean squared error. The gradient value use in this algorithm takes the form of
a product of each partial derivative element of which the total value is rapidly
shrinking to zero when the number of partial derivative terms is increasing,
thereby causing frequently a vanishing gradient problem in training multilayer
neural networks or deep neural networks.

Bayesian neural network is another popular class of neural networks pro-
posed to mitigate the over-fitting problem (Burden & Winkler, 2009; MacKay,

1992)) by adding a Bayesian regularization term to objective function as follows:

F=8Y lly— few)l+a)_ [[w]} (2.13)

where F' is the objective function, y is the output data, and w is the weights

of the network which are random variables with a density function given by

P(Dlw, f)P(w|f)
P(DIf)

P(w|D, f) = (2.14)

where D is the training data for neural networks. Levenburg-Marquardt algo-
rithm are used to find the weights of networks to achieve minimization of the
objective function (Foresee & Hagan| [1997) and determines regularization pa-
rameters « and 8 by approximating the Hessian matrix of objective function
at the minimum point. This technique increases the robustness of the model by

mitigating the local minimum problem.
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2.2.2 Bayesian neural networks

Bayesian neural networks (BNN) is a transformed Multilayer perceptron (MLP)
which is a general term for ANNs in the fields of machine learning. The networks
have been successful in many application such as image recognition, pattern
recognition, natural language processing, and financial time series (Murphy,
2012). It becomes known that much effective to represent the complex time
series than the conventional linear models, i.e. autoregressive and moving av-
erage, etc. The structure of a BNN is constructed with a number of processing
units classified into three categories: an input layer, an output layer, and one

or more hidden layers.

Specifically, neural networks containing more than one hidden layers can
solve the exclusive OR (XOR) problem, which cannot be solved by a single layer
perceptron (Minsky & Papert} 1969)). Different from a single layer perceptron,
which can only be linearly separated, they solve XOR problems by introducing
backpropagation algorithms and hidden layers. The hidden layer mapping the
original data to a new space transforms data that cannot be linearly separated

into linearly separable data.

Weights of a BNN must be learned between the input-hidden layer and
hidden-output layer. Backpropagation refers to the process in which weights
of hidden layers are adjusted by the error of hidden layers propagated by the
error of the output layer. An optimization method called delta rule is used to
minimize the difference between a target value and output value when deriving

backpropagation algorithm. In general, BNNs minimize the sum of the following
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errors, F'g, using backpropagation algorithm and delta rule.

N K
_ @ 2 Brs
Eg = 5 ;;(tnk —on)? + SRBRB (2.15)

where Ep is the sum of the errors, N is the number of the training variables, K
is the size of the output layer, t,; is the k-th variable of the n-th target vector,
opk 18 the k-th output variable of the n-th training vector, « and § are the
hyper-parameter, and Zp is the weights vector of the Bayesian neural network.

A BNN is a non-linear version of ridge regression, which is largely based
on the Bayesian theory for neural networks. Unlike conventional neural net-
works that maximize marginal likelihood, BNN is a machine maximizing the
value of posterior through an application of the Bayes’ theory. The elements
added to the error term cause the machine to learn by selecting a weight with
high importance even when the number of total weights is reduced rather than

distributed to a large number of weights.

2.2.3 Support vector regression

Support vector machine (SVM) is a state of the art kernel machine learn-
ing method and is successfully applied to nonlinear classification, regression,
and clustering problems (Vapnik, 2013). Given a set of observations D =
{(xs,9i)}Y.;, support vector regression (SVR) model aims at finding a regres-
sion function value f(x;) that has smaller deviation than predetermined e from

the targets y;. Specifically, SVR begins with nonlinear functions f of the form

f(x)=(w,®(x)+b (2.16)
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where (,) denotes the inner dot product and ® is a nonlinear map from an
input space into a feature space. Then it try to find the flatness which can be
achieved by minimizing the weight norm subject to the deviation is at most €

as follows.
1 l
minimize §||WH + CZ;(Q +&)
subject to  y; — (W, ®(x;)) +b) <e+& (2.17)
(W, ®(x;)) +b—vyi <e+&

§,6 >0

where the constant C' > 0 is concerned with the trade off between the flatness
of f and the amount up to which deviations larger than e are tolerated. In this
formulation, slack variables &;, & allow some error bigger than e to deal with
infeasible constraints of the problem. This primal optimization problem can be

efficiently solved using the so-called kernel tricks by solving its dual problem as
1 l
maximize — B Z (0 — aix)(aj — a*) k(x4,%5)
i=1 i=1 (2.18)
!
subject to Z(ai —a;x) =0

a;, a;x € [0, C)

where a kernel defined by k(x,x’) := ((®(x), ®(x’)) is used instead of ®(.)

explicitly. In this paper, we adopt the most popular RBF kernel which is defined
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k(xi, x;) = exp(—lxi — xj|*), ~>0 (2.19)

(See more details in (Vapnik, 2013).)

2.2.4 Gaussian process

Gaussian process (GP) is a state of the art Bayesian kernel regression model
and is defined by a collection of random variables, any finite number of which
have a joint Gaussian distribution (Rasmussen & Williams| 2006). A GP f(x)
for an observed input x is regarded as function value vector sampled from a
multivariate Gaussian distribution over the space of functions. It has a mean

function m(x) and a covariance function k(x,x’) given by
(2.20)

Given a set of observations D = {(x;, i)}, the joint distribution of y =

(y1,...,yn)T, the covariance of y is represented by
cov(y) = K + 0’1 (2.21)

where K is an N x N covariance matrix with its ij-th component k(x;,x;).
Gaussian process has the following joint distribution of y and fx = f(x*) for a

. ..
new nput x*;

<y>~N(0, K+ ko ), (2.22)
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where ky. = k(x*,x*), ks = (k(x1,x*), ..., k(xn,x*))?. The conditional distri-

bution of fx given D then follows the Gaussian distribution as
f* D~ NEKIK + 0’ ty, ke — kI (K = 6°1) 7 'k,) (2.23)

Now, we can check that the posterior variance k*(x,x’) is independent of y.
There are several widely used covariance functions k(x, x’) whose choice is quite
dependent on the characteristics of the problems. We chose the ”Matérn class”
as covariance functions in our experiments as (G.-S. Han & Lee, 2008), which

is given by

1 V2

V2u
L(v)2v—1 =

[1x = x|I]” K (—— 1 — x|]) (2.24)

k(x,x') = 7

where v and [ are positive parameters, and K, is a modified Bessel function
with v which controls the degree of smoothness. The complete specification of
the GP can be achieved by maximizing the marginal log likelihood over hyper-

parameter 6 = (v,1):
In P( R N P A R o IV
y|D,0) = 5Y (K=0"1I)"y 2ln|K + o“I| 5 log2m (2.25)

(See (Rasmussen & Williams, 2006) for more details on the GP.)
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Chapter 3

Predictive Models for the Derivatives
Market

3.1 Chapter Overview

Machine learning models, which are equipped with outstanding predictability,
have applied to financial forecasting, especially in financial derivatives market.
Most machine learning methods forecasted the prices of financial derivatives
with the expectation that the process of underlying assets will be represented
implicitly as a learning function of input variables without the explicit form
of return processes. Successful machine learning models for predicting financial
derivatives include artificial neural networks (NNs) (Hutchinson et al., (1994}
Lajbcygier & Connor} [1997; Malliaris & Salchenberger], [1996; [Yao & Tanl 2000a;
Gengay & Qi 2001b), support vector machines(Wang, [2011b; Kazem et al.|
2013), and Gaussian processes (GPs) (G.-S. Han & Lee, 2008, Yang & Lee,
2011; Park & Lee, [2012; J. Han et al., 2016]). These models have also considered
different types of available market information, but did not consider explicit
formulation for underlying processes.

Econometric financial jump models, such as affine jump-diffusion or infinite
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activity Lévy processes, are alternative models that have been applied success-
fully for derivatives pricing and predictions (Carr et al. |2003; Kou & Wang;,
2004; D. B. Madan & Senetal, [1990; [D. B. Madan et al.l [1998; [Merton| [1976
Nualart et al., 2001; Schmitz et al., 2014)). These models have been relatively
successful in the valuation of contingent claims because of the ability to address
volatility smile, fat tail, and volatility clustering with jumps. Econometric fi-
nancial jump models, such as the CGMY or Kou models, explicitly formulate
a return process of underlying assets, whereas machine learning models express
the process of underlying assets implicitly from the learned model.

First of all, we propose a novel MCMC methodology based on the gen-
erative model. Similar to the particle MCMC method (Andrieu et al. 2010),
the proposed method aims to acquire the sample set from posterior distribu-
tion by sampling the approximated posterior instead of estimating the exact
posterior density function. In this dissertation, we suggest a generative model
sampler based on variational inference and provide the theories that support
the argument.

The following fundamental issues relevant in practical application will be
discussed. First, In-sample estimation errors between present market and model
prices calibrated from current or previous prices are compared to verify current
or previous market information for each model quantitatively. Second, we mea-
sure out-of-sample prediction errors in advance for the next one day and seven
days, and investigate the consistency interval of calibrated models with the
market to evaluate each model based on price forecasting capability. We also

consider the amount of past market information required to build each model
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for market prediction. Finally, the performance of domain adaptation is evalu-
ated with the differences of in-sample training data and out-of-sample test data
domains. In this empirical study, European options are used for the former
training domain and American options for the latter test domain. The model
should consider domain adaptation suitability for elucidating the structure of

different option markets consistently with the same underlying conditions.

Conventional machine learning models are very effective in estimating the
cross sectional option prices well in the data area covered by the training data,
but often fail to represent the option prices outside that area. This is one of the
major handicaps for applying machine learning models to option pricing and
forecasting. In this chapter, we propose a generative Bayesian neural networks
model for risk-neutral option pricing to overcome the limitation of conventional

machine learning methods.

Lastly, we conducted a comprehensive empirical study to compare state-
of-the-art American option pricing models with machine learning models with
respect to model validity and model predictability for American index options
using the S&P 100 index American put options from 2003 to 2012. We addressed

the following fundamental questions.

- Does each model have the capability to incorporate current or previous
market information well? Good fit to market prices is essential for a good
model to be consistent with the markets. This fit can be verified quantita-
tively by comparing the in-sample estimation errors between the present

market prices and the model prices calibrated from current or previous
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prices.

- Can each model predict future prices well? Predictability is one of the
most important criteria to assess calibrated models. Predictability is eval-
uated by computing the out-of-sample prediction errors of the models for

1 day ahead.

- Can a machine learning model generate fair prices in the deep ITM (in the
money) or deep OTM (out of the money) options as classical American
option pricing models can? Capability to generate fair option prices in
the domain of few transactions is a barometer for the model to elucidate

consistently the financial structure of option markets.

The rest of this chapter is organized as follows. Section 2 presents the pro-
posed generative model sampler. Section 3 evaluates the estimation and predic-
tion performance for the American option data. Section 4 proposed the gener-
ative Bayesian neural network to overcome the limitation of machine learning
methods and described the empirical experiment. Section 5 provides the con-

clusions of this chapter.
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3.2 A Generative Model Sampler for Inference in State
Space Model

3.2.1 Backgrounds

Inference in state space models

In this study, we focus on a generic state space model (SSM), a non-linear
non-Gaussian hidden Markov model (HMM). A generic SSM model consists of
given static parameter, 6 € x, and the following three probability distributions:
an initial probability, h(:|@), a transition probability, f(:|x,#), and an emission
probability, g(-|x, #). Figure describes the scheme of a structure of a generic
SSM.

— h(- |8) : An initial probability |

{f( |x,8) : A transition probability]|

— g( |x,6) : An emission probability]

Figure 3.1 Scheme of a state space model

A generic SSM includes two types of variable, one is the visible variable
y = {y0,¥1, -, yr;y: € YM,0 <i < T} we can observe, another is the latent
variable x = {xg, X1, ..., x7;X; € XN,0 < i < T}. Subscribe of each component
means the time step. Hereafter, we shall use x or y to denote the whole process

of each variable xg.7 or yg.7 for the brevity. Above mentioned three probability
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define the several relationships between variables under the SSM structure. A
whole process of the latent variable x is characterized by an initial probability

xo ~ h(:]#) and a transition probability
Xe1|xe ~ f(o[xe,0).

Each observation y; is assumed to be conditionally independent given each

latent variable x; with their emission probability density:
yilxe ~ g(-[x¢,0).

Therefore the joint density given the static parameters 6 can be represented by

the following form:

T—1 T
p(y,x10) = h(xol0) [ f(xesalxe, 0) [ [ 9(yielx,6).
t=0 t=0

In this context, our study aims to investigate Bayesian inference given
the observed variable time series y. We consider most general non-linear non-
Gaussian SSM structure, which is hard to address the closed form for the pos-
terior distribution: p(x|0,y) or p(x,0|y). Therefore most studies resort to ap-
proximate the posterior distribution directly or indirectly by several practical
technologies such as MCMC methodologies. Further on, we suggest the novel
and model-agnostic MCMC methodologies combined with a generative model
to perform Bayesian inference to any general state space model. We will inves-
tigate a posterior distribution ,p(x|0,y) < p(y,x|f#) when we know parameter
0. Even the parameters 6 are unknown, we also perform Bayesian inference and
parameter estimation adequate to the observations y by evaluating a posterior

distribution p(x, 0|y) x p(y, x|6)p(8) through our proposed methods.
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Bayesian inference with MCMC methodologies

Inferences associated with state space models have been studied in a variety of
approaches, such as confining to constrained models or applying to more general
models with mitigated theoretical parts. In cases of linear Gaussian state space
models and finite hidden Markov models, inference can be possible efficiently

by sampling exactly from the posterior density with developed techniques such

as a Kalman filter or constrained Gibbs sampling (Durbin & Koopman) 2002;

\Carter & Kohn, [1994; Fruhwirth-Schnatter] 1995). We do not discuss the case

of constrained model here.

In this study, we focus on the Bayesian inference in a general state space
model. Several studies have discussed the inference problem under the generic

state space model, which is more suitable for applications but generally more

difficult to inference (Doucet & Johansen, 2009; Poyiadjis et al., 2011; |Andrieul

et al [2010). Sampling from the posterior distribution p(6, x|y) is a main task of

Bayesian inference whereby an entire sample can be composed by alternatively

updating state components x and stable parameters 6 conditional on each other.
This method is very similar to the usual Gibbs sampling method, but it has

biased results because of the high dependence between latent variables x and

parameters 6 (Papaspiliopoulos et al.| [2007). Recent studies have considered

the sequential Monte Carlo (SMC) method to address this issue. Combined

algorithm with SMC methods and MCMC approaches have been developed

in the literature (Gilks & Berzuini, [2001; [Andrieu et al., [2010; |Chopin et al.|

2013} [Fulop & Li, [2013)). In particular, |Andrieu et al. (2010) suggested a explicit

i Rk AT

o



method to obtain samples from the posterior rather that the probability density
value of it to overcome the main drawbacks of SMC (Fearnhead, [2002; Storvik],
2002), where SMC methods concentrate on specific particle to deteriorate the
rejuvenation step as over the time steps. Estimation of the marginal likelihood
for the model can be provided as a by-product by the MCMC methodologies
(Chopin et al. 2013 combining the particle filtering technique and iterated
batch importance sampling developed for parameter posterior evaluation by
(Chopin, 2002). Fulop and Li| (2013) also independently proposed a similar

methodology.

Variational inference

Inference is the main algorithmic problem to account for the visible data. The
range of the discussion about the data is restricted by the model assumption
based on the knowledge and critical questions to data analysis. Then, we dis-
cover the pattern of the data under the restricted model through the inference.
Inference answers the question: ”what does the model describe about this data?”
Variational inference (VI) gives general and scalable approaches to the process
of inference. Consider the following probabilistic model a joint distribution of

hidden variables x and visible variables y

p(x,y)-

When we want to inference about the hidden variables, the posterior distri-

bution is the conditional distribution of the hidden variables x given observed
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variables y

_ p(x,y)

A denominator of the conditional distribution is intractable for most inter-
esting model assumptions. It causes to approximate the posterior inference.

VI brings in a variational family of distributions ¢(x, v) over the latent vari-
ables x to turn the inference into the optimization problem. For the variational
parameter v, the optimization problem finds the optimal solution ¢*(x, v/), which
is an element of the variational family minimizing the given objective function
Kullback-Leibler (KL) divergence. KL divergence is a distance between the true
posterior p(x|y) with the approximated posterior ¢(x, v) (MacKay, |2003; King-

man, (1970):

KL(q(x),p(x]y)) = E, [log p(g)(()’(})’)]

For the brevity, notation of the variational parameter v is omitted. We can-
not minimize the KL divergence exactly, but we can achieve the same goal
by maximizing the evidence lower bound (ELBO), which is a lower bound on
the marginal distribution log p(y). KL divergence can be decomposed as the

following form:

KL(q(x), p(xly)) = E, [bg 1) ]

p(x|y)

= Eq[log q(x)] — E4[log p(x[y)]
= Eq4[log ¢(x)] — Eq[log p(x,y)] + log p(y)

= —(Eq[log p(x,y)] — Eqllog g(x)]) + log p(y)

Therefore, maximizing the ELBO E,[log p(x,y)] — E4[log ¢(x)] is equivalent to
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minimizing the KL divergence. General variational inference framework aims

to maximizing the ELBO term efficiently based on the visible data set {y}1.7.

3.2.2 Proposed methods: generative model sampler

A generative model is a way of extracting samples from an undefined target
density by learning the machine from available data related to the target den-
sity. A generative model could be acquired by two different approaches: a vari-

ational autoencoder (VAE) is employed when the target density has explicit

relationships with other observable densities(Kingma & Welling}, 2013} Kingma|

et al., [2014; Rezende et al [2014), and a generative adversarial network (GAN)

generates samples directly from implicit target densities(Radford et al., [2015;

\Goodfellow et al., [2014]). Several kinds of research have been studied to obtain

more accurate and meaningful samples through the combination of two ap-
proaches. Several kinds of research have been studied to obtain more accurate

and meaningful samples through the combination of two approaches(Maalge et

2016; Makhzani et al., 2015; Mescheder et al.,|2017; |[Ranganath et al., 2016).

In this study, we propose a modified version of the [Mescheder et al.| (2017)’s

adversarial variational Bayes (AVB) application to extract samples from the
posterior of latent variables generally difficult to clarify.

The marginal likelihood of visible variables, y, is always greater than the
sum of the expected value of the log likelihood, p(y|x), for the approximate
posterior distribution, ¢(x|y), of latent variables, x, and the Kullback-Leibler
(KL) divergence value, which means the distance between the approximate pos-

terior density, ¢(x|y), and the prior density of latent variables, p(x), (Kingma
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& Welling), 2013 |T%ezende et all 2014)). The following inequality shows this

relationship.

logp(y) > —KL(q(x|y), p(x)) 4+ Eqxy)llog p(y|x)] (3.1)

The value of KL has the maximum value when ¢(x|y) = p(x|y), and both
sides of the above inequality [3.I] become equal. Because it is practically difficult
to find a ¢(x|y) where ¢(x]y) = p(x|y), we obtain an approximation of the
posterior p(x|y) by finding the estimated distribution ¢(x|y) which maximizes

the following equation.

logp(y) = max —KL(q(x]y), p(x)) + Eq(xjy)llog p(y|x)]

= max By [log p(x) —log g(x[y) +log p(y|x)] (3:2)

Consider a real-valued discriminative networks 1" to circumvent the prob-
lem of calculating a probability density function value of approximated posterior
q(x|x). Proposed discriminator which has the opposite way to the
’s AVB enables the convergence theories of proposed MCMC method-
ologies proved in later section. 1" has the following objective function for a given

q(x|x), and the sigmoid function, o(z) = (1 +exp~®)~ L

max Epx) [logo(T)] + Eqxly) [log(1 —o(T))] (3.3)

Theorem [I] shows that the optimal discriminator 7" includes the probability

density function value ¢(x|y) impossible to calculate practically.

Theorem 1. The optimal discriminator T is logp(x) — log q(x]y).
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Proof. Proof.

]Ep(x) [log O’(T)] + Eq(x\y) [log(l - U(T))]

= [ 66105 (1) +a(xly) og(1 o (1))

Under the fixed x, the probability density function values are constant. Since
the objective function is convex to oI defined between 0 and 1, the optimal is
acquired from the point where the first derivative has zero value. Therefore, the

optimal o (Tx) is z%' Lastly, the optimal T is log p(x) —log ¢(x|y). O

Now, we can acquire the estimated marginal likelihood and samples from the
approximate posterior by maximizing the objective equation which replaces
log p(x) — log q(x]y) with T practically estimated by maximizing the objective,
equation The MCMC methodologies we propose in the next section have
a similar structure to PMCMC algorithms, but have the biggest difference in
replacing samples from SMC with samples from the generative model. Sam-
ples obtained by the generative model give the following characteristics to the
proposed algorithm. We employs a neural networks as the generative model
under the well-known fact that any continuous function can be approximated
arbitrarily well by a neural network with a single hidden unit.

Using the estimate of the discriminator T obtained from the result of The-
orem (1} Proposition 1| gives the estimated value of evidence p(y), which will be
practically employed in the proposed MCMC methodologies.

Proposition 1. The evidence py is estimated by Egxy)[exp T#p(y|x)].

