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Abstract 
 

Human chorionic plate-derived mesenchymal stem cells restore hepatic lipid 

metabolism in a rat model of bile duct ligation 

 

Yun Bin Lee 

Department of Stem Cell Biology 

Seoul National University College of Medicine 

 

In cholestatic liver diseases, impaired bile excretion disrupts lipid homeostasis. We 

investigated changes of lipid metabolism, including mitochondrial β-oxidation, in a 

rat model of bile duct ligation (BDL) in which chorionic plate-derived 

mesenchymal stem cells (CP-MSCs) were transplanted. The concentration of 

serum cholesterol, which was elevated after BDL, was significantly decreased 

following transplantation of CP-MSCs. The expression levels of genes involved in 

intracellular lipid uptake, including long-chain fatty acyl-CoA synthetases and fatty 

acid transport proteins, were decreased in rats after BDL, however, were not 

significantly changed by subsequent CP-MSC transplantation. Carnitine 

palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme in mitochondrial β-

oxidation, was upregulated after BDL and then was downregulated after CP-MSC 

transplantation. CPT1A expression was changed via microRNA-33–a 

posttranscriptional regulator of CPT1A–in a peroxisome proliferator-activated 

receptor α-independent manner. Cellular adenosine triphosphate production–an 
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indicator of mitochondrial function–was reduced after BDL and was restored by 

CP-MSC transplantation. Expression levels of heme oxygenases also were 

significantly affected following BDL and CP-MSC transplantation. Lipid 

metabolism is altered in response to chronic cholestatic liver injury and can be 

restored by CP-MSC transplantation. Our study findings support the therapeutic 

potential of CP-MSCs in cholestatic liver diseases and help understanding 

fundamental mechanism by which CP-MSCs affect energy metabolism. 

 

Key words: Cholestasis, bile duct ligation, CP-MSCs, lipid metabolism, fatty acid 

oxidation, CPT1A, microRNA-33  

Student Number: 2015-30001 
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Introduction 

 

Cholestatic liver injury, which is caused by accumulation of bile acids and lipids, 

comprises a wide spectrum ranging from acute transient hepatitis to cirrhosis with 

portal hypertension [1-3]. The liver controls central processes of lipid metabolism 

including fatty acid synthesis, mitochondrial β-oxidation, and phospholipid 

transport. Impaired bile excretion, caused by biliary obstruction or liver damage, 

disrupts cholesterol and phospholipid metabolism [4]. In a rat model of bile duct 

ligation (BDL), serum levels of very low-density lipoprotein cholesterol, low-

density lipoprotein (LDL) cholesterol are drastically elevated, whereas hepatic lipid 

concentrations are unchanged [5]. However, alterations in mitochondrial function 

in chronic cholestatic liver diseases have not been elucidated. 

Mesenchymal stem cells (MSCs) are multipotent adult stem cells that can 

differentiate into various cell types of the three germ layers (i.e., the ectoderm, 

mesoderm, and endoderm) [6]. The human placenta is an abundant source of MSCs. 

Placenta-derived MSCs (PD-MSCs) which originate from the fetus possess great 

potential for self-renewal, proliferation, and differentiation [7, 8]. We previously 

found that full-term placenta harbors several types of PD-MSCs, including 

chorionic plate-derived MSCs (CP-MSCs), chorionic villi-derived MSCs, and 

Wharton’s jelly-derived MSCs [9]. CP-MSCs are highly capable of differentiating 

into various lineage cells, including hepatocytes. Moreover, CP-MSCs have been 

demonstrated to have anti-inflammatory, anti-fibrotic, and proregenerative 
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properties in the damaged liver [10, 11]. 

We therefore used a BDL rat model of chronic cholestatic liver injury to clarify 

the alterations in hepatic lipid homeostasis–focusing on mitochondrial 

dysfunction–and the impact of CP-MSC transplantation restoring the alterations in 

hepatic lipid metabolism. 
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Materials and Methods 

 

Cell Culture 

Collection of placenta samples for research purposes was approved by the 

Institutional Review Board of CHA Gangnam Medical Center, Seoul, Korea (IRB 

07-18). All participants provided written informed consent prior to sample 

collection. Placentas were obtained from women who were free of any medical, 

obstetrical, or surgical complications and who delivered at term (38±2 gestational 

weeks). CP-MSCs were isolated as described previously [10] and were cultured in 

Dulbecco’s modified Eagle medium/Ham’s F-12 medium (DMEM/F12; Sigma-

Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS; 

Sigma-Aldrich), 1% penicillin/streptomycin (Sigma-Aldrich), 1 µg/mL heparin 

(Sigma-Aldrich), and 25 ng/mL human fibroblast growth factor-4 (hFGF-4; 

Peprotech, Inc., Rocky Hill, NJ, USA) at 37°C in a 5% CO2 incubator containing 

20% O2. 

