
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. DISSERTATION

Methodology for Solving Timing Closure
Problem by Utilizing Adjustable Delay

Clock Buffers

가변지연시간클락버퍼활용을통한타이밍일치문제
해결방법론

BY

JUYEON KIM

FEBRUARY 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Ph.D. DISSERTATION

Methodology for Solving Timing Closure
Problem by Utilizing Adjustable Delay

Clock Buffers

가변지연시간클락버퍼활용을통한타이밍일치문제
해결방법론

BY

JUYEON KIM

FEBRUARY 2018

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Methodology for Solving Timing Closure
Problem by Utilizing Adjustable Delay

Clock Buffers

가변지연시간클락버퍼활용을통한타이밍일치문제
해결방법론

지도교수김태환

이논문을공학박사학위논문으로제출함

2017년 11월

서울대학교대학원

전기컴퓨터공학부

김주연

김주연의공학박사학위논문을인준함

2017년 12월

위 원 장:
부위원장:
위 원:
위 원:
위 원:



Abstract

As clock timing is closely related to the performance of synchronous systems,

many synthesis techniques were suggested to optimize clock distribution networks.

Especially, meeting clock skew constraints is one of the most important objectives that

should be achieved for successful operation of the design. Meanwhile, multiple power

mode designs made the clock timing problem harder to tackle due to the dynamic delay

change caused by varying supply voltages. Inserting adjustable delay buffers (ADBs)

on the clock tree and controlling its delay can be a solution to the problem. However,

because ADBs require non-negligible area and control overhead, it should be carefully

inserted to minimize the number of ADBs. This work provides solutions to the ADB

minimization problem under the environment of multiple power modes in which the

clock path delay varies as power mode changes. Precisely, (1) an O(n log n) time al-

gorithm that optimally solves the problem under clock skew bounds and (2) a graph

based algorithm which supports useful skew scheduling are proposed, along with (3)

their practical extensions, such as supporting discrete delay values and reducing more

ADBs by integrating buffer sizing scheme. The experimental results showed that pro-

posed ADB allocation algorithms under constant clock skew bound and useful skew

constraints allocated 13.5% and 23.3% less number of ADBs on average, respectively,

compared to the best known ADB allocation algorithm under the same constraints.

keywords: ADB, clock network design, multiple power mode, clock skew

student number: 2013-20776

i



Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 INTRODUCTION 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . 2

2 BACKGROUND 4

2.1 Multiple Power Mode Design . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Setup Time and Hold Time Constraints . . . . . . . . . . . . . . . . . 5

2.3 Clock Skew Optimization Objectives . . . . . . . . . . . . . . . . . . 8

2.4 Adjustable Delay Buffers . . . . . . . . . . . . . . . . . . . . . . . . 9

3 TIMING CLOSURE IN MULTIPLE POWER MODE DESIGNS 11

3.1 ADB Allocation for Timing Correction . . . . . . . . . . . . . . . . . 11

3.2 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 ADB ALLOCATION UNDER CLOCK SKEW BOUND 15

4.1 Related Works and Motivational Examples . . . . . . . . . . . . . . . 15

ii



4.2 ADB Allocation Algorithm Satisfying Clock Skew Bound . . . . . . 18

4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Supporting Discrete ADB Delay . . . . . . . . . . . . . . . . 23

4.3.2 Integration of Buffer Sizing . . . . . . . . . . . . . . . . . . 25

4.4 Optimality Proofs of the Proposed Algorithm . . . . . . . . . . . . . 27

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 ADB ALLOCATION UNDER USEFUL SKEW 44

5.1 Related Works and Motivational Examples . . . . . . . . . . . . . . . 44

5.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 ADB Allocation Algorithm Utilizing Useful Skew . . . . . . . . . . . 54

5.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Acceleration for Extracting Positive Cycles in G . . . . . . . 60

5.4.2 Handling Scalability Problem . . . . . . . . . . . . . . . . . 65

5.4.3 Supporting Discrete ADB Delay . . . . . . . . . . . . . . . . 67

5.4.4 Supporting Bounded ADB Delay . . . . . . . . . . . . . . . 71

5.5 Property Proofs of the Proposed Algorithm . . . . . . . . . . . . . . 74

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 CONCLUSION 91

Abstract (In Korean) 99

iii



List of Tables

4.1 Notations used in ADB-PULLUP . . . . . . . . . . . . . . . . . . . . 18

4.2 Benchmark circuits used in the experiment . . . . . . . . . . . . . . . 36

4.3 Comparison of results produced by ADB-ESYNC [1], ADB-PULLUP

and ADB-PULLUP-B . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Comparison of results produced by ADB-ESYNC-Q [1], ADB-PULLUP-

Q and ADB-PULLUP-QB . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Benchmark circuits used in the experiment . . . . . . . . . . . . . . . 82

5.2 Comparison of results produced by ADB-LP [2] that considers useful

skew scheduling, our ADB-UCP without allowing timing violations . 83

5.3 Comparison of results produced by ADB-LP [2] that considers useful

skew scheduling, our ADB-UCP allowing timing violations . . . . . 84

5.4 The number of ADBs allocated by ADB-UCP on ISCAS’89 S38417,

S38584 and S35932 with varying values of limit . . . . . . . . . . . 85

5.5 Runtime and the number of iterations of ADB-UCP on ISCAS’89

S38417, S38584 and S35932 with varying values of limit . . . . . . 86

5.6 The number of ADBs allocated by ADB-UCP-Q, under different set-

tings of quantization resolution . . . . . . . . . . . . . . . . . . . . . 87

5.7 The number of ADBs allocated by ADB-UCP-LM, under different

settings of delay upper limit . . . . . . . . . . . . . . . . . . . . . . 88

iv



List of Figures

2.1 In multiple power mode design, applied voltage for each voltage island

varies depending on the operating mode. . . . . . . . . . . . . . . . . 5

2.2 Timing waveforms showing three cases of flip-flop input timing, where

timing constraints are satisfied, setup time constraint is violated, and

hold time constraint is violated, respectively. . . . . . . . . . . . . . . 6

2.3 A datapath Ckti,j from flip-flop si to sj in a synchronous circuits. . . 7

2.4 The implementation structure of a capacitor bank based ADB [3]. . . 10

3.1 An example of clock tree T with the replacement of a clock buffer

with ADB under bounded clock skew constraint. . . . . . . . . . . . 13

4.1 A motivational example for ADB allocation and delay assignment. (a)

A clock tree with three ADBs allocated by the method of [1] to resolve

clock skew violation. (b) An optimal allocation which uses one ADB. 17

4.2 Example showing step-by-step procedure of ADB-PULLUP. . . . . . 21

4.3 The flow of ADB-PULLUP. . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 An example of executing modified READJUST function to handle dis-

crete ADB delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 An example of clock tree that belongs to ADB-unsolvable when clock

skew bound κ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 The overall sketch of our optimality proof. . . . . . . . . . . . . . . . 34

v



4.7 Comparison of the numbers of ADBs allocated and runtime of ADB-

PULLUP-Q, optimal exhaustive algorithm, and ADB-PULLUP-QB. . . 40

4.8 The changes of the average number of ADBs used by ADB-ESYNC

and ADB-PULLUP by varying the number of power modes used. . . . 41

4.9 Runtime of ADB-ESYNC [1], ADB-ESYNC-Q [1], ADB-PULLUP,

ADB-PULLUP-Q, ADB-PULLUP-B, and ADB-PULLUP-QB. . . . . . 42

5.1 An example of clock tree T with the replacement of clock buffers with

ADBs to meet the clock skew constraints. (a) A clock tree with two

ADBs allocated to satisfy the bounded clock skew constraint. (b) Use-

ful clock skew leads to allocate only one ADB while meeting the setup

time constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 A flow diagram showing the process of the proposed algorithm. . . . 49

5.3 Derivation of a time difference constraint graph from a clock tree T . . 51

5.4 An example illustrating the steps of ADB-UCP. . . . . . . . . . . . . 58

5.5 Flow diagram of incrementally generating a dominating cycle set S. . 62

5.6 An example of systematic extraction of a dominating cycle set. . . . . 64

5.7 Finding a set of upward arcs who covers all positive cycles that can be

found by expanding cyc(e1, · · · , ei). . . . . . . . . . . . . . . . . . . 66

5.8 Flow diagram of incrementally generating a dominating cycle set with

the hard constraint on the number of iteration. . . . . . . . . . . . . . 68

5.9 An example of delay quantization procedure under arbitrarily given

delay increment values. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10 An example showing how ADBs with range [0, γ] of delay increments

are supported by ADB-UCP. . . . . . . . . . . . . . . . . . . . . . . 73

5.11 A diagram showing the dominance relationship between cycles, when

l(NCA(f(e1), r(eK−1))) ≥ l(NCA(r(eK−1), f(eK))). . . . . . . . 78

vi



5.12 Diagrams showing the dominance relationship between cycles, when

l(NCA(f(e1), r(eK−1))) < l(NCA(r(eK−1), f(eK))) and

l(NCA(f(eK), r(eK))) ≥ l(NCA(r(eK−1), f(eK))). . . . . . . . . 79

5.13 An example of strongly positive path. . . . . . . . . . . . . . . . . . 80

5.14 ADB allocation result on ISCAS’89 S15850 design. . . . . . . . . . 90

vii





Chapter 1

INTRODUCTION

1.1 Introduction

Clock is a periodic signal which triggers the state transition of synchronous systems. It

is one of the most important signals of synchronous digital systems, as all the operation

of synchronous components such as flip-flops and latches rely on it. To prevent the

timing failure of the design, the clock signal should arrive at its sinks at the accurate

time. However, the increasing demands on integrated circuit (IC) chip performance are

reducing the timing margin and making the clock design problem more challenging.

Clock signal is distributed to the whole components in the chip through clock dis-

tribution networks (CDNs), such as clock trees, clock meshes and clock spines. Clock

tree is a tree-structured CDN, whose root corresponds to clock source and has clock

sinks as its leaf nodes. Because it requires less resource on implementation and timing

analysis is relatively simple, the clock tree structure is widely used so that synthesizing

and optimizing clock trees has been one of the most important issues in VLSI design.

The research on clock tree synthesis and optimization can be roughly classified into

two directions: generating clock tree structures or topologies (e.g., [4–9]) and optimiz-

ing them for better timing quality (e.g., [10–16]). One common assumption of these

prior works is that the developed clock network should be applied to single power

1



mode designs, in which every design module operates in a single or global supply

voltage.

However, as minimizing power consumption is one of the important design con-

cerns, the design paradigm is shifting to multiple power mode designs, in which a

design module can operate in different supply voltages on the different power modes.

Multiple power mode design is very helpful for saving power consumption, but meet-

ing the time constraints for every power mode by controlling the arrival times of clock

signal becomes much more difficult because clock buffer delays vary depending on the

power modes.

Meanwhile, inserting Adjustable Delay Buffers (ADBs) enables dynamic delay

tuning by which the clock timing problem caused by the voltage change can be dealt

with. The delay of an ADB is adjusted by its control inputs, thus the clock arrival

times at each clock sink can be tuned during the operation. The idea of using ADBs

in multiple power modes is to replace some of normal clock buffers with ADBs and

control their delays by dynamically changing control inputs, so that the clock skew

constraints on each power mode can be met [17].

The main drawback of inserting ADBs on clock tree is that it requires non-negligible

area overhead. Thus, minimizing the number of ADBs to be inserted is the most es-

sential problem to be solved for resolving timing violations of multiple power mode

designs at a reasonable cost. This work provides a complete solution to the ADB min-

imization problem, which corrects timing violations in multiple power mode design

with the minimum number of ADBs allocated.

1.2 Contributions of This Dissertation

In this dissertation, the methods of ADB allocation and delay assignment are proposed

to optimize the area utilization while resolving the clock skew variation problem in

multiple power mode designs.

2



• In Chapter 4, an O(n log n) time algorithm that optimally solves the problem

of minimizing the number of ADBs to be allocated under the given clock skew

bound is proposed. It includes the extended version of the algorithm that sup-

ports the use of ADBs which have discrete delays, and replacing the ADBs with

various sizes of buffers to reduce the area further.

• In Chapter 5, a graph based algorithm solving the problem with useful skew

scheduling is proposed, along with the acceleration techniques to trade-off run-

time and quality of the result, and supporting discrete or bounded delay values

of ADBs.

The outcomes of this work will enable the use of ADBs with small overhead, and

they can also be applied usefully to the diverse environments, such as non-uniform

thermal effect, in which the clock skew varies dynamically during the operation.

3



Chapter 2

BACKGROUND

2.1 Multiple Power Mode Design

One of the most efficient way of reducing power is to lessen the supply voltage for

the design when high performance is not required [18,19]. Reducing the voltage levels

depending on the tasks on operation, called dynamic voltage scaling, cannot only be

applied in global chip level, but also for smaller units called voltage islands.

Multiple power mode design is a design strategy that exploits the advantage of dy-

namic voltage scaling in higher resolution. If some modules in a design have less tasks

to do, applying low voltage to them will be more effective than applying high voltage

for the whole circuit only for few modules that should have higher performance. In

multiple power mode design, the circuit is divided into several voltage islands and dif-

ferent voltages are applied for each voltage island depending the operating mode. For

instance, some tasks would require more computations in microprocessor unit, while

the others would use digital signal processor more. Then, in each operating mode, the

modules with heavy load use high voltage and the others use low one.

The drawback of this method is that the delay of clock buffers are also affected

by the applied voltage. As two clock paths might cross different voltage domains, the

relative clock arrival times on their sinks will vary depending on the operating modes.

4



HI

LO

mode-1 mode-2

Figure 2.1: In multiple power mode design, applied voltage for each voltage island

varies depending on the operating mode.

As a result, the circuit suffers from timing violations [20,21]. In Figure 2.1, the voltage

level of each voltage island shifts from high to low, considering the operation speed

required in the current mode. Then, the clock buffers operate under the voltage applied

on voltage islands they locate, so that the clock arrival times on sinks cannot maintain

their values as the power mode changes.

2.2 Setup Time and Hold Time Constraints

Time constraints describe the conditions which prevent the circuit from the timing

failures. Especially, arrival time of clock events on synchronous components is one of

the most important concerns to be considered for the timing closure. The input signal

of a flip-flop in a synchronous circuit should be held steady before and after the clock

event, to ensure the correct data being captured. The minimum duration of time that

the input should be stable before and after the clock arrival is called setup time and

hold time, respectively.

Thus, the timing failures in synchronous circuits can be classified into two situa-

tions, the valid input data not being able to arrive until the point capturing starts, and

the data of the next cycle affecting the input before the capturing finishes. Figure 2.2

5



shows the timing waveforms at clock and data input pin of a flip-flop. The data input

in Case 1 becomes stable at the latest setup time before the clock arrival, and retain

stability until hold time after the clock. In this case, the flip-flop successfully stores

the correct data. On the other hand, the input signals in Case 2 and Case 3 are not

stable during the timing interval defined by setup time and hold time of the flip-flop,

causing the timing violations. Each situation is called setup time violation and hold

time violation.

Clock

D Input

Setup

time

Hold

time

Case 1

(No violation)

Case 2

(Setup time violation)

Case 3

(Hold time violation)

Figure 2.2: Timing waveforms showing three cases of flip-flop input timing, where

timing constraints are satisfied, setup time constraint is violated, and hold time con-

straint is violated, respectively.

In circuit designs, the input data of flip-flops usually change depending on the

output of the flip-flops connected through combinational logic cells. This implies that

any pair of related flip-flops should be checked whether timing violations occur, to

keep the circuit safe from the timing hazards. Figure 2.3 shows a pair of flip-flops, si

and sj , of a synchronous system. The maximum delay from the clock input of si to the

data input of sj is Dmax
i,j and the minimum is Dmin

i,j . (The notation Dmax
i,j and Dmin

i,j

in this paper includes the clock-to-Q delay of si, which is the time interval from the

clock arrival on the clock pin and to the data launch from the data output pin.) Then,

6



the interval in which data signal at the input pin of sj is reliable begins at the time

Dmax
i,j elapsed from the data launch, and ends at the time Dmin

i,j after the next clock

arrival at si.

Clock

si sj

xi xj

Ckti,j

Figure 2.3: A datapath Ckti,j from flip-flop si to sj in a synchronous circuits.

To ensure the data signal arrives at the time it is required, in other words, to prevent

setup time violation, xi and xj , the clock arrival time of si and sj , should satisfy the

following inequality:

xi +Dmax
i,j ≤ xj + Tclk − tsetup,j (2.1)

where Tclk is the clock period and tsetup,j is the setup time of sj . Likewise, to prevent

hold time violation, the data of the next cycle should not affect the current data capture.

Thus, the following inequality:

xi +Dmin
i,j ≥ xj + thold,j (2.2)

is also needed to be met. The former constraint is called setup time constraint, and the

latter is called hold time constraint. Each constraint can be transformed as:

xj − xi ≥ Dmax
i,j − Tclk + tsetup,j (2.3)

and

xi − xj ≥ −Dmin
i,j + thold,j . (2.4)

7



The latter form of time constraints (Equation (2.3) and Equation (2.4)) will be used

in this paper since we will consider only the difference between clock arrival times in

this paper.

2.3 Clock Skew Optimization Objectives

As the satisfaction of setup and hold time constraints depends on the clock arrival

times, delivering the clock signal to clock sinks at the desired time has been one of

the main concerns in synchronous digital system designs. The optimization of clock

signal arrival times can be performed based on either one of the two objectives: (1)

meeting or minimizing (global) clock skew bound and (2) maximizing the exploitation

of useful clock skew [22].

Because clock skew of a pair of clock sinks is defined by a time difference between

the clock arrival on each of them, global clock skew refers to the difference of the latest

and earliest arrival times of a clock signal to flip-flops. In other words, global clock

skew is the maximum clock skew among all pairs of clock sinks of the whole circuit.

If no confusion occurs, the global clock skew is simply referred to as clock skew in this

presentation. As circuits are usually designed assuming zero clock skew, the tighter the

clock skew is, the more setup and hold time constraints are likely to be met. For this

reason, achieving zero or bounded clock skew for clock distribution networks can be an

effective solution of the timing optimization problem, especially when the design size

is huge so that considering every relationship between clock sinks requires enormous

design time and effort.