Proof. Proof.

log p(y) = Eg(x|y)[log p(x) — log q(x]y) + log p(y[x)]
= Ej(x|y) [T * +log p(y[x)]

Therefore, p(y) = exp Egxjy) [T * +log p(y[x)]. O
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Most important achievement of embedding generative model is to implement
a model-agnostic structure. We will explain in detail by the following example.
Consider a situation where the latent variables, x, of equation composed of
two subdivided groups of latent variables: x; is easy to extract from the prior
distribution and xs is hard to extract from the prior distribution. Then the

equation [3.2] can be rewritten as:

logp(y) = max Byt xly) [log p(x1,x2) —log q(x1, X2|y) +log p(y[x1,%2)] (3.4)

The whole latent variable set, (x1,X2), is hard to extract from the prior distri-
bution, p(xi,x32). However, we can rewrite the prior distribution as recursive

form as the above equation

log p(x1,%x2) = H}ngqQ(xl\m)Ung(Xl) — log q2(x1|x2) + log p(x2|x1)]  (3.5)

The above equation causes the introduction of 75 in the same manner of that
of T without loss of generality. Learned T is replaced to the above equation to
acquire sample set, (x1,X2), distributed under the prior distribution, p(x1,x2).
Next process is exactly the same as the basic process above: 1) Learn the dis-
criminator 77, and 2) Learn the posterior distribution, ¢(x1,x2]y). Therefore,
the proposed method can be applied to any model with many latent variables
and unknown parameters because of the possibility to divide latent variables
continuously in a generative model. This feature also gives real practitioner the

degree of freedom to model structure for practical application.

3.3 Machine Learning versus Econometric Models in
Predictability of Financial Options Markets

3.3.1 Data description and experimental design

Econometric jump and machine learning models are evaluated in terms of esti-
mation, prediction, and domain adaptation performance by using the daily S&P
100 Index American / European put options. Two types of option domains ex-

ist: S&P 100 options with American-style exercise (ticker symbol OEX), and
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S&P 100 options with European-style exercise (ticker symbol XEO). An ex-
perimental study is conducted using the S&P 100 Index American / European
option data for 2012 when the effects of the recent global crisis were assumed to
be maximum marginal. We considered the options with maturity from 7 to 90
days as in the literature. The option prices for very short maturity or continu-
ing long expiration tend to be biased from low-time premium and measurement
errors. The statistical summary of empirical data is demonstrated in Table
For brevity, an input variable, moneyness, is adopted as the ratio of spot price
to strike price and maturity.

There are two representative econometric jump models, namely, Kou and
CGMY (Kou, 2002; Carr et al [2003) and five state-of-the-art machine learning
models, including NNs, Bayesian NNs, deep NNs, SVR, and GP, for regression.
The performance results of each model are evaluated based on the following

widely used metrics.

1) The mean absolute percentage error (MAPE), + N en|/CTket stands
( ) N Zun=1 n

for the percentage error of the model.

(2) The mean percentage error (MPE), - SNV (e,/CMarket) represents the

n=1

error direction of the model.

(3) The mean absolute error (MAE), + SN |en], measures the error mag-

nitude of the model.

(4) The root mean squared error (RMSE), {/+ SN (e)2, means the stan-

dard error of the model.

where N is the total number of options and e,, = Cmarket _ Cmedel jg the model
misspecification error where C™°%! is the model estimated price, and Caret
is the market price for the n-th options .

Figure [3.2] shows the entire scheme of data usage for model estimation and
prediction. We used 1-, 7-, and 30-day option prices for nonparametric machine

learning models, and only 1-day option prices for parametric jump models for
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Table 3.1 Summary statistics of the S&P 100 index American/European put

options. This table reports average and standard deviation of option price with

the number of observations for each category.

Maturity
< 30 30 - 60 > 60 All
Std. Std. Std. Std.
moneyness Mean dev. Mean dev. Mean dev. Mean dev.
S&P100 index American put options by moneyness and maturities
price 60.52 21.34 53.13 15.99 74.38 24.56 60.64 21.48
AR Observation 55 32 18 105
price 28.48 5.02 31.12 4.76 35.31 4.32 29.76 5.29
0.94 - 0.97 .
Observation 256 107 33 396
price 13.18 4.28 17.72 3.62 22.63 3.47 15.86 5.05
0.97 - 1.00
Observation 691 497 137 1325
price 4.82 2.34 10.39 2.82 15.71 2.82 8.44 4.58
1.00 - 1.03 .
Observation 882 773 232 1887
price 2.33 1.10 5.63 2.11 10.58 2.31 4.94 3.16
1.03 - 1.06
Observation 493 631 152 1276
~1.06 price 1.62 0.59 2.56 1.39 3.98 2.44 2.78 1.80
' Observation 249 1317 488 2054
price 9.72 11.61 8.58 8.52 12.07 12.15 9.53 10.41
All Observation 2626 3357 1060 7043
S&P100 index European put options by moneyness and maturities
price 48.61 8.52 63.83 16.35 51.59 4.03 56.38 14.32
<0.94 Observation 10 13 4 27
price 30.94 6.49 33.04 5.28 38.19 6.89 32.76 6.39
0.94 - 0.97
Observation 39 39 11 89
price 10.30 4.40 16.45 4.19 23.16 4.59 13.37 5.98
0.97 - 1.00 .
Observation 305 164 44 513
price 4.14 2.65 9.95 3.16 15.48 3.11 6.34 4.40
1.00 - 1.03
Observation 628 254 51 933
price 1.51 1.19 5.21 2.01 10.78 2.88 2.95 2.85
1.03 - 1.06 .
Observation 464 185 32 681
~1.06 price 0.63 0.68 2.54 1.51 4.78 2.97 1.63 1.84
’ Observation 433 269 59 761
price 4.47 6.57 9.73 10.17 15.23 10.87 6.81 8.80
All Observation 1879 924 201 3004

simplicity. Unlike the machine learning models that require large amounts of

data for efficient learning, parametric jump models can calibrate the model with

a small amount of market data. Using the calibrated models, we compared the

prediction performance of 1 day ahead and 7 days ahead, thereby generating

six cases of prediction results in total. We considered the model prediction of

the next 7 days in addition to the next 1 day, given that the model with a

considerable predictive power for both 1-day ahead and 7-day ahead prediction

is advantageous for hedging or portfolio managing purposes and for reducing

41



inefficiency from adapting a model frequently.

< Parsmetric approach > < Mon-pararmetric approach =

Training data
Training dats I I
| |

ot prediction data
prediction data

Figure 3.2 Scheme of experiments for the model estimation and prediction.

3.3.2 Estimation and prediction performance

For econometric jump models, the model is calibrated each day by estimating
the parameter set that minimized the mean squared error of the actual market
price and the model price calculated by the abovementioned method using OEX
put option prices. A final set of calibrated parameters is obtained to be used
for prediction. For machine learning models, the model is trained using the
given data set (1-day, 7-day, or 30-day OEX put option prices) as stated in
the previous section and obtained the final calibrated model to be used for

predicting future option prices.

Table shows the summary of estimation results for each model. Most mod-
els have acceptable estimation errors (in-sample errors), which are mostly near
10%. The estimation results of the Gaussian process model are excluded be-
cause it has practically zero estimation error by fitting exactly the option price
corresponding to its moneyness and maturity with the expense of over-fitting,

which resulted in poor prediction performance. Although most MPE values in
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Table 3.2 Estimation performance. This table reports Estimation errors for S&P

100 OEX put options of each category.

Panel: Estimation Errors

Model training day MAPE MPE MAE RMSE
Kou model lday 0.0813  0.0081 0.6013 1.1935
CGMY model 1day 0.1156  0.0081 0.7466 1.0558
NN 1day 0.1053  0.0068  0.427 1.6048
7day 0.1232  0.0008 0.5676  1.333
30day 0.1708 -0.0221  0.825 1.1154
BNN 1day 0.0153  0.0049 0.0513 0.3436
7day 0.0614  -0.001 0.2743 0.3848
30day 0.1511 -0.0255 0.7442 0.9712
SVR lday 0.1115 -0.0337 0.9329 2.1525
7day 0.0917 -0.0217 0.8678 2.3067
30day 0.1332 -0.0346  1.124 3.4782
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machine learning models are negative (overvalued), they are relatively small in
absolute values, thereby indicating unbiased direction similar with econometric
jump models. Table presents the detailed results of model estimation errors
with respect to moneyness and time to maturity. In-the-money or at-the-money
options with short maturity have small estimation errors in both econometric
jump and machine learning models; the latter presents no noticeable differences
in maturities.

Specifically, machine learning models have small estimation errors for the
region with a few observations compared with econometric jump models, which
cause over-fitting in prediction. Moreover, no significant difference is observed
for the estimation errors between econometric jump models using data only from
previous one-day and machine learning models using data over long periods. The
results of estimation partially supported the assumption that current market

price generally included all information obtained previously.

Next, there are the prediction performances of each estimated model applied
to out-of-sample data. The prediction results have different accuracies for each
model, although most models have similar estimation errors, except for the GP
model. Table [3.3] shows the prediction results of each model applied to one day
and seven days ahead. Econometric jump models showed slightly better perfor-
mance in one-day and seven-day predictions than machine learning models. The
GP model showed the worst performance in prediction, although it showed the
best estimation performance triggered by over-fitting. Machine learning models
displayed mostly good prediction performance when they are trained from large
option data (i.e., 30-day option prices). Interestingly, econometric jump models
exhibited positive MPEs (or underpriced), whereas machine learning models
showed negative MPEs (or overpriced).

Table and summarize the detailed prediction results of one day ahead
and seven days ahead in respect to category of moneyness and maturity, respec-

tively. For all models, the ITM or OTM options with long maturity showed large
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Table 3.3 1-day & 7-day prediction performance. Panel A reports 1-day predic-

tion errors and panel B reports 7-day prediction errors for S&P 100 OEX put

options of each category.

Panel A: 1-day prediction errors

Model training day MAPE MPE MAE RMSE
Kou 0.1252 0.0012  0.8464 1.8336
CGMY 0.1551 0.0097  0.9406 1.3942
NN lday 0.4801 -0.0228 2.2304 5.711
Tday 0.196 -0.0131 0.9142 2.6771
30day 0.1851 -0.025 0.9199 1.4763
BNN lday 0.2273  -0.0463 1.0701 3.4834
Tday 0.1446 0.003  0.6927 1.6062
30day 0.1729  -0.0279 0.857 1.2734
SVR lday 0.6675 -0.34  4.3862 7.9208
Tday 0.6577 -0.3239 4.4614 8.1446
30day 0.2636  -0.0626  2.0063 5.2376
GP lday 1.6801 -1.2734 7.358  11.0846
7day 1.6019 -1.2107 7.2128 11.0841
30day 0.4593 -0.2516  2.0381 5.0462
Panel B: 7-day prediction error
Model training day MAPE MPE MAE RMSE
Kou 0.1567  0.0146  0.9665 1.8509
CGMY 0.1872 0.0043  1.0832 1.5691
NN lday 0.8574 -0.1391  4.0553 8.7374
7day 0.253 -0.008 1.1586 2.9318
30day 0.2023 -0.03  0.9965 1.5197
BNN lday 0.3705 -0.0876 1.682 4.6454
Tday 0.2456  -0.0002 1.1185 2.3619
30day 0.191 -0.0305 0.9542 1.3989
SVR lday 1.0081 -0.5022 6.3333 10.6667
Tday 1.0587 -0.5473  6.5537 10.996
30day 0.2857 -0.077  2.2053  10.2228
GP lday 1.6517 -1.2418 7.3901  11.2432
Tday 1.5997 -1.2033 7.2809 11.1789
30day 0.5022 -0.2699  2.1207 5.9068
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relative prediction errors (MAPE and MPE). The prediction error for machine
learning models increased with the volume of traded options relative to that
of econometric jump models, which explained the best overall prediction per-
formance of econometric jump models over Bayesian NNs; however, the latter
showed fewer prediction errors than the former in terms of the options with
long maturities of small-traded volumes. Compared with other training data,
machine learning models trained by 30-day data improved the performance of
the model in predicting option prices 7 days ahead, although the difference
between the models using the 7-day and 30-day data is not significant in pre-
dicting option prices of the next day. By contrast, econometric jump models
displayed similar range of relative prediction errors for each category of mon-
eyness and maturity, which implied that the characteristics of return stochastic
process used for the model did not change much over the time period of our

interest and achieved stable performance in the 7-day and 1-day predictions.

3.3.3 Robustness and Domain Adaptation Performance of the
Models

Parameters for econometric jump models and weights of machine learning mod-
els are gained through the estimation step. Weights of machine models can be
regarded as parameters which provide intact models without empty parameters
from the given market data like as parameters of econometric jump models
do. the hypothesis is assumed that well defined parameter from the estimated
model has only slight changes after every day update as long as the absence of
significant changes in the market. In this sense, the robustness of parameters
means that a set of the daily calibrated parameters or weights for a model is

confined to a relatively small region.

Given that the calibrated weights for a machine learning model are highly
dimensional, A multidimensional scaling method (MDS) |Lattin et al. (2003])
is used to visualize the proximities of parameters or weights of each model.

Multidimensional scaling is a widely used dimension reduction method that
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transforms a set of high-dimensional observations into a set of low-dimensional
observations by approximately preserving the distances or dissimilarities be-

tween all pairs of observations.

0g T T T

# Non-parametric welghts
0O Parametric parameters

021 b
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Figure 3.3 Two dimensional MDS visualization of each parameters. Red o’
corresponding 1-day parametric parameters. Blue "*’: corresponding 1-day non-

parametric parameters.

To illustrate our results, MDS is applied to the calibrated parameters of the
Kou model and to the calibrated weights of the Bayesian NN model; the dimen-
sions of the two are 4 and 246, respectively. The constructed 2D MDS visualizes
the 2D locations of daily parameters or weights of each model. Figure [3.3]shows
a typical plot for the 2D MDS visualization of the econometric jump model and
the machine learning model. The two types of models present a different trend.
The Kou model parameters, represented by red ”o0”s, are mostly confined to a

small range of regions. The Bayesian neural network model weights, represented
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by blue ”*”s, are widely scattered with no noticeable patterns. The Bayesian

neural network model weights, represented by blue ”*”

s, are widely scattered
with no noticeable patterns. This result implies that econometric jump model
parameters are more stable and robust than machine learning model parame-
ters.

As one of the transfer learning in machine learning fields, domain adaptation
aims to learn in the test domain, which is not used in training, with the infor-
mation in training domain(Ben-David et al., 2010; [Pan & Yang}, |2010). Studies
in this area have been conducted in such a way that source knowledge distri-
butions are adjusted in a manner similar to new target knowledge distributions
(Gong et all 2012} Patricia & Caputo, [2014).

We compared the domain adaptation performance of the models by predict-
ing American put option prices of the following day using models calibrated
from current European put option prices. Different types of options reflected
different demands and interests of investors obtaining from different payoffs and
acquired information. The requirement for domain adaptation in option mar-
kets occurs naturally when different types of options have the same underlying
assets. Hence, a model calibrated from one type of options should be adapted

to predict another type of options.

Table 3.4 1-day domain-adaptation performance. This table reports 1-day
domain-adaptation errors of each model. Each model is trained by European
S&P 100 XEO put options and tested by American S&P 100 OEX put options.

Model MAPE MPE MAE RMSE
Kou model 0.1517 -0.0244 1.0418 1.8085
CGMY model 0.1722 -0.3082 2.2802 2.3055

NN 0.5425 -0.0046 2.3463 5.4485
BNN 0.1849 -0.0927 0.9867 3.3072
SVR 0.6683 -0.3398 4.3999 7.9467
GP 1.5873 -1.2362 6.8157 10.574
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Table [3.4] shows that econometric jump models exhibit better domain adapta-
tion performance than machine learning models, although all the models show
worse performance with different domains than with the same domain as ex-
pected. Notably, the performances of econometric jump models with different
domains are still better than those of machine learning models with the same
domain. Thus, we may use domain adaptation algorithms, such as sample se-
lection bias in covariate shift, learning shared representations, or feature-based
supervised adaptation, (see (Ben-David et al., |2010; Pan & Yang, [2010) and
the references therein for more details) for machine learning models to enhance
performance. However, theoretically, prediction performance using different do-
mains cannot be better than that using the same domain, (see the proof in
(Ben-David et al., 2010; Pan & Yang, 2010))); thus, econometric jump models
are superior to machine learning ones in terms of domain adaption performance.

In addition, the relatively small prediction errors of the parametric models
adopting different domains show that their underlying risk-neutral dynamics of
returns provide suitable and consistent models to explain the two different types
of option markets well. The results of domain adaptation takes into account dif-
ferent fundamental approaches of two categories; the existence of explicit form
of the underlying process. In case of econometric jump models, the explicit un-
derlying process, such as kou model, plays the role as a bridge between two
domains. Model parameters from one domain transform the information com-
patible to the other domain by adapting explicit underlying process. On the
other hand, machine learning methods without intermediate factors have to
employ further techniques which adjust distributions between domains (Gong
et al.,|2012; [Patricia & Caputo), 2014). For financial derivative pricing purposes,
domain adaptation is possible without the introduction of additional technolo-
gies under the explicit underlying process.

Table [5.4) shows the detailed domain adaptation results of 1-day-ahead pre-

diction in each category of moneyness and maturity. The result is similar to
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those of 1-day-ahead and 7-day-ahead prediction errors, but more dramatic.

3.4 A Generative Bayesian Neural Networks Model
for Risk-Neutral Option Pricing

3.4.1 Proposed method

Figure presents the daily option prices traded with the 15 expiration date.
In general, the options in the extreme area defined above are not traded fre-
quently. Figure shows that the pricing methodology based on the CGMY
model provides consistent price estimates, but Bayesian NN has poor predic-
tion performance in the extreme domain (i.e., the region where there are no
currently actual transactions). The reason why the Bayesian NN fails to give a
consistent shape is that there is no data to learn at the extreme region. It is
the main drawback of conventional machine learning models that they almost
always fail to represent the area with few data.

To overcome this problem, we propose a generative Bayesian learning model
with a prior incorporating a financial structure such as law of one price as
follows. Given a data set D = {(x},y!)|i =1,...,m, t = 0,1,..., £}, we assume
that the conditional distribution of the output option value 3 at time ¢ is given
by

yzt - f( t ) + €, Vi = -y Ty (36)
or equivalently, p(Dw) = HN w),0?) (3.7)

where f(x!, w) is a neural network model with weight vector w to be estimated

and ¢; is an additive Gaussian noise NV'(0,0?) with mean zero and variance o>

arising from market frictions. We define a generative prior probability distribu-

tion over the weight vector w at time ¢ as

p(wlw!™! HN f(xp, w) — f(xp, wi™h), 0d), (3.8)
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which implies that under this prior, the new option values at some deep ITM
or deep OTM samples X, k = 1, ..., v are similar to the previous option values
f(xg, w™1) up to an additive Gaussian noise with mean zero and variance o3.

The Bayes’s rule leads to the posterior probability distribution over the

weight vector w at time ¢ given by

Inp(w|D) = Inp(Dlw) + 1HP(W\Wt_1) —Inp(D)

= ZlnN(yf - f( + ZIDN Xk, ) f(Xk,Wtil)’O'g) + const.
i=1 k=1
1 124
N 2a2 Z — i)’ T 552 D (f(xk,w) = f(xk, W) + const.
0 k=1

The maximum a posteriori (MAP) estimator for the weight vector w can then
be equivalently achieved by finding the minimum value of the following objective

function

ng

BE(w) =Y _(f(x},w) - u) +/\Z (xk, W) — f(xp, w'h))? (3.9)

i=1

where \ = o2/ ag is a user-controlled parameter and v is the number of prior
samples. The second term in equation ([3.9) represents a penalty term imposing
the model does not fluctuate from the previous updates. Appropriate prior
samples are generated from the previous model in a way that avoids the pricing
bias for the extreme ITM or OTM options rarely traded and maintains the
distribution of trading frequency. They are then used to train the model by
augmenting the training data.

Regarding to the initial choice of the weight vector w” at time ¢t = 0, we
prefer to train the model using an artificial sample generated from a risk-neutral
financial option model such as CGMY model to guarantee the no-arbitrage
conditions for deep I'TM or OTM options. Then we update the weight vector
w! at the next time ¢ > 0 by using both the training data at time ¢ and
some prior samples for the deep ITM and deep OTM option data that are
simulated from the GBNN at time ¢ — 1. We’d like to achieve the following

goals in the proposed learning algorithm. First, the proposed model is expected
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to learn reasonable prices that satisfy economic conditions such as no-arbitrage
by incorporating prior information obtained from risk-neutral financial option
models. Second, the proposed method is expected to self-evolve by tuning to an
updated prior samples generated on the previous machine. The entire procedure

of the proposed method is summarized in Algorithm

Algorithm 1 Generative Bayesian neural network (GBNN)

Require: Given a data set D = {(x!,y!)|i=1,....,n4, t =0,1,...,0}; set v the
number of prior samples. For the initial prior sampling, generate v-prior
samples S* = {(xg, f(xx; W°))| k = 1,...,v} where f(x;;w?)) is the option
values predicted by the risk-neutral financial model such as CGMY model.

Ensure: trained GBNN f(x;w)

1: fort=1:¢do
2:  {Step 1} Prior sampling
3:  Generate v-prior samples S = {(x, f(xx; w'™1))| k = 1,...,v} from the

GBNN f(x;w!™1) where x;, is the pair of moneyness and maturity for

the deep ITM and the deep OTM options a user provided.