 

BDL Rat Model and Transplantation of CP-MSCs 

Male 7-week-old Sprague-Dawley rats (Orient Bio Inc., Seongnam, Korea) were 

maintained in an air-conditioned animal facility. The common bile duct was ligated 

under general anesthesia with Avertin (2,2,2-tribromoethanol, Sigma-Aldrich) as 

described previously [12, 13]. One week after BDL, CP-MSCs (2 × 106 cells, 8–10 

passages) were injected intravenously via tail vein in the transplanted group. CP-



4 

 

MSC number was determined based on the previous dose determining experiments 

[10, 14]. Liver tissues and blood samples were collected 1, 2, 3, and 5 weeks post-

transplantation in the transplanted group and 1, 2, 3, and 5 weeks post-BDL in the 

nontransplanted group. The experimental protocols were approved by the 

Institutional Animal Care and Use Committee of CHA University, Seongnam, 

Korea (IACUC-140009). 

 

Histological Analysis 

Liver tissue samples were fixed in 10% formalin, embedded in paraffin, and 

sectioned at 5 µm-thickness. Sections then were stained with hematoxylin and 

eosin and observed under light microscopy at 200× magnification (Axioskop2, Carl 

Zeiss Micro-Imaging, Oberkochen, Germany). 

 

Immunofluorescence Staining 

To analyze the expression of carnitine palmitoyltransferase 1A (CPT1A) in liver 

tissues, 6 µm-thick cryostat sections were incubated with a protein blocking 

solution (Dako, Glostrup, Denmark) for 40 minutes at room temperature. Then, 

mouse anti-CPT1A antibody (1:100, Abcam, Cambridge, MA, USA) was treated, 

and sections were incubated at 4°C overnight. After washing with phosphate-

buffered saline (PBS), samples were incubated with Alexa 488-conjugated 

secondary antibody (1:150, Invitrogen, Carlsbad, CA, USA) for 1 hour at room 

temperature. Sections then were stained with 4’,6-diamidino-2-phenylindole 
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(DAPI) for nuclear counterstaining and were observed under fluorescence 

microscopy 400× magnification (Nikon, Tokyo, Minato, Japan). 

 

Blood Chemistry 

The serum concentrations of total cholesterol, high-density lipoprotein (HDL) 

cholesterol, LDL cholesterol, triglyceride, albumin, total bilirubin, alkaline 

phosphatase (ALP), aspartate transaminase, alanine transaminase, and C-reactive 

protein (CRP) were measured enzymatically by an automated analyzer (Hitachi 

747, Hitachi, Tokyo, Japan). 

  

Fatty Acyl-CoA Synthetase Activity Assay 

Long-chain fatty acyl-CoA synthetase (ACSL) activity was assessed by enzyme-

linked immunosorbant assay (ELISA). Liver tissues were homogenized in cold 

PBS with a glass homogenizer on ice. ACSL activity was measured using Rat Fatty 

Acyl-CoA Synthetase ELISA Kit (Mybiosource, San Diego, CA, USA) in strict 

accordance with the manufacturer's instructions, and detected using a microplate 

reader (Bio Tek, Winooski, VT, USA) at 450 nm. 

 

Quantitative Real-Time Polymerase Chain Reaction 

Rat liver tissues were homogenized and lysed, and total RNA was isolated with 

TRIzol reagent (Invitrogen). Reverse transcription was performed with 500 ng of 

total RNA and Superscript III reverse transcriptase (Invitrogen). Real-time 
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polymerase chain reaction (PCR) was performed with SYBR Green PCR Master 

Mix (Applied Biosystems, Foster City, CA, USA). The cDNA subsequently was 

amplified by PCR using the following thermal conditions: 5 minutes at 95°C, 40 

cycles of 95°C for 5 seconds and 60°C for 30 seconds. The sequences of the 

primers are listed in Table 1. GAPDH or β-actin was used as an internal control for 

normalization. 

 

Isolation and Quantification of MicroRNA-33 

Total RNA was isolated with TRIzol reagent (Invitrogen) and reverse transcribed 

with Mir-X miRNA First-Strand Synthesis Kit (Clontech, Mountain View, CA). 

Then, real-time PCR for microRNA (miR)-33 was performed using the following 

primer: 5′-GTG CAT TGT AGT TGC ATT GCA-3′ (forward). The expression of 

miR-33 was normalized to expression of U6 snRNA expression. 