On the other hand, since the setup and hold time constraints are looser for some

pairs of sinks than the others, it is beneficial to intelligently schedule the arrival times

of clock signal to distribute timing margins in a way to satisfy all the timing constraints.

For instance, given three flip-flops si, sj and sk connected by combinational logics

Ckti,j and Cktj,k, increasing the clock path delay on sj adds more margin to the setup

8



constraint between si and sj , and the hold constraint between sj and sk, and reduces

the margin of the setup constraint between sj and sk, and the hold constraint between

si and sj . This method can be utilized to relax tight timing constraints in pipeline

architecture by ‘stealing’ timing margin, called slack, from shorter datapaths and give

them to longer ones. It is called useful skew scheduling. From the designers’ point of

view, the problem of optimizing clock networks under useful skew scheduling is more

complicated than the one limiting clock skew bounded by constant values since the

former is required to examine the satisfaction of all the setup and hold time constraints

during the skew scheduling.

2.4 Adjustable Delay Buffers

Adjustable delay buffer (ADB) is a buffer whose delay can be adjusted depending on

the control signal. ADBs have been suggested as a solution to process variation prob-

lem that can be adopted in post-silicon tuning stage [23–26]. However, rather than

fixing the delay to a constant value, they can generate varying delays when dynam-

ically changing control signal is assigned [17]. This strategy enables ADBs to solve

the timing problem in multiple power mode design, by changing clock arrival times

during the operation.

Figure 2.4 shows a structure of a capacitor bank based adjustable delay buffer im-

plementation [3]. An ADB is composed of two inverters, one at the input port and the

other at the output port, and an array of capacitors with switch transistors is connected

between them. The switches are activated by a capacitor bank controller to change the

number of active capacitors depending on the value of control bits. Activating more

capacitors increases the total capacitance between the two inverters, which in turn in-

creases the signal propagation delay between the input and output ports.

As the delay generation of an ADB relies on the MOS capacitors in the capaci-

tor bank, the size of capacitor bank is directly proportional to the maximum delay of

9



Input

Capacitor bank

Output

VDD VDD

. . .

Control bits Capacitor Bank Controller

VDD

Figure 2.4: The implementation structure of a capacitor bank based ADB [3]. The

ADB delay is dynamically adjusted by turning on and off the individual capacitors in

the bank.

ADB. Thus, the ADB cells necessarily occupy significantly larger area than those of

the ordinary clock buffers, to generate a sufficient amount of delay to control the clock

arrival times. It adds non-negligible area overhead to the circuit, so reducing the num-

ber of ADBs to be inserted is an essential topic to be dealt to efficiently tackle timing

problems in multiple power mode designs.

10



Chapter 3

TIMING CLOSURE IN MULTIPLE POWER MODE

DESIGNS

3.1 ADB Allocation for Timing Correction

While many optimization methods were effective, advanced low power design tech-

niques introduced new challenges to the clock skew control problem. Specifically, for

multiple power mode designs, where the supply voltage to the circuit components

changes dynamically depending on modes, the clock arrival time also varies accord-

ingly. Even though the previous works can consider the clock skew constraints on

every power mode, it would be highly likely that the resulting clock tree uses a sub-

stantially long wirelength or there exists no clock tree that satisfies the clock skew

constraint on every power mode.

Meanwhile, allocating ADBs on the clock tree and assigning control signals for

each mode can intentionally increase the clock path delays passing them, in order to

resolve the timing violations. The idea of using ADBs in multiple power modes is to

replace some of normal clock buffers with ADBs so that the clock skew constraints

on each power mode can be met; when the power mode changes during execution,

for example from power mode mode-1 to power mode mode-2, the delays of ADBs in

11



clock tree that have been adjusted under mode-1 are readjusted to meet the clock skew

constraints under mode-2.

The proposed clock timing correction flow is as follows. An initial clock tree is

synthesized using ordinary clock buffers, which inevitably cause timing violations in

multiple power mode. Based on the initial delays obtained by simulations under avail-

able power modes, the proposed algorithm finds the optimal set of clock buffers that

should be replaced by ADBs. The algorithm also calculates the delay values that the

ADBs should have in each mode, and converts them into the control signals. The cal-

culation should take the change in applied voltage on ADBs in each power mode into

account, to generate the intended delays in every case. The final ADB delay is imple-

mented using a mode controller which stores and returns the calculated on/off signals

to the capacitor bank of each ADB depending on the power mode.

Figure 3.1 shows an example of clock tree T that has four sinks s1, s2, s3, and s4.

Assuming there are two power modes mode-1 and mode-2 in T , the two numbers on

each sink represent the clock signal arrival times to the sink on mode-1 and mode-2.

With the clock skew bound of 10, T has a clock skew violation between s1 and s4

in mode-2 if the ADB is not used. To solve this problem, an ADB replaces a buffer

on left which drives s1 and s2. The two numbers on ADB represent the values of

delay increment in mode-1 and mode-2. Precisely, the ADB adds delay of 3 in mode-2,

increasing the signal arrival time to s2 in mode-2 to 6. Then, all the clock skews are

within bound of 10.

3.2 Problem Definitions

Since ADBs add non-negligible area overhead to the circuit, minimizing the number of

ADB cells to be allocated has been the most essential problem to solve for the effective

use of ADBs. Meanwhile, as mentioned in Section 2.3, the clock timing optimization

can have different kinds of objectives to eliminate the possibility of timing failure,

12



16/6�16/9

10/3�10/6

13/8

11/16

s1

mode

+0/+3

mode

control

Clock signal arrival

time at mode-1 / mode-2

Additional delay of ADB at
mode-1 / mode-2

ADB

s3

s2 s4

Figure 3.1: An example of clock tree T with the replacement of a clock buffer with

ADB under bounded clock skew (= 10) constraint.

13



meeting the constant global clock skew bound and utilizing useful skew scheduling.

Thus, the ADB-based clock tree optimization problem can be described as:

Problem 1 (ADB insertion problem under clock skew bound). Given a synthesized

clock tree, arrival times of clock sinks in each power mode, and clock skew bounds

κm, replace the least number of clock buffers with ADBs and assign delays to the

ADBs to satisfy the bound κm in all power modes.

Problem 2 (ADB insertion problem under useful skew). Given a synthesized clock

tree, arrival times of clock sinks in each power mode, setup and hold time slacks,

replace the least number of clock buffers with ADBs and assign delays to the ADBs to

satisfy setup and hold time constraints in all power modes.

14



Chapter 4

ADB ALLOCATION UNDER CLOCK SKEW BOUND

In this chapter, an optimal solution to Problem 1, the ADB insertion problem under

constant clock skew bound is proposed.1

4.1 Related Works and Motivational Examples

Synchronous circuits are usually designed under the assumption of an ideal clock net-

work, which drives the whole flip-flops to change their values at the same time. Thus,

implementing clock trees to have zero or bounded clock skew is an efficient and safe

solution to prevent timing violations. Several works have attempted to apply ADB in-

sertion techniques for the timing closure in multiple power mode designs, while main-

taining the area overhead reasonable. Su et al. [21] proposed a linear-time optimal

algorithm for the delay assignment when the locations of ADBs are given. Then, they

exploited the algorithm to find the appropriate points to allocate ADBs heuristically

in a greedy manner. Lin et al. [29] proposed an efficient allocation algorithm of two-

stage approach which performs a top-down ADB allocation followed by a bottom-up

ADB elimination. Even though the approach reduced the runtime over that in [21], it

still did not guarantee an optimality of ADB allocation. Lim and Kim [1] proposed a
1The content of this chapter is an extended version of [27, 28].

15



linear-time algorithm for the ADB allocation problem where they solved the problem

optimally for each power mode.

Two common features of the previous ADB allocation algorithms ( [1, 21, 29]) are

that (1) they resolve the clock skew violation by synchronizing the earliest arrival

times of subtrees of interest where they set the delay value of ADB on a root of one

of the subtrees to the difference of the earliest arrival times of the subtrees; (2) the

methods are applied mode by mode, independently.

For example, consider the clock tree in Figure 4.1(a) with two operating modes

mode-1 and mode-2. The initial clock signal arrival times at sinks are shown at the

bottom in black numbers. Suppose the clock skew bounds for each power mode, κ1

and κ2 is 10. Clearly, there are clock skew violations in both mode-1 and mode-2; in

mode-1 the clock skew is 13, which is defined by sinks s2 and s3, and in mode-2, the

clock skew is also 11, which is defined by s3 and s6.

The results of ADB allocation produced by the previous algorithm [1] for the clock

tree is shown in Figure 4.1(a) where buffers B, D, and E are replaced with ADBs and

the adjusted arrival times are shown in pairs of numbers next to the initial delays.

Their delay adjustment procedure is as follows. In mode-1, the earliest arrival time

(= 5) of the subtrees rooted at D is synchronized to the earliest arrival time (= 16)

of the subtree rooted at C by assigning delay increment of 11 to the ADB in node D.

However, the delay adjustment at D increases the arrival time at sink s4 from 13 to 24,

which causes another skew violation between the times in s4 and s5. The violation is

then resolved by assigning delay increment of 6 to the ADB in node E. Likewise, in

mode-2 the clock skew violation due to the times at s3 and s6 is resolved by assigning

delay increment of 6 to the ADB in node B.

From the ADB allocation and delay assignment, we observe that (1) synchroniz-

ing the subtree’s earliest arrival times (e.g., time at s3 in mode-1) introduces delay

increases at the other sinks (e.g., s4), so that additional ADB allocation with delay

adjustment shall be needed; (2) even though the skew violation in mode-2 requires

16



B

C

16 18 13� 4mode-1

D

E

A

10�16 15�21

10�16 15�21 5�11 9�15 11 16mode-2

+0/+6 +6/+0

+11/+0

5�16

s1 s2 s3 s4 s5 s6

(a)

B

C

s1

16 18 8 16mode-1

D

E

A

10 15

10 15 6 10 11 16mode-2

+3/+1

s2 s3 s4 s5 s6

(b)

Figure 4.1: A motivational example for ADB allocation and delay assignment when

the skew bound for each mode is given to 10 units of delay. (a) A clock tree with three

ADBs allocated by the method of [1] to resolve clock skew violation. (b) An optimal

allocation which uses one ADB.

17



one ADB to be allocated, node B is not the only position at which an ADB could be

allocated. An alternative position is D, which coincides with the ADB allocation in

mode-1.

An optimal ADB allocation is shown in Figure 4.1(b) in which only one ADB with

delay increment of 3 in mode-1 and 1 in mode-2 is inserted to the tree. This example

clearly shows that delay adjustment according to the synchronization of the earliest

arrival times does not always yield optimal results. Furthermore, merely collecting

the optimal results on individual power modes does not mean globally optimal for

all power modes. In order to find optimal results, ADB allocation should consider all

modes simultaneously.

4.2 ADB Allocation Algorithm Satisfying Clock Skew Bound

This section describes our proposed ADB allocation algorithm, ADB-PULLUP, to en-

sure the clock skew bounded by a given margin. The notations commonly used in the

presentation is summarized in Table 4.1.

Table 4.1: Notations used in ADB-PULLUP

Symbol Description

ni A node in a clock tree, which is either a buffer or a sink;

Tni The subtree rooted at node ni;

arrni,m Arrival time at sink node ni at mode-m;

lstni,m The latest arrival time among the sinks on the subtree rooted at node ni

in mode-m;

κm The given clock skew bound to meet in mode-m;

αni,m Delay value (i.e., increment) of ADB located at node ni in mode-m;

Hni Set of child nodes of ni not to be replaced by ADBs.

18



Firstly, we demonstrate the procedure of our algorithm for the allocation of ADBs

under constant skew bound, called ADB-PULLUP, step-by-step using an example to

see how the algorithm works. Then, we describe the flow of the algorithm and the

properties of the algorithm.

Let us consider the clock signal arrival times shown in the clock tree in Fig-

ure 4.2(a). Let κm = 10 for all m. The numbers below the tree represent the clock

delay from the clock source to the sinks in each mode. First, ADB-PULLUP initially

assumes that each sink has a distinct fictitious ADB at the front of it. The numbers at

the bottom of each sink si indicate the delay value increments of the ADB on si, αsi,1

in mode-1 and αsi,2 in mode-2, for i = 1, · · · , 10. We compute the delay value by

αsi,m = max{0, lstroot,m − κm − arrsi,m} (4.1)

where root represents the clock source (root) node of the clock tree. Thus, lstroot,m

is the latest clock arrival time among those of all clock sinks in power mode m. For

example, αs1,1 = max{0, 20− 10− 7} = 3 and αs1,2 = max{0, 20− 10− 9} = 1.

Note that the value by Equation (4.1) for each sink si corresponds to the least increase

of delay required on the fictitious ADB in si to meet the clock skew constraint. Then,

ADB-PULLUP performs a bottom-up traversal on the clock tree to move up (i.e., pull

up) the ADBs towards the root of the clock tree.

The decision of allocating an ADB at nk which is a non-sink and whose α value

has been assigned is made according to the evaluation result of the inequality:

αnk,m > lstroot,m − lstni,m (4.2)

where ni is the parent node of nk. If the inequality is true for at least one power

mode, an ADB is allocated. For example, let us assume that αb4,−, αb5,− have been

calculated using the same method we are going to explain. The values are shown in

Figure 4.2(b). Then, since αb4,2(= 2) > lstroot,2 − lstb2,2(= 20 − 20 = 0), an ADB

is inserted to b4. However, since αb5,1(= 1) ≤ lstroot,1 − lstb2,1(= 20− 16 = 4) and

αb5,2(= 0) ≤ lstroot,2 − lstb2,2(= 20− 20 = 0), no ADB is inserted to b5.

19



7 14 9 16mode-1 16 9

9 8 11 15 17 20mode-2

14

17

10

9

13

8

20

11

+3/+1 +0/+2 +1/+0 +0/+0 +0/+0 +1/+0 +0/+0 +0/+1 +0/+2 +0/+0

s1

b1

b2 b3

b4 b5 b6 b7

s2 s3 s4 s5 s6 s7 s8 s9 s10

(a) A clock tree T before the ADB insertion by ADB-PULLUP with κ1 = κ2 = 10;

allocating αni,m for each sink ni and mode m.

7 14 9 16mode-1 16 9

9 8 11 15 17 20mode-2

14

17

10

9

13

8

20

11

+0/+0 +0/+0 +0/+0 +0/+0 +0/+0 +1/+0 +0/+0 +0/+1 +0/+2 +0/+0

+3/+2 +1/+0

s1

b1

b2 b3

b4 b5 b6 b7

s2 s3 s4 s5 s6 s7 s8 s9 s10

(b) After the process of clock subtrees rooted at b4 and b5. (All children nk of each subtree

rooted at ni satisfy αnk,m ≤ lstroot,m − lstni,m for all modes. Thus, ADBs are not

inserted.)

20



7 14 9 16mode-1 16 9

9 8 11 15 17 20mode-2

14

17

10

9

13

8

20

11

+0/+0 +0/+0 +0/+0 +0/+0 +0/+0 +0/+0 +0/+0 +0/+1 +0/+2 +0/+0

+2/+2 +0/+0

+1/+0

s1

b1

b2 b3

b4 b5 b6 b7

s2 s3 s4 s5 s6 s7 s8 s9 s10

(c) After the process of clock subtree rooted at b2. (αb4,2 > lstroot,2 − lstb2,2, thus, an

ADB is inserted at b4.)

10 17 10 17mode-1 17 10

11 10 11 15 17 20mode-2

14

19

10

11

13

10

20

13

7� 14� 9� 16� 16� 9�

9� 8� 11� 15� 17� 20�

14�

17�

10�

9�

13�

8�

20�

11�

+2/+2

+1/+0 +0/+2

s1

b1

b2 b3

b4 b5 b6 b7

s2 s3 s4 s5 s6 s7 s8 s9 s10

(d) The complete subtree T after the ADB insertion by ADB-PULLUP.

Figure 4.2: Example showing step-by-step procedure of ADB-PULLUP.

21



Once the decision of allocating ADBs to all children of ni is made, the α value of

ni is updated by

αni,m = max{αnk,m : nk ∈ Hni} (4.3)

where Hni represents the set of ni’s children on which ADBs are not allocated. If

Hni = φ, then αni,m is set to 0 for every mode m. For example, in Figure 4.2(c), b4

is not in Hb2 since αb4,2 > lstroot,2 − lstb2,2, while α of b5, s5, s6 is smaller than

or equal to lstroot − lstb2 for all modes. Thus, αb2,1 = max{αb5,1, αs5,1, αs6,1} =

max{1, 0, 1} = 1 and αb2,2 = max{αb5,2, αs5,2, αs6,2} = max{0, 0, 0} = 0 since

Hb2 = {b5, s5, s6}.

At this stage, from node ni where its α values are set, we recursively perform

delay-resetting on every descendant, nk, of ni by calling function READJUST de-

scribed in Figure 4.3. READJUST subtracts αni,m from the sum of delays on each

path from a child of ni to its descendent sinks, or set to 0 if αni,m is bigger than the

original sum of delays. For example, Figure 4.2(c) shows the results of delay read-

justment when the delay value of b2 is computed by Equation (4.3). For example,

αb4,1 = 3−min{1, 3} = 2 and αb4,2 = 2−min{0, 2} = 2. Subtree Tb3 is processed

likewise. After all the nodes are processed, ADB-PULLUP reports the result of ADB

insertion with the updated arrival times as shown in Figure 4.2(d).

The flow of ADB-PULLUP is depicted in Figure 4.3. In the initialization phase,

the αni,m value of each sink ni is assigned to the minimum value by which arrni,m +

αni,m is not shorter than lstroot,m − κm. This fixes the skew violations by assuming

the allocation of a fictitious ADB to each sink. The next phase is “pulling up” these

ADBs to non-sink locations of the clock tree, by performing PULLUP operation in

a topological order. Consider a non-sink node ni to be processed in the flow. Each

child, nk, of ni, is checked to see if an ADB is needed according to the evaluation

of αnk,m > lstroot,m − lstni,m. If the evaluation is true, an ADB is inserted to nk,

otherwise, the maximum α value (initially 0) to be assigned to ni is updated if needed.