{Step 2} Learning the GBNN

fort =1:n; do

Input D; = {(xt,y})|i =1, ...,ne} U{(xp, f(xes W) k=1,...,v}
Output Train GBNN f(x; w) using an augmented data set D; and set

the new updated weight vector as w'.

8: end for

9: end for

Figure shows that the proposed GBNN fits well to the extreme ITM or
OTM option prices and self-evolves consistently with that of financial option

models at those extreme options for the next three months with no corrections.
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3.4.2 Empirical Studies

We compared the models introduced in the previous sections in terms of their
capabilities for calibration, and prediction using the S&P 100 index Ameri-
can/European put options. First, we described the data for the empirical stud-
ies. Second, we compared the in-sample estimation errors of each models to
evaluate their validity and the out-of-sample prediction errors using the cali-

brated models to verify their predictive power for option pricing.

Summary of the data

We used daily market data from the S&P 100 index options. The S&P 100
index is a weighted stock market index of the largest and most established
100 companies in the S&P 500 updated by Standard & Poor’s. The S&P 100
index option contract has an underlying value that is equal to the value of
the S&P 100 index and offers two different types of option domains: S&P 100
options with American-style exercise (ticker symbol OEX) and S&P 100 op-

tions with European-style exercise (ticker symbol XEQ). Since 1983, investors
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have used OEX to adjust their equity portfolio exposure, and more than one
billion OEX options have been traded. In July 2001, CBOE introduced cash-
settled S&P 100 options (ticker symbol XEQO) with European-style exercise. The
exercise-settlement value is calculated using the reported closing sales price in
the primary market of each component stock on the last business day before
the expiration date or on the day the expiration notice is properly submitted
if exercised before expiration. We used the OEX put option data traded from
2003 to 2012 for our experiments. According to CBOE reports, OEX options
are considerably more actively traded during whole periods than XEO options,
and put option contract volume is considerably larger than that of the call op-
tion.

We used simple moneyness, «, which is the ratio of spot price to strike price,
to describe the relative position of the present price of an underlying to the
strike price of an option. the moneyness used for the empirical analysis ranges
from 0.4909 to 1.8568 as the maturity and trading day changes. We performed
the conventional data pre-processing step in literature to eliminate distortion
in the experiment. Options with less than 7 or more than 90 days to expi-
ration were removed from the data. Short time-to-maturity 7 tends to cause
distortion because of low time premium and bid-ask spread; meanwhile, long
expiration may cause biases and measurement errors. The summary statistics,
such as average price and standard deviation of OEX options in accordance

with time-to-maturity and moneyness, have been provided in Table

The average option price over the period is 9.53 for American-style OEX
options. The number of observations is large for the ATM options (moneyness
range of 0.97-1.03) with short maturity and small for OTM options (moneyness
greater than 1.03) with 30-60 days maturity or longer. The variances of option
prices traded in the money (ITM) are relatively large while they decreases as
simple moneyness k increases. Table shows the trading volumes of OEX
options. The total volume has been significantly increased during the financial

crisis especially for OTM and I'TM options.
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Table 3.5 Summary statistics of the S&P 100 index American put options from
2003 to 2012. This table reports average and standard deviation of option price

with the number of observations for each categories.

Maturity
< 30 30 - 60 > 60 All
Std. Std. Std. Std.
moneyness Mean dev. Mean dev. Mean dev. Mean dev.

S&P100 index American put options by moneyness and maturities

price  63.87 36.98 69.53 41.29 80  45.99 68.68 40.62
<0.94 Obs. 2076 1824 744 4644
price  27.12  5.63 3008  6.02 3414 7.08 20.18  6.42
0.94 - 0.97
Obs. 2858 2390 751 5999
price 132 4.88 1742 5.67 2131 6.73 1622  6.24
0.97 - 1.00
Obs. 6129 6189 2179 14497
price 557  3.67 1034 5.12 1429  6.22 933 585
1.00 - 1.03
Obs. 6255 7618 3205 17078
price  3.56  2.91 627  4.35 9.56  5.38 6.13 471
1.03 - 1.06
Obs. 3880 6718 2644 13242
log P 276 234 365  3.07 49 393 385 331
' Obs. 4829 16283 8094 29206
Al price  13.56  19.94 11.87  17.28 13.75  19.09 12.78  18.53
Obs. 26027 41022 17617 84666

We considered three classical financial models, the CGMY model, the Hes-
ton model, and the GARCH(1,1) model. To acquire the American option prices,
we selected several pricing methods, namely, the least squares Monte Carlo
method (LSM), the Barone-Adesi Whaley methods (BW), the ad-hoc Black-
Scholes model (AH-BS), the ad-hoc local volatility model (AH-LV) to compare
the performance of them with those of state-of-the-art machine learning mod-
els such as the Bayesian neural networks (BNN), the support vector regression
(SVR), the Gaussian processes (GP), and the generative Bayesian neural net-
works (GBNN). We evaluated the performance result of each model according

to the four widely used metrics.

(1) The mean absolute percentage error (MAPE), (Zflvzl |en|/CIRE) /N, stands
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Table 3.6 Trading volumes of S&P index American put options for each year in
respect to the moneyness(x) and time to maturities(7). We divide moneyness
into three ranges: ; (1) ITM(In the money), x < 0.97; (2) ATM(At the money),
0.97 < k < 1.03; (3) OTM(Out of the money), x > 1.03.

Panel A: Trading volume by Panel B: Trading volume by 7
year ITM ATM OTM 7 <30 30-60 T >60 All
2003 1111 2861 4551 2391 4032 2100 8523
2004 608 3171 3102 1786 3332 1763 6881
2005 530 3247 2183 1510 2845 1605 5960
2006 377 3538 2337 1496 3011 1745 6252
2007 815 3897 4549 2699 4531 2031 9261
2008 2680 3164 6362 4313 5694 2199 12206
2009 1661 2488 5848 3031 4990 1976 9997
2010 1381 2965 5052 2891 4711 1796 9398
2011 979 3045 5145 3299 4525 1345 9169
2012 501 3199 3319 2611 3351 1057 7019

for the percentage error of the model.

(2) The mean percentage error (MPE), (32N &, /C*) /N represents the

error direction of the model.

(3) The mean absolute error (MAE), (22[21 len])/N, measures the error mag-

nitude of the model.

(4) The root mean squared error (RMSE), \/(ZN (€)?)/N, means the stan-

n=1

dard error of the model.

where N is the total number of options and ¢, = C™* — Cmedel ig the model
misspecification error where C°%! is the model estimated price, and C* is

the market price.

Estimation performance

We investigated whether classical financial models and machine learning models
can be estimated to a given market data well, which is a prerequisite for a good

model to be consistent with the current market information. We used the one
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day option prices to calibrate each model and calculated its in-sample error
for each day. Then we reported the estimation errors with three different time
domains: pre-crisis from 2003 to 2006, financial crisis from 2007 to 2009, post-
crisis from 2010 to 2012.

Table shows a summary of the estimation results of each model. Most
models have acceptable estimation errors (in-sample errors) mostly near 10%
based on MAPE. We excluded the estimation result of the Gaussian process
model in this table because it has almost zero estimation error at the expense
of over-fitting, often resulting in poor prediction performance. For the ITM
options during the financial-crisis in panel B, some machine learning models
such as support vector regression and Bayesian neural networks show relatively
large estimation errors, partly due to extrapolated option prices. In contrast,
a generative Bayesian neural network overcomes such problem by adapting to
no-arbitrage conditions. The machine learning models show relatively larger
estimation errors during the financial crisis period than those of the classical
American option pricing models. In the estimation phase, Weird or unusual

market situation makes the former react more actively than the latter.

Table presents the detailed results of model estimation errors with re-
spect to moneyness and time to maturity for all of the four evaluation measures.
In-the-money or at-the-money options with short maturity have small estima-
tion errors in both the classical models and machine learning models; the latter
presents no noticeable differences in maturities. Notably, the machine learn-
ing models have small calibration errors for the region with a few observations

unlike the parametric jump models, which cause over-fitting in prediction.

Prediction performance

The differences in the overall estimation errors between the machine learning
models and classical American option pricing models are not significant, except

during the financial crisis period. We then examined the prediction performance
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Table 3.7 Estimation performance. This table reports MAPE and RMSE for
S&P 100 index American put options of each categories with respect to the
ratio of the spot to the strike prices. We divide moneyness into three ranges: ;
(1) ITM(In the money), x < 0.97; (2) ATM(At the money), 0.97 < x < 1.03; (3)
OTM(Out of the money), x > 1.03. GBNN is the generative Bayesian neural
networks; BNN is the Bayesian neural networks; SVR is the support vector
regression; CGMY is the estimated result under the CGMY model; AH-BS is
the ad-hoc Black-Scholes model; AH-LV is the ad-hoc local volatility model.

Panel A: Estimation error during the pre-crisis, from 2003 to 2006.

MAPE RMSE
Model ITM ATM OTM All ITM ATM OTM All
GBNN  0.0409 0.1098 0.199  0.1426 2.1862 1.4548 1.0964 1.4378
BNN 0.0506  0.1863 0.3418 0.2419 2.268 1.3173 1.2345 1.4264
SVR 0.2171  0.1965 0.2024 0.201 9.1274  1.9676  0.6201 3.487
CGMY 0.0649 0.1344 0.2524 0.1789 2.3526 1.786 1.0893 1.6081
AH-BS 0.054 0.0849 0.2288  0.1457 1.9092 1.0538 0.8097 1.0753
AH-LV  0.0538 0.0853 0.2308 0.1468 1.9066 1.0584 0.817 1.0791
Panel B: Estimation error during the financial-crisis, from 2007 to 2009.
MAPE RMSE
Model I™ ATM OTM All IT™ ATM OTM All
GBNN  0.0403 0.1269 0.177  0.1385 4.9511 3.5672  2.5193 3.4489
BNN 0.0464 0.1629 0.4304 0.2861 5.219 2.0649 2.0744 3.0254
SVR 0.1537  0.1499 0.202 0.1783 24.372  2.5602 0.9702 11.8373
CGMY 0.0435 0.0999 0.2013 0.1388 2.6952 1.8563 1.4546 1.8919
AH-BS 0.0383 0.0639 0.2203 0.1435 2.5082 1.438 1.3075 1.6146
AH-LV  0.0381 0.0631 0.2199 0.143 2.4865 1.4425  1.2997 1.6057
Panel C: Estimation error during the post-crisis, from 2010 to 2012.
MAPE RMSE
Model ITM ATM OTM All ITM ATM OTM All
GBNN  0.0345 0.1045 0.1813 0.1338 2.6295 1.7108 1.4304 1.7562
BNN 0.0531 0.1833 0.3916  0.2788 2.7483 1.6744 1.5986  1.7962
SVR 0.212 0.198  0.2127  0.2068 13.057 2.5955 0.8212  4.8883
CGMY 0.07 0.1423 0.2677 0.2011 3.1047 2.3552 1.4561  2.0577
AH-BS 0.0391 0.0686 0.2469  0.1596 1.9105 1.2545  1.0699 1.267
AH-LV  0.0393 0.0692 0.2482 0.1605 1.9007 1.2556 1.0701 1.2644

of each trained model applied to out-of-sample data by comparing its predictive

performance of 1 day ahead. GBNN is the generative Bayesian neural networks;
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BNN is the Bayesian neural networks; SVR is the support vector regression; GP
is the Gaussian processes; CGMY is the prediction results under the CGMY
model; LSM-BS is the least squares Monte Carlo (LSM) approach under the
Black-Scholes model; LSM-GARCH is the least squares Monte Carlo (LSM)
approach under the GARCH model; LSM-Heston is the least squares Monte
Carlo (LSM) approach under the Heston model; BW is the Barone-Adesi Wha-
ley methods; AH-BS is the ad-hoc Black-Scholes model; AH-LV is the ad-hoc
local volatility model. Table [3.§ shows the prediction results of each model.
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Figure 3.6 The yearly total RMSE performance of each models.

Generative Bayesian neural networks outperformed the other models in over-
all prediction accuracy as shown in Figure [3.6] The GBNN also shows a quite
robust performance compared with other machine learning models. Notably,
all the models show relatively large prediction errors during the financial crisis
period. The GP model shows the worst performance in prediction, although it

shows the best calibration performance triggered by over-fitting.
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Table 3.8 Prediction performance. Table reports MAPE and RMSE for S&P
100 index American put options of each categories with respect to the ratio
of the spot to the strike prices. We divide moneyness into three ranges: ; (1)
ITM(In the money), x < 0.97; (2) ATM(At the money), 0.97 < k < 1.03; (3)
OTM(Out of the money), k > 1.03.

Panel A: Prediction error during the pre-crisis, from 2003 to 2006.

Panel A: MAPE Panel B: RMSE
Model ITM ATM OTM All ITM ATM OTM All
GBNN 0.0477 0.1139 0.206 0.149 2.2307 1.1336 0.728 1.1663
BNN 0.1016 0.2066 0.3557 0.2623 5.2196 1.6207 1.2922 2.3009
SVR 0.251  0.2802  0.5241  0.3849 11.6961  2.6816  1.5816 4.746
GP 0.4861 0.5031 2.0351 1.174 19.3942 4.6159 5.5548 8.1979
CGMY 0.064 0.3133 0.4936 0.3724 2.2297 2.7024 1.4492 2.2149
LSM-BS 0.3606 0.56 0.7895 0.6422 12.8136 6.7059 4.1986 6.721
LSM-GARCH 0.0737 0.3235 0.5937 0.4189 3.0750 3.4207 2.9134 3.1763
LSM-Heston 0.2966 1.3449 1.7322 1.4159 8.9468 8.3623 4.7188 7.0627
BW 0.1007 0.3619 0.6855 0.4795 4.033 4.5893 3.1919 3.9865
AH-BS 0.1059 0.2869 0.6528 0.4132 6.4595 2.6646 2.2092 3.5679
AH-LV 0.1115 0.2845 0.642 0.4063 6.8498 2.7997 2.248 3.6749
Panel B: Prediction error during the financial-crisis, from 2007 to 2009.
Panel A: MAPE Panel B: RMSE
Model ITM ATM OTM All ITM ATM OTM All
GBNN 0.0608 0.1375 0.2373 0.1767 10.0039 3.9517 2.94 5.4924
BNN 0.0903 0.189 0.4562 0.3148 12.6347 2.5384 2.2733 6.3454
SVR 0.1985 0.261 0.6152 0.4394 30.1629 4.1149 2.6394 14.7507
GP 0.4387 0.3911 2.8442 1.6998 41.2363 6.6496 11.8471 21.3966
CGMY 0.1677 0.6515 0.5604 0.5568 5.823 7.5397 2.9603 5.8118
LSM-BS 0.3163 0.5622 0.8186 0.6585 17.9526 11.4083 6.2008 10.6835
LSM-GARCH 0.1028 0.3906 0.8612 0.5941 6.5499 8.3248 6.3366 7.0857
LSM-Heston 0.1764 0.8209 1.0179 0.8202 8.9899 9.2932 5.5659 7.4803
BW 0.1328 0.4731 0.8105 0.597 7.4988 10.0874 6.3224 7.9046
AH-BS 0.088 0.2991 0.8133 0.5383 4.9226 4.1446 3.5178 3.9758
AH-LV 0.0913 0.3062 0.8115 0.54 6.4445 4.7103 3.6754 4.5792
Panel C: Prediction error during the post-crisis, from 2010 to 2012.
Panel A: MAPE Panel B: RMSE
Model IT™ ATM OTM All IT™ ATM OTM All
GBNN 0.045 0.1142 0.2391 0.1667 3.6036 1.8372 1.6229 2.1386
BNN 0.1006 0.2099 0.4266 0.315 8.4125 2.3171 1.9041 4.0556
SVR 0.2611 0.318 0.693 0.5097 18.5397 4.0382 2.5583 7.917
GP 0.4636 0.4595 2.255 1.4046 25.5683 5.8726 7.0698 11.4126
CGMY 0.0628 0.3484 0.5471 0.425 2.461 3.5599 2.1684 2.8416
LSM-BS 0.191 1.4579 2.4174 1.8232 8.8681 13.3928 8.7525 10.7795
LSM-GARCH 0.0632 0.2463 0.7562 0.4868 3.3124 4.3034 4.1397 4.1512
LSM-Heston 0.2307 1.2878 1.3858 1.2354 9.0887 9.3133 4.8895 7.3842
B-W 0.1083 0.9957 1.4524 1.1378 4.7103 9.1892 5.6676 7.161
AH-BS 0.1048 0.3475 0.8959 0.6101 4.517 4.0779 3.3299 3.7606
AH-LV 0.1109 0.3434 0.8931 0.6078 6.868 4.3137 3.4275 4.3508
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Table shows that the GBNN methods has better prediction performance
for OTM and ATM options than the CGMY methods except for ITM options.
For instance, the GBNN method shows the corresponding ITM, ATM, OTM
prediction accuracies are 3.6036, 1.8372, and 1.6229 for the post-crisis period.
The CGMY model shows that the corresponding accuracies are 2.461, 3.5599,
and 2.1684 for the same period. When considering the trading volume of ITM
options is not large in the market as a whole as can be seen in Table
the high accuracy of the ATM and OTM regions is a prominent advantage of
the GBNN. Based on the MAPE measure, the predictability of GBNN model
is superior to that of the CGMY model. Because MAPE measures the ratio
of error considering the size of the price, MAPE is a suitable for evaluating

American option prices that range widely like from $1 to $100.

Given the stochastic volatility process, the LSM methods under the GARCH(1,1)

and Heston model shows improved prediction accuracies than the LSM under
the BS model. Albeit in considering stochastic volatilities, prediction accuracies
under the stochastic volatility models are lower than the CGMY model. This
seems to be due to the calibration process of the stochastic volatility model,
which utilizes only the return asset and European options, unlike that of the
CGMY model which considers the American option. In particular, the Hes-
ton model has worse performance than other stochastic volatility model, the
GARCH(1,1) model. It may be caused from that the complicated calibration
process has several local solution problem by introducing correlation parameter
between return and volatility processes.

Table summarizes the detailed prediction results in each category of
moneyness and maturity, respectively. The machine learning models show a
trend of decreasing prediction errors as the moneyness increases, while the clas-
sical American option models show no discernible trend. Lower prediction ac-
curacy of the machine learning models for the ITM options is partly due to the
fewer observations to train the models.

We measured the forecasting performance of future 7-day based on the data

which is used for estimating the model. We have excluded other methodologies
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Table 3.9 Prediction performance for 7-day ahead. Table reports MAPE and
RMSE for S&P 100 index American put options of each categories with respect
to the ratio of the spot to the strike prices. We divide moneyness into three
ranges: ; (1) ITM(In the money), £ < 0.97; (2) ATM(At the money), 0.97 <
k < 1.03; (3) OTM(Out of the money), x > 1.03. GBNN is the generative
Bayesian neural networks; CGMY is the prediction results under the CGMY

model.
Panel A: Prediction error during the pre-crisis, from 2003 to 2006.
Panel A: MAPE Panel B: RMSE
Model IT™M ATM OTM All IT™M ATM OTM All
GBNN  0.0505 0.1362 0.2784 0.1902 4.5525  1.4462 1.1876  1.8843
CGMY 0.1649 0.5631 1.0272 0.7298 6.6954 6.7178  4.7920 5.9439
Panel B: Prediction error during the financial-crisis, from 2007 to 2009.
Panel A: MAPE Panel B: RMSE
Model IT™ ATM OTM All IT™M ATM OTM All
GBNN  0.0859 0.2445 0.4328 0.3182 10.6135 4.1154  3.5251  5.5029
CGMY 0.1576 0.6724 0.6266 0.5636 6.8005 8.5670 5.3630 6.7210
Panel C: Prediction error during the post-crisis, from 2010 to 2012.
Panel A: MAPE Panel B: RMSE
Model IT™M ATM OTM All IT™ ATM OT™M All
GBNN  0.0555 0.1460 0.3417 0.2386 6.5430 2.7443 2.3762  3.2803
CGMY 0.1158 0.4404 0.6487 0.5145 5.0639 5.8230 4.5005 5.1183
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that showed relatively lower accuracy in the 1-day ahead prediction than the
GBNN and CGMY models. Table shows that the GBNN methods actually
slightly outperform the CGMY model for the each range. Table summarizes
the detailed prediction results in each category of moneyness and maturity, re-
spectively. The prediction results suggest that the parameters of the GBNN
method are appropriately estimated given that the 7-day ahead out-of-sample
performance may actually turn out to be fairly satisfactory. As an out-of-sample
window is longer, the velocity of decreasing prediction performance is faster for
the CGMY model than the GBNN model.

We also reveal that the proposed GBNN method has advantages over the
CGMY model in terms of computation time and model consistency to highlight
the suitability of the proposed GBNN for practical application. We have demon-
strated that the calibration and pricing time for the GBNN model, the Fourier
cosine method and LCP method under the CGMY model. The computer used
for all experiments has an Intel(R) Core(TM) i7-4820K CPU @ 2.70GHz with
64.0 GB; The code is written in MATLAB R2017a.