 

Western Blot Analysis 

Liver tissues were homogenized and lysed on ice with RIPA buffer containing 

protease inhibitor cocktail (Roche, Branchburg, NJ, USA) and phosphatase 

inhibitor (Sigma-Aldrich). Protein lysates were seperated by 8% to 15% sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), transferred to 

polyvinylidene difluoride membranes (Bio-Rad Laboratories, Hercules, CA, USA), 

and then blocked in blocking buffer (0.1% Tween20 and 8% bovine serum albumin 

[BSA] in Tris-buffered saline [TBS]) for 1 hour. Membranes subsequently were 
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incubated with mouse anti-CPT1A (1:1000, Abcam), rabbit anti-peroxisome 

proliferator-activated receptor α (PPARα) (1:1000, Abcam), and rabbit anti-

GAPDH (1:3000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) at 4°C 

overnight. After the reaction, membranes were treated with horseradish peroxidase 

(HRP)-conjugated secondary antibody (anti-rabbit IgG [1:25000, Bio-Rad 

Laboratories] or anti-mouse IgG [1:25000, Bio-Rad Laboratories]) for 1 hour at 

room temperature. The bands were detected using enhanced chemiluminescence 

reagent (Bio-Rad Laboratories). 

 

Adenosine Triphosphate Assay 

Adenosine triphosphate (ATP) concentrations of homogenized liver tissue 

samples were measured using an ATP assay kit (Abcam), according to the 

manufacturer’s instructions and were assessed using a microplate reader (Bio Tek) 

at 570 nm. 

 

Statistical Analysis 

All experiments were conducted in duplicate or triplicate. Data are expressed as 

mean ± standard deviation. Student’s t-tests were performed for group-wise 

comparisons and P < 0.05 was considered statistically significant. Statistical 

analyses were performed using PASW version 22.0 (SPSS Inc., Chicago, IL, USA). 
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Table 1. Primer sequences 

Gene Sequence 

ACSL 1 
forward 5 -AAG CTC TGG AGG ATC TTG GA-3′ 

reverse 5′-GGG TTG CCT GTA GTT CCA CT-3′ 

ACSL 3 
forward 5′-TAA AGG CTG ACG TGG ACA AG-3′ 

reverse 5′-CCT TTG GAA TTC CTG TGG AT-3′ 

ACSL 4 
forward 5′-ATC TCC CAA AGC TGG AAC AC-3′ 

reverse 5′-CTG GTC CCT TAA CGT GTG TG-3′ 

ACSL 5 
forward 5′-TGT AGG GAT TGA GGG AGG AG-3′ 

reverse 5′-CAC AGC AAG TCC TCT TTG GA-3′ 

FATP 1 
forward 5′-CCC TGG ATG AGA GAG TCC AT-3′ 

reverse 5′-GCA GGA GAA ACA CCT GAA CA-3′ 

FATP 2 
forward 5′-CTC TTT CAG CAC ATC TCG GA-3′ 

reverse 5′-CCT CTT CCA TCA GGG TCA CT-3′ 

FATP 3 
forward 5′-CTG GGA CGA GCT AGA GGA AG-3′ 

reverse 5′-GCT GAG GCC AGA GGT CTA AC-3′ 

FATP 4 
forward 5′-CGC TGC TGT TCT CCA AGC TGG-3′ 

reverse 5′-GAT GAA GAC CCG GAT GAA ACG-3′ 

FATP 5 
forward 5′-GAA GGA ACC TGG AAG CTC TG-3′ 

reverse 5′-AGT GTC GAT TTC CGA TTT CC-3′ 

FATP 6 
forward 5′-CAG TAC CAC CAA GCC ATC AC-3′ 

reverse 5′-TGG AAC TGG CTA ATC ACA GC-3′ 

PPARα 
forward 5′-AGC CAT TCT GCG ACA TCA-3′ 

reverse 5′-CGT CTG ACT CGG TCT TCT TG-3′ 

CPT1A 
forward 5′-GCT TCC CCT TAC TGG TTC C-3′ 

reverse 5′-AAC TGG CAG GCA ATG AGA CT-3′ 

HO-1 
forward 5′-TGC ACA TCC GTG CAG AGA AT-3′ 

reverse 5′-CTG GGT TCT GCT TGT TTC GC-3′ 

HO-2 
forward 5′-AGG GCA GCA CAA ACA ACT CA-3′ 

reverse 5′-TCT GGC TCA TTC TGT CCT AC-3′ 

β-actin 
forward 5′-GGG ACC TGA CTG ACT ACC TCA T-3′ 

reverse 5′-ACG TAG CAC AGC TTC TCC TTA AT-3′ 

Gapdh 
forward 5’-TCC CTC AAG ATT GTC AGC AA-3’ 

reverse 5’-AGA TCC ACA ACG GAT ACA TT-3’ 
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Results 

 

CP-MSC Transplantation Ameliorates Inflammation in the BDL Rat Liver 

To assess the effect of transplantation of CP-MSCs on cholestatic liver injury, 

BDL rats were divided into 2 groups: rats in the transplanted group were injected 

with CP-MSCs, and rats in the nontransplanted group were injected with culture 

medium. As shown in Figure 1, we observed infiltration of inflammatory cells 

around bile ducts and bile duct proliferation in portal areas in both nontransplanted 

and transplanted groups 1 week after BDL. Two weeks after BDL, portal areas 

were expanded as a result of extensive bile duct proliferation, concentric periductal 

fibrosis, and disorganization of normal lobular structures in the nontransplanted 

group. Bile duct proliferation was less prominent, and the lobular pattern was 

preserved in the transplanted group compared to the nontransplanted group (Figure 

1). Hepatic steatosis was not observed in control, nontransplanted, or transplanted 

groups. 