Once the process PULLUP at the bottom loop in Figure 4.3 is done, the α values at the

22



descendants of ni are recursively re-set according to function READJUST.

The time complexity of ADB-PULLUP is bounded by O(mn log n) where m is

the number of power modes and n is the number of nodes of the input clock tree.

Since m is usually very small, the complexity is reduced to O(n log n). The detailed

derivation of the time complexity of ADB-PULLUP is the following: O(n) time is

taken to sort nodes in topological order and O(mn) time to compute the lst values

of all nodes. Likewise, O(mn) time is taken to assign the α values for all leaf nodes

and O(mn) to the determination of ADB placement to nodes. Finally, total time of

O(mn log n) is taken for READJUST function, which is the most dominant in the steps

of ADB-PULLUP. It is because each node is visited by READJUST at most the number

of their ancestors. All properties and theorems of ADB-PULLUP are summarized in

Section 4.4.

4.3 Extensions

4.3.1 Supporting Discrete ADB Delay

By slightly updating the computation of α values in ADB-PULLUP, it is possible to

support the ADB allocation with ADBs of discrete delay increments. (We call our

updated ADB algorithm ADB-PULLUP-Q.)

At the stage of the decision made by Equation (4.2), αnk,m is replaced by the

closest ADB delay which is larger than or equal to the original value. The quantized

delay is used as αni,m in Equation (4.3), and READJUST subtracts the new αni,m

value from the α of its descendent ADBs. The main difference of READJUST function

in ADB-PULLUP and ADB-PULLUP-Q is that ADB-PULLUP-Q updates the α to the

quantized value with the minimum increase from the original value at the same time of

the subtraction. At the final stage of READJUST, the minimum delay increment occurs

from the quantization is subtracted from αni,m, to balance the total clock delays.

23



Clock Tree T, Skew bound �

Power modes

Sort nodes in T topologically,

Set αni,m = 0, calculate lstni,m
for every mode m and node �i

Sorted list

L={}?

�i � pop( L )

�i=sink?

For every child node �k

α�k,m � lstroot,m - lst�i,m

for every m?

Allocate ADB on �k 

No

Yes

No

α��	
 = max(0, lstroot,m-�m-lst��	
)

α�i,m
 = max(α�i,m, α�k,m)

Readjust(�i, α�i,m
, m) for all m

Exit

Pullup(�i)

function Readjust(�i, α, m)

    if α > 0 then

        for every children �k of �i do

            
 � min(α�k,m, α)

            α�k,m � α�k,m - 


            Readjust(�k, α - 
, m)

        end for

    end if

end function

 

Yes

ADB-based

clock tree T'

�k=sink?
Error: store mode m

s.t. α�k,m>lstroot,m-lst�i,m

No

Yes

Cannot meet

skew constraint

Is error stored?

No

Yes

No

Yes

Theorem 1

Eq. (1)

Eq. (2)

Eq. (3)

Figure 4.3: The flow of ADB-PULLUP.

24



= 4

= 3

= 5...

...

...

-10

-(10 - 4)

-(10 - 4 - 3)

0

0

2 2.5
DelayCeil

{1.5, 2.5, 4, 6}

-min((2.5 - 2), ... )

9.510

Figure 4.4: An example of executing modified READJUST function to handle dis-

crete ADB delays. After the execution of original READJUST, additional procedure,

DELAYCEIL(), is executed to select the delay among the available values.

4.3.2 Integration of Buffer Sizing

We can think of buffer sizing as an ADB allocation imposed by the restriction that the

α values in power modes are pre-defined. For example, when a buffer bi in the input

clock tree is going to be replaced by a buffer bufj in the buffer library L (rather than

an ADB), the delay number in each power mode may be increased or decreased, but

the number is fixed, which means uncontrollable, unlike ADB. Let βjni,m be the de-

lay increase or delay decrease in power mode m caused by the replacement of buffer

bi in the input clock tree by bufj ∈ L. We can compute all β values from the input

clock tree and L. Now, we want to substitute the minimal ADBs determined by ADB-

PULLUP (or ADB-PULLUP-Q) with as many buffers in L as possible to further reduce

the number of ADBs to be inserted in the clock tree while still meeting the clock skew

constraint for every power mode. Since we have all the β and α values in every node

of the clock tree in all power modes, a naive solution is to generate all the combina-

tions of buffer sizing as well as ADB insertion for all nodes, and choose the one that

25



uses the least number of ADBs while meeting the clock skew constraint. However, its

computation time grows exponentially as the problem size increases. To be practically

feasible, we propose a simple but effective iterative method:

1. For each node ni in the clock tree, in which ADB-PULLUP (or ADB-PULLUP-

Q) has decided that an ADB should be inserted in the node, for each buffer

bufj ∈ L, we compute

δ
bufj
ni =

K∑
m=1

(αni,m − β
bufj
ni,m)2 (4.4)

where K is the number of modes. For example, if (αn1,1, αn1,2) = (+3,+1),

(βbuf1n1,1
, βbuf1n1,2

) = (+3,+2), (βbuf2n1,1
, βbuf2n1,2

) = (+1,−1), then, δbuf1n1 = (3 −

3)2 + (1− 2)2 = 1 and δbuf2n1 = (3− 1)2 + (1− (−1))2 = 8.

2. Select the pair of node and buffer sizing such that the corresponding δ value is

minimal and it satisfies the clock skew and latency constraints. The buffer in the

selected node is then resized accordingly. For the previous example, selecting

buf1 is preferred to that of buf2 for resizing in node n1 since δbuf1n1 < δbuf2n1 .

3. Update the arrival times at clock sinks according to the buffer resizing performed

in Step 2, and iterate the procedure. The iteration stops when there is no pair that

satisfies the skew and latency constraints or the resizing causes the number of

ADBs to increase.

The rationale behind the use of δ is that as the smaller the value of δ in a node is,

the more the corresponding buffer sizing is likely to close to the ADB that has been

inserted to the node, thus, the buffer sizing taking over the role of the ADB with a

minimal impact on the overall timing of the clock tree. We call the ADB allocation

algorithm combined with buffer sizing ADB-PULLUP-B for the continuous delay of

ADB and ADB-PULLUP-QB for the discrete delay of ADB.

26



4.4 Optimality Proofs of the Proposed Algorithm

This section provides proofs of the useful properties of the algorithm that (1) it always

gets the answer unless the answer does not exist, and (2) it allocates the minimum

number of ADBs to satisfy the constraint.

Property 1. The arrival times at sinks produced by ADB-PULLUP never exceed lstroot,m

for every mode m.

Proof. For simple notations, we drop the power mode symbol m in the presentation

of the proofs if it is obvious.

For a power mode, let Lnl
nk→sj be the sum of the α values of the nodes on the path

from nk (inclusive) to a sink sj which is on the subtree rooted at nk after READJUST

is applied to nl and αpre
nk be the α value of nk before the application of READJUST to

its parent. (Lsj
sj→sj = αpre

sj since READJUST is not applicable to sinks.)

We claim that the following inequality is hold:

Lni
ni→sj + arrsj ≤ lstroot. (4.5)

We use induction in terms of the height, h, of the subtree rooted at ni.

i. h = 1 corresponds to the case where ni is a sink, which means sj and ni in

Equation (4.5) are identical. Thus, Lni
ni→sj + arrsj = αpre

sj + arrsj . By Equa-

tion (4.1), αpre
sj + arrsj ≤ lstroot.

ii. For the induction step, we assume that the hypothesis holds for all h ≤ H , and

consider a node ni with height h = H + 1. Then, all heights of its children nk

is less than or equal to H . By the induction hypothesis, for every nk of ni, it is

true that

Lnk
nk→sj + arrsj ≤ lstroot (4.6)

where sj is a sink in the subtree rooted at nk.

27



Case 1. Lnk
nk→sj ≥ α

pre
ni :

After the application of READJUST to ni, Lni
nk→sj = Lnk

nk→sj−α
pre
ni . Thus,

Lni
ni→sj +arrsj = Lni

nk→sj +αpre
ni +arrsj = Lnk

nk→sj−α
pre
ni +αpre

ni +arrsj

= Lnk
nk→sj + arrsj ≤ lstroot by Equation (4.6).

Case 2. Lnk
nk→sj < αpre

ni :

By Equation (4.2), after the application of READJUST to ni,

Lni
ni→sj = αpre

ni
, (4.7)

and according to Equation (4.1) and the definition of lstni ,

αpre
ni
≤ lstroot − lstni ≤ lstroot − arrsj . (4.8)

Therefore, Lni
ni→sj + arrsj = αpre

ni + arrsj ≤ lstroot.

From Cases 1 and 2, Equation (4.6) holds for ni with h = H + 1 if it

holds for any node with h ≤ H . Thus, from the induction, hypothesis Lni
ni→sj +

arrsj ≤ lstroot holds for every node in the tree. Then, because Property 1 holds

for root as well, Lroot
root→sj + arrsj , the clock arrival times at sink si after the

whole execution of ADB-PULLUP, do not exceed lstroot.

In some cases, clock trees do not have any solution of ADB allocation. For exam-

ple, consider a simple clock tree shown in Figure 4.5 with clock skew bound κ = 10.

The clock arrival times at sink s2 (= 13) and sink s3 (= 2) cause the clock skew vio-

lation. However, it is not possible to resolve the skew violation in the figure whatever

ADB allocations are attempted to A, B or both. We formally classify the input clock

trees into ADB-solvable or ADB-unsolvable as follows:

28



Definition 1. It is said that a clock tree T with κ is ADB-unsolvable if there is a node

ni ∈ T such that lstni − arrmin
S(ni)

> κ in which S(ni) is the set of sinks which are

directly connected to ni, arrmin
S(ni)

is the minimum among the arrival times of sinks

in S(ni). (It is ∞ if S(ni) = φ.) For the clock trees in which do not have any node

ni ∈ T such that lstni − arrmin
S(ni)

> κ, they are said to be ADB-solvable.

For example, the clock tree in Figure 4.5 is said to be ADB-unsolvable because

S(A) = {s3, s4} and lstA− arrmin
S(A) = 13− 2 = 11 > κ(= 10). It can be easily seen

that even allocating ADBs on every inner nodes cannot solve the problem.

A

B

s1

6 13 2 5Arrival times:

s2 s3 s4

Figure 4.5: An example of clock tree that belongs to ADB-unsolvable when clock skew

bound κ = 10.

Theorem 1. ADB-PULLUP allocates ADBs on sinks if and only if the input clock tree

is ADB-unsolvable.

Proof. (⇒) If an ADB is allocated at sink sk, which is a child of ni,

αpre
sk

> lstroot − lstni (4.9)

for some mode m by Equation (4.2).

Since αpre
sk > lstroot − lstni ≥ 0, Equation (4.1) implies

αpre
sk

= lstroot − arrsk − κ. (4.10)

29



Clearly,

arrmin
S(ni)

≤ arrsk . (4.11)

By Equation (4.11), lstni − arrmin
S(ni)

≥ lstni − arrsk and by Equation (4.10),

lstni − arrsk = lstni +αpre
sk − lstroot + κ, which is greater than κ by Equation

(4.9). Thus, lstni − arrmin
S(ni)

> κ.

(⇐) Since the clock tree is ADB-unsolvable, there is ni such that lstni − arrmin
S(ni)

>

κ. Moreover, since arrmin
S(ni)

< ∞, S(ni) 6= φ. Let sk ∈ S(ni) such that

arrmin
S(ni)

= arrsk . Then, lstni − arrsk = lstni − arrmin
S(ni)

> κ.

Thus, by Equation (4.1), αpre
sk ≥ lstroot − arrsk − κ > lstroot − lstni , which

enables the allocation of ADB at sk according to Equation (4.2).

Note that Property 1, which is a feature that enables to keep the total size of capac-

itor banks in ADBs within a certain limit, does not hold for the other ADB allocation

algorithms proposed in previous works. In addition, Theorem 1 indicates that if there

is at least one solution, ADB-PULLUP will always find an ADB allocation solution

such that the α values of all sinks are 0.

To facilitate the proof of the optimality of our proposed algorithm, we define terms

ADB-free-path and est-diri,m, and provide one lemma.

Definition 2. If the path from node n (exclusive) to a sink r in a clock tree does not

contain ADBs, the path is called ADB-free-path and the sink is said to has ADB-free-

path from n.

Although previous works ( [1,21]) have used similar definitions, ours are stricter in

that if an ADB is allocated because of some modes but α·,m = 0 for the other modes,

it is counted as ADB only in modes with α·,m > 0. A good example is the clock tree

shown in Figure 3.1. In mode-2, the ADB has α = 0 and this is not counted as ADB

in less strict version of ADB-free-path.

30



Definition 3. est-dirni,m represents the earliest arrival time among those at the sinks

which have ADB-free-path from ni in power mode m. est-dirni,m = ∞ if such sink

does not exist.

Lemma 1. During the process of ADB-PULLUP, if αpre
ni,m > 0 for a power mode m,

there is a sink in subtree Tni that the arrival time at the sink is exactly lstroot,m−κm−

αpre
ni,m and the sink has ADB-free-path from ni.

Proof. Let h denote the height of Tni . If h = 1, ni only has sinks as its children, Thus,

the lemma holds. Let us assume that the lemma is true for h ≤ H . We now want to

show that the lemma is true for h = H + 1. By Equation (4.3), if αpre
ni,m > 0 for any

ni with its height of H + 1, there exists a child node nkj of Hni such that αpre
nkj

,m =

αpre
ni,m(> 0). Since Tnkj

has a sink whose arrival time is lstroot,m − κm − αpre
nkj

,m on

ADB-free-path from ni, Tni also has a sink on ADB-free-path passing through the

child node nkj and its clock arrival time is lstroot,m − κm − αpre
ni,m.

Theorem 2. After the application of ADB-PULLUP to ni in clock tree T , the resulting

subtree Tni has been allocated with a minimum number of ADBs while meeting the

clock skew constraint for Tni .

Proof. The proof of the optimality of ADB-PULLUP involves “cut-and-paste” argu-

ment. Let N(Tni) denote the number of ADBs in subtree Tni except the root ni. Let

Xni = 1 if node ni has an ADB, and Xni = 0, otherwise.

We want to show that N(Tni) is the smallest number among those of all feasible

ADB allocations on the subtree rooted at ni, and it has the largest value of est-dirni,m

for every power mode m among those of all feasible ADB allocations with the mini-

mum number. For example, if (N(Tni), est-dirni,m) = (4, 10), other feasible solutions

could be (5, 12), (5, 8), (4, 11), and (4, 10), but will not be (3, 12) or (4, 9).

Let h be the height of Tni .

i. When h = 1, all children of ni are sinks. Thus, N(Tni) = 0, which is trivially

solvable, and est-dirni,m =∞ for every power mode.

31



ii. Let us assume this theorem holds for h ≤ H . If the theorem is not true for

h = H + 1, there is a subtree T ′ni
produced by an ADB allocation such that

(1) N(T ′ni
) < N(Tni), or

(2) N(T ′ni
) = N(Tni) and est-dir′ni,m > est-dirni,m for some mode m.

We want to prove that T ′ni
, which meets the above condition, does not

exist, following the order illustrated in Figure 4.6. In Figure 4.6(a), the clock

trees Tni and T ′ni
with ADBs are given. We will generate T ′′ni

as shown in Fig-

ure 4.6(b) by replacing one child subtree T ′nkj
of T ′ni

corresponding to subtree of

Tni . Also, because T ′ni
is the better solution, we can select at least one subtree

T ′nkj
with less number of ADBs or larger est-dir. For all cases, we will show

that (*) N(T ′′ni
) ≤ N(T ′ni

), and est-dir′′ni,m ≥ est-dir′ni,m for every mode m if

N(T ′′ni
) = N(T ′ni

).

As shown in Figure 4.6(d), we can replace every child subtree T ′nkj
with

Tnkj
, including the node nkj . Let T f

ni denote the ADB allocation tree pro-

duced by the process of replacement. Clearly, T f
ni satisfies N(T f

ni) ≤ N(T ′ni
),

est-dirfni,m ≥ est-dir′ni,m for every mode m with the same number of ADBs.

However, T f
ni has the same values of N and est-dir as those of Tni , contradict-

ing the assumption that N(T ′ni
) < N(Tni), or est-dir′ni,m > est-dirni,m for

some power mode m if N(T ′ni
) = N(Tni).

Now, we prove (*). We use the fact that the theorem holds for h ≤ H , (1)

N(Tnkj
) ≤ N(T ′nkj

) and (2) est-dirnkj
,m ≥ est-dir′nkj

,m for every power mode

if N(Tnkj
) = N(T ′nkj

). In the proof, Xn denotes whether an ADB is allocated

on node n. Xn = 1 means the node n has an ADB, and Xn = 0 means it does

not.

Case 1. N(Tnkj
) < N(T ′nkj

):

Case 1.1. nkj (= n′′kj ) has an ADB:

32



ni

nkj

...

Tni

Tnkj

ni

nkj

...

T'ni

T'nkj

(a) Assume that (1) N(T ′ni
) < N(Tni

), or (2) N(T ′ni
) = N(Tni

) and est-dir′ni,m >

est-dirni,m for some mode m.

ni

nkj

...

T''ni

Tnkj

(b) Subtree T ′nkj
in T ′ni

is replaced by Tnkj
of Tni

. The new tree is called T ′′ni
.

33



(Case x.1) (Case x.2)ni

nkj

...

T''ni

Tnkj

ni

nkj

...

T''ni

Tnkj

(c) For Case 1 and 2, there are 2 subcases (Case x.1, Case x.2) in which nkj
has

an ADB or not. In all cases, (1) N(T ′′ni
) < N(T ′ni

) or (2) N(T ′′ni
) = N(T ′ni

) and

est-dir′′ni,m ≥ est-dir′ni,m for every mode m.

ni

nkj

...

T'''ni

Tnkj

ni

nkj

...