We employed the 4-point Richardson extrapolation on Bermudan puts with
512 series expansion and 5 monitoring dates to approximate American put op-
tions by using Fang and Oosterlee methods. We also considered 1024 time and
40 spatial steps for the LCP pricing methods. In the Calibration phase, the
LCP and Fourier Cosine methods take more than two hours to estimate the
parameter sets while the GBNN model is trained within one minute given the
daily data. This result seems to be caused from that the nonlinear optimization
procedure included in the calibration process using the American options. The
CGMY model assumed that the volatility process is deterministic, which also
has a small number of parameters available to account for the process of under-
lying. However, it seems that the constrained model with the meaningful param-
eters makes it difficult to optimize the suitable model for the market data. One
way to overcome these drawbacks is to solve the easier optimization problem

by mitigating the restrictions of the model. For example, there is a stochastic
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volatility model considering volatility as a stochastic variable and a local volatil-
ity model, which regards the market volatility as a conditional expectation of an
instantaneous volatility (Gatheral, 2011). The GBNN model alleviates the con-
straints of the model by as much as the machine learning while trying to derive
from the data the assumptions such as the no-arbitrage assumption that can
be obtained from the model. It seems to be suitable for the practical purposes,
such as to learn for predicting the next day option prices, since the GBNN has
shorter calibration time than other methods under the CGMY model. Corre-
sponding pricing times of the GBNN, COS-CGMY, LCP-CGMY are 0.01349,
0.3012, and 0.2975 seconds. There is no significant difference in pricing time
between models. A similar pricing time for the LCP and COS methods seems
to have resulted from requiring four independent Bermudan option pricing for

American options with the Fourier cosine method.

Table 3.10 The mean and standard deviation of RMSE for 1-day and 7-day pre-
diction given 50 independent trial. Table reports mean and standard deviation
of RMSE for 1-day and 7-day prediction of American put options from 50 inde-
pendent trial. GBNN is the generative Bayesian neural networks; LCP-CGMY
is the LCP methods under the CGMY model.

1-day prediction 7-day prediction

Model Mean  stdev. Mean  stdev.
GBNN 1.0094 0.1870 1.4312 0.1324
LCP-CGMY 2.3320 2.3404 3.5937  2.7689
COS-CGMY 2.5299  3.9868 3.1828  2.9136

We also have compared the consistency of the estimated parameters for the
prediction from the additive empirical analysis. We performed 50 independent
calibrations using the same data and acquired 1-day and 7-day ahead prediction

results from the 50 estimated parameter sets, respectively. Table demon-
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strates that the means and standard deviations of RMSEs from 50 prediction
results. As can be seen in Table the prediction performance of the CGMY
model has a very large variance compared to GBNN, and from Figure 3.7/ we can
also see that the RMSE is very large at several iterations. This suggest that the
CGMY model often reaches at the local solution during the calibration process,
resulting in parameter estimation that is not suitable for the prediction. This
result supports that the GBNN is a more consistent method for price prediction

than the pricing methods under the CGMY model.

25 T T !

—+—GBNN
=— LCP-CGMY
COS-CGMY

Root mean squared error (RMSE)

Independent trial

Figure 3.7 Fifty independent RMSE performance of each models.

3.5 Chapter Summary

Financial modeling is a matter of grave concern in the financial industry, and
many researchers have struggled to elucidate complicate financial markets by

proposing classical option models (e.g., Barone-Adesi Whaley methods, LSM
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methods, and ad-hoc methods) and machine learning models (e.g., artificial

NNs, support vector machines, and GPs).

In this chapter, we proposed a generative model sampler based on variational
inference to overcome the calculation limitation of explicit posterior probabil-
ity density by generating a sample from the posterior distribution. Then, the
validity of each model is investigated to elucidate the structure of option mar-
kets by comparing the performance of the models in terms of model calibration,
prediction, and domain adaptation using the S&P 100 American/European put
options.

First, the econometric jump models in model calibration using only the in-
formation of the previous day exhibited valid calibration results similar with
those of the best-performing machine learning models, which used considerable
information from the previous seven days. Second, econometric jump models
for the model prediction of the one day and seven days ahead exhibited better
performance than machine learning models. The price forecasts of the former
for the next day or seven days were stable, whereas the latter decreased rapidly
with the increase of prediction period. The robustness of the calibrated pa-
rameters for the former relative to the calibrated weights of the latter implied
that the return processes of econometric jump models are stable over some
periods and validated the better prediction results of the former than the lat-
ter. Finally, econometric jump models displayed successful domain adaptation
performance, whereas the machine learning models did not. The latter failed
to recognize the difference between American and European options and could
not satisfactorily improve prediction accuracy regardless of adopted domain
adaptation techniques for machine learning. From the empirical study, we con-
cluded that econometric jump models can exhibit better performance of model
estimation, prediction, and domain adaptation than machine learning models
given the same information, such as expiration date and strike prices of con-
tingent claims. Hence, machine learning models should integrate prior knowl-
edge, such as no-arbitrage conditions, to avoid price distortions and to increase

predictability. They should also develop a mechanism for generating the price
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process explicitly to improve domain adaptability, which we will study in the
next chapter.

Based on the empirical result, we suggested the use of the generative Bayesian
neural networks incorporating prior consistent with no-arbitrage pricing struc-
ture. First, in the model calibration, the classical American option models
showed slightly better calibration results than the machine learning models
and particularly noticeable differences during the financial crisis periods. The
latter showed more sensitive reaction to the unusual market situations than the
former. Second, in the model prediction of 1 day ahead, most machine learning
models showed overall better performance than the classical American option
models. Especially, a generative Bayesian neural network model showed the
best overall performance. For the prediction results of 7-day ahead, the genera-
tive Bayesian neural network is superior to the CGMY model. It suggests that
GBNN'’s robustness to the long-time window of the learned weight. This sup-
ports the need to use a prior information incorporating some financial market
structures such as no-arbitrage constraints to the learning models.

Overall, we conclude that machine learning models can obtain a quantitative
representation of option pricing more effectively than classical American option
models given the same information, such as expiration date and strike prices of
contingent claims. One can take advantage of machine learning models in the
financial sector by incorporating more information and input variables, such as

documents or sentiments, which needs to be further investigated.

68



Chapter 4

Predictive Models for Blockchain and
Cryptocurrency Market

4.1 Chapter Overview

Bitcoin is a successful cipher currency introduced into the financial market
based on its unique protocol and Nakamoto’s systematic structural specification
(Nakamoto, [2008). Unlike existing fiat currencies with central banks, Bitcoin
aims to achieve complete decentralization. Participants in the Bitcoin market
build trust relationships through the formation of Blockchain based on cryp-
tography techniques using hash functions. Inherent characteristics of Bitcoin
derived from Blockchain technologies have led to diverse research interests not
only in the field of economics but also in cryptography and machine learning.
In this chapter, we train a Bayesian neural network based on the blockchain
and prices data for predicting the Bitcoin process and try to account for the
recent stochastic process shown in Figure 4.1} which has not been considered in
previous studies. A BNN includes a regularization term into the objective func-
tion to prevent the overfitting problem that can be crucial to our framework.
When the machine considers a lot of input variables, a trained machine can
be complex and suffer from the overfitting problem. BNN models showed their
effect to the financial derivative securities analysis (Gengcay & Qi [2001a)). For-
mation of Blockchain, a core technology of Bitcoin, distinguishes Bitcoin from

other fiat currencies and is directly related to Bitcoin’s supply and demand. To
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Figure 4.1 Bitcoin daily price(USD), from Sep-11 2011 to Aug-22 2017

the best of our knowledge, in addition to macroeconomic variables, direct use
of Blockchain information, such as hash rate, difficulties, and block generation
rate, has not been investigated to describe the process of Bitcoin price. To fill
this gap, the current study systematically evaluates and characterizes the pro-
cess of Bitcoin price by modeling and predicting Bitcoin prices using Blockchain

information and macroeconomic factors.

After the bitcoin paved the way for the peer-to-peer decentralized cryptocur-
rency, several alternative cryptocurrencies are proposed to cope with perceived
limitations of the bitcoin. They generally aim to the peer-to-peer and decen-
tralization properties similar to the bitcoin and can be implemented via the
blockchain or through other forms such as a directed acyclic graph. They can
be launched by the forking in the existing cryptocurrency such as the bitcoin
cash, bitcoin gold and the ethereum classic. Because these cryptocurrencies
have essentially similar aspects, the analysis of the relationship between cryp-
tocurrencies can results in the valuable meaning and can be applied to the
clustering of the cryptocurrencies. Therefore, we proposed the enhanced GRU
model based on the VAR model to analyze and visualize the relationship be-

tween cryptocurrencies.
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4.2 FEconomics of Bitcoin and Blockchain

Barro’s model (Barro, 1979) provides a simple Bitcoin pricing model under
perfect market conditions as in (Ciaian et all 2016). In this model, Bitcoin is
assumed to possess currency value and is exchangeable with traditional cur-
rencies, which are under central bank control and can be used for purchasing

goods and services. The total Bitcoin supply, Sp, is represented by
Sp = PpB (4.1)

where Pp denotes the exchange rate between Bitcoin and dollar (i.e. dollar per
unit of Bitcoin), and B is the total capacity of Bitcoins in circulation.

The total Bitcoin demand depends on the general price level of goods or
services, P; the economy size of Bitcoin, F; and the velocity of Bitcoin, V,
which is the frequency at which a unit of Bitcoin is used for purchasing goods

or services. The total demand of Bitcoin,Dp, is described as followed by:

_ PE

Dp =~ (4.2)

The market equilibrium with the perfect market assumption is acquired when
the supply and the demand of Bitcoin is the same amount. The equilibrium is

therefore achieved at
PE

" VB

This equilibrium equation implies that in the perfect market, the Bitcoin price

Pp (4.3)

in dollars is affected proportionally by the general price level of goods or ser-
vices multiplied by the economy size of Bitcoin, and inversely by the velocity
of Bitcoin multiplied by the capacity of the Bitcoin market. The general price
level of goods or services, P, can be determined indirectly from the global
macroeconomic indexes in actual markets. The exchange rate between several
fiat currencies and Bitcoin price describes the relationship between actual mar-
kets and Bitcoin market. The main difference between the Bitcoin market and
general currency markets originates from the fact that the Bitcoin is a ”virtual

currency based on Blockchain technologies”. Therefore, economic size, F; the
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velocity, V'; and the capacity of the Bitcoin market, B, are closely related with
several measurable market variables extracted from the Blockchain platform
and, which will be reviewed in the next subsection.

Decentralization is the value pursued by all cryptocurrencies as opposed
to general fiat currencies being valued by central banks. Decentralization can
be specified by the following goals: (i) Who will maintain and manage the
transaction ledger? (ii) Who will have the right to validate transactions? (iii)
Who will create new Bitcoins? The blockchain is the only available technology
that can simultaneously achieve these three goals. Generation of blocks in the
Blockchain, which is directly involved in the creation and trading of Bitcoins, di-
rectly influence the supply and demand of Bitcoins. Combination of Blockchain
technologies and the Bitcoin market is a real-world example of a combination

of high-level cryptography and market economies.

Transaction Transaction Transaction

Transaction

Block

Transaction

Block

Transaction

Block

Figure 4.2 The formation of the Blockchain

We then describe in detail how the Blockchain can achieve the abovemen-

tioned goals in Bitcoin environment (Narayanan et al., [2016). A participant in

a Bitcoin network acts as a part of a network system by providing hardware
resources of their own computer, which is called a ”distributed system”. All
issuance and transaction of money are conducted through P2P networks. All
trading history is recorded in the Blockchain and shared by the network, and all
past transaction history is verified by all network participants. The unit called
”block”, which includes recent transactions and a hash value from the previous
"block”, creates irreversible data by a hash function, and is pointed out from

the next block. Figure shows the general structure of Blockchain. It takes
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more than a certain amount of time to generate the block to make impossible
to forge all or part of the Blockchain. This algorithm is called proof of work
(PoW), and the difficulty is automatically set to ensure that the problem can
be solved within approximately 10 minutes. PoW also provides incentives to
motivate participants to maintain the value of Bitcoin by paying Bitcoin for
the participant who created the block.

PoW agreement algorithm comes with several inherent risks. First, the va-
lidity of the block can be intervened when the majority of total participants
is occupied by a group with a specific purpose called 51% problem. Second,
when the Blockchain is forked, a considerable amount of time is consumed to
form the agreed Blockchain until the longest chain is selected after generation
of several blocks. This condition causes a transaction delay because the transac-
tion cannot be completed during that time. Lastly, there may be the capacity
limit of the Blockchain or the performance limit of each node. Safety of the
current Blockchain can be monitored by observing measurable variables in the
Blockchain from https://blockchain.info/.

Considering that supply and demand of Bitcoin are affected directly or
indirectly by measurable variables involved in the formation of a Blockchain,
the current study evaluates several variables related to Blockchain formation
as features of the Bitcoin pricing process. Section IV describes in detail the

variables exploited in empirical experiments.

4.3 An Empirical Study on Modeling and Prediction
of Bitcoin Prices Based on Blockchain Information

4.3.1 Data Specification and Structure of the Experiment

Figure shows the time series of Bitcoin price obtained from https:// bit-
coincharts.com/markets/, where the value of 1-Bitcoin, which was about $ 5
in September 2011, approximates $ 4,000 in August 2017. During this period,

market volatility with enormous price changes in Bitcoin becomes exceptional
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compared with that in traditional currency markets. It is evident that standard
economic theories are insufficient to account for the impressive price devel-
opment and volatility of Bitcoin (Kristoufek, 2013]). Bitcoin markets do not
possess purchasing power nor interest rate parity. In particular, Bitcoin is an
actual implementation of decentralization issued under the consent of partici-
pants and not the central bank. This fact suggests that the need for completely
new determinants of Bitcoin price: the Blockchain information that includes
relevant features as main determinants for pricing Bitcoin. Blockchain data
used for empirical analysis can be collected from https://blockchain.info/. Ta-
ble presents the Blockchain data and macroeconomic variables to be used

in predicting the evolution of Bitcoin prices.

Table 4.1 Data for the empirical study

Data category Data

prices or log prices of Bitcoin(USD),

Response var.
vol. or log vol. of Bitcoin(USD)

Trading vol.(USD,CNY), avg. block size,
transactions/block, median confirm. time,

hash rate, difficulty,

Blockchain

information ] 7
cost % of trans., miners’ rev.,

confirmed trans., total num. of uniq. Bitcoin

Macro economic S& P500, Eurostoxx, DOW30, NASDAQ),
development Crude oil, SSE, Gold, VIX, Nikkei225, FTSE100

Global
currency GBP, JPY, CHF, CNY, EUR

ratio(-/USD)

Several blockchain variables are considered as follow:
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! Average block size (MB): the size of a block verified by all participants.

? Transactions per block: average number of transactions per block.

? Median confirmation time: the median time for each transaction to

be accepted into a mined block and recorded to the ledger.

! Hash rate: estimated number of Tera (trillion) hashes per a second all
miners (market participants to solve a hash problem for making a block)

is performing.

? Difficulty: next difficulty =(previous difficulty *2016+ 10 minutes)/(time
to mine last 2016 blocks)

? Cost % of a transaction: miners’ revenue as the percentage of the

transaction volume.

? Miners revenue: Total value of coin-base block rewards and transaction

fees paid to miners.

? Confirmed transaction: the number of confirmed the validity of trans-

actions per day.
? Total number of a unique Bitcoin: market capitalization of Bitcoin.

By employing ordinary least square (OLS) estimation, (van Wijk, |2013)

demonstrates that the Dow Jones index, the euro-dollar exchange rate, and
WTTI oil price influence the value of Bitcoin price in the long run. We also
consider several variables such as S& P500, Eurostoxx, DOW30, NASDAQ,
Crude oil, SSE, Gold, VIX, Nikkei225, and FTSE100, which associated with

global macroeconomic development.

Given that Bitcoin is related to traditional currency markets in addition to

the cryptocurrency market itself based on digital cryptography, we take into
account the exchange rates between global monetary markets; exchange rates

are basic factors in the analysis of traditional currency markets. We specifically

75 :



use ezchange rates between magjor fiat currencies (GBP, JPY, CHF, CNY, EUR)
and the dollar because these rates are most likely to affect the Bitcoin price.
In summary, we cover the daily data from Sep 11, 2011, to Aug 22, 2017 in
the empirical analysis by employing both the traditional determinants of cur-
rency markets, such as global macro-economic development and the features
endowed from the cryptocurrency. This experiment, which has not been per-
formed in previous studies, primarily aims to discover the main features that

can explain the recent highly volatile Bitcoin process.

Table 4.2: Summary statistics of the data

Data category ‘Whole range Recent 2 years

mean stdev. mean stdev.

Bitcoin price (USD) 458.32 606.2 901.96 804.0
log of Bitcoin price (USD) 5.04 1.92 6.52 0.71
Volatility 10.75 25.06 21.83 38.88

Trading volatility (BTC) 6.66x10%  5.82«10*  7.15x10*  5.21x10%

Trading volatility (USD) 3.36x107  6.59%107  6.96%107  9.77%107

Average block size 3.94%10°  3.21%105  7.84%10°  1.65%10°
Transactions per block 751.81 625.03 1507.61 389.58
Median confirmation time 9.15 3.59 10.21 3.44
Hash rate 8.14x105  1.41x105  2.18x10%  1.68+10°
Difficulty 1.08x10'1  1.86x10'1  2.9x10'!  2.21x10'!
Miners revenue (%) 2.7 2.17 1.04 0.42
Miners revenue (USD) 1.36x106  1.38x10%  2.16+¢10%  1.57x106

Confirmed transac. per day  1.14x10% 9.29x10%  2.26%10° 5.83%10%

S&P 500 1851.29 346.26 2169.8 166.84
Eurostoxx 2977.97 413.73 3208.97 235.1
Dow Jones 30 1.64%10% 2.59%10%  1.87%10*  1.71x103
Nasdaq 4279.47 1029.08 5289.29 543.53
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Table 4.2: Summary statistics of the data

Data category ‘Whole range Recent 2 years
mean stdev. mean stdev.
Crudeoil 73.53 25.21 45.23 5.98
SSE 2706.43 633.03 3140.39 223.83
Gold 1356.01 201.03 1218.72 78.67
VIX 16.02 5.09 15.12 4.65
Nikkei225 1.50%10%  3.87x103  1.82%10%  1.46x103
FTSE100 6444.86 549.54 6704.23 531.92
USD/CNY 6.37 0.25 6.65 0.2
USD/GBP 0.67 0.06 0.74 0.06
USD/JPY 102.36 14.67 112.4 6.44
USD/EUR 0.82 0.08 0.91 0.03
USD/CHF 0.95 0.04 0.99 0.02

Table shows summary statistics of response variables, Blockchain-
related variables, global macroeconomic indexes, and international exchange
rates used in empirical analysis from September 13, 2011, to July 21, 2017. Sev-
eral notable points are considered in the empirical analysis. As shown in Table
4.3.1] response variables and Blockchain related variables in the last two years
are considerably more variable than other categories such as global macroeco-
nomic indexes and international exchange rates. Bitcoin prices and volatilities
have nearly doubled over the past two years. In addition, Blockchain data ex-
hibit a significant increase in trading volume and size per a block and a huge
reduction in miner’s profit and the hash rate.

On the other hand, there is little difference between the most recent two
years and the overall range in the volatility of the global exchange rate market as
well as the growth of the global macroeconomic market economy over the past

two years is much smaller than that of Bitcoin. These results provide empirical
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evidence for the fact that the recent volatility in Bitcoin prices stems mostly
from the Blockchain information directly involved in supply and demand of
Bitcoin and not from other macro-financial markets.

Most of the previous studies have focused on either modeling Bitcoin price
without considering its relationship to Blockchain information or identifying
only its “linear” relationship to macroeconomic factors. The present study at-
tempts to overcome these limitations by employing a Bayesian NN model that
can investigate nonlinear influences of each relevant feature of input variables,
the Blockchain information, and macroeconomic factors, on Bitcoin price for-
mation. To this end, we first train a Bayesian NN to model Bitcoin price for-
mation using given above-mentioned relevant features of the process. We have
evaluated Bayesian NN in terms of training and test errors by using the rep-
resentative non-linear methodologies, SVR, and the linear regression model as
the benchmark methods.

Next, we develop a prediction model of the near-future price of Bitcoin after
modeling the entire process. We configure forecasting models by the rollover
framework, which is generally applied to portfolio theory. Rollover strategy is
known as rolling a position forward which is closing out an old position and
establishing a new position in a contract of the portfolio with a long time
to maturity. In our experiments, the trained machine is closing out an old
information and acquiring new data according to the rollover framework over
time. Figure [£.3] shows a schematic rollover strategy employed in our empirical
studies. At the initial training step, the machine is learned with N4, training
data, and the prediction performance is measured using Nges: test data. Next,
after ¢ —t time from time ¢, the machine is trained using again the Ny, data
from time ¢’ to update old learning data, and the performance of Ny test data
is thereafter measured. The machine is trained through the entire range in this
way, and the average performance of prediction errors measured several times

is evaluated.

Learning the machine through the rollover framework aims to validate the

method of forecasting the next order of Ny.s test data from Nypqn training
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Roll-over range

Train data: Test data :
t+1:t+ Nyain t+ Nyrain + Lt + Nerain + Neest

Train data: Test data :
t'+1:t'+ Nygin 5 in+ 1:t' + Nergin + Neest

Test data :
t" 4 Nepgin + 1:8" + Nypgin +
Nte:t

Train data:
t"+1:t" + N

Figure 4.3 the formation of the Blockchain

data. Given that the model employs time series in batch format, it is is faster
and easier to learn than other sequential neural networks models, LSTM or
RNN, and can reflect the flow of information that changes with time. The
rollover framework can be used to implement semi-online prediction models to

incorporate new information or shocks with short learning time.