 

CP-MSC Transplantation Attenuates BDL-Induced Hypercholesterolemia but 

Does Not Affect Fatty Acid Uptake 

Obstruction of bile excretion induced by BDL results in overflow of biliary 

phospholipids in the circulation [4]. Therefore, we explored the effect of 

transplantation of CP-MSCs on cholesterol metabolism by measuring the 

cholesterol concentrations in serum. Total cholesterol was markedly elevated in the 



10 

 

nontransplanted group 2 weeks after BDL compared to the control group, whereas 

it was significantly reduced in the transplanted group compared to the 

nontransplanted group (P < 0.05; Figure 2(a)). Results similar to those for total 

cholesterol were found for the concentrations of serum LDL cholesterol and 

triglyceride (Figure 2(a)). Increases in serum levels of total bilirubin, ALP, and 

CRP were shown to be attenuated after transplantation of CP-MSCs (P < 0.05; 

Figure 3). 

Because hypercholesterolemia is induced by chronic cholestasis, we 

hypothesized that fatty acid uptake into hepatocytes may be altered in BDL rats. 

ACSLs and fatty acid transport proteins (FATPs) are thought to be essential for the 

intracellular uptake and transport of fatty acids [15, 16]. Therefore, we determined 

the activity of ACSLs and the expression levels of ACSLs and FATPs in rat liver 

tissues. ACSL activity–measured by ELISA–was increased significantly in the 

transplanted group compared to the nontransplanted group (P < 0.05; Figure 2(b)). 

The expression levels of ACSL1, which is highly expressed in the normal liver [17], 

were decreased in BDL rats, however, were not increased significantly by CP-MSC 

transplantation (Figure 2(c)). The expression levels of ACSL4 and ACSL5, which 

are located in rat liver peroxisomes and mitochondria, respectively [18], declined 

drastically after BDL and were not restored by CP-MSC transplantation (Figure 4). 

The expression levels of FATP2 and FATP5, which are expressed in hepatocytes 

[19, 20], were decreased in BDL rats, and were not increased significantly by CP-

MSC transplantation (Figure 2(c) and 5). Collectively, these findings indicate that 
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cholestasis and hypercholesterolemia induced by BDL are ameliorated by CP-MSC 

transplantation. However, transplantation of CP-MSCs does not appear to restore 

processes of fatty acid import into hepatocytes. 

 

CPT1A Expression Is Changed via MiR-33 in BDL Rats 

CPT1A is a rate-limiting enzyme located in the mitochondrial outer membrane 

that catalyzes β-oxidation of free fatty acid [21]. PPARα regulates mitochondrial 

and peroxisomal fatty acid oxidation by controlling downstream genes, such as 

CPT1A [22]. We investigated whether the expression of genes associated with fatty 

acid oxidation are altered in BDL rats and restored by transplantation of CP-MSCs. 

The mRNA levels of PPARα and CPT1A were remarkably decreased after BDL 

(Figure 6(a) and (b)). PPARα mRNA levels were similar in nontransplanted and 

transplanted groups (Figure 6(a)); however, CPT1A mRNA was significantly 

augmented 2 weeks after CP-MSC transplantation (P < 0.05; Figure 6(b)). On the 

contrary, the increased protein expression levels of CPT1A by BDL were reinstated 

to near-control levels 3 and 5 weeks after transplantation of CP-MSCs (P < 0.05; 

Figure 6(c)). These results were confirmed by immunofluorescence staining 

(Figure 6(d)). MiR-33 represses its target genes, which are involved in free fatty 

acid oxidation, such as CPT1A [23]. To evaluate whether miR-33 is a 

posttranscriptional regulator of CPT1A in BDL rat liver, we analyzed expression 

levels of miR-33. As expected, we determined that miR-33 expression was reduced 

in BDL rats and was restored by transplantation of CP-MSCs (Figure 6(e)). Taken 
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together, these results suggest that CPT1A may be regulated posttranscriptionally 

by miR-33 in a PPARα-independent manner. 

 

CP-MSC Transplantation Restores Cellular ATP Production by 

Regulating Heme Oxygenases 

To demonstrate alterations in cellular energy production after BDL, we 

measured ATP levels in BDL rat liver. ATP production was decreased after BDL 

but was augmented 1 week after CP-MSC transplantation (Figure 7(a)). Heme 

oxygenases (HOs) are suggested to be involved in regulating mitochondrial 

function [24]. Therefore, we assessed the expression levels of HOs in liver tissues. 