T fni

Tnkj

(d) By replacing every subtree rooted on child node, we get T f
ni

. Because N(T f
ni

)

and est-dirni
are the same with those of Tni

, it contradicts the assumption in (a).

Figure 4.6: The overall sketch of our optimality proof.

34



N(T ′′ni
) = N(T ′ni

)−(N(T ′nkj
)+X ′nkj

)+(N(Tnkj
)+Xnkj

) = N(T ′ni
)−

(N(T ′nkj
)−N(Tnkj

)−(X ′nkj
−Xnkj

)≤ N(T ′ni
)−1−(X ′nkj

−Xnkj
) ≤

N(T ′ni
). Thus, N(T ′′ni

) ≤ N(T ′ni
). Also, since all sinks with ADB-free-

path in T ′′ni
are also in T ′ni

, est-dir′′ni,m ≥ est-dir′ni,m for every m.

Case 1.2. nkj does not have an ADB:

Since Xnkj
= 0, N(T ′′ni

) = N(T ′ni
)− 1− (X ′nkj

−Xnkj
) < N(T ′ni

).

Case 2. N(Tnkj
) = N(T ′nkj

) and est-dirnkj
,m ≥ est-dir′nkj

,m for every m:

Case 2.1. nkj has an ADB:

The ADB on nkj is allocated because αpre
nkj

,m > 0 for some power mode

m, by Lemma 1, lstni,m − est-dir′nkj
,m ≥ lstni,m − est-dirnkj

,m =

lstni,m − (lstroot,m − κm − αpre
nkj

,m) > κm. Also, the est-dir of n′kj if

less than or equal to the one of nkj , so that n′kj should have an additional

ADB. In addition, since the sinks with ADB-free-path are the same for

T ′ni
and T ′′ni

,N(T ′′ni
) = N(T ′ni

)−(N(T ′nkj
)+X ′nkj

)+(N(Tnkj
)+Xnkj

)

= N(T ′ni
) and est-dir′′ni,m = est-dir′ni,m for every m.

Case 2.2. nkj does not have an ADB:

As seen from Case 2.1, n′kj has an ADB on it. N(T ′′ni
) = N(T ′ni

) −

(N(T ′nkj
)+X ′nkj

)+(N(Tnkj
)+Xnkj

) = N(T ′ni
)−N(T ′nkj

)+N(Tnkj
) ≤

N(T ′ni
). Since T ′′ni

and T ′ni
have the same sinks with ADB-free-path ex-

cept the sinks in their subtrees rooted at nkj , est-dir′′nkj
,m ≥ est-dir′nkj

,m

for every m. If n′kj has an ADB, N(T ′′ni
) < N(T ′ni

).

Theorem 2 claims that Troot produced by the application of ADB-PULLUP uses

the minimal number of ADBs while meeting the clock skew constraint.

35



Table 4.2: Benchmark circuits used in the experiment

Benchmark Circuit #.FFs #.Buffers Original Skew (ps) Latency (ps)

s35932 1728 97 264.1 545.1

s38417 1564 89 387.1 612.1

s38584 1168 66 299.8 552.8

B17 1312 89 287.7 654.7

B18 2752 173 405.1 825.1

B22 583 42 354.2 690.2

F31 273 345 268.8 1268.5

F34 157 218 211.2 1137.5

4.5 Experimental Results

The proposed algorithm ADB-PULLUP (continuous delay), ADB-PULLUP-Q (discrete

delay), ADB-PULLUP-B (combining buffer sizing) and ADB-PULLUP-QB (combin-

ing buffer sizing with discrete delay) have been implemented in Python 3 language

on a Linux machine with 8 cores of 3.50 GHz Intel i7 CPU and 16 GB memory. Ta-

ble 4.2 shows the tested benchmark circuits used in the experiment. s35932, s38417

and s38584 are from ISCAS’89 benchmarks, B17, B18 and B17 are from ITC’99

benchmarks and F31 and F34 are from ISPD’09 benchmarks. ISCAS’95 and ITC’99

benchmarks were synthesized with Synopsys IC Compiler with 45 nm Nangate Open

Cell Library [30]. ISPD’09 benchmarks were synthesized using the algorithm in [31].

Each benchmark was partitioned into 6 to 10 power domains which are able to oper-

ate in two different supply voltage levels, 0.95 V and 1.1 V. Each column represents

the number of flip-flop, the number of clock buffers, the worst clock skew, and the

worst clock latency in the four power modes of the input clock trees before the ADB

allocation.

36



Table 4.3: Comparison of results produced by ADB-ESYNC [1], ADB-PULLUP and

ADB-PULLUP-B

Circuit Skew ADB-ESYNC [1] ADB-PULLUP ADB-PULLUP-B
Name Bound (ps) #.ADBs Areaa #.ADBs Area #.ADBs Area

s35932

30 27 1180.2 25 1092.7 20 928.3
40 25 1092.7 23 1005.3 19 871.2
50 25 1092.7 23 1005.3 19 871.2

s38417

30 31 1355.0 27 1180.2 22 1076.0
40 28 1223.9 25 1092.7 20 985.3
50 26 1136.5 23 1005.3 18 960.9

s38584

30 22 961.6 20 874.2 13 686.9
40 18 786.8 16 699.4 11 583.7
50 18 786.8 16 699.4 11 580.7

B17

30 29 1267.6 25 1092.7 19 953.0
40 26 1136.5 22 961.6 15 799.7
50 26 1136.5 22 961.6 15 786.5

B18

30 150 6556.5 120 5245.2 105 5040.6
40 147 6425.4 118 5157.8 99 4916.6
50 144 6294.2 118 5157.8 94 5012.9

B22

30 32 1398.7 24 1049.0 21 986.8
40 32 1398.7 24 1049.0 21 976.6
50 31 1355.0 24 1049.0 21 971.5

F31

30 13 568.2 13 568.2 11 487.4
40 13 568.2 13 568.2 7 325.8
50 7 306.0 7 306.0 7 306.0

F34

30 30 1311.3 24 1049.0 21 965.4
40 30 1311.3 24 1049.0 21 965.4
50 30 1311.3 24 1049.0 18 844.2

Average (%) 100 100 86.16 86.16 67.73 75.29

aThe columns indicated by “Area” represent the sum of the areas of ADBs, fixed ADBs and resized

buffers in µm2.

37



Table 4.4: Comparison of results produced by ADB-ESYNC-Q [1], ADB-PULLUP-Q

and ADB-PULLUP-QB

Circuit Skew ADB-ESYNC-Q [1] ADB-PULLUP-Q ADB-PULLUP-QB

Name Bound (ps) #.ADBs Area #.ADBs Area #.ADBs Area

s35932

30 42 1835.8 29 1267.6 25 1143.6
40 26 1136.5 24 1049.0 19 879.5
50 25 1092.7 23 1005.3 19 871.2

s38417

30 36 1573.6 28 1223.9 23 1116.4
40 31 1355.0 27 1180.2 20 991.9
50 29 1267.6 25 1092.7 18 967.5

s38584

30 22 961.6 21 917.9 17 810.2
40 21 917.9 20 874.2 16 723.5
50 18 786.8 16 699.4 11 583.7

B17

30 35 1529.8 29 1267.6 24 1155.0
40 30 1311.3 24 1049.0 16 828.5
50 26 1136.5 22 961.6 15 794.7

B18

30 155 6775.0 122 5332.6 110 5125.0
40 153 6687.6 119 5201.5 101 4937.7
50 149 6512.8 118 5157.8 100 4942.8

B22

30 33 1442.4 24 1049.0 19 985.2
40 32 1398.7 24 1049.0 21 981.7
50 32 1398.7 24 1049.0 21 976.6

F31

30 13 568.2 13 568.2 12 527.8
40 13 568.2 13 568.2 11 487.4
50 7 306.0 7 306.0 7 306.0

F34

30 30 1311.3 24 1049.0 18 854.4
40 30 1311.3 24 1049.0 21 965.4
50 30 1311.3 24 1049.0 19 898.9

Average (%) 106.4 106.4 89.53 89.53 72.63 79.57

38



Table 4.3 summarizes the results produced by applying the algorithms which as-

sume the continous delay values of ADBs, ADB-ESYNC [1], ADB-PULLUP and ADB-

PULLUP-B. The experiments were done under the clock skew bound of 30, 40 and 50

ps, respectively, for all power modes. Table 4.4 shows the results of applying the algo-

rithms ADB-ESYNC-Q [1], ADB-PULLUP-Q and ADB-PULLUP-QB which allocates

ADBs having uniformly quantized delays with granularity of 10 ps. Though the experi-

ments used the same values for the easy comparison, clock skew bounds of each power

mode does not need to be the same. Also, ADB delay candidates do not required to

have uniform intervals, neither the same between different positions or power modes.

In ADB-PULLUP-B and ADB-PULLUP-QB, some of the ADBs were replaced with

buffers and fixed ADBs, which are ADBs that have a fixed delay because its control

logic is removed. It is effectively a large buffer, covering large additional delay that

standard buffers in the library can not support. The columns denoted as “Area” are the

area occupied by ADBs, fixed ADBs and resized buffers. By having reduced number

of ADBs, the area overhead of ADB control logic which is proportional to the number

of ADBs have decreased, resulting in the reduction of the total area. The last rows of

both tables show the relative values compared to ADB-ESYNC.

It is observed that ADB-PULLUP uses consistently less number of ADBs com-

pared to the previous work, since ADB-PULLUP considers multiple power modes si-

multaneously during optimization. Also, the results shown in Table 4.4 indicates that

ADB-PULLUP-Q uses considerably less ADBs than ADB-ESYNC-Q. This is because

ADB-ESYNC-Q relies on re-iteration with tighter skew bound when clock skew vio-

lation occurs after delay quantization while ADB-PULLUP-Q can use quantized delay

directly during its bottom-up phase.

In addition, ADB-PULLUP-B and ADB-PULLUP-QB further reduce the number

of ADBs over that of ADB-PULLUP and ADB-PULLUP-Q. We performed an experi-

ment to check the effectiveness of the proposed algorithm combined with buffer sizing.

Figure 4.7 shows the results on ISCAS’89 s382 benchmark circuit, which was synthe-

39



0.001

0.01

0.1

1

10

100

1000

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4

R
u
n
ti

m
e 

(s
ec

)

A
v
er

ag
e 

n
u
m

b
er

 o
f 

A
D

B
s

Number of buffers in the library

#. ADB (No buffer sizing) #. ADBs (Optimal) #. ADBs (ADB-pullup-QB)

Runtime (No buffer sizing) Runtime (Optimal) Runtime (ADB-pullup-QB)

Figure 4.7: Comparison of the numbers of ADBs allocated (bar) and runtime (line) of

ADB-PULLUP-Q (red), optimal exhaustive algorithm (blue), and ADB-PULLUP-QB

(green). The runtime is in log-scale.

40



sized to have 10 clock tree buffers. It is shown that the proposed algorithm clearly uses

much fewer number of ADBs over the original result, but uses a little more ADBs than

that of the optimal allocation with buffer sizing. However, our runtime is very small

compared to that of the exhaustive algorithm.

0

5

10

15

20

25

30

35

40

45

1 2 4 8

A
v

er
ag

e 
n

u
m

b
er

 o
f 

A
D

B
s

Number of power modes

ADB-Esync

ADB-pullup

Figure 4.8: The changes of the average number of ADBs used by ADB-ESYNC and

ADB-PULLUP by varying the number of power modes used.

Figure 4.8 shows the average numbers of ADBs allocated by ADB-ESYNC and

our ADB-PULLUP when the number of modes varies. Clearly, ADB-PULLUP always

uses less ADBs in all situations. The gap between the results increases as we increase

the number of modes used since it is less likely that the ADB allocation in one mode

coincides with the allocation in another mode.

Figure 4.9 shows the runtime of ADB-ESYNC [1], ADB-ESYNC-Q [1], and pro-

posed algorithms. ADB-PULLUP takes comparable runtime with that of ADB-ESYNC,

and ADB-PULLUP-Q takes shorter compared to that of ADB-ESYNC-Q because it

does not rely on iterations. The runtimes of ADB-PULLUP and ADB-PULLUP-Q are

41



0

0.4

0.8

1.2

1.6

2

2.4

0 500 1000 1500 2000 2500 3000

R
u

n
ti

m
e 

(s
ec

)

Number of clock sinks

ADB-Esync ADB-pullup ADB-pullup-B

ADB-Esync-Q ADB-pullup-Q ADB-pullup-QB

Figure 4.9: Runtime of ADB-ESYNC [1], ADB-ESYNC-Q [1], ADB-PULLUP, ADB-

PULLUP-Q, ADB-PULLUP-B, and ADB-PULLUP-QB. ADB-ESYNC-Q took about

16 sec. for a circuit with 2752 sinks.

42



theoretically O(n log n), but they are arbitrarily shorter than it in practice. This might

be because READJUST function does not traverse all the children when an ADB is not

allocated and α becomes 0.

In summary, the comparison confirms that: (1) ADB-PULLUP finds the optimal

solution with the minimum number of ADBs, reducing the average number of ADBs

by 13.5% compared to ADB-ESYNC [1]; (2) ADB-PULLUP-Q allocates 15.8% less

number of ADBs compared to ADB-ESYNC-Q [1] and its runtime is much shorter

because it does not rely on iteration; (3) ADB-PULLUP-B and ADB-PULLUP-QB

further reduces the area overhead.

43



Chapter 5

ADB ALLOCATION UNDER USEFUL SKEW

In this chapter, a solution to Problem 2, the ADB insertion problem utilizing useful

skew is proposed.1

5.1 Related Works and Motivational Examples

While the most of the existing works on ADB allocation attempted to make clock trees

to meet the bounded clock skew constraint, they contain a risk of the resulting clock

trees being overdesigned owing to their attempts to reduce clock skew of irrelevant

clock sink pairs. Hence, adopting useful skew scheduling, which is to determine the

clock arrival time of each sink by carefully examining the timing relationships with

other sinks, can help relaxing the design constraints so that the number of ADBs can

be further reduced.

For instance, let us consider a datapath connecting from the output of s1 to the

input of s3 in Figure 5.1(a), having maximum propagation delays of 45 and 38 and

minimum delays of 30 and 27 in mode-1 and mode-2, respectively. Then, given a clock

period Tclk = 50, setup time tsetup = 1.8, and hold time thold = 1.6, the setup time

constraints at s3 from s1 are (constraint-1) xs3,1−xs1,1 ≥ 45−50+1.8 in mode-1 and

1The content of this chapter is an extended version of [32, 33].

44



(constraint-2) xs3,2−xs1,2 ≥ 38−50+1.8 in mode-2 and the hold time constraints at

s3 from s1 are (constraint-3) xs1,1 − xs3,1 ≥ −30 + 1.6 in mode-1 and (constraint-4)

xs1,2 − xs3,2 ≥ −27 + 1.6 in mode-2.

Under the clock skew bounds of 10 for each power mode, two clock buffers should

be replaced by ADBs. However, even after the allocation, the signal arrival times to s1

are 16 and 9 and times to s3 are 6 and 8 in mode-1 and mode-2, respectively, in which

constraint-1 is not satisfiable as shown in Figure 5.1(a). Note that the violations would

not be resolved even with the tightest skew bound feasible (= 6). In addition, if the

maximum delay of the datapath from s1 to s3 in mode-1 was larger than 48.2, even

a clock tree with a complete zero skew would not resolve the violation. On the other

hand, Figure 5.1(b) shows the ADB allocation result under the use of useful clock

skew for the same initial clock tree in Figure 5.1(a). In this case, only one ADB with

delay (increment) assignment of 8.8 and 0 in mode-1 and mode-2 suffices to satisfy all

the setup and hold time constraints.

From this example, we can observe that (1) the (red-colored) ADB on the left in

Figure 5.1(a) is inserted unnecessarily, to reduce the clock skew between s2 and s4

which does not affect the operation of the circuit. In other words, using the global

skew bound would lead the constraints among clock sinks in the design be tighter than

are required, which means more ADBs will be allocated. Moreover, (2) utilizing the

useful clock skew enables the satisfaction of timing constraints for some cases which

was not solvable by reducing the clock skew. This example clearly shows that ADB

allocation problem should be addressed under the context of useful skew scheduling if

we really want to utilize ADBs effectively in multiple power mode designs. In addition,

it should be mentioned that meeting the clock skew bound in multiple power modes

or meeting the setup and hold time constraints by using useful skew in multiple power

modes entails a lot of complication and very difficult to apply previous methods (e.g.,

[22, 34–38]), which have originally targeted to the designs of single power mode.

The work by Chou et al. [2] addressed the ADB allocation problem under useful

45



(a) (b)

Figure 5.1: An example of clock tree T with the replacement of clock buffers with

ADBs to meet the clock skew constraints. (Tclk = 50, tsetup = 1.8, thold = 1.6) (a)

A clock tree with two ADBs allocated to satisfy the bounded clock skew (κ1 = 3.2,

κ2 = 10.2) constraint. (b) Useful clock skew leads to allocate only one ADB while

meeting the setup time constraint.

46



skew scheduling. For a given allocation ofmADBs in a clock tree, they formulated the

problem of assigning the values of delay adjustment for each ADB with the objective

of minimizing the clock period into a linear programming (LP) and solved it optimally.

More precisely, setup and hold time constraints are converted to LP constraints con-

sidering the ADB delays and clock period T as variables. Then, the LP solver tries to

solve the problem with an objective of minimizing T . In this method, the positions of

clock buffers to be replaced by ADBs should be provided to formulate the LP problem.

An iterative, greedy algorithm was adopted in the work, in which they try inserting the

first ADB on every position and choose the best one, and repeat the same step to find

the next position.

One of the weaknesses of this algorithm is that it does not guarantee the allocation

of a minimum number of ADBs, due to its greedy nature which does not consider

the other ADBs to be allocated later. The other is that it tries to find a minimal clock

period by allocating ADBs, one ADB at a time, until using m target ADBs. To ensure

the algorithm works, the formulated LP problem should have solution every time it has

to choose the next position to allocate the ADB. Thus, the algorithm will not work if

all hold time violations in the initial clock tree cannot be completely resolved when

only a single ADB is available during the first iteration of the algorithm. (Setup time

violations are always able to be solved by increasing the clock period.)