4.3.2 Linear Regression Analysis

We first construct a linear model for analysis of Bitcoin price and address several
critical issues in assumptions of the linear regression model. A basic assumption
required for linear regression is the model assumption that linear relationships
exist between response variables and independent variables (Gujarati & Porter,
1999). Table shows (linear) correlations between explanatory variables
and response variables. Each column represents linear correlation coefficients
of regressors for each response variable and the value in parentheses represents
the results of t-test for the null hypothesis that there is no linear relationship
between the two variables. We denote the null hypothesis-rejecting variables
as bold, based on a p-value of 0.05, and presented a t-value because the p-
value was as small as zero. We exclude the return as response variable because
almost all values of correlation coefficients of each explanatory variable are not

exceptionally significant for the return value of Bitcoin.
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Table 4.3: Correlation coefficients and (t-values) between the response and

independent variables.

Data category return price log(price) log(vol.)
. . 0.064 0.071 0.123 0.245
Trading volatility (BTC)
(2.987)  (3.315) (5.772) (11.769)
0.016 0.777 0.474 0.683

Trading volatility (USD
& y(USD) 745 (57.485)  (25.071)  (43.549)
0.001 0.663 0.744 0.404

Average block size
verag . (0.047)  (41.246)  (51.857)  (20.569)

0.011 0.647 0.715 0.39

Transactions per block
P (0.512)  (39.518) (47.63) (19.725)

0.04 0.26 0.018 0.163
Median confirmation time
(1.864) (12.54) (0.838) (7.694)
0.025 0.9 0.577 0.583
Hash rate
(1.165) (96.16) (32.902) (33.419)
. 0.024 0.906 0.58 0.588
Difficulty

(1.118)  (99.686)  (33.159)  (33.856)

-0.034 -0.34 -0.51 -0.24

Mi %
iners revenue (%) (-1.584) (-16.838)  (-27.613) (-11.514)

-0.015 0.92 0.76 0.625

Mi USD
iners revenue (USD) | «00)  (109.326)  (54.46)  (37.288)

0.008 0.66 0.731 0.402

Confirmed trans. d
Onirmec thans. Per G 0.373)  (40.915)  (49.891)  (20.447)

-0.006 0.691 0.928 0.415
S&P 500

(-0.279) (44.52) (116) (21.243)

-0.008 0.537 0.838 0.339
Eurostoxx

(-0.373)  (29.647)  (71.523)  (16.782)

0.002 0.746 0.916 0.454

Dow Jones 30
(0.093) (52.171) (106.338) (23.731)

-0.007 0.722 0.896 0.442

Nasd
ascad (-0.326)  (48.599)  (93.973)  (22.948)
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Table 4.3: Correlation coefficients and (t-values) between the response and

independent variables.

Data category return price log(price) log(vol.)
0.015 -0.401 -0.545 -0.264
Crudeoil
(0.699)  (-20.386)  (-30.273)  (-12.747)
SSE -0.018 0.27 0.408 0.184
(-0.838)  (13.06) (20.813) (8.718)
-0.051 -0.384 -0.544 -0.215
VIX
(-2.378) (-19.369) (-30.194) (-10.253)
-0.011 0.553 0.884 0.346
Nikkei225
(-0.512)  (30.911)  (88.067)  (17.175)
0.016 0.67 0.843 0.396
FTSE100
(0.745)  (42.033)  (72.987)  (20.085)
0.013 0.572 0.355 0.331
USD/CNY
(0.605)  (32.477)  (17.685)  (16.336)
0.019 0.584 0.477 0.339
USD/GBP
(0.885) (33.506) (25.276) (16.782)
-0.018 0.38 0.819 0.244
USD/JPY
(-0.838)  (19.133)  (66.475)  (11.718)
-0.002 0.344 0.496 0.208
USD/EUR
(-0.093)  (17.062)  (26.603) (9.904)
0.008 0.266 0.341 0.164
USD/CHF
(0.373)  (12.851)  (16.894) (7.743)
0.019 -0.396 -0.858 -0.241
Gold

(0.885)  (-20.085)  (-77.795)  (-11.565)

Next, we discuss the multicollinearity problem, which is often encountered
in linear regression analysis. Several statistical problems are caused from the
multicollinearity which is the situation that some regressors have a linear re-
lationship with other regressors. It can cause undesirable regression analysis:
very high R? for some coefficients that are not statistically significant and their

t-statistics sensitive to data variation (Gujarati & Porter, |1999). One of the
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Table 4.4 VIF values of each explanatory variable for detecting the collinearity
proble

Data category VIF Data category VIF Data category VIF

Trading Trading Avg.
vol. 1.5688 vol. 3.45327 block 33.2689
(BTC) (USD) size
Trans. Median
per 36.7642 conf. 2.1306 Hash rate 122.3453
block time
Miners Miners
Difficulty 150.3203 revenue 2.4462 revenue 8.2981
(%) (USD)
Confirmed
trans. 48.1753 S&P 500 730.6197 Eurostoxx 41.9197
per day
Dow
Jones 402.9169 Nasdaq 304.5080 Crudeoil 22.8668
30
SSE 10.1965 Gold 21.4123 VIX 4.5702
Nikkei
225 128.2556 FTSE100 51.7874 USD/CNY 20.3706
USD/GBP 45.355 USD/JPY 58.1390 USD/EUR 43.6925
USD/CHF 7.7059

prescriptions for dealing with multicollinearity is to do a linear regression ex-
cept for variables with large VIF values, which is a sort of measure of the
linear relationship between variables (Gujarati & Porter, |1999)). To remove re-
dundant variables for preventing the collinearity problems, we eliminate several
explanatory variables with large VIF values. Table [4.4)shows VIF values of each
explanatory variable. In this study, we have determined that the set of variables
excluding linear relationships is suitable for linear regression analysis to avoid

multicollinearity problem. We select 16 suitable discriminators after eliminat-
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ing variables with large VIFs and perform linear regression analysis on Bitcoin
log prices and log volatilities with these 16 discriminators. Removed variables
include the following: transactions per a block, difficulty of the hash function,
Nikkei225 index, S&P 500 index, Furostoxx index, DOW30 index, NASDAQ,
and exchange rates of EUR and GBP. From these 16 regressors, we construct
two linear models, one for the log price and one for the volatility of Bitcoin
process. We then evaluate assumption fitness, say the residual assumption that
residual terms are independently and identically distributed.

Finally, we generate histograms residuals of each model to verify the residual

assumption by confirming it follows a normal distribution.

Histogram of residuals Normal probability plot of residuals

4
’,
%
001 4
0.005
3
¥

15 4 05 [ 0s 1 15 2 15 4 05 o 0s 1 15

(a) Histogram for log-price (b) QQ plot for log-price

Histogram of residuals Normal probability plot of residuals

(c) Histogram for log-volatility (d) QQ plot for log-volatility

Figure 4.4 Residual evaluations for (a) Histogram, (b) Normal probability (QQ)
plot of the Bitcoin log price, and (c¢) Histogram, (d) Normal probability (QQ)
plot of the Bitcoin log volatility

Figure (a) & (b) show that the Bitcoin log price satisfies the residual

assumption for linear regression: the histogram is bell-typed and symmetric and
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the QQ-plot shows a similar pattern with the normal distribution. By contrast,
Figure [4.4] (¢) & (d) show that residuals of the linear model for log volatility of
Bitcoin do not follow a normal distribution with a positive-skewed histogram.
Time series of log volatility of Bitcoin is therefore unsuitable for linear analysis
except for the log price of Bitcoin due to the violation of each assumption.
Each linear model trained from a random 85% of whole data are disparate
from true log prices or log volatilities. Figure demonstrates that predicted
log prices (volatilities) and a confidence interval of most recent 30 test data,
implying the unsuitability of the linear model in predicting the time series of
Bitcoin price. Figure [£.5 shows that most true values are out of the confidence
interval of the linear model. This means that the learned linear model does not
make an adequate prediction of the output value albeit in predicting trends in

little.

4.3.3 Estimation and Prediction Results of Bitcoin Price

We next perform time series analysis of Bitcoin prices using a BNN model and
compare with the benchmark models, which are the linear regression and the
SVR model. A total of 25 explanatory variables belonging to three categories
are employed as inputs for BNN learning. We also address another input set
that comprises 16 input variables by eliminating several unimportant variables
as mentioned in the previous subsection. We consider two response variables, log
price of Bitcoin and volatility of Bitcoin price, because extremely high volatility
is an important feature of Bitcoin. In general, volatility is a significant variable
assessed equally to the value of an option in economic analysis. We use log-scaled
values of both output response variables to account for the large difference
between Bitcoin value in the early period and its most recent value.

We train the BNN model through 10-fold cross-validation. To mitigate the
effect of how to divide the data, we repeated hold-out validation steps where
%N training data and %ON test data, given the total number of the data is V.

Where performances of each trained model are measured by root mean square
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Figure 4.5 Prediction results of (a) the Bitcoin log price and (b) the Bitcoin log

volatility

error (RMSE) and mean absolute percentage error (MAPE). Definitions of each
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evaluation criteria are as followings:

N 5032
RMSE:\/MZ%) (4.4)
N
1 X vi — Ui
MAPE = — ) |%—= 4.5
v (45)

where N is the number of samples, y; is the i-th true objective value, and g; is

the i-th estimated value.

Table 4.5 Training error for the Bitcoin price formation

. Log Log
Response variable

price volatility

Number of Input variable 26 16 25 16
Linear RMSE - 0.0913 - 0.4595
Regression MAPE - 0.0681 - 0.5905
Bayesian RMSE 0.0031 0.0047 0.1612 0.1717
NN MAPE 0.0119 0.0148 0.3314 0.3512

Support vec. RMSE 0.1453 0.1434 0.3810 0.3939

Regression MAPE 0.0325 0.0322 0.5411 0.6293

Table and summarize results of training errors and test errors, re-
spectively. We observe that BNN models outperform other models in terms of
RMSE and MAPE for predicting the log price of Bitcoin. Log price of Bitcoin is
learned exceptionally by the BNN model with training and test error of around
1% MAPE. In the case of log volatility, the prediction error of log volatility in
the test phase is slightly larger than that in the training phase. BNN model is

more reliable for describing the process of log volatility than other benchmark
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Table 4.6 Test error for the Bitcoin price formation

. Log Log
Response variable

price volatility

Number of Input variable 26 16 25 16
Linear RMSE - 0.0935 - 0.4823
Regression MAPE - 0.0712 - 0.6263
Bayesian RMSE 0.0039 0.0069 0.2546 0.2325
NN MAPE 0.0138 0.0180 0.5090 0.5222

Support vec. RMSE 0.3201 0.2742 0.5487 0.5297

Regression MAPE 0.0428 0.0404 0.7232 0.8629

models. After eliminating redundant variables from linear correlation analy-
sis, the error value is relatively small when all 26 input variables are consid-
ered instead of the abridged 16 input variables. This condition implies that
removed variables may explain nonlinear relationships to adequately account
for response variables. SVR model shows poor performances in both training
and test phase. From this results, we can confirm that Bayesian NN is better
suited for the Bitcoin time series analysis than SVR albeit in they are included

the same nonparametric model.

Figure shows the values of estimated response variables for the recent 30
test input data according to time indexes. We observe that the recent volatile
tendency is well expressed in terms of explanatory input variables. The case of
log price presents a tendency for underestimation when price rises and over-
estimation when the price falls. In the case of the log price, we can see that
all models predict the actual tendency of the price to some extent. On the

other hands, in terms of error size, it is confirmed that other models are larger
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than that of Bayesian neural networks. There is no tendency of over- or under-
estimate in all models. Bayesian neural networks tended to predict consistent
trends regardless of the number of inputs. In the case of volatility, the Bayesian
NN model predicts better the direction of volatility than other benchmark mod-

els, and neither of the four models tends to over or under-estimate.

Finally, we provide prediction results of the trained BNN under the rollover
framework. Rollover framework physically excludes old preceding data to reflect
that the previous information shrinks as training is repeated. The construction
method of the model in this subsection is fundamentally different from that of
the previous subsection. In the previous subsection, we have extracted part of
the entire data for training purpose, assuming that we have all data for the
entire time range. Although the method in the previous section is adequate to
assess how well the model has learned for the whole data, it is not appropriate

to predict future outcome from the historical data.

We train the machine using data obtained 200 days before the present day
and predict the current day’s price from the trained machine under the rollover
framework. Given that future data are not considered in the training phase,
we can infer that prediction performance may be inferior to that of the pre-
vious subsection. Table [£.7] presents prediction error for Bitcoin price under
the rollover framework. We note that overall performance is slightly poor com-
pared with the model construction in the previous subsection. Nevertheless,
prediction result for the log price of Bitcoin still maintains low error rates. By
contrast, prediction errors are almost doubled for log volatility outputs. Figure
shows plots of prediction results for the log price and log volatility of Bit-
coin. We show that log price is relatively well explained based on the employed
input variables and during sudden fluctuations. In the case of log volatility, the
discrepancy between true volatility and predicted volatility is relatively large,
but directionality is well approximated. In summary, the learned BNN models
can effectively describe the recent highly volatile Bitcoin price process and the

price in the entire range.
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Figure 4.6 Test result plot of (a) the Bitcoin log price and (b) the Bitcoin log

volatility
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Prediction Results: Log Value of The BitCoin Price
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Figure 4.7 Prediction results of (a) the log value of the Bitcoin price and (b)
the log volatility of the Bitcoin price.
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Table 4.7 Prediction error for the Bitcoin price under the rollover framework

. Number of
Response variable RMSE MAPE

input variable

log 26 0.0256  0.0198
price 16 0.0244  0.0200
log 25 0.5750  0.8992
volatility 15 0.5114  0.6302

4.4 Enhanced GRU Framework for Correlation Anal-
ysis of Cryptocurrency Market

4.4.1 Enhanced GRU Framework

Recurrent Neural Network (RNN) is neural network model that is specialized
for time series sequential data. Its network structure is similar to multilayer
perceptron, but it contains previous hidden nodes as an inputs. Basic RNN

models with model F', input z; and hidden state h; for time step t, is given as

ht = F(:Et, ht_l, 9) (46)

Equation is called recurrent because h;_1 goes recurrently back to input in
the time ¢. Since h;_1 requires z;_1 as an input, this hidden state has the
information of whole past sequence (x¢,x;_1,...,x2,21) as an input. There-
fore RNN is widely used in the tasks that requires time sequential concepts
in the model, such as neural machine translation(Cho et al., 2014) or speech
recognition(Graves et al 2013).

However deep RNN models has challenge of long term dependencies(LeCun
et al., [2015). As RNN models gets deeper the model’s gradients will be propa-
gated over many times, and lead to gradient vanishing and exploding problem.
To solve this problem, long short-term memory (LSTM) model was suggested
by (Gers et al.,[1999). The LSTM model uses the concept of gated RNN to solve
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long-term dependency problems and has been found very successfully in various
applications. However predicting time-series Bitcoin data has different structure
with other LSTM models, because whole dataset is composed as single time-
series data. It is hard to construct validation set, because we can not directly
apply validation methods such as cross-validation. In this dissertation, we sug-
gested the enhanced GRU framework for the multivariate time series analysis.

When we consider the following vector auto-regression (VAR)(1) model:

yt = ot + Pryt—1 + at (4.7)

where y, is the target n-dim variable at time ¢, ¢g; and ®¢ are parameters
for the VAR(1) model, and ay is the shock at time ¢ from the time invariant
distribution with mean 0 and the covariance matrix ¢. In the VAR(1) model,
the parameter calibration is object to acquire suitable approximation of each
dot, Py, and 0. The approximation can be achieved by the ordinary least square
(OLS) methods under the assumptions that the covariance matrix is positive
definite and the time series y; is weakly stationary. However, the OLS estimation
procedure is suffered from the above-mentioned assumptions and can be difficult

to calculate when the dimension of the target vector is increased.

Prev_hidden

Target

hidden

Loss
function

L matrix

»

Figure 4.8 Enhanced GRU framework for multivariate time series analysis

To overcome the drawback, we suggested the enhanced GRU framework for
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the multivariate time series analysis. This model overcomes the difficulties of
the existing VAR model estimation method by learning the components of the
lower triangular matrix and the diagonal matrix from each independent neural
network after performing the cholesky decomposition to satisfy the positive
definite condition of the correlation matrix. Coefficients dependent on the time
series vector was learned from the gate of GRU and tried to learn the change of
time series vector over time. Figure [4.8|described the enhanced GRU framework

for the multivariate time series analysis.

4.4.2 Empricial Studies

In this empirical study, we consider the 30-minute price data from November
17, 2015 to November 17, 2017 for a total of eight cryptographic currencies such
as ETH, DASH, XRP, XMR, LTC, XEM, EMC2 and NXT.

We train the model by using a total of about 38000 historical data and test
the model by using the recent 2000 data. We considered the batch size is 45
days. It means that the GRU is trained with 45 batch data in a single iteration.
We trained the enhanced GRU sequentially with altcoins as input in the order
presented above. In other words, we use the 38000 training data of 45 batches
to train the GRU and measure the test performance of the trained machine for
the recent 2000 test data.

The following is an illustration of some of the predicted results. Figure
shows that the Litecoin is better approximated than Dash. From Figure 4.9b| it
can be seen that the Dash is over-estimated at a constant rate, which does not
directly extract the output from the GRU but looks like a gap in the process of
performing a linear regression once more. It seems to be due to the difference
in units of LTC and DASH.

Figure shows that the correlation matrix between the entire cryptocur-
rencies at a particular point in time. We can confirm that the correlation matrix
of shocks of cryptocurrencies price varies with time from the change of infor-

mation of GRU gate. Figure shows that there is a covariance close to zero
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Figure 4.9 Prediction results of (a) Prediction results of the LTC and (b) Pre-
diction results of the DASH. Blue line is true price and Orange line is estimated

price

between variables at the beginning of learning. However, as the learning pro-
gresses, the value of the covariance matrix converges to the value corresponding
to the covariance of each variable. The variance of each variable ranges from
about 0.1 to 0.25, and the covariance matrix shows that ETH and XRP have
opposite behavior to other currencies. In particular, EMC2 and NXT have large
volatility with other currencies, which seems to be due to the low ratio of market

capitalization.
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Figure 4.10 Covariance matrix result (a) 2017.09.12 and (b) 2017.05.15.

4.5 Chapter Summary

Bitcoin is a successful cryptocurrency, and it has been extensively studied in
fields of economics and computer science. In this study, we analyze the time

series of Bitcoin price with a BNN using Blockchain information in addition to

95



macroeconomic variables and address the recent highly volatile Bitcoin prices.

Given the data of the entire time range, experimental results show that the
BNN model learned with the selected features effectively describes processes
of Bitcoin log price and log volatility. Adoption of rollover framework experi-
mentally demonstrates the predictive performance of BNN is better than other
benchmark methods on log price and volatility processes of Bitcoin.

Through the empirical analysis, we have confirmed that the BNN model
describes the fluctuation of Bitcoin up to August 2017, which is relatively recent.
Unlike other benchmark models that fail directional prediction, the BNN model
succeeded in relatively accurate direction prediction. From these experimental
results, the BNN model is expected to have similar performance in more recent
data. As the variation of Bitcoin process gets attention, it is expected that the
expansion and application of the BNN model would be effective for the analysis
and prediction of the Bitcoin process.

Investigating nonlinear relationships between input functions based on net-
work analysis can explain analysis of Bitcoin price time series. Variability of
Bitcoin must be modeled and predicted more appropriately. This goal can be
achieved by adopting other extended machine learning methods or consider-
ing new input capabilities related to the variability of Bitcoin. Such study will
contribute to rich Bitcoin time series analysis in addition to existing Bitcoin
studies.

We have attempted to visualize the relationship between altcoins, in which
the creation principles are closely related, unlike the existing stock market with
independently issued stocks. To reveal the relationship, we have proposed the
enhanced GRU framework based on the VAR model. In the enhanced GRU
framework, the effect of each time series variable on each other is expressed
as a linear regression coefficient through the VAR model consisting of a vector
of time series of each alternative coin. In this case, each linear regression co-
efficient is dynamic parameters estimated through GRU and neural networks,
unlike the original VAR model. From the proposed framework, we have con-

firmed that there is a significant correlation between altcoins by investigating
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empirical analysis based on eight alternative coins. The correlation analysis of
cryptocurrencies is expected to contribute in part to the valuation of crypto-

graphic currencies that have not yet been established.
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Chapter 5

Conclusion

5.1 Contributions

This dissertation attempts to analyze the financial derivatives market and the
cryptocurrency market using econometric models and machine learning mod-
els. Based on the results of systematic empirical experiments based on given
market data, each models have been evaluated based on market explanatory
ability and market prediction ability. We propose data-driven machine learning

methodologies to improve the market predictability for each market.