We determined that HO-1 expression was increased substantially in a time-

dependent manner post-BDL until week 3. However, the augmented expression of 

HO-1 reverted to near-control levels 2 weeks after transplantation of CP-MSCs (P 

< 0.05; Figure 7(b)). The HO-2 expression pattern was inversely related to that of 

HO-1 (Figure 7(c)). These findings implicate that CP-MSC transplantation may 

ameliorate cellular ATP production via alternative expressions of HO-1 and HO-2. 
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Figure 1. Inflammatory response induced by chronic cholestasis and 

effect of CP-MSC transplantation. Histologic analysis with hematoxylin 

and eosin staining (scale bar = 50 μm; original magnification, ×200). CTL, 

control group; NTx, nontransplanted group; Tx, transplanted group.
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Figure 2. Changes in serum lipid profiles and expression levels of genes 

associated with intracellular uptake of fatty acids after BDL and/or CP-MSC 

transplantation. (a) Serum levels of total cholesterol, HDL cholesterol, LDL 

cholesterol, and triglyceride. (b) Activities of ACSL, as measured by ELISA. (c) 

mRNA expression levels of ACSL1 (left) and FATP2 (right). β-actin was used as an 

internal control for normalization. Data are expressed as a fold change related to 
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the control group. *P < 0.05 (compared to the nontransplanted group). CTL, 

control group; NTx, nontransplanted group; Tx, transplanted group.
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Figure 3. The results of blood chemistry. *P < 0.05 (compared to 

nontransplanted group). CTL, control group; NTx, nontransplanted group; Tx, 

transplanted group. 
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Figure 4. mRNA expression levels of ACSLs. β-actin was used as internal control 

for normalization. Data are expressed as a fold change related to the control group. 

*P < 0.05 (compared to nontransplanted group). CTL, control group; NTx, 

nontransplanted group; Tx, transplanted group.
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Figure 5. mRNA expression levels of FATPs. β-actin was used as internal control 

for normalization. Data are expressed as a fold change related to the control group. 

*P < 0.05 (compared to nontransplanted group). CTL, control group; NTx, 

nontransplanted group; Tx, transplanted group.
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Figure 6. Expression of genes associated with fatty acid oxidation after BDL 

and/or CP-MSC transplantation. mRNA expression levels of PPARα (a) and 
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CPT1A (b) by real-time PCR. β-actin was used as an internal control for 

normalization. Data are expressed as a fold change related to the control group. (c) 

Protein expression levels of PPARα and CPT1A. GAPDH was used as a loading 

control and quantification by densitometry of Western blots was normalized to 

GAPDH. Data are expressed as a fold change related to the control group. (d) 

Analysis of CPT1A expression with immunofluorescence staining (scale bar = 200 

μm; original magnification, ×400). Liver tissues, which were collected at 3 weeks 

post-transplantation in the transplanted group and post-BDL in the nontransplanted 

group, were used in immunofluorescence staining. (e) mRNA expression levels of 

miR-33. U6 snRNA was used as an internal control for normalization. *P < 0.05 

(compared to the nontransplanted group). CTL, control group; NTx, 

nontransplanted group; Tx, transplanted group.
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Figure 7. Changes in cellular ATP production and expression levels of HOs 

after BDL and/or CP-MSC transplantation. (a) Analysis of ATP levels in the 

liver tissues by ATP assay. mRNA expression levels of HO-1 (b) and HO-2 (c), 

assessed by real-time PCR. GAPDH was used as an internal control for 

normalization. Data are expressed as a fold change related to the control group. *P 

< 0.05 (compared to the nontransplanted group). CTL, control group; NTx, 

nontransplanted group; Tx, transplanted group. 
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Discussion 

 

In this study, we demonstrated that alterations in lipid metabolism in BDL rats 

might be ameliorated by transplantation of CP-MSCs. Chronic cholestasis, 

resulting from BDL, led to massive inflammation, hypercholesterolemia, and a 

drastic decrease in intracellular fatty acid transport; and these changes were 

partially reverted by CP-MSC transplantation. Regarding mitochondrial β-

oxidation, the expression of CPT1A was changed following BDL and CP-MSC 

transplantation via miR-33, which is known as a posttranscriptional regulator of 

CPT1A, independent of PPARα. Decreased cellular ATP production after BDL, 

which reflects mitochondrial dysfunction, was increased by CP-MSC 

transplantation via regulation of HO-1 and HO-2. 