This work overcomes the drawbacks of the prior ADB allocation under useful skew

scheduling. Our graph based algorithm solves the ADB allocation problem in multiple

power modes under useful skew scheduling optimally, meaning that both of the allo-

cation of a minimum number of ADBs and 100% elimination of setup and hold time

violations are guaranteed in every power mode. In some cases, 100% elimination of

time violation may not be possible if the time constraints or clock period is too tight.

If then, our algorithm reports that any ADB allocation cannot completely resolve the

time violation. Thus, by incrementally relaxing the clock period, the repeated applica-

tion of our algorithm can find a minimal clock period that leads to a 100% elimination

47



of the time violation.

To sum up, the technical contributions of the work are (1) optimal ADB allocation

algorithm under useful clock skew scheduling, (2) graph traversal based speeding up

computation without losing optimality, and (3) dealing with practical issues: trade-off

between quality and runtime, supporting ADBs with discrete values, and ADBs with

delay upper bound.

5.2 Observations

A difference graph G = (E, V ) is a directed graph where the weight of edge (u, v) ∈

E means the difference between the values of vertices associated with u, v ∈ V . For

example, an edge (u, v) with the weight of w(u, v) denotes an inequality

xv − xu ≥ w(u, v), (5.1)

where xu, xv are the values associated with vertices u and v.

Since our proposed algorithm plays with a difference constraint graph, we start

with the procedure of transforming an input clock tree with time information into a

constraint graph followed by introducing our graph-based ADB allocation algorithm.

Figure 5.2 shows the whole procedure.

We define some terms on a clock tree T to be used throughout the description.

• αi,m: the value of delay increment, in mode m, of an ADB which is allocated

to replace a buffer in node vi in T . (αi,m is not the delay of the ADB in m. The

ADB delay is the buffer delay in m plus αim .)

• δi,m: the sum of α values, in mode m, of all ADBs on the path from the root of

T to node vi. From the definition, αi,m = δi,m − δp,m where vp is the parent of

vi.

• β(sk): the buffer node in T that directly drives sink sk.

48



Clock tree T, time information

 

Positive weight cycles extraction

Bellman-Ford

returns success?

Delay increment value computation

ADB allocation solution

No

Yes

Difference constraint graph derivation

Finding a minimal set of upward arcs

covering all positive cycles (UCP)

(Step 1)

(Step 2)

(Step 3)

(Step 4)

Figure 5.2: A flow diagram showing the process of the proposed algorithm.

49



β(sj)β(si)

si
Ckti,j

… …

sj

xi xj (arrival time)

Driving buffer of

clock sink sj

(a) Timing relation between two sinks.

Dmax(Ckti,j)+tsetup+(xi - xj) - Tclk

thold - Dmin(Ckti,j) - (xi - xj)

vi vj

(b) A part of a constraint graph that shows a

setup time constraint from vi (correspond-

ing to β(si)) to vj (corresponding to β(sj))

and a hold time constraint from vj to vi.

ADB

allocated

0

0
0

No ADB

allocated

(c) Nodes corresponding to an ADB and a

buffer in a constraint graph.

50



b3

b1

b5 b6

b2

b4

s1

Dmax=47.4

tsetup = 1.8

thold = 1.6

Tclk = 50

s5 b7

s2 s3 s4

Ckt1,2

Ckt5,2

time-2

x1=13

x2=11 x3=10 x4=7

Dmin=4.0
time-1
time-3

Ckt4,3

(d) A clock tree T .

v3

v1

v5 v6

v2

v4

v71.2arc-1

0.6arc-2

0

0

0

0
0 0

00

(e) The difference constraint graph G(V,A) for T where each node represents a distinct

buffer in T , and arc-1 and arc-2 correspond to the time-1 and time-2 in (b), respectively. The

weight (= 1.2) on arc-1 indicates the value of thold −Dmin(Ckt4,3) − (x4 − x3) (i.e., the

right term in Equation (5.5)). If there are multiple arcs with the same direction between two

nodes, we select the arc with the largest weight and remove the others.

Figure 5.3: Derivation of a time difference constraint graph from a clock tree T .

51



• xi (xj) denotes the clock signal arrival time at sink si (sj) in a clock tree with

no ADBs, and Ckti,j represents the datapath that connects si and sj . (An illus-

tration is in Figure 5.3(a).) Dmax(Ckti,j) and Dmin(Ckti,j) denote the maxi-

mum and minimum delays from the output of si to the input of sj through cir-

cuit Ckti,j , respectively. Note that xi, xj , Dmax(Ckti,j), Dmin(Ckti,j), tsetup,

thold, and Tclk will change their values depending on the power modes used. For

simplification, it is assumed that the values implicitly vary in different power

modes.

Let Tclk be the clock period, and tsetup and thold indicate the setup and hold times

of a sink, respectively. Then, the setup and hold time constraints at sj directly driven

from si in a power mode can be expressed as:

xj − xi ≥ Dmax(Ckti,j) + tsetup − Tclk, (5.2)

xi − xj ≥ thold −Dmin(Ckti,j). (5.3)

Setup time constraint disallows zero-clocking at sinks caused by overly long data prop-

agation in the datapath while the hold time constraint avoids double-clocking caused

by fast data propagation.

When we name nodes corresponding to β(si) and β(sj) as vi and vj , δi and δj

are respectively the amounts of the increase of signal arrival times at si and sj result-

ing from an allocation of ADB(s) to the clock tree. Thus, the updated signal arrival

times become x′i = xi + δi and x′j = xj + δj . Accordingly, the time constraints in

Equation (5.2) and Equation (5.3) are updated as:

δj − δi ≥ Dmax(Ckti,j) + tsetup + (xi − xj)− Tclk, (5.4)

δi − δj ≥ thold −Dmin(Ckti,j)− (xi − xj). (5.5)

By the definition of δ, for two nodes vi and vp in a clock tree such that vi is a child of

vp, δi ≥ δp. Furthermore, δi = δp if vi does not use ADB for delay adjustment.

52



Our aim is to minimally allocate ADBs to the internal nodes of clock tree, thereby

controlling the arrival times, so that all the setup and hold time constraints (e.g., Equa-

tion (5.4) and Equation (5.5)) in the circuit should be satisfied.

Definition 4. The difference constraint graph G(V,A) for an input clock tree T is

constructed as follows.

• A node vi ∈ V is created for each buffer node Bi in T and |V | amounts to the

total number of buffer nodes in T . Thus, in the following description, we use

notation vi to indicate either a node in T or the corresponding node in G(V,A)

if it does not cause a confusion.

• For a setup time constraint at sj from si, there exists an arc vi → vj ∈ A such

that vi and vj correspond to β(si) and β(sj) in T , respectively. The value of arc

weight, denoted byw(vi → vj), is set toDmax(Ckti,j)+tsetup+(xi−xj)−Tclk,

which is the right term in Equation (5.4). (See Figure 5.3(b).)

• For a hold time constraint at sj from si, there exists an arc vj → vi ∈ A such

that vi and vj correspond to β(si) and β(sj) in T , respectively. The value of arc

weight w(vj → vi) is set to thold − Dmin(Ckti,j) − (xi − xj), which is the

right term in Equation (5.5). The arc direction is reversed as opposed to that in

the setup time constraint. (See Figure 5.3(b).)

• For a node vi and its parent vj in an initial clock tree T , there exist two arcs

vi → vj and vj → vi, each of which has a weight of 0. We will use the two arcs

to impose the constraints δj − δi ≤ 0 and δi − δj ≤ 0, namely δi = δj in T .

• Later on, if an ADB is allocated to vi, the constraint δi ≤ δj (= δi − δj ≤ 0)

does not hold any more. Thus, only the downward arc vj → vi will be retained

to impose the constraint δj ≤ δi (= δj − δi ≤ 0). For example, Figure 5.3(c)

shows the change of arcs on vi when an ADB is allocated to vi and no ADB is

allocated to vi, respectively.

53



An arc e ∈ A, say vi → vj , created by a setup or hold time constraint is called

a constraint arc. We use notations f(e) and r(e) denote vi and vj , respectively, and

w(e) the arc weight of e.

Figure 5.3(e) shows the difference constraint graph G(V,A) for the clock tree in

Figure 5.3(d). For example, for the setup time constraint at s2 from s1 in Figure 5.3(d),

an arc from v2, corresponding to β(s1) = b2 in Figure 5.3(d), to v7, correspond-

ing to β(s2) = b7 in Figure 5.3(d), is created in Figure 5.3(e). The arc weight is

Dmax(Ckti,j) + tsetup + (xi − xj) − Tclk = 47.4 + 1.8 + (13 − 11) − 50 = 1.2.

On the other hand, for the hold time constraint at s3 from s4 in Figure 5.3(b), an arc

from v5, corresponding to β(s3) = b5, to v6, corresponding to β(s4) = b6, is created.

The arc weight is thold −Dmin(Ckti,j) − (xi − xj) = 1.6 − 4.0 − (7 − 10) = 0.6.

We can see that every non-root node with no ADB has two connecting arcs, one from

the node to its parent i.e., the upward arc and the other from its parent to the node i.e.,

the downward arc, while every non-root node with ADB does have the downward arc

only.

5.3 ADB Allocation Algorithm Utilizing Useful Skew

This section proposes a solution to the ADB allocation problem under useful skew

scheduling. Given an initial buffered clock tree T , power modes m1, m2, · · ·, mK ,

clock signal arrival time to each sink in T on every power mode, together with the

values of Tclk, tsetup and thold of sinks, and Dmax and Dmin values of the datapaths

between sinks, the algorithm finds a subset of buffers in T to be replaced by ADBs

and assign delay values to the ADBs for every power mode such that the number of

ADBs used is minimized while the setup and hold time constraints are satisfied for all

power modes.

We have the following properties for the difference constraint graph. The proofs of

the properties are provided in Section 5.5.

54



Lemma 2. Let G be the difference constraint graph constructed by ADB-UCP for a

clock tree T with an ADB allocation instance I . Then, G contains no positive weight

cycle if and only if there exists a delay assignment to the ADBs in I that meets all the

setup and hold time constraints.

Lemma 2 and the fact that an allocation of ADB to a node in T removes its upward

arc in G suggest that the problem can be solved by minimally allocating ADBs to the

nodes in T in a way that the resultant G has no positive weight cycle.

Theorem 3. Any instance of useful skew scheduling problem can be transformed into

the instance of problem of removing a minimum number of upward arcs from the con-

straint graph of the input clock tree. In addition, the starting node of every upward arc,

say vi → vp, removed is the location where an ADB is allocated, and its delay value

of ADB in vp can be set to δi − δp.

Based on Theorem 3, we propose an ADB allocation algorithm, called ADB-UCP,

to solve the problem. ADB-UCP performs the following four steps: (Step 1) generat-

ing a difference constraint graph G(V,A) of an input clock tree T ; (Step 2) extracting

positive weight cycles in G; (Step 3) finding a minimum number of upward arcs in G

that cut all the cycles extracted in Step 2; (Step 4) removing the upward arcs found in

Step 3 (replacing the corresponding buffers with ADBs) and determining their delay

increments.

(Step 1) Derivation of difference constraint graph from T : Difference constraint

graph G(V,A) introduced in Section 5.2 provides the time relation in a way that each

node in V represents a distinct buffer in T and each arc in A imposes a time con-

straint. The derivation of difference constraint graph follows the steps in Definition 4.

Figure 5.4(a) shows an example of G with two power modes mode-1 and mode-2. For

example, +2/−1 indicate that its arc weight in mode-1 is +2 and −1 in mode-2.

ADB-UCP completes G by abstracting multiple arcs into a single representative

arc. Multiple arcs whose sources as well as destinations are identical, but with different

55



arc weights are abstracted into a single one and the arc weight is set to the largest one.

For example, two arcs with weight of +3/−2 and−1/−1 is abstracted to an arc having

weight of max(+3,−1)/max(−2,−1) = +3/−1 The rationale for the selection of

the largest weight is that its time relation is the tightest, meaning that in the course of

ADB allocation trials, the time relation on each arc that were removed can never be

tighter than that of the arc with the largest weight we chosen.

(Step 2) Extracting positive weight cycles from G: By Lemma 2, ADB-UCP finds

all positive cycles2 of each mode in G. We devise a very efficient graph traversal

algorithm that is suited for a fast cycle enumeration, specialized in the context of our

problem while ensuring the exhaustiveness. The details are presented in Section 5.4.1.

On the other hand, if a positive cycle without any upward arcs (i.e., composed of only

downward arcs and constraint arcs) exists, the timing constraints cannot be met even

when all buffers are replaced with ADBs. In this case, ADB-UCP reports that problem

is unsolvable and stops. Otherwise, ADB-UCP moves on Step 3.

(Step 3) Finding a minimal set of upward arcs covering all positive cycles: For

a set C of all positive cycles obtained in Step 2, we are required to find a set R of

upward arcs in G to resolve all time violations such that (i) for each ci ∈ C, there is an

upward arc ej ∈ R in ci and (ii) |R| is minimum. Our ADB-UCP solves the problem

by transforming it into the unate covering problem (UCP).

The UCP [39] is, given a matrix M of m rows and n columns, for which Mi,j

is either 0 or 1, the problem of finding a minimum cardinality column subset U that

satisfies

∃j∈UMi,j = 1,∀i ∈ {1, · · · ,m}. (5.6)

2Our algorithm cuts all positive cycles, but finding a minimal number of cut points could be very

expensive for large graphs. In practice, the algorithm repeatedly finds a set of limited number of positive

cycles and cuts them until there is no positive cycle in the graph. We use a control parameter limit to set

the upper bound of positive cycles. If limit = ∞, simply one iteration is performed, and guarantees the

optimality. The details of the iterative strategy is described in Section 5.4.1.

56



Positive cycles in mode-1

   cyc-1: v9�v10�v5�v2�v4�v9

   cyc-2: v11�v12�v6�v3�v1�v2�v5�v11

   cyc-3: v14�v13�v6�v3�v7�v14

   cyc-4: v9�v10�v5�v11�v12�v6�v3�v1�v2�v4�v9

   cyc-5: v9�v10�v5�v11�v12�v6�v13�v14�v7�v3�v1�v2�v4�v9

Positive cycles in mode-2

   cyc-6: v11�v12�v6�v3�v1�v2�v5�v11

 

v3

v1

v6 v7

v2

v4 v5

+2/-1 +3/+2 -4/-3

-3/-5 -5/-3 +3/-2

v8 v9 v10 v11 v12 v13 v14 v15

cyc-5 (mode-1)

(weight = (+2) + (+3) + (-4) = 1)

cyc-6 (mode-2)

(weight = +2)

: upward arcs

(a) The extraction of all positive cycles with upward arcs in Step 2.

57



            v1 v2 v3 v4 v5 v7 v8 v9 v11 v12 v13 v14 v15
cyc-1

cyc-2

cyc-3

cyc-4

cyc-5

cyc-6

                         ×           

                  ×                      ×

                                                ×

                  ×                      ×

                  ×        ×            ×        ×

                  ×                      ×

(b) The construction of constraint matrix for (a) and the UCP solution

in Step 3.

0/0

0/0

3/2 0/0

0/0

0/0 0/0

+2/-1 +3/+2 -4/-3

-3/-5 -5/-3 +3/-2

0/0 0/0 2/0 0/0 3/2 3/2 0/0 0/0

longest path

(mode-1) (l=2)

l=0

 

(c) The ADB insertion and delay assignment for (b) in Step 4.

Figure 5.4: An example illustrating the steps of ADB-UCP.

58



That is, the columns in the set U cover M in the sense that every row of M contains

an 1-entry in at least one of the columns of U , and there is no smaller set which also

covers M . The matrix M is called constraint matrix.

Thus, our transformation into UCP is to construct a constraint matrix by letting

columns with all upward arcs in G, rows with all positive cycles in G, and Mi,j = 1 if

the arc in the jth column is an arc of the cycle in the ith row, and Mi,j = 0, otherwise.

For example, Figure 5.4(b) shows the constraint matrix of G in Figure 5.4(a), in which

the matrix has six rows, one for each cycle extracted in G, and fifteen columns, one

for each upward arcs in G. (Since every upward arc uniquely matches the tree node,

we will denote the upward arcs with the name of nodes from which the upward arc

originates.) The columns (i.e., v6 and v10) enclosed by the boxes indicate the minimal

buffer locations for ADB replacement. The two bold circles in Figure 5.4(c) indicate

ADB replacement of the two buffers b6 and b10 in v6 and v10.

(Step 4) Computing delay increments of ADBs: We can use the following Lemma

to assign delay increments of ADBs.

Lemma 3. If the value of δi of node vi in the constraint graph G produced in Step 3

of ADB-UCP is set to the length of the longest path from the root to vi, all the timing

violations in G can be resolved.

Once the locations in G for ADB placement are determined in Step 3, ADB-UCP

assigns value of delay increment to every ADB for each power mode. The value as-

signment is performed in two sub-steps:

4.1 (Remove arcs originating from ADB nodes in G): Recall that the zero weight on

two arcs between a node vi and its parent vj inG is used to constrain δj−δi ≥ 0

and δj − δi ≤ 0, i.e., δj = δi when no ADB is placed on vi. If an ADB is placed

on vi, δj−δi ≥ 0 will not hold any more. Thus, ADB-UCP removes the upward

arc originating from each node in G with ADB.

59



4.2 (Find the longest path from the clock source to every node in G): ADB-UCP

computes, for every node vi in G, the length of longest path from clock source

to vi and set the computed value to δi. Thus, according to Lemma 3, if an ADB

allocated at vi is assigned with delay increment of δi− δp where vp is the parent

of vi, all time violations associated with vi will be resolved. ADB-UCP applies

the Bellman-Ford algorithm [40] to find, for each power mode, the longest path

length to every node in G and compute the delay increments of the nodes with

ADB. (Note that since Step 4.1 completely cleans all positive cycles out fromG,

the problem of finding a longest path in G can be transformed into the problem

of finding a shortest path by multiplying every arc weight in G by −1.)