When the hidden variables in the econometric models such as the GARCH
model or the stochastic volatility model constitute a time series model sepa-
rately from the observation variables, the existing parameter calibration meth-
ods causes slow convergence speed and frequent local solution problems. In
particular, in the case of the general MCMC methodology where it is impossi-
ble to know the specific target probability distribution, it is an important factor
to determine a candidate probability distribution close to or similar to the tar-
get probability distribution for the overall performance improvement. In this
dissertation, we propose a MCMC framework that a large amount of samples
is extracted from the candidate probability distribution nearest to the target
probability distribution in terms of Kullback-Leibler (KL) distance by using the
generative model concept. It is possible to extract the samples in a very short

time, since the sample is acquired from the generative model. We have improved
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the disadvantages of the existing MCMC methodology, which is dependent on
the choice of the candidate probability distribution, by providing only samples
from the nearest probability distribution in terms of KL divergence instead of
suggesting a specific probability distribution.

Given S&P index option data in 2012, in-sample and out-of-sample are mea-
sured to compare model validity and predictability of the representative econo-
metric model, the CGMY and Kou model, and conventional machine learning
models such as artificial neural networks, Bayesian artificial neural networks,
support vector machines, and Gaussian process models. In the case of model
estimation, the jump diffusion models have the best performance in estimat-
ing the model using the data of the recent day, whereas the machine learning
model has the highest model estimation performance using the data of the last
week. On the other hand, the performance of the jump diffusion models and the
Bayesian artificial neural network were the best in forecast, and the performance
of the other machine learning decreased rapidly as the range of prediction in-
creased. Especially, it was confirmed that the jump diffusion model has a very
high performance in terms of domain adaptation between the American option
and the European option. This difference is reflected in the fact that the jump
diffusion model is based on the common asset of the American option and the

European option.

Based on this empirical precedent study, we proposed a machine learning
model called generative Bayesian neural network (GBNN) to overcome the dis-
advantages of the machine learning model. Since the general machine learning
methodology learns the model from the data, the performance decreases very
rapidly in the deep ITM or deep OTM domain with few data point when learn-
ing the model for the option market. During the initial learning, GBNN acquired
an appropriate price in any area by adding virtual price data from an arbitrarary
jump-diffusion model. When the next learning period comes, GBNN maximizes
posterior probability through the GBNN obtains pror information from the
GBNN data learned up to the previous day, and learns likelihood probability
from actual trading data of learning day. As a result, GBNN’s deep ITM and
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OTM areas have significantly improved estimation and prediction performance
and are much better than the jump-diffusion models unlike other machine learn-
ing models for the S & P 100 index American option data from 2003 to 2012.
In particular, in the previous study, GBNN showed that the model estimation
performance was very fast and stable compared to other methodologies, unlike
the general machine learning model, where the model fit performance is highly
volatile according to the applied data range in terms of model estimation. In
addition, we can confirm that the GBNN is much faster in terms of option price
calculation time for the fitted model. Econometric models calculate the option
price after given the asset value based on the obtained parameter even after the
model is formed. It reflect the characteristics of the artificial neural network

which shows very fast speed in the test side after the model is formed.

In recent years, a variety of cryptographic currencies have been developed,
beginning with the first cryptocurrency Bitcoin, which technically implemented
the concept of distributed ledger proposed by Satoshi Nakamoto in 2008. There
is a growing demand for new analytical technology as well as traditional market
analysis techniques for the cryptocurrency market, which has new and unique
features that have not been existing. In this dissertation, we use quantitative
data of Blockchain technically implemented decentralized branch to analyze
the representative cryptocurrency Bitcoin time series studied by previous lit-
erature based on conventional methodology of econometrics. Bayesian neural
networks considering block-chain data show higher predictive performance and
estimation performance than other benchmark models, and identify the recent
volatility of cryptography compared to previous studies. Correlation analysis
between cryptocurrencies is performed using the enhanced GRU model frame-
work, under the assumption that there will be a correlation between the prices
of cryptographic currencies since many altcoins derived from Bitcoin are tech-
nically developed from the same root code. The vector autoregressive (VAR)
model, which is a traditional market model, is based on the assumption that
the correlation between the variables is a linear model. Assuming that the gate

value obtained from the GRU model is the parameter of the VAR model, The
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covariance matrices of the cryptosystem are estimated through the artificial
neural network, which makes it possible to visualize the correlation between
various alternative currencies in the cryptographic market. As a result, it is
confirmed that there is a close correlation between alternative currencies. Es-
pecially, it is confirmed that there is a very significant correlation between the
currencies separated from the existing currencies and the existing currencies.
This dissertation has developed data-driven technologies for the time series
analysis of derivatives and cryptocurrency market, and conducted quantitative
analysis of the market. There has been limited research on the machine learning
framework of interpretable data based. This dissertation focuses on visualizing
and interpreting meaning from the data by developing a machine learning based
model easy to interpret. This dissertation can contribute to the analysis of time
series of recently formed cryptocurrency market. In addition, it is expected that
the application of the time series analysis framework of derivatives based on the
data can be applied to expand to the analysis of derivatives market with the

cryptocurrency underlying.

5.2 Future Work

Several limitation of the dissertation should be addressed in future work. First,
the econometric model for calculating the prior virtual prices used in the pro-
posed generative Bayesian neural network model should be updated with time.
It may cause that the GBNN can learn the wrong prior information if the
outdated econometric model does not reflect the current market information
after time. In this dissertation, we consider the prior knowledge obtained only
from the jump-diffusion model. The extended research topic can be considered
the GBNN when acquiring the prior information from the model considering
the variation of the volatility such as the stochastic volatility model or the
GARCH model was selected. In cryptocurrency market analysis, this study has
the limitation that only the quantitative data constituting the blockchain such

as the difficulty and the hash rate are considered. For a rich and systematic
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analysis of the money market, fundamental studies on the basic mechanisms of
blockchain technology and the analysis of the value of cryptography should be

accompanied.
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Panel C: Estimation Errors - Machine learning models [Bayesian Neural Network]|

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
lday training <0.94 0.0019 0.0011 0.1013 0.4351 0.0003 0.0001 0.0158 0.0364 0.0002 0 0.0117 0.0343
(0.94, 0.97) 0.002 -0.0002 0.0579 0.1264 0.0016 0.0004 0.0504 0.1446 0.0004 0.0002 0.0133 0.0288
(0.97, 1.00) 0.0066 0.0008 0.0708 0.142 0.0023 -0.0002 0.0398 0.0782 0.0026 -0.0012 0.0604 0.4396
(1.00, 1.03) 0.0203 0.0024 0.0599 0.1109 0.0034 0.0001 0.0325 0.0509 0.0039 0.001 0.0623 0.4728
(1.03, 1.06) 0.0317 -0.0053 0.0523 0.0975 0.0061 -0.001 0.0282 0.0497 0.0147 0.0037 0.1577 1.2249
>1.06 0.04 0.0187 0.0547 0.1385 0.0115 0.003 0.0219 0.0753 0.0668 0.0532 0.1133 0.971
7day training <0.94 0.0745 -0.0107 0.3213 0.396 0.0406 -0.0013 0.2409 0.2845 0.0569 0.0026 0.3332 0.4484
(0.94, 0.97) 0.0702 0.0048 0.3367 0.4551 0.0597 -0.0098 0.2809 0.401 0.0456 0.007 0.2038 0.2514
(0.97, 1.00) 0.0657 0.0012 0.2697 0.3653 0.0578 0.0051 0.2531 0.3662 0.0523 0.0069 0.2623 0.3898
(1.00, 1.03) 0.0601 -0.0015 0.2751 0.4377 0.0595 -0.0072 0.279 0.3871 0.0624 0.0158 0.2543 0.3613
(1.03, 1.06) 0.0557 -0.0008 0.2608 0.3426 0.0659 -0.0107 0.28 0.377 0.0694 -0.0048 0.2641 0.3434
>1.06 0.0597 0.0344 0.3049 0.3953 0.062 -0.0086 0.2852 0.3959 0.0602 0.0081 0.237 0.3228
30day training <0.94 0.1569 -0.0175 0.8309 1.0715 0.1458 -0.0247 0.7224 0.8804 0.0959 0.043 0.6294 0.7434
(0.94, 0.97) 0.172 -0.0145 0.7793 0.9541 0.1759 -0.0763 0.7727 0.9751 0.1779 -0.0981 0.8235 1.0254
(0.97, 1.00) 0.1473 -0.0054 0.7138 0.9357 0.1326 -0.0034 0.7274 0.9561 0.1436 -0.0276 0.7187 0.8967
(1.00, 1.03) 0.1478 -0.0311 0.7268 0.9832 0.1492 -0.0248 0.7882 1.0286 0.1539 -0.0249 0.679 0.8882
(1.03, 1.06) 0.1578 -0.0207 0.7561 1.0228 0.1571 -0.0309 0.7642 0.9726 0.1518 -0.0713 0.6622 0.8596
<0.94 0.173 -0.0664 0.8299 1.1344 0.1542 -0.0205 0.7717 0.9764 0.1337 -0.0397 0.6388 0.8663
Panel D: Estimation Errors - Machine learning models [Support Vector Regression]
Days to Expiration
< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
lday training <0.94 0.1649 -0.1242 10.8973 17.0629 0.0964 0.0656 4.9298 5.8843 0.0918 0.0918 6.8432 7.2452
(0.94, 0.97) 0.1149 0.1058 3.1546 4.141 0.1026 0.1026 3.1828 3.4521 0.0877 0.0877 3.1083 3.3248
(0.97, 1.00) 0.1565 0.1516 2.0488 2.6373 0.0827 0.0824 1.4863 1.6916 0.0812 0.0794 1.8351 2.0358
(1.00, 1.03) 0.2296 -0.1849 0.5893 0.8635 0.0348 0.0088 0.3698 0.5072 0.0576 0.032 0.9363 1.1398
(1.03, 1.06) 0.2029 -0.2022 0.3474 0.4733 0.0725 -0.072 0.3771 0.4134 0.0593 -0.0374 0.6333 0.7504
>1.06 0.1082 -0.0946 0.1692 0.2709 0.0787 -0.0618 0.2187 0.2706 0.0841 -0.0585 0.3491 0.4302
7day training <0.94 0.2207 -0.1874 14.0542 21.1056 0.0919 0.0595 4.6561 5.5471 0.0915 0.0915 6.8172 7.2148
(0.94, 0.97) 0.0916 0.0715 2.5568 3.1345 0.1003 0.1003 3.1121 3.3319 0.0867 0.0867 3.0809 3.263
(0.97, 1.00) 0.1326 0.1314 1.7541 2.1579 0.0781 0.0779 1.4064 1.5938 0.0784 0.0768 1.7727 1.9814
(1.00, 1.03) 0.1392 -0.097 0.4008 0.5544 0.0342 0.0068 0.3599 0.4922 0.0557 0.0291 0.8979 1.0919
(1.03, 1.06) 0.1424 -0.1413 0.2651 0.3217 0.0717 -0.0709 0.3718 0.4075 0.0589 -0.0383 0.6294 0.7461
>1.06 0.0901 -0.0733 0.1443 0.1877 0.0772 -0.0594 0.2145 0.2662 0.0842 -0.0597 0.3483 0.4288
30day training <0.94 0.4404 -0.4035 26.5434 36.4711 0.087 0.0283 4.6922 6.1422 0.1258 0.1141 8.8903 10.3214
(0.94, 0.97) 0.0949 0.0316 2.8261 4.1785 0.1058 0.1051 3.2826 3.6063 0.1119 0.1119 3.9685 4.3869
(0.97, 1.00) 0.1114 0.1035 1.5091 1.8782 0.0806 0.074 1.4842 1.7509 0.0822 0.0779 1.9033 2.2462
(1.00, 1.03) 0.1513 -0.0818 0.5669 0.7584 0.0788 -0.0082 0.7726 1.0117 0.0626 0.009 0.9899 1.2435
(1.03, 1.06) 0.176 -0.1415 0.3518 0.5117 0.1404 -0.0903 0.6947 0.9432 0.0854 -0.0495 0.868 1.0513
<0.94 0.151 -0.0447 0.2271 0.3938 0.1829 -0.079 0.412 0.6209 0.1484 -0.0973 0.5473 0.824
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Panel C: 1-day prediction errors - Machine learning models [Bayesian Neural Network]

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
lday training <0.94 0.119 0.0861 9.3025 18.6467 0.1175 0.1029 7.5052 13.7716 0.1724 0.1548 15.4529 23.8945
(0.94, 0.97) 0.0381 0.0167 1.1402 2.6048 0.0465 0.0256 1.4516 2.5929 0.0637 0.0284 2.2602 3.6052
(0.97, 1.00) 0.0946 -0.0266 1.0422 2.6307 0.0471 0.0087 0.8327 1.3957 0.0821 0.0074 1.9153 4.1176
(1.00, 1.03) 0.3393 -0.2401 1.0815 3.0338 0.0608 -0.0003 0.6054 0.9028 0.1193 -0.0177 1.9891 7.3598
(1.03, 1.06) 0.4542 -0.2848 0.8576 3.334 0.114 -0.0229 0.5795 1.0576 0.143 -0.0157 1.4997 3.0521
>1.06 0.3512 -0.1788 0.5661 1.413 0.2244 -0.0644 0.4627 0.9171 0.8146 0.3513 1.9119 4.1309
7day training <0.94 0.0685 0.0185 5.1722 10.7068 0.0446 0.0219 3.3056 8.3196 0.0472 0.0332 3.769 6.1329
(0.94, 0.97) 0.0258 0.0098 0.7271 1.0496 0.0279 -0.005 0.852 1.0949 0.0328 0.0005 1.1322 1.3741
(0.97, 1.00) 0.0479 0.0005 0.5711 0.8138 0.0399 0.0021 0.6911 1.0839 0.0459 0.0038 1.0701 2.5309
(1.00, 1.03) 0.1579 0.008 0.6101 0.8411 0.0648 0.0012 0.6373 0.9479 0.0603 -0.0084 0.9812 2.0312
(1.03, 1.06) 0.264 0.0781 0.5405 0.7539 0.1161 0.0014 0.6027 0.9005 0.0846 -0.0008 0.9017 1.3068
>1.06 0.3512 -0.0052 0.5305 0.7171 0.2311 -0.004 0.5001 0.7657 0.2717 -0.0491 0.7606 2.0479
30day training <0.94 0.0437 0.0003 3.2653 6.7632 0.0346 -0.0155 1.9639 2.9089 0.037 0.0187 3.3103 6.4997
(0.94, 0.97) 0.0229 0.0103 0.6539 0.8229 0.0221 0.0025 0.6996 0.8975 0.0242 0.0057 0.834 1.0174
(0.97, 1.00) 0.0587 -0.0074 0.6912 0.8717 0.0525 -0.0023 0.8891 1.102 0.0466 0.0043 1.0613 1.3707
(1.00, 1.03) 0.1875 -0.0178 0.7861 0.9815 0.1088 -0.022 1.0699 1.3194 0.0813 -0.0204 1.2771 1.6086
(1.03, 1.06) 0.3063 0.0153 0.6732 0.8201 0.1779 -0.0463 0.9573 1.2104 0.1223 -0.032 1.2843 1.5836
>1.06 0.3208 -0.0501 0.5114 0.6449 0.2898 -0.0557 0.6742 0.8739 0.2663 -0.0963 0.8538 1.173
Panel D: 1-day prediction errors - Machine learning models [Support Vector Regression]
Days to Expiration
< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
lday training <0.94 0.5565 0.5565 34.1894 38.7797 0.6188 0.6188 33.0978 35.5899 0.7384 0.7384 56.0523 60.9195
(0.94, 0.97) 0.5539 0.5539 15.9536 16.9894 0.5421 0.5421 16.9771 17.8847 0.6057 0.6057 21.3312 21.8791
(0.97, 1.00) 0.3461 0.3227 4.9759 6.1339 0.4067 0.4067 7.3877 8.2056 0.5107 0.4961 11.6571 12.4385
(1.00, 1.03) 0.6816 -0.5868 1.9405 2.5289 0.2267 0.1907 2.5217 3.2876 0.3833 0.3833 6.1477 6.966
(1.03, 1.06) 1.3493 -1.3405 2.3928 2.8427 0.2778 -0.2074 1.2233 1.6028 0.2296 0.1861 2.5414 3.2734
>1.06 1.7722 -1.7645 2.579 3.2177 0.9843 -0.9762 1.9043 2.3022 0.8849 -0.8354 2.1294 2.9783
7day training <0.94 0.5482 0.4787 33.999 39.0737 0.6752 0.6752 36.3307 39.0568 0.7599 0.7599 57.7429 62.2533
(0.94, 0.97) 0.557 0.557 16.1396 17.2888 0.5703 0.5703 17.9392 18.8421 0.6281 0.6281 22.214 22.7942
(0.97, 1.00) 0.3564 0.3505 5.1198 6.2615 0.4215 0.4208 7.6604 8.4217 0.5258 0.5258 12.0006 12.6979
(1.00, 1.03) 0.4279 -0.3229 1.4008 1.7632 0.2252 0.1834 2.5067 3.2323 0.393 0.393 6.3029 7.0434
(1.03, 1.06) 1.1817 -1.179 2.2145 2.5433 0.3055 -0.2484 1.2893 1.5698 0.23 0.2002 2.5729 3.3045
>1.06 1.8151 -1.8131 2.6541 3.0444 1.1235 -1.12 2.1663 2.4478 0.8945 -0.861 2.0332 2.5616
30day training <0.94 0.4759 -0.3462 30.0725 47.8574 0.1909 0.1288 10.3105 14.6956 0.3041 0.2928 22.7543 27.893
(0.94, 0.97) 0.168 0.1203 4.9338 7.1545 0.1745 0.172 5.5937 7.4795 0.2378 0.236 8.5043 10.1443
(0.97, 1.00) 0.1637 0.1464 2.2887 3.1165 0.1336 0.1079 2.4801 3.4203 0.1686 0.1458 3.9705 5.18
(1.00, 1.03) 0.2361 -0.1005 0.9959 1.3005 0.1485 -0.0033 1.5186 2.0073 0.1481 0.013 2.361 3.0999
(1.03, 1.06) 0.3638 -0.2358 0.7747 1.0868 0.2502 -0.1169 1.3185 1.6978 0.2057 -0.0862 2.1006 2.7617
>1.06 0.36 -0.0459 0.571 0.8221 0.3856 -0.1449 0.9046 1.2333 0.484 -0.37 1.495 2.1118
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Table 5.3 7-day prediction performance. This table reports 7-day prediction errors of each model applied to each
category of the S&P 100 OEX put options with respect to moneyness and time to maturity.