Stem cell therapy with MSCs has been tried for the treatment of various liver 

diseases, including cirrhosis and hepatic failure, as an alternative to liver 

transplantation. We previously reported that CP-MSCs had anti-inflammatory, anti-

fibrotic, and proregenerative effects in a chronic liver injury model induced by 

carbon tetrachloride (CCl4) [10, 11]. Liver fibrosis and increased expression of 

type I collagen and α-smooth muscle actin in CCl4-treated rats were reduced after 

CP-MSC transplantation, which suggested that CP-MSCs have anti-fibrotic effects 

[10]. Transplantation of CP-MSCs also showed anti-inflammatory effects of 

attenuating leukocyte infiltration and augmenting anti-inflammatory cytokine 

interleukin-10 in liver tissues. In addition, CP-MSC transplantation promoted liver 
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regeneration through activating autophagy [11]. In our present study, improvement 

of survival and anti-fibrotic effect was reconfirmed in a BDL rat model (data not 

shown). Furthermore, we demonstrated a novel effect of CP-MSCs as modulators 

of hepatic lipid metabolism in BDL rats. Alterations in serum cholesterol profiles 

and hepatic fatty acid oxidation, which resulted from BDL, were ameliorated after 

CP-MSC transplantation. Engraftment of transplanted CP-MSCs in the BDL rat 

liver was verified (data not shown). However, the stem cell fate after engraftment 

and the mechanisms underlying the therapeutic effect of CP-MSC transplantation 

on lipid metabolism are still unclear. 

Because bile acids play a key role in lipid and energy homeostasis, alterations in 

lipid metabolism are inevitable in cholestatic liver diseases [4, 5, 25]. De Vriese 

and colleagues reported the results of lipid analysis of BDL rats and identified 

hypercholesterolemia and changes in the serum phospholipid profile, in proportion 

to serum levels of total bilirubin and ALP; however, a decrease in liver fat content 

in BDL rats was also observed [4]. In a more recent study, a high-cholesterol diet 

was not found to cause hepatic steatosis in BDL mice [25]. Our study findings of 

hypercholesterolemia without hepatic steatosis in BDL rats are consistent with 

these previous studies. Also, we demonstrated that intracellular fatty acid transport 

was markedly suppressed after BDL. An absence of hepatic steatosis, despite 

hypercholesterolemia, might be explained by intestinal lipid malabsorption via bile 

acids combined with suppression of fatty acid import into hepatocytes. 

Because the previous studies, which reported the changes in lipid metabolism in 
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cholestatic liver diseases, focused on lipid malabsorption and cholesterol profiles, 

alterations in fatty acid oxidation have not been elucidated so far. Mitochondrial β-

oxidation is a catabolic process that yields acetyl-CoA from long-chain acyl-CoA; 

acetyl-CoA then serves as a substrate in ATP generation [26]. Fatty acids, in the 

form of acyl-CoA, enter mitochondria by CPT1A, a rate-limiting enzyme that 

catalyzes mitochondrial β-oxidation [21]. Moreover, PPARα has been identified as 

an upstream regulator of CPT1A [22]. We demonstrated that protein expression of 

CPT1A was upregulated in BDL rats and was downregulated after CP-MSC 

transplantation, independent of PPARα. In contrast, mRNA expression of CPT1A 

exhibited an opposite pattern to CPT1A protein expression. Therefore, we explored 

the possibility of posttranscriptional regulation of CPT1A and verified that CPT1A 

is changed via alternative expression of miR-33 [23]. Because mitochondrial β-

oxidation is a major source of ATP production in the liver [26], we further analyzed 

ATP production as an estimation of mitochondrial function. We revealed that 

decreased ATP production in BDL rat liver was restored by transplantation of CP-

MSCs. HOs are thought to be mediators by which CP-MSCs correct mitochondrial 

dysfunction. Although HO-1 has been suggested to play a role in regulating 

mitochondrial function [24, 27], further studies are warranted to ascertain whether 

mitochondrial fatty acid oxidation is regulated by HOs. We have failed to 

demonstrate a consistent therapeutic effect on ATP production over time after CP-

MSC transplantation. It may be worthwhile to transplant CP-MSCs repeatedly to 

overcome these limitations and to augment the therapeutic effect. Because 
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mitochondrial dysfunction is not a primary pathophysiologic process in cholestatic 

liver injury, the efficacy of CP-MSC transplantation on lipid metabolism needs to 

be further assessed in a model of nonalcoholic fatty liver disease. Nuclear 

respiratory factors and PPARγ coactivator 1α, which are key factors regulating 

hepatic mitochondrial function [26], are worth of investigation as a mechanism of 

therapeutic effect of CP-MSCs. 

In our present study, we delineated perturbed lipid homeostasis in a model of 

chronic cholestatic liver injury. We demonstrated the therapeutic effect of CP-MSC 

transplantation to ameliorate alterations in lipid metabolism involving 

mitochondrial fatty acid oxidation. These results provide novel insight into the 

mechanisms of stem cell therapy and support the therapeutic potential of CP-MSC 

transplantation in chronic cholestatic liver diseases. 



26 

 

References 

 

[1] M. M. Manos, W. A. Leyden, R. C. Murphy, N. A. Terrault and B. P. Bell, 

"Limitations of conventionally derived chronic liver disease mortality rates: 

Results of a comprehensive assessment," Hepatology, vol. 47, no. 4, pp. 1150-1157, 

2008. 