5.4 Extensions

5.4.1 Acceleration for Extracting Positive Cycles in G

ADB-UCP significantly reduces the number of positive cycles to be extracted from

G, thereby reducing the total time of cycle extraction as well as the number of rows

in the constraint matrix M , by utilizing dominance relation (in Definition 5) among

cycles while maintaining the optimality of ADB-UCP.

Definition 5. A positive cycle cyc-1 in a constraint graph G is said to be dominating

a positive cycle cyc-2 in G if every upward arc in cyc-1 is also an upward arc in cyc-2.

ADB-UCP is interested in extracting a cycle set that at least one of its elements

dominates any positive cycle in the graph, since a set of upward arcs that covers all

cycles in the set also covers their dominated cycles, in other words, all positive cycles.

Because we will convert the problem to UCP, extracting only essential elements from

the set of all positive cycles is crucial for reducing runtime and memory consumption.

We call such sets dominating cycle sets, and propose an efficient method that finds a

dominating cycles set.

60



The key player in the procedure is a function EXPANDABLECONSTARCS(cycle)

which returns every arc eK+1 when cycle cycle is cyc(e1, · · · , eK) and a constraint

arc eK+1 satisfies the following five conditions. Note that cyc(e1, · · · , eN ) denotes a

shortest cycle passing constraint arcs from e1 to eN . For example, in Figure 5.4, cyc-5

is cyc(v9 → v10, v11 → v12, v13 → v14). On the other hand, path(e1, · · · , eN ) de-

notes a shortest path passing constraint arcs from e1 to eN . The difference between

cyc(e1, · · · , eN ) and path(e1, · · · , eN ) is that cyc(e1, · · · , eN ) includes the shortest

path from r(eN ) to f(e1) in addition to path(e1, · · · , eN ) where f(e) and r(e) repre-

sent the starting and ending nodes of arc e in G, respectively. The conditions every arc

eK+1 in EXPANDABLECONSTARCS(cyc(e1, · · · , eK)) should satisfy are:

(1) w(cycle) + w(eK+1) > 0,

(2) l(NCA(f(e1), r(eK))) < l(NCA(r(eK), f(eK+1))),

(3) l(NCA(f(eK+1), r(eK+1))) < l(NCA(r(eK), f(eK+1))) or w(eK+1) > 0,

(4) path(e1, · · · , eK+1) is an elementary path,

(5) A path exist (upward arcs were not covered) from r(eK) to f(eK+1),

where l(vi) represents the level, which is the distance from root, of buffer Bi in the

clock tree corresponding to G, and NCA(vi, vj) is the nearest common ancestor of vi

and vj in G. (Refer to Definition 4 to check other notations.)

Figure 5.5 shows our cycle search algorithm that extracts all positive cycles. The

condition checking in the dotted box indicates the control of the upper limit of the

number of cycles to be used as an input to one-time application of UCP solver, which

should be set to an infinite number for the optimal solution. Parameter limit will be

adjusted to finite number in Section 5.4.2, to efficiently handle runtime problem.

An example of dominating cycle set extraction is shown in Figure 5.6, in which

a queue (Q) data structure is used to incrementally generate (i.e., expand) positive

cycles, starting from the smallest cycles to the largest.

Theorem 4. The cycle search algorithm in ADB-UCP that uses function

EXPANDABLECONSTARCS() guarantees to extract a cycle set that dominates all the

61



Clock tree T,

time information

  

 

Queue={}?

For each positive arc e in T,

Push(Queue, cyc(e))

|S|>limit?

If cycle is not covered && elementary,

S � S U {cycle}

 

 

Yes
Return S

No

Yes

No

cycle � Pop(Queue);

 

 

Queue = {};

S={}

For each e   N,

Push(Queue, cyc(cycle, e))

N � ExpandableConstArcs(cycle)

 

Figure 5.5: Flow diagram of incrementally generating a dominating cycle set S.

62



e1:+2/-3 e2:+3/-2 e3:-4/+1

e4:-3/-5 e5:-5/-3 e6:+3/-2

v8 v9 v10 v11 v12 v13 v14 v15

v3

v1

v6 v7

v2

v4 v5

( )

(a) Given constraints. cyc(e1, e2) means the smallest cycle which contains

e1 and e2 in the written order, as shown with dotted line.

(mode-1)

S

Q cyc(e1), cyc(e2), cyc(e6)

ExpandableConstArcs()
{e2}

Pop(Q)

cyc(e1)

Push

Push all

{cyc(e1,e2)}

(b) Extraction procedure in mode-1. Pop a cycle cyc(e1) from Q, push

cycle cyc(e1, ei) (ei ∈ EXPANDABLECONSTARCS(cyc(e1))) to Q, and

push cyc(e1) to S.

63



S

Q cyc(e2), cyc(e6), cyc(e1,e2)

ExpandableConstArcs()
{}

Pop(Q)

cyc(e2)

Push

Push all

{}

cyc(e1)

S

Q cyc(e6), cyc(e1,e2)

cyc(e1), cyc(e2)

S

Q cyc(e1,e2)

cyc(e1), cyc(e2), cyc(e6)

S

Q cyc(e1,e2,e3)

cyc(e1), cyc(e2), cyc(e6), cyc(e1,e2)

S

Q

cyc(e1), cyc(e2), cyc(e6), cyc(e1,e2), cyc(e1,e2,e3)

(c) Repeat until Q = {}.

A dominating cycle set of all positive cycles :

  (mode-1): cyc(e1), cyc(e2), cyc(e6), cyc(e1,e2), cyc(e1,e2,e3)

  (mode-2): cyc(e2)

(d) Repeat the extraction process for mode-2. The final cycle set will

cover all positive cycles.

Figure 5.6: An example of systematic extraction of a dominating cycle set.

64



positive cycles in G.

The runtime for ADB allocation is significantly improved by devising an efficient

graph traversal technique for positive cycle extraction. For example, our algorithm

uses 81 seconds for benchmark S38417 while the prior LP based method spends 2322

seconds for the same circuit. Another merit is that our algorithm is able to explore

design space to trade off between the number of ADBs allocated and the amount of

time violations. This is possible due to the fast runtime and the easy evaluation of

intermediate results in our graph formulation with incremental manipulation of ADB

allocations.

5.4.2 Handling Scalability Problem

Even though our proposed method in Section 5.4.1 is able to accelerate the process of

extracting all positive cycles, as the problem size increases, the method would suffer

from the long computation time. As an alternative viable solution for coping with

the runtime problem, we employ a sequential, greedy divide-and-conquer approach

by introducing a control parameter limit in Figure 5.5 to limit the number of positive

cycles to be extracted by ADB-UCP in one step of iteration. Once a subset of positive

cycles is extracted by ADB-UCP, a minimal number of ADBs that cut the cycles are

allocated. Then, the cycle extraction process with the value of limit repeats for the

updated constraint graph. The iteration stops when the resultant constraint graph has

no positive cycle.

This procedure notably reduces the runtime, due to the fact that the problem size

shrinks enormously after each iteration. As can be seen from the dominating positive

cycle set extraction technique in Section 5.4.1, positive cycles share a large portion of

their upward arcs with smaller cycles. Thus, even if the upward arcs cover a limited

number of positive cycles, removing them highly likely eliminates most of the unfound

positive cycles, too.

Note that the result of the modified algorithm is optimal when all the positive cy-

65



cles were removed after only one iteration. In other words, if Bellman-Ford algorithm

does not return error after one execution of UCP, the number of allocated ADBs is

minimal no matter how many positive cycles were exploited. It is due to the property

of UCP that the optimal solution for a subset of constraints cannot be worse than the

solution satisfying the whole original constraints to be covered.

ei eeca∈ExpandableConstArcs
                              (cyc(e1, ..., ei))

e1

...

StrictCover
        (cyc(e1, ..., ei))

Lowest

NCA

NCA(r(ei), f(eeca1))

r(ei) f(eeca1
)f(eeca2

)

Figure 5.7: Finding a set of upward arcs who covers all positive cycles that can be

found by expanding cyc(e1, · · · , ei). The set is marked with bold lines.

With the proper limit value, the algorithm usually runs within acceptable time.

However, to constrain the runtime more strictly, i.e., limit the number of iteration,

another technique can be additionally used. The key idea of this method is to mod-

ify the input of UCP at the last iteration to ensure that the output of UCP covers

all positive cycles, even the undiscovered ones, at the expense of optimality. Fig-

ure 5.7 shows an intuitive example of extracting the upward arc set that covers all

positive cycles that can be found by expanding cyc(e1, · · · , ei). The set is generated

by joining the upward arc sets on two different paths, a subpath of the original cy-

cle from f(e1) to r(ei), and the one from r(ei) to the lowest NCA(r(ei), f(eeca))

66



where eeca ∈ EXPANDABLECONSTARCS(cyc(e1, · · · , ei)). The newly generated set

dominates all cycles that can be generated from cyc(e1, · · · , ei). The overall flow of

dominating cycle set generation with the iteration count limitation is presented in Fig-

ure 5.8. (STRICTCOVER(cyc) is a function that returns a set of upward arcs which

dominates all positive cycles that can be found by adding more constraint arcs on cyc,

as described in Figure 5.7.)

5.4.3 Supporting Discrete ADB Delay

Practically, the delay increment of ADBs is not continuous and the delay increment

discrete values may vary depending on the power modes applied. For example, let

us assume that an ADB on node vi in a clock tree can only have delay increments

of {αi,m,1, αi,m,2, · · · , αi,m,B} where αi,m,k indicates k-th smallest delay increment

value which the ADB can have. Then, our ADB allocation solution can be extended

to solve such ADB allocation problem with the delay increments by repeatedly quan-

tizing delays for each mode and adding ADBs until all timing violations are resolved.

Here, the key procedure is to quantize delay values which non-seriously change the

δ value of each sink. We use a bottom-up traversal strategy to find the best legal de-

lay value for a node, and readjust ADB delay values of its subtree. It utilizes function

DELAYCEIL(α, i,m), which returns the smallest delay increment value of an ADB

located on vi in power mode m and is larger or equal to α.

Our quantization procedure is illustrated in Figure 5.9. We assume the set of α val-

ues available to use is {1, 2, 3} for every node and power mode for convenience. (Our

algorithm is still valid for arbitrary values.) In addition, since the procedure repeats

every power mode, we simply omit the power mode denotation m. ∆i represents the

‘error’ caused by the delay quantization. For example, ∆5, which was 1 − 0.6 = 0.4

before the application of function READJUST in Figure 5.9, is updated to -0.6 after

READJUST updates α values. The completion of the quantization produces a clock

tree with legal ADBs, satisfying almost all timing constraints in most cases. If there is

67



Clock tree T,

time information

  

 

Queue={}?

For each positive arc e in T,

Push(Queue, cyc(e))

SearchTime>limit?

S � S U {cycle};

N � ExpandableConstArcs(cycle)

 

Yes
Return S

No

Yes

No

cycle � Pop(Queue)

 

Queue = {};

S={}

cycle' � StrictCover(cycle);

S � S U {cycle'}

For each e   N,

Push(Queue, cyc(cycle, e))

Figure 5.8: Flow diagram of incrementally generating a dominating cycle set with the

hard constraint on the number of iteration.

68



v1

v2 v3

v4 v5 v6 v7 v8

(+0.4)

(+1.9)

(+0.6) (+0.7) (+1.3)

 

: ADBs

: Delay increment �

    (before quantization)

(+value)

(a) ADBs are allocated according to the application of ADB-UCP.

+1(0.4)

 

: Visited ADBs

: Delay increment α

    (after quantization)

: � value of the node
v1

v2 v3

v4 v5 v6 v7 v8

(+0.4)

(+1.9)

+1(0.3) +2

 

 

α5 = DelayCeil(0.6 - min(none))

 = DelayCeil(0.6 - 0) = 1

�5 = 1 - 0.6 = 0.4

� Readjust(v5, 0.4) is called,

      but nothing happens

 

+value

 

 

(value)

(b) Delay values of v5, v6, and v7 are quantized, and their ∆ values are updated accord-

ingly.

69



+2 (0.1)

v1

v2 v3

v4 v5 v6 v7 v8

(+0.4)

 

α2 = DelayCeil(1.9 - min(0, 0.4))=2

�2 = 2 - 1.9 = 0.1

� Readjust(v2, 0.1) is called,

      but nothing happens

 

+1 (0.4) +1 (0.3) +2 (0.7)

(c) Delay value of v2 is quantized.

function Readjust(ni, �)

    prev_�i � �i

    �
i
� DelayCeil(�i- �)

    �i � �
i
- (prev_�i - �i)

    � � � - (prev_�i - �i)

    for every child nk of ni do

    Readjust(nk, � + �k)

    end for

end function

 

v1

v2 v3

v4 v5 v6 v7 v8

+1 (0.6)

+2 (0.1)

+1 (0.3) +2 (0.7)+1 (0.4)

→ +0 (-0.6)

(d) Delay value of v1 is quantized, and function READJUST updates the delay increment

value of v5.

Figure 5.9: An example of delay quantization procedure under arbitrarily given delay

increment values.

70



still a timing violation, we recalculate the constraint edge weights using the new clock

arrival time and repeat the procedure, in which the set of available α values is updated

to {max(0, αi,m,k − αi) : 1 ≤ k ≤ B} for each node ni that has previously been

allocated with an ADB.

5.4.4 Supporting Bounded ADB Delay

Because of the area restriction on ADB cells, ADB’s adjustable delay range is bounded

from 0 to a certain number, say γni,m, i.e., 0 ≤ αni,m ≤ γni,m. To support this,

ADB-UCP updates the constraint matrix M by replacing the every row to the newly

generated rows with the purpose of enabling UCP solver to produce a cover such that

the resulting delay increments of ADBs are all within the value of γ.

The algorithm is modified as follows. For a set of upward arcs Ci in a positive

cycle, find every combination of upward arcs in Ci whose total γ does not exceed the

weight of the original cycle. Then, generate constraint matrix rows consisted with sets

Ci \ Si,j for each combination j and replace the row corresponding to Ci with the

newly generated rows Note that if Si,x is a subset of Si,y, the constraint matrix do

not have to include Ci \ Si,x because its existence does not affect the final result. In

addition, in Step 4, for each node vi found for ADB replacement, weight of the upward

arc from vi is set to −γi,m instead of removing the arc.

For example, Figure 5.10(a) shows a cycle cyc-i of w(cyc-i) = +8 with upward

arcs starting from v1, v2, v3 and v4. Let us assume γ1 = 4, γ2 = 3, γ3 = 9, γ4 =

6. Then, {{v1}, {v2}, {v4}, {v1, v2}} are the set of combinations whose total sum is

smaller than 8. Because {v1} and {v2} are subsets of {v1, v2}, replacing the original

row with two sets {v1, v2, v3, v4} \ {v1, v2} = {v3, v4} and {v1, v2, v3, v4} \ {v4} =

{v1, v2, v3} is enough.

Figure 5.10(b) shows the original and newly generated constraint matrix in which

the row of cyc-i is replaced by two rows labeled cyc-i1, cyc-i2. We can easily check

that the rows cyc-i1 and cyc-i2 all together constrain UCP solver to select the to resolve

71



v1

v2

�4

�3 = 9

�2 = 3

�1 = 4

(a) A positive cycle in G with w = +8 and upward arcs =

{v1, v2, v3, v4}.

×  ×  ×  ×

            v1  v2  v3  v4 ...

   ...               ...

cyc-i1

cyc-i2

   ...               ...

×  ×

×  ×  × 

cyc-i

            v1  v2  v3  v4 ...

   ...               ...

   ...               ...

ADBs have

size limitation

ADBs do not have

size limitation (�=�)

(b) The constraint matrix whose covering solution satisfies the delay

increment bounds. {v3} covers cyc-i1 and cyc-i2.

72



v1

v2

v3

v4

-9

0

0

0

0

δ2 = 0

+8

δ1 = 0

δ3 = 0

δ4 = 0

0

0

(c) The weight of upward arc starting from v3 is set to

−γ3 = −9, instead of being removed.

v1

�3 = δ3 - δ2 = 8 � γ3 (= 9)

+8

v2

v4

�2= δ2 - δ1 = 0

�1= δ1 - δroot = 0

�4= δ4 - δ3 = 0

(d) The resulting delay increments satisfy the size limitation.

Figure 5.10: An example showing how ADBs with range [0, γ] of delay increments are

supported by ADB-UCP.

73



the time violation corresponding to cyc-i with weight of 8 while the delay increments

of resulting ADBs never exceed γ values. In Figure 5.10(c), the final constraint graph

is shown. The longest path from the root to each node corresponds to δ, whose dif-

ference between it and the one of parent node is the α value of ADB, as showin in

Figure 5.10(d).

The key idea of this approach is that (1) the delay upper bound of ADBs can be

constrained using upward arcs whose weight is −γ, and (2) a cycle cannot be non-

positive if the total weight is still positive even after changing the weight of selected

upward arcs from 0 to −γ. We use ADB-UCP-LM to refer to this extended version

of ADB-UCP. Note that ADB-UCP-LM preserves the optimality under the bounded

range of delay increment of ADBs.

5.5 Property Proofs of the Proposed Algorithm

Lemma 2. Let G be the difference constraint graph constructed by ADB-UCP for a

clock tree T with an ADB allocation instance I . Then, G contains no positive weight

cycle if and only if there exists a delay assignment to the ADBs in I that meets all the

setup and hold time constraints.

Proof. δi is defined as the sum of α values from the root to vi, and this can be changed

to a definition of αi which is δi− δp when vp is the parent of vi. Thus, when there does

not exist a solution of α, there cannot exist a solution of δ, and vice versa.

Let us assume that the constraint graph has a positive weight cycle v1 → v2 →

· · · → vn → v1. Then, if we add LHS and RHS of the inequalities δ2 ≥ δ1 + w(v1 →

v2), δ3 ≥ δ2 + w(v2 → v3), · · ·, δ1 ≥ δn + w(vn → v1), we get 0 ≥ 0 + w(v1 →

v2) +w(v2 → v3) + · · ·+w(vn → v1). From the assumption that v1 → v2 → · · · →

vn → v1 is a positive cycle, the RHS of the inequality is positive. Then, the inequality

can not be true, so there can not exist any value of δ that satisfies the condition. Thus,

if the constraint graph has a positive cycle, there does not exist a feasible assignment

74



solution of α with the current ADB allocation.