Panel A: 7-day prediction errors -

Econometric jump models

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
Kou <0.94 0.0287 -0.0062 1.8559 3.1454 0.057 -0.0274 3.6185 8.661 0.1767 -0.1344 14.2274 20.67
(0.94, 0.97) 0.0322 0.0107 0.9041 1.1566 0.0496 -0.0137 1.5376 2.1501 0.1029 -0.0157 3.638 4.6215
(0.97, 1.00) 0.0698 -0.0101 0.8614 1.2082 0.0712 -0.0315 1.2371 1.7326 0.0878 -0.0299 2.0377 3.0093
(1.00, 1.03) 0.1769 -0.0379 0.7773 1.1126 0.1126 -0.0089 1.1321 1.5717 0.0974 0.0126 1.5817 2.2382
(1.03, 1.06) 0.2246 -0.0198 0.5257 0.7713 0.1644 0.0296 0.9167 1.248 0.1508 0.0932 1.6572 2.2688
>1.06 0.2639 -0.0124 0.4484 0.6188 0.2234 0.0432 0.5547 0.798 0.2512 0.1909 0.9224 1.2938
CGMY <0.94 0.0223 0.0219 1.3003 2.0363 0.0334 0.0313 1.7414 3.7065 0.0334 0.0313 1.7414 3.7065
(0.94, 0.97) 0.0306 0.0059 0.862 1.1502 0.0452 0.0165 1.4018 3.2398 0.0452 0.0165 1.4018 3.2398
(0.97, 1.00) 0.0981 -0.0809 1.1234 1.9973 0.0909 -0.0304 1.5104 4.1254 0.0909 -0.0304 1.5104 4.1254
(1.00, 1.03) 0.2326 -0.1538 0.9566 1.6203 0.1357 -0.031 1.3025 3.2168 0.1357 -0.031 1.3025 3.2168
(1.03, 1.06) 0.249 -0.0699 0.5479 0.6007 0.1844 0.0204 0.9695 1.6953 0.1844 0.0204 0.9695 1.6953
>1.06 0.3023 -0.0071 0.4824 0.4286 0.2549 0.0634 0.6135 0.7222 0.2549 0.0634 0.6135 0.7222
Panel B: 7-day prediction errors - Machine learning models [Neural Network]
Days to Expiration
< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
lday training <0.94 0.2791 0.2491 18.53 27.4221 0.2377 0.1526 13.4347 19.9674 0.3014 0.2525 23.9033 34.4332
(0.94, 0.97) 0.2241 0.1464 6.4521 10.2144 0.2029 0.0705 6.1877 9.4778 0.2674 0.0575 9.5707 13.4074
(0.97, 1.00) 0.312 -0.0319 3.7536 7.015 0.2535 -0.0297 4.3878 7.7949 0.2824 -0.0003 6.4088 11.2346
(1.00, 1.03) 0.7816 -0.4784 2.8227 6.6589 0.3798 -0.1523 3.8409 7.8255 0.4038 -0.0853 6.3445 12.5211
(1.03, 1.06) 1.1357 -0.6566 2.2181 6.3301 0.5747 -0.2686 3.0385 6.4017 0.5794 -0.1874 5.9628 12.0896
>1.06 1.3193 -0.3566 2.1724 5.8656 1.4407 0.1847 2.9306 6.6172 2.5406 -0.184 6.3557 12.7917
7day training <0.94 0.0985 0.0595 7.3141 13.9569 0.0467 -0.0004 2.998 5.8762 0.1084 0.066 9.4003 15.588
(0.94, 0.97) 0.0529 0.0313 1.5398 2.5979 0.0385 -0.013 1.1882 1.824 0.0611 0.0081 2.1841 5.2758
(0.97, 1.00) 0.0746 0.0022 0.9045 1.3628 0.0556 -0.0046 0.953 1.3641 0.0868 0.005 2.0632 6.602
(1.00, 1.03) 0.2343 -0.0431 0.8808 1.2278 0.1048 -0.0178 1.0299 1.456 0.1294 -0.002 2.1495 6.3564
(1.03, 1.06) 0.4365 0.1584 0.8617 1.2815 0.1824 -0.0392 0.9222 1.3114 0.1804 -0.0356 1.9862 5.3493
>1.06 0.5864 0.1911 0.8564 1.3277 0.3905 -0.0437 0.8075 1.288 0.6787 -0.1175 1.701 4.7748
30day training <0.94 0.0516 0.0005 4.0193 8.3099 0.0418 -0.022 2.3348 3.7079 0.0569 0.0254 4.8727 7.8367
(0.94, 0.97) 0.0344 0.0236 0.9918 1.7367 0.0271 -0.0018 0.8571 1.1201 0.0367 0.0008 1.2818 1.6129
(0.97, 1.00) 0.0726 -0.0184 0.8311 1.043 0.0588 -0.0002 1.0013 1.2201 0.0563 0.0063 1.2883 1.6563
(1.00, 1.03) 0.2332 -0.0636 0.936 1.1762 0.1203 -0.0261 1.1816 1.4411 0.0928 -0.0183 1.4595 1.8435
(1.03, 1.06) 0.3805 0.1218 0.794 1.0048 0.2039 -0.0688 1.0713 1.3186 0.1392 -0.0269 1.4836 1.8875
>1.06 0.4607 0.157 0.7243 0.9024 0.3119 -0.0945 0.7168 0.9538 0.3001 -0.1233 0.9683 1.3718
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Panel E: 7-day prediction errors - Machine learning models [Gaussian Process]|

Days to Expiration

< 30 30 - 60 > 60

Model moneyness MAPE  MPE MAE RMSE MAPE  MPE MAE RMSE MAPE  MPE MAE RMSE
1day training <0.94 0.8874  0.8874 54.2472  58.2472 0.7957  0.7957  42.9174  45.858 0.7691  0.7691  58.8784  63.7954
(0.94,0.97)  0.7656  0.7656  22.0789 22.915 0.693 0.693  21.6513  22.3169 0.5818  0.5773  20.8311  22.2846

(0.97, 1.00)  0.5601 0.493 7.6661 8.9153 0.4837  0.4685 8.759  9.5931 0.4796  0.4323  10.9744 12.297

(1.00, 1.03)  0.9409  -0.6081 3.0901 4.3652 0.2899  0.0556  2.9727  3.9601 0.3503  0.1464  5.5026  7.4174

(1.03, 1.06)  2.3452  -2.2696  4.1813 5.4247 0.8483  -0.8173 3.83  4.9194 0.4616  -0.2763 4.628  6.7046

>1.06 3.5762  -3.5693 5.2198  6.0382 3.73  -3.7128 7.2093  8.0567 3.8674  -3.8305  9.2484  11.1954

7day training <0.94 0.891 0.891 54.3991  58.2823 0.8068  0.8068  43.3304  45.9388 0.7768  0.7766  59.7762  65.0325
(0.94,0.97)  0.7991  0.7991  23.0887  23.7415 0.7005 0.7  21.9458  22.5654 0.5908  0.5908  21.0267  21.8813

(0.97,1.00)  0.5727  0.5487  7.9261 9.0479 0.4749  0.4624  8.6408  9.4619 0.4445  0.4152  10.2396  11.3435

(1.00, 1.03) 0.693  -0.4116 2.3952  3.1595 0.261  0.0445  2.6374  3.4888 0.2726  0.1107  4.2948 5.665

(1.03, 1.06)  1.9797  -1.966  3.5603  4.3206 0.9059  -0.8774  3.9926  4.8088 0.4645 -0.37  4.5363  6.5584

>1.06 3.2959 -3.2959 4.8318 5.2617 3.7432 -3.7223 7.1954 7.8091 4.1213 -4.1062 9.8402 11.211

30day training ~ <0.94 0.4453  -0.1643 22273  3.5043 0.3483  -0.0732 1.6413 2.711 0.5197  -0.3671 2128  5.0487
(0.94, 0.97)  0.4846  -0.2628 2.2094  6.2305 0.4582  -0.233 1.9736  4.4213 0.22  0.0991 1.8516  3.1959

(0.97, 1.00)  0.4407  -0.2342 1.9762  4.9368 0.5087  -0.2086 1.8664  6.2717 0.3297  -0.0873  2.0017  5.3449

(1.00, 1.03)  0.5737  -0.3262 2.3376  6.2033 0.5233  -0.3226  2.1791 7.3579 0.3669  -0.1867  1.8747  4.1665

(1.03, 1.06)  0.5665  -0.2838 2.2765 5.5528 0.5408  -0.3629  2.0922  6.1125 0.4274  -0.2043 1.9381 4.4379

>1.06 0.5644  -0.2328 2.1077  4.0584 0.506  -0.293 2.21 5.8981 0.4542  -0.1951 2.0004  6.5179
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Table 5.5 Estimation performance. This table reports the estimation error results for S&P 100 index American put

options of each categories with respect to the moneyness,x, and time to maturity,7. Abbreviations as in Table [3.8

Panel A: Estimation errors for pre-crisis period from 2003 to 2006.

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE  MPE MAE __ RMSE MAPE _ MPE MAE _ RMSE MAPE _ MPE MAE RMSE
GBNN  <0.94 0.0432  -0.0225  2.050L  4.3166 0.0311  -0.0062  1.4598  2.2041 0.0393  0.0366  2.0473 3.369
(0.94, 0.97)  0.0371  -0.0142  0.9046  1.2579 0.0373  0.0035  0.9996  1.3385 0.0716  0.0613  2.2365  2.9398
(0.97,1.00)  0.0721  -0.0461  0.7097  0.8897 0.0660  -0.0168  0.9905  1.4377 0.0795  0.0278  1.5522  2.4128
(1.00,1.03)  0.2034  -0.142  0.7007  0.9109 0.1160  -0.0479  0.9153  1.3485 0.1083  0.0009  1.2678  2.0813
(1.03,1.06)  0.3121 -0.2091  0.6633  0.8327 0.1975  -0.1114  0.7963 1.199 0.1455  -0.023  1.0261 1.824
>1.06 0.3303 -0.1085 0.5768  0.7326 0.2087  -0.1107 0.5471  0.8716 0.142  -0.0231  0.5462  1.0878
BNN <0.94 0.0499  0.0492  2.232  3.3835 0.0348  0.0059  1.8748  4.2523 0.0315 -0.0141  1.5065  2.8001
(0.94,0.97)  0.0717  0.0627 1719  2.2116 0.036  0.0054 0.9409  1.2563 0.0481  -0.0393 1371 1.8739
(0.97, 1.00)  0.1204 -0.0632  1.1282  1.4577 0.0417  -0.0212  0.5687  0.7902 0.067 -0.0484  1.1448  1.4985
(1.00, 1.03) 0.661 -0.6605 1.8208  2.0136 0.0934  0.0046  0.5663  0.7104 0.1182  0.0836  1.0969  1.3806
(1.03,1.06)  0.9799  -0.9788  1.8266  2.0268 0.1798  -0.029  0.5697  0.7158 0.2622  0.2599  1.5551  1.7482
>1.06 1.1163 -1.1159 1.8156  2.0016 0.2701  -0.1592  0.5417  0.6818 0.2816  0.1738  1.0367  1.3822
SVR <0.94 0.1923  0.1585 8.9276  12.5162 0.1139  -0.0307  7.1747  16.2539 0.3045 -0.3032  17.0910  27.0151
(0.94,0.97)  0.3196  0.3196  7.767 8.256 0.1525  0.1421 3.9174  4.6701 0.1696  -0.1565  5.0245 5.872
(0.97,1.00)  0.2336  0.2008 2.8572  3.5579 0.1344  0.1274 1.8953  2.3052 0.128 -0.1088  2.3047  2.7411
(1.00,1.03)  0.5143  -0.4993 1.2091  1.4238 0.0692  -0.0042  0.4583 0.604 0.0004 -0.0773  1.0477  1.4033
(1.03,1.06)  0.8020  -0.8026  1.388  1.5241 0.1467 -0.13  0.3788 0.463 0.064 -0.0238  0.4208  0.5812
>1.06 0.7109  -0.7096  1.1215  1.2772 0.1193  -0.0623  0.2531  0.3323 0.1397 0.125 0.344  0.4155
CGMY  <0.94 0.0285  0.0285  1.2374 1.478 0.0456  0.0455  1.8894 2.147 0.063 0.063 29753  3.0503
(0.94, 0.97)  0.0477  0.0382  1.1671  1.4742 0.0775  0.0754 2.0721  2.4745 0.1141  0.1141  3.4234  3.9226
(0.97,1.00)  0.0793  -0.0484  0.7767  0.9166 0.0797 0.031  1.104  1.5424 0.1505  0.1476  2.9238  3.6847
(1.00, 1.03)  0.2652  -0.1728  0.8881  1.1525 0.1024  0.0268  0.7978 1.119 0.1728 0.165  2.2503  2.8976
(1.03,1.06)  0.4781 -0.3969 0.8853  1.0763 0.1501  -0.0106  0.5465  0.7467 0.2214  0.2189  1.8122  2.2127
>1.06 0.4767  -0.4303  0.6413  0.7225 0.1878  -0.0312  0.3697  0.5348 0.3224  0.3040  0.9952 1.262
AH-BS  <0.94 0.0206  0.0295  1.3348  1.4901 0.0473  0.0473  2.2483  2.4129 0.0792  0.0792  3.9122  4.1144
(0.94,0.97)  0.0411  0.0407 1.0155  1.1295 0.0581  0.0577 1.5385  1.6701 0.0976  0.0976  2.7945 2.926
(0.97,1.00)  0.0388  0.0251  0.446 0.569 0.0631  0.0606 0.8849  1.0175 0.1128  0.1126  1.9201  2.0874
(1.00, 1.03) 0.081  0.06290  0.2508  0.3341 0.1027  0.0955 0.7115  0.8303 0.1443  0.1430  1.4675  1.6322
(1.03,1.06)  0.1756  0.1727  0.3461  0.4121 0.1638  0.1565 0.5689  0.6804 0.18  0.1794  1.1131  1.2672
>1.06 0.2398  0.2395  0.4278  0.4949 0.2474  0.2451  0.542  0.6291 0.3012 0.301  0.8699  0.9845
AHLV  <0.94 0.0272 0.027  1.228  1.4094 0.046 0.046  2.1826  2.3609 0.0802  0.0802  3.9711  4.1669
(0.94,0.97)  0.0414  0.0409  1.022  1.1457 0.0591  0.0588 1.5718  1.7152 0.0959  0.0959  2.7393  2.8563
(0.97,1.00)  0.0393  0.0254 04518  0.5776 0.0631  0.0606 0.8858  1.0216 0.1128  0.1126  1.9235  2.0903
(1.00, 1.03) 0.082  0.0647  0.256  0.3436 0.1034  0.0953 0.7175  0.8371 0.1441  0.1435  1.4716 1.636
(1.03,1.06)  0.1782  0.1754  0.3555  0.4224 0.1654  0.1573 0.5781  0.6926 0.1784  0.1771  1.1054  1.2584
>1.06 0.2502  0.2502  0.4447  0.5047 0.2514  0.2487  0.5531  0.6404 0.3013  0.3002 0.876  0.9944
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Panel C: Estimation errors for post-crisis period from 2010 to 2012.

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE MPE MAE RMSE MAPE MPE MAE RMSE MAPE MPE MAE RMSE
GBNN <0.94 0.0142 0.0011 0.699 1.2622 0.0272 0.0209 1.3108 1.7498 0.0598 0.0592 4.0803 9.9194
(0.94, 0.97) 0.0295 0.0137 0.8024 1.0614 0.0442 0.0325 1.3573 1.9345 0.11 0.1084 3.8576 4.486
(0.97, 1.00) 0.059 -0.0096 0.712 0.9835 0.0668 0.0133 1.2178 1.7592 0.099 0.0836 2.3305 3.0747
(1.00, 1.03) 0.1652 -0.009 0.7866 1.1327 0.1082 0.0232 1.1973 1.8269 0.1176 0.0848 1.9352 2.6228
(1.03, 1.06) 0.2507 0.049 0.712 1.1029 0.1632 0.0254 1.0838 1.7795 0.1703 0.1371 2.0209 2.8224
>1.06 0.2366 -0.0214 0.504 0.8033 0.1622 -0.0134 0.5444 1.0498 0.1575 0.0278 0.8515 1.8406
BNN <0.94 0.05 0.0476 2.4742 3.6556 0.0303 -0.0068 1.615 2.1377 0.0365 -0.0307 2.0772 2.9669
(0.94, 0.97) 0.0765 0.0578 2.1035 3.0063 0.0394 -0.0015 1.1665 1.6137 0.0551 -0.0457 1.9378 2.4294
(0.97, 1.00) 0.1173 -0.0649 1.4014 1.8256 0.0448 -0.0182 0.8303 1.1134 0.0631 -0.0422 1.4769 1.86
(1.00, 1.03) 0.5217 -0.5194 1.9733 2.2701 0.0722 0.0116 0.761 0.9788 0.0843 0.0268 1.4081 1.83
(1.03, 1.06) 0.8016 -0.7999 1.8654 2.1437 0.1522 0.0661 0.9732 1.1804 0.193 0.1815 2.1563 2.5229
>1.06 0.878 -0.8772 1.6083 1.8284 0.2629 -0.0513 0.7514 0.9918 0.3242 0.2329 1.7139 2.2036
SVR <0.94 0.1813 0.1513 9.4817 11.8683 0.1135 -0.0022 7.0781 14.4051 0.3661 -0.3601 29.0676 48.9946
(0.94, 0.97) 0.3045 0.3045 8.3792 9.3376 0.1341 0.0974 3.9424 4.9464 0.2033 -0.1818 7.3392 9.3845
(0.97, 1.00) 0.2333 0.2186 3.1507 3.8622 0.1203 0.0871 2.116 2.6079 0.1916 -0.1796 4.5675 6.2556
(1.00, 1.03) 0.337 -0.2704 1.0452 1.3193 0.0673 0.0334 0.7338 0.9487 0.1635 -0.1509 2.756 3.8344
(1.03, 1.06) 0.6045 -0.6017 1.1756 1.3948 0.0681 -0.0351 0.367 0.4719 0.0997 -0.077 1.2008 1.8079
>1.06 0.476 -0.4732 0.8253 1.0552 0.1091 -0.0053 0.3074 0.4111 0.1419 0.0993 0.5386 0.8213
CGMY <0.94 0.0428 0.0428 1.89 1.9551 0.0661 0.0661 3.3556 3.5496 0.094 0.094 5.1599 5.5079
(0.94, 0.97) 0.0545 0.0543 1.4427 1.6613 0.0862 0.0826 2.5853 3.0672 0.1593 0.1593 5.3671 6.1134
(0.97, 1.00) 0.0854 0.0018 1.0734 1.3212 0.0845 0.0479 1.6071 2.1584 0.1806 0.1792 4.3995 5.1592
(1.00, 1.03) 0.2321 -0.1012 1.1039 1.4503 0.1089 0.0493 1.2555 1.6824 0.2106 0.1973 3.5683 4.1054
(1.03, 1.06) 0.3738 -0.2033 1.0776 1.3756 0.1455 0.0402 1.0105 1.3535 0.2385 0.2303 2.8168 3.2279
>1.06 0.4176 -0.2405 0.7515 0.9458 0.2185 0.0327 0.6312 0.9519 0.3668 0.3544 1.6124 2.0559
AH-BS <0.94 0.0282 0.0276 1.5168 1.6889 0.0397 0.039 2.2003 2.4595 0.0683 0.0683 4.3869 4.5748
(0.94, 0.97) 0.0305 0.0292 0.8475 0.9832 0.0439 0.042 1.322 1.5369 0.0848 0.0848 2.957 3.3202
(0.97, 1.00) 0.0325 0.0169 0.4394 0.57 0.0527 0.0478 0.982 1.2619 0.1019 0.1017 2.3986 2.7404
(1.00, 1.03) 0.0732 0.0599 0.3658 0.5023 0.0803 0.0732 0.8988 1.1255 0.1257 0.1257 2.0665 2.3748
(1.03, 1.06) 0.1584 0.1516 0.4485 0.5688 0.1198 0.1102 0.7953 0.979 0.1546 0.1543 1.7769 2.0226
>1.06 0.2857 0.2804 0.6126 0.7632 0.2717 0.2679 0.7361 0.8718 0.3534 0.3529 1.3934 1.6065
AH-LV <0.94 0.0273 0.027 1.4714 1.6247 0.041 0.0409 2.2802 2.526 0.0655 0.0655 4.1798 4.3584
(0.94, 0.97) 0.0301 0.0291 0.8374 0.9583 0.0458 0.0454 1.3826 1.5789 0.0865 0.0865 3.0157 3.3559
(0.97, 1.00) 0.0309 0.0179 0.4224 0.5468 0.0542 0.051 1.0068 1.2726 0.1013 0.1009 2.3819 2.6956
(1.00, 1.03) 0.0729 0.0601 0.3599 0.4842 0.083 0.0773 0.9258 1.1468 0.1272 0.1267 2.0947 2.3939
(1.03, 1.06) 0.1574 0.151 0.4415 0.5504 0.1228 0.1144 0.8138 0.9922 0.1559 0.1556 1.7903 2.0349
>1.06 0.2808 0.2764 0.5961 0.7219 0.2752 0.272 0.7443 0.8723 0.3541 0.3534 1.3999 1.615
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Panel A:Prediction errors for pre-crisis period from 2003 to 2006 for econometric models