[2] M. Trauner, P. J. Meier and J. L. Boyer, "Molecular pathogenesis of 

cholestasis," N Engl J Med, vol. 339, no. 17, pp. 1217-1227, 1998. 

[3] K. B. Lee, "Histopathology of a benign bile duct lesion in the liver: 

Morphologic mimicker or precursor of intrahepatic cholangiocarcinoma," Clin Mol 

Hepatol, vol. 22, no. 3, pp. 400-405, 2016. 

[4] S. R. De Vriese, J. L. Savelii, J. P. Poisson et al., "Fat absorption and 

metabolism in bile duct ligated rats," Ann Nutr Metab, vol. 45, no. 5, pp. 209-216, 

2001. 

[5] T. Kamisako and H. Ogawa, "Effect of obstructive jaundice on the regulation of 

hepatic cholesterol metabolism in the rat. Disappearance of abcg5 and abcg8 

mRNA after bile duct ligation," Hepatol Res, vol. 25, no. 2, pp. 99-104, 2003. 

[6] D. J. Prockop, "Marrow stromal cells as stem cells for nonhematopoietic 

tissues," Science, vol. 276, no. 5309, pp. 71-74, 1997. 

[7] Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura and K. Tsuji, 

"Human placenta-derived cells have mesenchymal stem/progenitor cell potential," 

Stem Cells, vol. 22, no. 5, pp. 649-658, 2004. 



27 

 

[8] H. J. Lee, K. E. Cha, S. G. Hwang, J. K. Kim and G. J. Kim, "In vitro screening 

system for hepatotoxicity: comparison of bone-marrow-derived mesenchymal stem 

cells and Placenta-derived stem cells," J Cell Biochem, vol. 112, no. 1, pp. 49-58, 

2011. 

[9] M. J. Kim, K. S. Shin, J. H. Jeon et al., "Human chorionic-plate-derived 

mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a 

comparative analysis of their potential as placenta-derived stem cells," Cell Tissue 

Res, vol. 346, no. 1, pp. 53-64, 2011. 

[10] M. J. Lee, J. Jung, K. H. Na et al., "Anti-fibrotic effect of chorionic plate-

derived mesenchymal stem cells isolated from human placenta in a rat model of 

CCl(4)-injured liver: potential application to the treatment of hepatic diseases," J 

Cell Biochem, vol. 111, no. 6, pp. 1453-1463, 2010. 

[11] J. Jung, J. H. Choi, Y. Lee et al., "Human placenta-derived mesenchymal stem 

cells promote hepatic regeneration in CCl4 -injured rat liver model via increased 

autophagic mechanism," Stem Cells, vol. 31, no. 8, pp. 1584-1596, 2013. 

[12] M. F. Mahmoud, S. E. Swefy, R. A. Hasan and A. Ibrahim, "Role of 

cannabinoid receptors in hepatic fibrosis and apoptosis associated with bile duct 

ligation in rats," Eur J Pharmacol, vol. 742, pp. 118-124, 2014. 

[13] J. H. Jun, J. H. Choi, S. H. Bae, S. H. Oh and G. J. Kim, "Decreased C-

reactive protein induces abnormal vascular structure in a rat model of liver 

dysfunction induced by bile duct ligation," Clin Mol Hepatol, vol. 22, no. 3, pp. 

372-381, 2016. 



28 

 

[14] J. Jung, J. W. Moon, J. H. Choi, Y. W. Lee, S. H. Park and G. J. Kim, 

"Epigenetic Alterations of IL-6/STAT3 Signaling by Placental Stem Cells Promote 

Hepatic Regeneration in a Rat Model with CCl4-induced Liver Injury," Int J Stem 

Cells, vol. 8, no. 1, pp. 79-89, 2015. 

[15] J. Storch and B. Corsico, "The emerging functions and mechanisms of 

mammalian fatty acid-binding proteins," Annu Rev Nutr, vol. 28, pp. 73-95, 2008. 

[16] P. A. Watkins, "Fatty acid activation," Prog Lipid Res, vol. 36, no. 1, pp. 55-83, 

1997. 

[17] D. G. Mashek, L. O. Li and R. A. Coleman, "Long-chain acyl-CoA synthetases 

and fatty acid channeling," Future Lipidol, vol. 2, no. 4, pp. 465-476, 2007. 

[18] T. M. Lewin, J. H. Kim, D. A. Granger, J. E. Vance and R. A. Coleman, "Acyl-

CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes 

in rat liver and can be inhibited independently," J Biol Chem, vol. 276, no. 27, pp. 

24674-24679, 2001. 

[19] A. K. Heinzer, S. Kemp, J. F. Lu, P. A. Watkins and K. D. Smith, "Mouse very 

long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy," J Biol Chem, 

vol. 277, no. 32, pp. 28765-28773, 2002. 