On the other hand, if the graph does not have any positive cycle, we can get the

value of δ with the longest path length from the root, and we can derive αi by subtract-

ing δp from δi when vp is the parent of vi. The proof that longest path length can be a

solution of δ is provided in Lemma 3.

Theorem 3. Any instance of useful skew scheduling problem can be transformed into

the instance of problem of removing a minimum number of upward arcs from the

constraint graph of the input clock tree. In addition, the starting node of every upward

arc, say vi → vp, removed is the location where an ADB is allocated, and its delay

value of ADB in vp can be set to δi − δp.

Proof. By Lemma 2, keeping away from making positive cycles in the constraint graph

is equal to allocating ADBs to meet all the time constraints. Also, the number of up-

ward arcs is the same as the number of buffers which is not replaced by ADBs. Thus,

maximizing the number of upward arcs while preserving the non-existence of positive

cycles is maximizing the number of buffers not allocated by ADBs while meeting the

time constraints. In other words, minimizing the number of removed upward arcs is

minimizing the number of ADBs used. Also, by Lemma 3, δ values can be determined

from the longest path length from the root, and by the definition of δ, α value can be

calculated as (δi − δp).

Lemma 3. If the value of δi of node vi in the constraint graph G produced in Step 3

of ADB-UCP is set to the length of the longest path from the root to vi, all the timing

violations in G can be resolved.

Proof. Let us assume that there is an inequality which is not satisfied when we assign

the value of longest path length to δ. We will let the unsatisfied inequality δj ≥ δi +

75



w(vi → vj). (Thus, δj < δi + w(vi → vj).) Because there exists an arc from vi to vj ,

there is a path from the root to vj , passing through the longest path from the root to vi

and arc vi → vj . Then the weight of the path is δi + w(vi → vj), which contradicts

the assumption that longest path from the root to vj is δj . Thus, all the inequalities are

satisfied when we assign the δ value with the longest path length.

Theorem 4. The cycle search algorithm in ADB-UCP that uses function

EXPANDABLECONSTARCS() guarantees to extract a cycle set that dominates all the

positive cycles in G.

Proof. To prove this theorem, we need to use Lemma 4.1, 4.2 and Lemma 5. Let N be

the number of constraint arcs in a positive cycle in G. We use induction.

i. For N = 1, we can find all positive cycles with only one constraint arc.

ii. Suppose the theorem is correct forN ≤ m. For a positive cycle withN = m+1,

by Lemma 5, there is a strongly positive path, P , on the cycle. (A definition of

strongly positive path is in Definition 6.) Let e1, e2, · · ·, eN in this order be

the constraint arcs in P . For K = 1, · · · , N , we check if arc eK+1 satisfies

the condition: (a) l(NCA(f(e1), r(eK))) < l(NCA(r(eK), f(eK+1))), (b)

l(NCA(f(eK+1), r(eK+1))) < l(NCA(r(eK), f(eK+1))) or w(eK+1) > 0

If an arc does not satisfy the condition, stop.

Case 1. eK+1 (K < N) is the first arc that does not satisfy the condition and

the unsatisfied condition is (a):

Cycle cyc(e1, · · · , eK) dominates the initially given cycle cyc(e1, · · · , eN )

by Lemma 4.1. Meanwhile, the given search algorithm in ADB-UCP

finds the cycle cyc(e1, · · · , eK). Thus, the algorithm already found the

positive cycle that dominates cyc(e1, · · · , eN ).

76



Case 2. eK+1 (K < N) is the first arc that does not satisfy the condition but (a)

is satisfied (Only (b) is unsatisfied.):

By Lemma 4.2, cycle cyc(e1, · · · , eK , eK+2, · · · , eN ) dominates the given

cycle. Also, because the weight of eK+1 is non-positive, the weight of

cyc(e1, · · · , eK , eK+2, · · · , eN ) is positive. Thus, the algorithm is domi-

nated by a smaller cycle whose dominating cycle is found by the algo-

rithm.

Case 3. Every arc in P satisfies the condition:

The given search algorithm in ADB-UCP finds the cycle cyc(e1, · · · , eN ).

Notations: f(e) and r(e) represent the starting and ending nodes of arc e in G, re-

spectively; l(v) denotes the level of v inG;NCA(v1, v2) denotes the nearest common

ancestor of v1 and v2 in G; an upward arc in G indicates an arc of vi → vj such that

vj is the parent of vi.

If l(vi) < l(vj), vi is closer to the root node than vj does. Because NCA(vi, vj)

is the ancestor of vi, it is always true that l(NCA(vi, vj)) < l(vi).

Lemma 4.1. For cyc(e1, e2, · · · , eN ), which represents a cycle in G that contains

a sequence of constraint arcs e1, e2, · · · , eN in this order and a constraint arc eK

(2 ≤ K ≤ N ) in the cycle, l(NCA(f(e1), r(eK−1))) ≥ l(NCA(r(eK−1), f(eK))),

⇒ cyc(e1, · · · , eK−1) dominates the given cycle.

Proof. The upward arcs of cyc(e1, · · · , eK−1) are divided into the ones in the path

from f(e1) to r(eK−1), and the path from r(eK−1) to f(e1). Any upward arc in the

first set is in the given cycle. Also, any element of the second set also dominates in the

given cycle, becauseNCA(r(eK−1), f(eK)) is the ancestor ofNCA(f(e1), r(eK−1))

from the assumption. Figure 5.11 shows the case. Thus, under the given condition,

cyc(e1, · · · , eK−1) dominates cyc(e1, · · · , eK).

77



f(e1) r(eK-1) r(eN)f(eK)

Figure 5.11: A diagram showing the dominance relationship between cycles,

when l(NCA(f(e1), r(eK−1))) ≥ l(NCA(r(eK−1), f(eK))). The given cycle

cyc(e1, · · · , eN ), marked with (red) dotted line, is dominated by cyc(e1, · · · , eK−1),

which is marked with (blue) dashed line.

Lemma 4.2. l(NCA(f(e1), r(eK−1))) < l(NCA(r(eK−1), f(eK))) and

l(NCA(f(eK), r(eK))) ≥ l(NCA(r(eK−1), f(eK))),

⇒ cyc(e1, · · · , eK−1, eK+1, · · · , eN ) dominates the given cycle.

Proof. The upward arcs of cyc(e1, · · · , eK−1, eK+1, · · · , eN ) are divided into two, the

ones on the path from f(eK+1) to r(eK−1), and the others on the path from r(eK−1) to

NCA(r(eK−1), f(eK+1)). Any upward arc in the first set can cut the given cycle. We

will also prove that (*) every upward arc in the second set cuts the path from r(eK−1)

toNCA(r(eK−1), f(eK)) of the given cycle, by considering three cases shown in Fig-

ure 5.12. By checking the three possible positions NCA(r(eK), f(eK+1)) can have,

we can conclude that the assumption (*) holds for every case. Thus, with the given

condition, cyc(e1, · · · , eK−1, eK+1, · · · , eN ) dominates the given cycle.

Definition 6. A path P in G is called strongly positive if when we perform additions

of arc weights from the starting node of P to the ending node, all intermediate values

produced are positive.

For example, the path marked by arrows in Figure 5.13 is strongly positive because

78



f(e1) r(eK-1) r(eK)f(eK) f(eK+1) r(eN)

(a) NCA(r(eK), f(eK+1)) is located below NCA(f(eK), r(eK)).

f(e1) r(eK-1) r(eK)f(eK) f(eK+1) r(eN)

(b) NCA(r(eK), f(eK+1)) is located between NCA(f(eK), r(eK)) and

NCA(r(eK−1), f(eK)).

f(e1) r(eK-1) r(eK)f(eK) f(eK+1) r(eN)

(c) NCA(r(eK), f(eK+1)) is located above NCA(r(ek−1), f(ek)).

Figure 5.12: Diagrams showing the dominance relationship between cy-

cles, when l(NCA(f(e1), r(eK−1))) < l(NCA(r(eK−1), f(eK))) and

l(NCA(f(eK), r(eK))) ≥ l(NCA(r(eK−1), f(eK))). The given cy-

cle cyc(e1, · · · , eN ), marked with (red) dotted line, is dominated by

cyc(e1, · · · , eK−1, eK+1, · · · , eN ), which marked with (blue) dashed line.

79



-3

-4

12

6

3
-10

-11

9

vi

vk

Figure 5.13: An example of strongly positive path. Every node on the path has positive

distance from the starting node, vi.

9 > 0, (9 + (−3)) > 0, (9 + (−3) + (−4)) > 0, · · ·, and (9 + (−3) + (−4) + · · ·+

(−11)) > 0.

Lemma 5. For every positive cycle in G, it always has a strongly positive path such

that all vertices in the cycle appear in the path.

Proof. A cycle can be decomposed into two types of paths: the maximal length paths

whose individual arc weights are either 0 or negative and the rest of paths. We denote

the former as (−) and the latter as (+). Then a positive cycle in G can be expressed

as (+) → (−) → (+) → · · ·. Let n be the number of patterns of (+) → (−) in the

expression. We prove the lemma by induction.

i. If n = 1, the path from the starting node in (+) to the ending node in (−) is a

strongly positive path.

ii. Suppose the lemma is true for positive cycles with n ≤ N and let us assume a

positive cycle has n = N + 1. Because the cycle has positive total weight, at

least one of the patterns of (+) → (−) has a positive total weight. Thus, we

concatenate the pattern (+) → (−) with the next (+) to the right and replace

them with a new (+). Now, we have a cycle with m number of patterns of

(+) → (−). Since there is a strongly positive path for any positive cycle with

80



n = N by the induction hypothesis, there exists a strongly positive path in the

positive cycle.

5.6 Experimental Results

Our proposed algorithms ADB-UCP, ADB-UCP-Q (supporting ADBs with discrete

delay), ADB-UCP-LM (supporting ADBs with delay upper bound), and the previous

linear programming based algorithm ADB-LP [2] have been implemented in C on a

Linux machine with 8 cores of 3.50 GHz Intel i7 CPU and 16 GB memory. In the

experiments, we used only one core out of the 8 cores. ISCAS’89 benchmarks were

synthesized with Synopsys IC Compiler with 45 nm NanGate Open Cell library [30]

and partitioned into 5 to 8 power domains. Power domains operate in different supply

voltage levels ranging from 0.85 V to 1.05 V. LP problems were solved using GLPK

library, and UCP solver was implemented in C using dominance relationship and Pet-

rick’s method. Table 5.1 shows the number of clock buffers, clock sinks, and timing

constraints of the benchmark along with Tclk used for the experiment.

Table 5.2 shows the number of ADBs allocated, the number of time violations, and

runtime used by ADB-LP [2] and ADB-UCP. ADB-LP repeatedly applies LP solver,

adding one ADB at a time in a greedy manner, to reduce the clock period while meeting

the setup and hold time constraints. Note that the ADB allocation by ADB-LP does

not inherently guarantee complete elimination of hold time violations, while ADB-

UCP and ADB-UCP-Q do. Thus, for meaningful comparison purpose, we used two

versions of our algorithms, the original one and the modified version which ignores

hold time constraints that were violated in ADB-LP.

Table 5.3 includes the allocation results produced by the modified version of ADB-

UCP, which ignores the hold time constraints that were violated in results generated

by ADB-LP. Our algorithm consistently allocates less ADBs than ADB-LP, reducing

81



Table 5.1: Benchmark circuits used in the experiment

Circuit Name #.Clock Bufs #.Clock Sinks #.Timing CSTs

s382 12 21 348

s386 3 6 84

s1196 9 18 46

s1238 8 18 52

s1423 36 74 4256

s1494 2 6 110

s5378 89 163 2868

s13207 186 330 2830

s15850 66 134 1452

s38417 913 1564 74106

s38584 683 1168 21750

s35932 996 1728 9018

82



Table 5.2: Comparison of results produced by ADB-LP [2] that considers useful skew

scheduling, our ADB-UCP without allowing timing violations

Circuit Tclk
ADB-LP [2] ADB-UCP without violation

#.ADBs #.Vio. Runtime #.ADBs #.Vio. Runtime

s382 1378 ps 6 0 0.5 s 6 0 < 0.1 s

s386 1585 ps 2 0 < 0.1 s 2 0 < 0.1 s

s1196 1395 ps 6 0 0.1 s 6 0 < 0.1 s

s1238 1436 ps 7 0 < 0.1 s 6 0 < 0.1 s

s1423 2681 ps 5 1 8.6 s 5 0 < 0.1 s

s1494 2072 ps 2 0 < 0.1 s 2 0 < 0.1 s

s5378 2288 ps 6 114 22.1 s 6 0 < 0.1 s

s13207 1852 ps 3 231 92.2 s 15 0 0.9 s

s15850 1903 ps 10 9 24.7 s 11 0 0.3 s

s38417 3365 ps 6 3528 2322.1 s 24(I)a 0 80.5 s

s38584 2544 ps 10 851 1566.2 s 33 0 9.7 s

s35932 2137 ps 5 583 2162.6 s 34 0 11.8 s

Average (%) 100 100 - 165.5 0 -

a‘I’ means that the solution is a result of iterative algorithm, so its optimality is not guaranteed.

83



Table 5.3: Comparison of results produced by ADB-LP [2] that considers useful skew

scheduling, our ADB-UCP allowing timing violations

Circuit Tclk
ADB-LP [2] ADB-UCP with violation

#.ADBs #.Vio. Runtime #.ADBs #.Vio. Runtime

s382 1378 ps 6 0 0.5 s 6 0 < 0.1 s

s386 1585 ps 2 0 < 0.1 s 2 0 < 0.1 s

s1196 1395 ps 6 0 0.1 s 6 0 < 0.1 s

s1238 1436 ps 7 0 < 0.1 s 6 0 < 0.1 s

s1423 2681 ps 5 1 8.6 s 4 1 < 0.1 s

s1494 2072 ps 2 0 < 0.1 s 2 0 < 0.1 s

s5378 2288 ps 6 114 22.1 s 3 64 < 0.1 s

s13207 1852 ps 3 231 92.2 s 1 226 0.1 s

s15850 1903 ps 10 9 24.7 s 9 9 0.3 s

s38417 3365 ps 6 3528 2322.1 s 6 2134 26.8 s

s38584 2544 ps 10 851 1566.2 s 5 825 3.4 s

s35932 2137 ps 5 583 2162.6 s 4 544 13.9 s

Average (%) 100 100 - 76.7 90.7 -

84



the number by 23.3% on average.

Table 5.4: The number of ADBs allocated by ADB-UCP on ISCAS’89 S38417,

S38584 and S35932 with varying values of limit

Circuit
Number of ADBs

limitl

limits
1000 4000 16000 64000

s38417

(Tclk=3764 ps)

1 24 24 24 24

4 24 24 24 24

16 24 24 24 24

64 24 24 24 24

s38584

(Tclk=2761 ps)

1 33 33 33 33

4 33 33 33 33

16 33 33 33 33

64 33 33 33 33

s35932

(Tclk=2257 ps)

1 36 35 35 34

4 36 35 35 34

16 36 35 35 34

64 36 35 35 34

Table 5.4 and Table 5.5 summarizes the results by ADB-UCP performed with the

change of limit value. limits denotes the number of positive cycles aimed to find in

the first iteration, and limitl is the number used in the subsequent iterations. While the

algorithm allocate the same number of ADBs on S38417 and S38584 no matter what

the value of limit is, more ADBs were allocated on S35932 when the less effort was

imposed. It is shown that limitl does not seriously affect the quality of the solution

but increases the number of iteration and runtime sharply, as shown in Table 5.5. Thus,

85



Table 5.5: Runtime and the number of iterations of ADB-UCP on ISCAS’89 S38417,

S38584 and S35932 with varying values of limit

Circuit
Runtime (sec) / Number of iterations

limitl

limits
1000 4000 16000 64000

s38417

(Tclk=3764 ps)

1 29.1 / 5 31.6 / 3 59.4 / 3 187.5 / 2

4 35.9 / 4 83.0 / 2 110.4 / 2 195.8 / 2

16 32.6 / 3 83.4 / 2 110.4 / 2 196.1 / 2

64 46.4 / 3 83.5 / 2 110.7 / 2 195.4 / 2

s38584

(Tclk=2761 ps)

1 5.8 / 3 6.0 / 1 17.9 / 1 70.2 / 1

4 4.6 / 2 6.0 / 1 17.9 / 1 70.1 / 1

16 4.7 / 2 6.0 / 1 17.9 / 1 70.1 / 1

64 5.8 / 2 6.0 / 1 17.9 / 1 70.1 / 1

s35932

(Tclk=2257 ps)

1 13.5 / 7 8.8 / 2 25.4 / 2 126.1 / 1

4 124.9 / 4 102.1 / 2 138.2 / 2 126.3 / 1

16 127.3 / 4 102.3 / 2 138.1 / 2 126.4 / 1

64 125.5 / 3 102.1 / 2 138.4 / 2 126.2 / 1

86



one guideline is to set limits to a large value and then set limitl to a value, which is

much smaller than limits.