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE  MPE MAE  RMSE MAPE  MPE MAE RMSE MAPE  MPE MAE RMSE
CGMY <0.94 0.0295  0.0286  1.2587  1.5308 0.0432  0.0432  1.8787  2.2171 0.059  0.0589  2.8142  3.1713
(0.94,0.97)  0.0556  0.0035 1.3516  1.6933 0.0711  0.0166  1.85390  2.2833 0.1021  0.0538  2.9074  3.3877
(0.97,1.00)  0.2197 -0.2052  2.0202  2.5361 0.1699  -0.1271  2.1074 2.925 0.1671  -0.0026  2.7436  3.3352
(1.00, 1.03)  0.6663  -0.6505  2.0545  2.4172 0.3428  -0.3001 2.073  2.6242 0.2143  -0.0744  2.0099  2.6887
(1.03, 1.06)  1.0418 -1.0371 1.7676  1.9778 0.4974  -0.4734  1.4997  1.7675 0.2979 -0.1802  1.5602  2.0606
>1.06 0.8453  -0.842  1.107  1.2455 0.5311  -0.4645  0.9702  1.1512 0.3054 -0.0705  0.8308  1.1004
LSM-BS <0.94 0.1586  0.1586  6.8626  7.8223 0.341  0.3288  15.8048  16.8546 0.5089  0.5080  24.8047  25.8825
(0.94,0.97)  0.2274  0.2136  5.6172  6.5575 0.4624 0.447  12.2508  13.3381 0.6225  0.6225 17.8195  18.1955
(0.97,1.00)  0.2666  0.0399  2.768  3.6834 0.4779  0.4616 6.826  7.9092 0.6008  0.6815 11.8386  12.5091
(1.00, 1.03)  0.8743  -0.7226  2.2901  3.4662 0.5002  0.4178  3.7728 5.256 0.7397  0.7027  7.6980  8.9338
(1.03, 1.06) 0.915  -0.655 1.6627  2.4382 0.611  0.3987  2.3115  4.2106 0.8328  0.7283  5.2458  7.6261
>1.06 0.7037  0.0518  1.286  1.6231 0.7734  0.5996 1.895  3.0366 0.0283  0.8427  3.0228  4.3476
LSM-GARCH  <0.94 0.0266  -0.0107  1.1232 1.35 0.0431  0.0351  1.9101  2.6404 0.0669  0.0654  3.1647  4.2773
(0.94, 0.97) 0.071  -0.0383  1.6481  1.9522 0.082  0.0319  2.1776  3.2141 0.1203  0.1201  3.9258  5.5344
(0.97, 1.00)  0.2548  -0.1969  2.3516  2.7137 0.1888  -0.0369  2.5908  3.4266 0.1808  0.1205 3.483 4.924
(1.00, 1.03)  0.6252  -0.4546 1.8762  2.3304 0.3494  -0.0945  2.4151  3.2656 0.2656  0.1824  3.2518  4.6147
(1.03, 1.06)  0.5252 0.31  1.2067 1.859 0.3986  0.1301 1.774 2.731 0.3009  0.3634  3.0678  4.2726
>1.06 0.9136  0.9136  1.799  2.1057 0.7044  0.6871  1.8707  2.4755 0.6018  0.6883  2.4585  3.2397
LSM-Heston _ <0.94 0.1932  -0.1932  8.371  8.7738 0.1476  -0.1441  6.7357  7.6602 0.1348  -0.1227 _ 6.3908 7.45
(0.94,0.97)  0.4073  -0.4072  9.6033  10.1801 0.2086  -0.2821  7.6246  8.5522 0.2345 -0.1773  6.5193  7.6011
(0.97, 1.00)  1.1113  -1.1078  9.9483  10.6636 0.5266  -0.4833  6.5166  7.4865 0.3187  -0.2007  5.0364  6.1554
(1.00, 1.03)  3.8604 -3.8556  9.6732  10.3516 1.1485  -1.006  6.1580  7.0468 0.5462  -0.4137  4.6964  5.8291
(1.03, 1.06) 3.009 -3.9015  6.4014  6.9228 2.1531  -2.1054  5.3202  6.0481 0.9074 -0.7735  4.1835 5.119
>1.06 2.2193  -2.1998  3.1492  3.8159 1.6578  -1.4851 2.047 3.7 1.0191  -0.6778  2.5261  3.3393
B-W <0.94 0.0384 0.038  1.5726  1.9217 0.0655  0.0653  2.8746  3.5316 0.0820  0.0820  3.8895  4.9433
(0.94,0.97)  0.0744  0.0731 1.7779  2.3367 0.1277  0.1275  3.3935  4.4967 0.1957  0.1957  5.7579  7.1289
(0.97,1.00)  0.1368  0.0295 1.4218  2.0225 0.2702  0.2701 3.965  4.8007 0.4162  0.4162  7.2981  8.0491
(1.00, 1.03)  0.4678 -0.3175 1.3353  1.8207 0.4028  0.3958  3.2301  4.1027 0.5994  0.5994  6.3957  7.0419
(1.03, 1.06)  0.3773  -0.0478  0.8874  1.4145 0.5175  0.5068  2.1898  2.9565 0.7338  0.7338  4.7672  5.4334
>1.06 0.5196  0.4532  1.1348  1.5678 0.7313  0.7307  1.8795  2.4111 0.8874  0.8874 2.96  3.5925
AH-BS <0.94 0.1719  0.1486  8.7434  19.4273 0.0913  0.0718  5.2225  15.1669 0.0718  0.0535  3.5752  4.2163
(0.94,0.97)  0.1037  0.0532  2.503  3.7535 0.0975  0.0523  2.5404  3.3184 0.1038  0.0727  2.9561  3.6672
(0.97, 1.00)  0.2182  0.0106 2.1203  2.6849 0.1633  0.0542  2.1613  2.7204 0.1626  0.1116  2.6737  3.3358
(1.00, 1.03) 0.605 -0.2514  1.8648  2.3602 0.3076  0.0369  1.9623  2.4348 0.2419  0.1301  2.2999  2.8466
(1.03, 1.06)  0.9024  -0.5541  1.7506  2.2351 0.556  -0.1563  1.7886  2.2664 0.3621  0.0659  2.0386  2.5201
>1.06 1.0038  -0.6807  1.7308  2.2068 0.7826  -0.4178  1.6149  2.0725 0.6147  -0.1801  1.6874  2.1443
AH-LV <0.94 0.1578  0.1382  8.2324  18.7593 0.0863  0.0707  5.0624  14.928 0.1058  0.0999  5.2498  9.5583
(0.94,0.97)  0.1119  0.0565 2.60  4.1213 0.1016  0.0605  2.6558  3.4657 0.1228  0.1002  3.5329 5.578
(0.97, 1.00)  0.2194  0.0217  2.145  2.7046 0.1707  0.0592 2.246  2.8179 0.1685  0.1173  2.7981 3.824
(1.00, 1.03)  0.5552  -0.1811  1.7881 2.263 0.3158  0.0537  2.0141  2.5295 0.2549  0.1402 2.473  3.2486
(1.03, 1.06) 0.814  -0.4042 1.6051  2.0702 0.5434  -0.1125  1.7531  2.2228 0.3739 0.093  2.1275 2.686
>1.06 0.8919  -0.4601  1.5655  2.0238 0.7766  -0.375  1.6102  2.1024 0.6272  -0.1447  1.7869  2.2844
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Panel B: Prediction errors for the financial crisis period from 2007 to 2009 for econometric models
Days to Expiration
< 30 30 - 60 > 60
Model moneyness MAPE  MPE MAE  RMSE MAPE  MPE MAE RMSE MAPE  MPE MAE RMSE
CGMY <0.94 0.0478 -0.0401 2.348 2.8772 0.0606 -0.0545 3.05 3.7305 0.0475 -0.0381 2.4168 3.2088
(0.94, 0.97) 0.2001 -0.1991 5.4824 6.0793 0.264 -0.2637 7.5051 8.0268 0.2312 -0.2304 6.8419 7.8259
(0.97, 1.00) 0.4768 -0.4752 5.5879 6.1943 0.6374 -0.6374 9.1639 9.6138 0.6055 -0.6052 9.7253 10.5746
(1.00, 1.03) 0.4985 -0.275 2.4455 3.3785 0.8103 -0.8016 6.1835 7.0284 0.9153 -0.9152 8.4825 9.2707
(1.03, 1.06) 0.4531 -0.1396 1.3787 1.9559 0.5078 -0.3946 2.6773 3.8832 0.8373 -0.8165 4.6521 5.5418
>1.06 0.6333 -0.4583 1.0332 1.2684 0.563 -0.43 1.5164 2.207 0.5179 -0.3876 1.8096 2.7381
LSM-BS <0.94 0.136 0.1358 7.982 9.2863 0.2883 0.288 18.6461 20.1556 0.3968 0.3968 29.0514 30.5315
(0.94, 0.97) 0.2635 0.2553 7.9583 9.4741 0.4867 0.4865 16.4949 17.9 0.685 0.685 26.6524 27.5667
(0.97, 1.00) 0.3126 0.2043 5.0572 6.6129 0.5604 0.5575 12.0006 13.5228 0.7424 0.7424 19.3242 20.5624
(1.00, 1.03) 0.5676 -0.0765 3.6204 5.018 0.619 0.607 8.7453 10.484 0.7841 0.7841 14.5346 15.9967
(1.03, 1.06) 0.7247 -0.0665 2.9108 4.2952 0.6956 0.6555 6.4242 8.1742 0.8311 0.8311 11.0045 12.4943
>1.06 0.8015 0.449 2.5138 3.6773 0.836 0.7951 3.8144 5.2348 0.9186 0.9178 5.7087 7.2766
LSM-GARCH <0.94 0.0357 0.0151 1.9828 3.0248 0.0729 0.068 4.2399 6.1279 0.095 0.0937 6.1814 8.1572
(0.94, 0.97) 0.0961 0.0432 2.8235 4.3875 0.1871 0.1716 6.3893 8.6709 0.2697 0.2648 10.7346 12.8781
(0.97, 1.00) 0.2328 0.0604 3.4714 5.034 0.3051 0.227 6.7733 8.6481 0.3725 0.3505 10.5376 12.6393
(1.00, 1.03) 0.5086 0.192 3.7465 5.2361 0.4595 0.3207 6.7127 8.6096 0.4898 0.466 10.1455 12.3182
(1.03, 1.06) 0.738 0.7067 3.6716 5.1284 0.6251 0.5607 6.3204 8.2126 0.6534 0.6457 9.5791 11.3947
>1.06 0.977 0.977 3.1141 4.1834 0.9204 0.9186 4.1727 5.5484 0.8975 0.8968 5.6458 7.2143
LSM-Heston <0.94 0.1409 -0.1353 8.1849 9.3745 0.0928 -0.0456 5.8104 7.4116 0.0887 -0.0309 6.0148 7.5943
(0.94, 0.97) 0.3241 -0.2979 9.2181 10.6649 0.2086 -0.0541 6.9365 8.6535 0.1914 0.0216 7.4981 9.8093
(0.97, 1.00) 0.7266 -0.6644 8.6923 10.2889 0.3432 -0.0665 6.5836 8.463 0.3314 0.1257 8.5627 10.7263
(1.00, 1.03) 2.0616 -1.9763 8.07 9.4868 0.5733 -0.228 6.0203 7.848 0.4664 0.0995 8.3005 10.444
(1.03, 1.06) 2.2678 -2.1512 5.8804 6.8342 0.8734 -0.5037 5.0691 6.7679 0.5946 0.0523 7.0568 8.947
>1.06 1.4007 -0.894 3.0889 4.1501 0.817 -0.0443 3.166 4.5825 0.752 0.2703 4.2538 5.9663
B-W <0.94 0.0534 0.0514 2.8977 3.8804 0.0892 0.0878 5.0752 6.8473 0.1024 0.1012 6.5073 8.5541
(0.94, 0.97) 0.1357 0.135 3.9234 5.4925 0.2465 0.2453 8.3134 10.2455 0.3186 0.3185 12.5489 14.5038
(0.97, 1.00) 0.2467 0.202 4.1248 5.7427 0.4264 0.4264 9.3965 10.9857 0.555 0.555 14.833 16.2828
(1.00, 1.03) 0.4464 0.1719 3.5186 5.0938 0.5954 0.5954 8.5932 10.2403 0.7157 0.7157 13.5318 15.0098
(1.03, 1.06) 0.5511 0.3294 2.8593 4.4379 0.7092 0.7086 6.726 8.4302 0.8204 0.8204 11.0141 12.4628
>1.06 0.7421 0.6895 2.5567 3.7712 0.8649 0.8639 3.9794 5.3823 0.9355 0.9355 5.8165 7.3559
AH-BS <0.94 0.0655 0.0162 3.8182 4.7686 0.0609 0.017 3.9925 5.0201 0.0688 0.0472 5.073 6.171
(0.94, 0.97) 0.1242 0.0175 3.4711 4.3887 0.117 0.031 3.7331 4.7782 0.1051 0.0516 3.9414 5.0657
(0.97, 1.00) 0.253 -0.0048 3.3985 4.2337 0.1795 0.041 3.452 4.3378 0.1514 0.0708 3.6396 4.5117
(1.00, 1.03) 0.5777 -0.2113 3.0466 3.8115 0.2859 0.016 3.1724 3.9825 0.2185 0.0772 3.4539 4.3342
(1.03, 1.06) 0.8524 -0.4608 2.6925 3.5403 0.4634 -0.0821 3.0538 3.8348 0.3077 0.0921 3.2345 4.0863
>1.06 1.2075 -0.8682 2.5964 3.4229 0.8734 -0.4593 2.5903 3.3568 0.6823 -0.2249 2.7908 3.5877
AH-LV <0.94 0.0643 0.0332 3.7724 4.7171 0.0624 0.034 4.0763 5.1329 0.0961 0.0839 7.2883 14.1939
(0.94, 0.97) 0.1183 0.028 3.3321 4.2696 0.1161 0.0407 3.7525 4.7054 0.1383 0.1031 5.4253 8.3998
(0.97, 1.00) 0.2428 0.0457 3.2965 4.1347 0.1852 0.0467 3.5676 4.5302 0.1991 0.1216 5.0538 7.5766
(1.00, 1.03) 0.5604 -0.1619 3.0389 3.8121 0.3021 0.0433 3.4247 4.2849 0.2594 0.1313 4.3364 5.9526
(1.03, 1.06) 0.8402 -0.3854 2.6914 3.4782 0.4741 -0.0403 3.1743 4.0351 0.3292 0.0953 3.6837 4.7205
>1.06 1.1815 -0.7903 2.5477 3.3581 0.8744 -0.4208 2.6647 3.4786 0.685 -0.1787 2.9749 3.9283
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Panel C: Prediction errors for the post-crisis period from 2010 to 2012 for Econometric models

Days to Expiration

< 30 30 - 60 > 60
Model moneyness MAPE  MPE MAE RMSE MAPE  MPE MAE  RMSE MAPE  MPE MAE RMSE
CGMY <0.94 0.0355  0.0355  1.6113  1.6874 0.049 0.040  2.4566  2.5736 0.059 0.059  3.7519  3.9107
(0.94,0.97)  0.0513  0.0335  1.3466  1.5393 0.0882 0.053  2.4482  2.8341 0.1576 0.157 51994  5.9468
(0.97,1.00)  0.1983  -0.0376  2.1841 2.524 0.2033  0.0354 3.3061  3.6756 0.2059  0.1309  4.2657  4.9837
(1.00, 1.03)  0.6256 -0.2681  2.5831  3.0448 0.3643  -0.0141 3.4654  3.8416 0.2855  0.1612  4.1644  4.8075
(1.03, 1.06) 0.867 -0.5207  1.9777  2.4792 0.499  -0.1212  2.6908  3.1028 0.3339  0.0607  3.2137  3.6869
>1.06 0.8047  -0.5741  1.2633  1.6436 0.5355  -0.3186  1.2926  1.7194 0.3425  0.1064  1.4146  1.9135
LSM-BS <0.94 0.0799  0.0367  4.0652  4.9764 0.1608  0.1203  8.6239  9.9318 0.2134  0.2073  13.7504  15.077
(0.94, 0.97) 0.24 -0.1836  6.4173  8.8862 0.2071  0.0157  6.241  8.1326 0.3019  0.1792  10.4758  12.1311
(0.97,1.00)  1.0266 -1.0149  11.7044  14.2062 0.4961  -0.3605  8.506  11.6361 0.38  -0.0059 8.695  10.7056
(1.00, 1.03)  3.5042  -3.5806  13.6059  15.6831 1.0001  -0.9147 9.5216  12.8416 0.5154 -0.1669  8.1398  10.7476
(1.03, 1.06)  5.2542  -5.2473  11.1444  13.1047 1.7797  -1.6904 8.7624  11.736 0.6372  -0.2602  6.7725  9.2245
>1.06 3.435 -3.3195  5.8067  7.8841 2.2465 -1.9739  5.167 7.618 1.1302  -0.5015  4.2368  6.3526
LSM-GARCH  <0.94 0.0204 -0.0132  1.0278  1.2537 0.0355  0.0303  1.765  2.4548 0.0722 00722 4.1180  4.8879
(0.94,0.97)  0.0554 -0.01290  1.5228  2.0064 0.0946  0.0843  2.9805  4.2644 0.2047  0.2045  7.3237  8.4027
(0.97, 1.00)  0.1568  -0.0427  1.9501  2.6447 0.1632  0.1142  3.271  4.7141 0.2204  0.2042  5.4817  6.9661
(1.00, 1.03)  0.3171  -0.0023  1.6954  2.5749 0.2608  0.1876 3.3188  4.7085 0.3615  0.3579  6.2576  7.6325
(1.03, 1.06)  0.5638  0.5343  1.9283  2.8211 0.4818  0.4665 3.6317  4.8764 0.555 0.555  6.6406 7.73
>1.06 0.9439  0.9439 22239  2.7204 0.8521 0.852  2.784  3.5707 0.843 0.843  4.0628  5.1286
LSM-Heston _ <0.94 0.1400 -0.1353  8.1849  9.3745 0.0928  -0.0456  5.8104  7.4116 0.0887 -0.0309  6.0148  7.5943
(0.94,0.97)  0.3241  -0.2979  9.2181  10.6649 0.2086 -0.0541  6.9365  8.6535 0.1914  0.0216  7.4981  9.8093
(0.97, 1.00)  0.7266  -0.6644  8.6923  10.2889 0.3432  -0.0665  6.5836 8.463 0.3314  0.1257  8.5627  10.7263
(1.00, 1.03)  2.0616  -1.9763 807  9.4868 0.5733  -0.228  6.0203 7.848 0.4664  0.0995  8.3005  10.444
(1.03, 1.06)  2.2678 -2.1512  5.8804  6.8342 0.8734  -0.5037  5.0691  6.7679 0.5946  0.0523  7.0568 8.947
>1.06 1.4007  -0.894  3.0889  4.1501 0.817 -0.0443  3.166  4.5825 0.752  0.2703  4.2538  5.9663
B-W <0.94 0.039  0.0335  1.9644  2.1548 0.0696  0.0619  3.4885 3.927 0.0889  0.0880  5.1720  5.7899
(0.94, 0.97)  0.1281  -0.0664  3.4179 4.809 0.1428  0.0556 4.3577  5.4615 0.2227  0.1728  7.8271  8.7966
(0.97,1.00)  0.6738  -0.6511  7.5474  9.4919 0.3251  -0.163 5.7123  7.8078 0.3011  0.1004  7.1006  8.2234
(1.00, 1.03)  2.4966 -2.4795  9.2033  10.932 0.6472  -0.4997  6.2856  8.6468 0.4085  0.0386  6.6667  7.9261
(1.03, 1.06)  3.4306 -3.4065  7.0435  8.7523 1.1091  -0.9345  5.5565 7.741 0.5077 0.041 5.754 7.046
>1.06 1.8801  -1.7020  3.0089  4.6276 1.2669  -0.8702  3.0559  4.6719 0.7924  0.0426  3.4901  4.6995
AH-BS <0.94 0.0661 0.023  3.3814  4.1424 0.0744  0.0393  3.8424  4.8128 0.0687  0.0485  4.4384  5.5515
(0.94, 0.97)  0.1345  0.0332 3.506  4.4328 0.1200  0.0418 3.5793  4.4968 0.1127 0.063  3.9144  4.6158
(0.97, 1.00) 0.267  -0.0064  3.2467  4.0543 0.1936  0.0424  3.4175  4.2608 0.1723  0.1001  3.9493  4.8428
(1.00, 1.03)  0.6483  -0.264  2.8363  3.6067 0.3143  0.0599  3.2914  4.0397 0.2277  0.1225  3.6426  4.5899
(1.03,1.06)  1.0015  -0.6317  2.4553  3.2222 0.482  -0.0274 2.8559  3.5649 0.305  0.1457  3.3113 4.186
>1.06 1.2087  -0.9443  2.3985  3.2311 1.0029  -0.5858  2.4503  3.2241 0.7453  -0.2712  2.5962  3.2886
AH-LV <0.94 0.0672  0.0237  3.4705  4.3512 0.0788  0.0463  4.0259  5.0545 0.1712  0.1493  12.2149  25.3507
(0.94,0.97)  0.1242  0.0318  3.3288  4.1655 0.1250  0.0434 3.7453  4.8152 0.1605  0.1113  5.6667  8.1279
(0.97, 1.00)  0.2715  0.0271  3.3239  4.1098 0.1801  0.0503 3.3713  4.2481 0.1947  0.1131  4.5605 6.53
(1.00, 1.03)  0.6115  -0.1579 2.704  3.4187 0.3150  0.0697  3.338  4.1464 0.2645  0.1699  4.3267  5.7998
(1.03, 1.06)  1.0453  -0.6348  2.5004  3.2811 0.4869  -0.0116  2.9683  3.7447 0.3737 0.204  4.0854  5.1047
>1.06 1.2679  -0.9048  2.3237  3.0622 0.9727  -0.5406  2.4165  3.1603 0.78  -0.260  2.8048  3.6704
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Panel B: Prediction errors for the financial crisis period from 2007 to 2009.

Days to Expiration

< 30 30 - 60 > 60

Model moneyness MAPE  MPE MAE  RMSE MAPE  MPE MAE  RMSE MAPE  MPE MAE  RMSE
GBNN  <0.94 0.072  -0.013  6.4264  11.3972 0.0721  -0.0007  5.3598  12.0626 0.0928  0.0105  7.6781  14.9486
(0.94, 0.97)  0.0847  -0.029 2.4809  7.3793 0.1058  -0.0503  3.4432  7.7284 0.1285  -0.0746  4.6911 9.798
(0.97,1.00)  0.1532 -0.0751  2.2265  3.1361 0.1832  -0.0882  3.6282  3.9328 0.2208 -0.1135  5.1973  6.2377

(1.00, 1.03)  0.3325 -0.1549 2.1712  3.1018 0.2720  -0.1112  3.4189  3.7227 0.3250  -0.1827 5.2785  6.3283
(1.03,1.06)  0.4097 -0.1235 1.8488  2.9767 0.372  -0.1784 2.9604  4.3216 0.4396  -0.2619  4.7822  5.8082

>1.06 0.533 -0.1569 1.5319  3.5914 0.4127 -0.1699  1.6063  2.7585 0.4485  -0.2248  2.1643  3.9102

CGMY  <0.94 0.0506  0.0262  2.7721 3.499 0.08  0.0528  4.622  5.8964 0.0817  0.0617  5.3621  7.0513
(0.94,0.97)  0.2403  -0.0608  4.2903  7.1855 0.2001  -0.0378  6.4977  9.5361 0.2797  -0.0061  6.8023  8.3615

(0.97, 1.00) 0.457  -0.2458  4.9261  T7.9187 0.7060  -0.2737  7.4039  10.5934 0.7422  -0.1735  7.6694  11.0531
(1.00,1.03)  0.5448  -0.2587  3.372  5.1307 0.8055  -0.4272  6.2555 7.478 0.9108  -0.3213  7.4115  10.7638

(1.03, 1.06) 0.596  0.0052  2.4209  3.8059 0.6881  -0.4057  4.6048  5.8367 0.8068  -0.364 5.8767  8.0877

>1.06 0.6996  0.3377  2.1419  3.3432 0.5914  0.0607  2.676  5.0567 0.572  -0.0036  3.3217  6.7227
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