[20] H. Doege, R. A. Baillie, A. M. Ortegon et al., "Targeted deletion of FATP5 

reveals multiple functions in liver metabolism: alterations in hepatic lipid 

homeostasis," Gastroenterology, vol. 130, no. 4, pp. 1245-1258, 2006. 

[21] G. Svegliati-Baroni, S. Saccomanno, C. Rychlicki et al., "Glucagon-like 

peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic 



29 

 

signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis," 

Liver Int, vol. 31, no. 9, pp. 1285-1297, 2011. 

[22] M. Pawlak, P. Lefebvre and B. Staels, "Molecular mechanism of PPARalpha 

action and its impact on lipid metabolism, inflammation and fibrosis in non-

alcoholic fatty liver disease," J Hepatol, vol. 62, no. 3, pp. 720-733, 2015. 

[23] K. J. Rayner, C. C. Esau, F. N. Hussain et al., "Inhibition of miR-33a/b in non-

human primates raises plasma HDL and lowers VLDL triglycerides," Nature, vol. 

478, no. 7369, pp. 404-407, 2011. 

[24] A. Jais, E. Einwallner, O. Sharif et al., "Heme oxygenase-1 drives 

metaflammation and insulin resistance in mouse and man," Cell, vol. 158, no. 1, pp. 

25-40, 2014. 

[25] T. Moustafa, P. Fickert, C. Magnes et al., "Alterations in lipid metabolism 

mediate inflammation, fibrosis, and proliferation in a mouse model of chronic 

cholestatic liver injury," Gastroenterology, vol. 142, no. 1, pp. 140-151.e112, 2012. 

[26] F. Nassir and J. A. Ibdah, "Role of mitochondria in nonalcoholic fatty liver 

disease," Int J Mol Sci, vol. 15, no. 5, pp. 8713-8742, 2014. 

[27] W. Yan, D. Li, T. Chen, G. Tian, P. Zhou and X. Ju, "Umbilical Cord MSCs 

Reverse D-Galactose-induced Hepatic Mitochondrial Dysfunction via Activation of 

Nrf2/HO-1 Pathway," Biol Pharm Bull, 2017. 

 



30 

 

요약 (국문 초록) 

 

배경: 담즙 정체성 간질환에서 담즙 분비가 저해되어 간 지질대사의 불

균형을 초래한다. 이 연구에서는 담관결찰 쥐 모델을 이용하여 태반유래

줄기세포를 이식한 후, 담즙 정체로 인한 미토콘드리아 베타 산화를 포

함한 간 지질대사의 변화 양상을 살펴보고자 하였다. 

방법과 결과: 이 연구에서는 쥐의 총담관을 결찰하여 담즙 정체를 유발

한 모델을 이용하여 실험을 시행하였다. 태반유래줄기세포 이식군에서 

꼬리정맥을 통해 태반유래줄기세포를 이식하였다. 담관결찰 후 혈청 콜

레스테롤 농도가 증가하였으며, 태반유래줄기세포 이식군에서는 비이식

군과 비교하여 통계적으로 유의하게 혈청 콜레스테롤 농도가 감소하였다. 

Long-chain fatty acyl-CoA synthetase, fatty acid transport protein

와 같은 간세포 내 지질 흡수에 관여하는 유전자 발현은 담관결찰에 의

해 감소하였으나, 태반유래줄기세포 이식 후 변화가 없었다. 미토콘드리

아 베타 산화를 조절하는 중요 효소인 carnitine palmitoyltransferase 

1A (CPT1A)는 담관결찰 후 증가하였다가 태반유래줄기세포 이식 후 

감소함을 관찰하였다. CPT1A 발현 정도는 peroxisome proliferator-

activated receptor α의 발현과는 독립적으로, CPT1A의 전사후 조절인

자로 알려져 있는 microRNA-33의 발현 조절을 통해 변화하였다. 미토

콘드리아 기능의 표지자 중 하나인 아데노신3인산의 생성은 담관결찰 
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후 감소하였으나, 태반유래줄기세포 이식에 의해 회복되었다. Heme 

oxygenase의 발현 또한 담관결찰 및 태반유래줄기세포 이식 후 통계적

으로 유의하게 변화하였다. 

결론: 담즙 정체성 간손상이 발생하면 간 지질대사의 변화가 초래되며, 

태반유래줄기세포를 이식하면 이러한 변화가 개선될 수 있음을 알 수 있

었다. 이러한 연구 결과는 담즙 정체성 간질환에서 태반유래줄기세포 치

료의 가능성을 시사하며, 태반유래줄기세포 이식이 체내 에너지 대사에 

영향을 미치는 매커니즘을 이해하는데 도움이 되는 결과라 할 수 있겠다.  

주요어: 담즙정체, 담관결찰, 태반유래줄기세포, 지질대사, 지방산화, 

CPT1A, microRNA-33 
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