Table 5.6: The number of ADBs allocated by ADB-UCP-Q, under different settings

of quantization resolution

Circuit Tclk ADB-UCP
ADB-UCP-Q (Q: unit of delay increment)

100 ps 200 ps 300 ps 400 ps

S382 1723 ps 0 0 0 0 0

S386 1982 ps 0 0 0 0 0

S1196 1744 ps 3 3 3 3 -

S1238 1795 ps 2 3 4 4 -

S1423 3103 ps 2 2 3 5 9

S1494 2590 ps 0 0 0 0 0

S5378 2586 ps 6 6 8 - -

S13207 2062 ps 15 25 - - -

S15850 2251 ps 4 5 - - -

S38417 3764 ps 24 38 - - -

S38584 2761 ps 33 - - - -

S35932 2257 ps 34 36 - - -

Table 5.6 and Table 5.7 summarizes the results produced by our ADB-UCP,

ADB-UCP-Q and ADB-UCP-LM. The experiments showed that the results of ADB-

UCP-Q and ADB-UCP-LM satisfy the given constraints, quantized delay value and

the size limitation. ADB-UCP-Q uses more ADBs as the delay quantization unit in-

creases, and sometimes cannot produce the result that meets all the constraints and

the delay quantization constraint. The application of ADB-UCP-LM by varying the

upper delay limit (i.e., γ) from 200 ps to 1000 ps gradually reduces the number of

87



Table 5.7: The number of ADBs allocated by ADB-UCP-LM, under different settings

of delay upper limit

Circuit Tclk ADB-UCP
ADB-UCP-LM (γ: upper limit)

200 ps 400 ps 600 ps 800 ps 1000 ps

S382 1723 ps 0 0 0 0 0 0

S386 1982 ps 0 0 0 0 0 0

S1196 1744 ps 3 - 4 3 3 3

S1238 1795 ps 2 - 2 2 2 2

S1423 3103 ps 2 2 2 2 2 2

S1494 2590 ps 0 0 0 0 0 0

S5378 2586 ps 6 8 6 6 6 6

S13207 2062 ps 15 18 15 15 15 15

S15850 2251 ps 4 4 4 4 4 4

S38417 3764 ps 24 34 25 24 24 24

S38584 2761 ps 33 39 33 33 33 33

S35932 2257 ps 34 40 34 34 34 34

88



ADBs allocated. Notation ‘-’ indicates that ADB-UCP-Q or ADB-UCP-LM reports

any of the ADB allocation cannot resolve all the time violation. As the constraints on

available delay increment become tighter, the algorithms fail to find the solution more

frequently.

Figure 5.14 shows layout comparison of the benchmark circuit s15850 for the ini-

tial tree, the result produced by ADB-LP [2], and by ADB-UCP with and without vi-

olation. Blue dots indicate ADBs and red lines indicate time violation. It is confirmed

that the result in Figure 5.14(b) has no timing violations at all, and Figure 5.14(c) has

less timing violations than that of Figure 5.14(a) while using less number of ADBs.

In summary, the comparison confirms a set of results: (1) ADB-UCP never pro-

duces time violation while ADB-LP [2] and the algorithms under clock skew bounds

do; (2) ADB-UCP partially allowing the hold time violations that occur in ADB-

LP reduces the number of ADBs by 23.3% on average over that of ADB-LP; (3)

ADB-UCP runs 30∼460 times faster for large designs than ADB-LP does; (4) ADB-

UCP-Q and ADB-UCP-LM find the solutions which support the ADBs with discrete

delay increment and maximum delay limitation, respectively.

89



(a) The initial violation. (b) ADB allocation result produced by

ADB-LP [2]. (#. ADB= 10)

(c) ADB allocation result produced by

ADB-UCP without violation. (#. ADB=

11)

(d) ADB allocation result produced by

ADB-UCP with violation allowed. (#.

ADB= 9)

Figure 5.14: ADB allocation result on ISCAS’89 S15850 design. Blue dots indicate

ADBs and red lines indicate time violation between sinks.

90



Chapter 6

CONCLUSION

This dissertation presents solutions of adjustable delay buffer (ADB) allocation prob-

lem which is to correct timing violations under varying operating environment, espe-

cially in multiple power mode designs.

The work proposes a polynomial-time optimal algorithm to reduce the area over-

head while ensuring the clock skew bounded by the given constant value, as well as

providing the way of handling practical issues of supporting quantized delay values

and reducing more area by replacing the ADBs with other buffers. From the experi-

mental results on benchmarks, it was shown that our proposed algorithm uses, under

30 ps∼50 ps clock skew bound, 13.5% and 15.8% fewer numbers of ADBs for contin-

uous and discrete ADB delays on average, respectively, compared to the results by the

best known ADB allocation algorithm. In addition, when buffer sizing is integrated,

our algorithm reduces the area of ADBs and buffers by 15.0% and 16.3% for continu-

ous and discrete ADB delays, respectively.

We also suggest a graph based algorithm for solving the ADB allocation problem

effectively under useful clock skew scheduling, along with the acceleration techniques

to enable the trade-off between the runtime and the optimality. The algorithm can be

extended to support quantized delay values of the ADBs or the case ADBs have limita-

tion on maximum delay increment. The experiments with benchmark circuits showed

91



that our algorithm reduces the number of ADBs by 23.3% on average over the results

produced by the conventional ADB allocation under useful clock skew scheduling un-

der the same constraints. In addition, our optimal algorithm runs 30∼460 times faster

than the prior work.

The proposed methods will enable timing correction in multiple power mode de-

sign utilizing ADBs adding small overhead. The theoretical outcomes of this work can

also be applied usefully to the diverse environments, for instance, non-uniform thermal

effect with the dynamically varying clock skew.

92



Bibliography

[1] K.-H. Lim, D. Joo, and T. Kim, “An optimal allocation algorithm of adjustable

delay buffers and practical extensions for clock skew optimization in multiple

power mode designs,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 32, no. 3, pp. 392–405, Mar. 2013.

[2] H.-M. Chou, H. Yu, and S.-C. Chang, “Useful-skew clock optimization for multi-

power mode designs,” in Proceedings of the 2011 IEEE/ACM International Con-

ference on Computer Aided Design, Nov. 2011, pp. 647–650.

[3] N. J. A. Kapoor and S. P. Khatri, “A novel clock distribution and dynamic de-

skewing methodology,” in Proceedings of the 2004 IEEE/ACM International

Conference on Computer Aided Design, Nov. 2004, pp. 626–631.

[4] R. S. Tsay, “Exact zero skew,” in 1991 IEEE International Conference on

Computer-Aided Design Digest of Technical Papers, Nov. 1991, pp. 336–339.

[5] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, and A. B. Kahng, “Zero skew clock routing with

minimum wirelength,” IEEE Transactions on Circuits and Systems II: Analog

and Digital Signal Processing, vol. 39, no. 11, pp. 799–814, Nov. 1992.

[6] M. Edahiro, “A clustering-based optimization algorithm in zero-skew routings,”

in Proceedings of the 30th IEEE/ACM Design Automation Conference, Jun. 1993,

pp. 612–616.

93



[7] A. B. Kahng and C.-W. A. Tsao, “Planar-dme: a single-layer zero-skew clock tree

router,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 15, no. 1, pp. 8–19, Jan. 1996.

[8] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao, “Bounded-skew clock and

steiner routing,” ACM Transactions on Design Automation of Electronic Systems,

vol. 3, no. 3, pp. 341–388, Jul. 1998.

[9] C.-W. A. Tsao and C.-K. Koh, “Ust/dme: a clock tree router for general skew

constraints,” ACM Transactions on Design Automation of Electronic Systems,

vol. 7, no. 3, pp. 359–379, Jul. 2002.

[10] J. Cong, C.-K. Koh, and K.-S. Leung, “Simultaneous buffer and wire sizing for

performance and power optimization,” in Proceedings of the 1996 ACM/IEEE

International Symposium on Low Power Electronics and Design, Aug. 1996, pp.

271–276.

[11] T. Okamoto and J. Cong, “Buffered steiner tree construction with wire sizing

for interconnect layout optimization,” in Proceedings of the 1996 IEEE/ACM

International Conference on Computer Aided Design, Nov. 1996, pp. 44–49.

[12] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion with accurate gate and

interconnect delay computation,” in Proceedings of the 36th IEEE/ACM Design

Automation Conference, Jun. 1999, pp. 479–484.

[13] C. C. N. Chu and D. F. Wong, “An efficient and optimal algorithm for simulta-

neous buffer and wire sizing,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 18, no. 9, pp. 1297–1304, Sep. 1999.

[14] I.-M. Liu, T.-L. Chou, A. Aziz, and D. F. Wong, “Zero-skew clock tree construc-

tion by simultaneous routing, wire sizing and buffer insertion,” in Proceedings

of the 2000 ACM International Symposium on Physical Design, May 2000, pp.

33–38.

94



[15] J.-L. Tsai, T.-H. Chen, and C.-P. Chen, “Zero skew clock-tree optimization with

buffer insertion/sizing and wire sizing,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, no. 4, pp. 565–572, Apr. 2004.

[16] K. Wang, Y. Ran, H. Jiang, and M. Marek-Sadowska, “General skew constrained

clock network sizing based on sequential linear programming,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,

no. 5, pp. 773–782, May 2005.

[17] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young, “Clock gener-

ation and distribution for the first IA-64 microprocessor,” IEEE Journal of Solid-

State Circuits, vol. 35, no. 11, pp. 1545–1552, Nov. 2000.

[18] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos digital

design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, Apr.

1992.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for reduced CPU

energy. Boston, MA: Springer US, 1996, pp. 449–471.

[20] Y.-S. Su, W.-K. Hon, C.-C. Yang, S.-C. Chang, and Y.-J. Chang, “Value assign-

ment of adjustable delay buffers for clock skew minimization in multi-voltage

mode designs,” in Proceedings of the 2009 IEEE/ACM International Conference

on Computer Aided Design, Nov. 2009, pp. 535–538.

[21] ——, “Clock skew minimization in multi-voltage mode designs using adjustable

delay buffers,” IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 29, no. 12, pp. 1921–1930, Dec. 2010.

[22] J. P. Fishburn, “Clock skew optimization,” IEEE Transactions on Computers,

vol. 39, no. 7, pp. 945–951, Jul. 1990.

95



[23] S. Hu and J. Hu, “Unified adaptivity optimization of clock and logic signals,” in

Proceedings of 2007 IEEE/ACM International Conference on Computer-Aided

Design, Nov. 2007, pp. 125–130.

[24] V. Khandelwal and A. Srivastava, “Variability-driven formulation for simulta-

neous gate sizing and postsilicon tunability allocation,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp.

610–620, Apr. 2008.

[25] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi, “A post-silicon clock tim-

ing adjustment using genetic algorithms,” in 2003 Symposium on VLSI Circuits

Digest of Technical Papers, Jun. 2003, pp. 13–16.

[26] J.-L. Tsai and L. Zhang, “Statistical timing analysis driven post-silicon-tunable

clock-tree synthesis,” in Proceedings of the 2005 IEEE/ACM International Con-

ference on Computer Aided Design, Nov. 2005, pp. 575–581.

[27] J. Kim, D. Joo, and T. Kim, “An optimal algorithm of adjustable delay buffer

insertion for solving clock skew variation problem,” in Proceedings of the 50th

IEEE/ACM Design Automation Conference, Jun. 2013, pp. 1–6.

[28] ——, “Optimal utilization of adjustable delay clock buffers for timing correction

in designs with multiple power modes,” Integration, the VLSI journal, vol. 52,

no. Supplement C, pp. 91–101, Jan. 2016.

[29] K.-Y. Lin, H.-T. Lin, and T.-Y. Ho, “An efficient algorithm of adjustable delay

buffer insertion for clock skew minimization in multiple dynamic supply volt-

age designs,” in Proceedings of the 2011 IEEE Asia and South Pacific Design

Automation Conference, Jan. 2011, pp. 825–830.

[30] “Nangate 45nm open cell library,” http://www.nangate.com/.

96



[31] T.-Y. Kim and T. Kim, “Clock tree synthesis for TSV-based 3D IC designs,”

ACM Transactions on Design Automation of Electronic Systems, vol. 16, no. 4,

pp. 48:1–48:21, Oct. 2011.

[32] J. Kim and T. Kim, “Useful clock skew scheduling using adjustable delay buffers

in multi-power mode designs,” in Proceedings of the 2015 IEEE Asia and South

Pacific Design Automation Conference, Jan. 2015, pp. 466–471.

[33] ——, “Adjustable delay buffer allocation under useful clock skew scheduling,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 36, no. 4, pp. 641–654, Apr. 2017.

[34] R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic approach to clock skew

optimization,” in Proceedings of the 1994 IEEE International Symposium on Cir-

cuits and Systems, May 1994, pp. 407–410.

[35] J. G. Xi and W. W.-M. Dai, “Useful-skew clock routing with gate sizing for

low power design,” in Proceedings of the 33rd IEEE/ACM Design Automation

Conference, Jun. 1996, pp. 51–67.

[36] X. Liu, M. C. Papaefthymiou, and E. G. Friedman, “Maximizing performance

by retiming and clock skew scheduling,” in Proceedings of the 36th IEEE/ACM

Design Automation Conference, Jun. 1999, pp. 231–236.

[37] J.-L. Tsai, D. H. Baik, and C.-P. Chen, “A yield improvement methodology using

pre- and post-silicon statistical clock scheduling,” in Proceedings of the 2004

IEEE/ACM International Conference on Computer Aided Design, Nov. 2004, pp.

611–618.

[38] V. Nawale and T. W. Chen, “Optimal useful clock skew scheduling in the pres-

ence of variations using robust ilp formulations,” in Proceedings of the 2006

IEEE/ACM International Conference on Computer Aided Design, Nov. 2006, pp.

27–32.

97



[39] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms.

Boston, MA: Springer US, 1996.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms. Cambridge, MA: MIT Press, 2001.

98



초록

클락의 타이밍은 동기 회로의 성능에 큰 영향을 끼치므로, 클락 분배 네트워크

를최적화하기위해많은합성기술들이제안되어왔다.특히,클락스큐제한조건을

만족시키는 것은 회로를 성공적으로 동작시키기 위해 고려해야 할 중요한 문제 중

하나이다. 한편, 다중 전압 환경에서는 인가 전압에 따라 클락 지연 시간이 계속해

서변화하므로,이를사용하는것은클락타이밍문제를더욱해결하기어렵게하고

있다.가변지연시간버퍼를클락트리에삽입하고그지연시간을조절함으로써이

문제를 해결할 수 있으나, 이는 회로의 면적과 제어에 무시할 수 없는 추가 부담을

발생시킨다.이연구는모드변화에따라클락지연시간이변하는환경인다중전압

모드설계에서가변지연시간버퍼를최소화하는해결방안을제안한다.세부적으

로는, (1) 클락 스큐를 주어진 값 이내로 줄이기 위한 O(n log n) 시간에 동작하는

최적알고리즘과, (2)유용한스큐를얻을수있도록계획하는그래프기반의알고리

즘을 제시한다. 또한 (3) 가변 지연 시간 버퍼가 생성 가능한 지연 시간이 제한되어

있을 때 대응하는 방법이나 다른 버퍼 크기 조절을 통해 가변 지연 시간 버퍼의 수

를더욱줄이는등의실용적인확장방법또한제안하였다.기존알고리즘과의비교

실험에서는 클락 스큐의 크기 제한 조건 하에서, 혹은 유용한 클락 스큐를 사용할

수 있도록 하는 조건 하에서 제안된 알고리즘은 각각 평균적으로 13.5%, 23.3% 더

적은수의가변지연시간버퍼를할당하였다.

주요어:가변지연시간버퍼,클락네트워크디자인,다중전압환경,클락스큐

학번: 2013-20776

99


	1 INTRODUCTION
	1.1 Introduction
	1.2 Contributions of This Dissertation 

	2 BACKGROUND
	2.1 Multiple Power Mode Design
	2.2 Setup Time and Hold Time Constraints
	2.3 Clock Skew Optimization Objectives
	2.4 Adjustable Delay Buffers

	3 TIMING CLOSURE IN MULTIPLE POWER MODE DESIGNS
	3.1 ADB Allocation for Timing Correction
	3.2 Problem Definitions

	4 ADB ALLOCATION UNDER CLOCK SKEW BOUND
	4.1 Related Works and Motivational Examples
	4.2 ADB Allocation Algorithm Satisfying Clock Skew Bound
	4.3 Extensions
	4.3.1 Supporting Discrete ADB Delay
	4.3.2 Integration of Buffer Sizing

	4.4 Optimality Proofs of the Proposed Algorithm
	4.5 Experimental Results

	5 ADB ALLOCATION UNDER USEFUL SKEW
	5.1 Related Works and Motivational Examples
	5.2 Observations
	5.3 ADB Allocation Algorithm Utilizing Useful Skew
	5.4 Extensions
	5.4.1 Acceleration for Extracting Positive Cycles in G
	5.4.2 Handling Scalability Problem
	5.4.3 Supporting Discrete ADB Delay
	5.4.4 Supporting Bounded ADB Delay

	5.5 Property Proofs of the Proposed Algorithm
	5.6 Experimental Results

	6 CONCLUSION
	Abstract (In Korean)


<startpage>13
1 INTRODUCTION 1
 1.1 Introduction 1
 1.2 Contributions of This Dissertation  2
2 BACKGROUND 4
 2.1 Multiple Power Mode Design 4
 2.2 Setup Time and Hold Time Constraints 5
 2.3 Clock Skew Optimization Objectives 8
 2.4 Adjustable Delay Buffers 9
3 TIMING CLOSURE IN MULTIPLE POWER MODE DESIGNS 11
 3.1 ADB Allocation for Timing Correction 11
 3.2 Problem Definitions 12
4 ADB ALLOCATION UNDER CLOCK SKEW BOUND 15
 4.1 Related Works and Motivational Examples 15
 4.2 ADB Allocation Algorithm Satisfying Clock Skew Bound 18
 4.3 Extensions 23
  4.3.1 Supporting Discrete ADB Delay 23
  4.3.2 Integration of Buffer Sizing 25
 4.4 Optimality Proofs of the Proposed Algorithm 27
 4.5 Experimental Results 36
5 ADB ALLOCATION UNDER USEFUL SKEW 44
 5.1 Related Works and Motivational Examples 44
 5.2 Observations 48
 5.3 ADB Allocation Algorithm Utilizing Useful Skew 54
 5.4 Extensions 60
  5.4.1 Acceleration for Extracting Positive Cycles in G 60
  5.4.2 Handling Scalability Problem 65
  5.4.3 Supporting Discrete ADB Delay 67
  5.4.4 Supporting Bounded ADB Delay 71
 5.5 Property Proofs of the Proposed Algorithm 74
 5.6 Experimental Results 81
6 CONCLUSION 91
Abstract (In Korean) 99
</body>

