

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of Spanish Linguistics

Linguistic alignment classification
and generation with deep learning

in Spanish conversation

스페인어대화문에서의

딥러닝기반인접호응분류및생성연구

February 2018

Graduate School of Humanities

Seoul National University
Spanish Linguistics Major

Eunchung Noh

Linguistic alignment classification
and generation with deep learning

in Spanish conversation
Un-Kyung Kim

Submitting a Ph.D. Dissertation of Spanish Linguistics
December 2017

Graduate School of Humanities

Seoul National University
Spanish Linguistics Major

Eunchung Noh

Confirming the Ph.D. Dissertation written by

Eunchung Noh
January 2018

Chair Hyo Pil Shin (Seal)

Vice Chair Un-Kyung Kim (Seal)

Examiner Min-Hwa Chung (Seal)

Examiner Do-Hyung Kang (Seal)

Examiner Sang-Young Mah (Seal)

Abstract

Linguistic alignment classification
and generation with deep learning

in Spanish conversation

Eunchung Noh

Spanish Linguistics Major

Graduate School of Humanities

Seoul National University

In general communication, the speaker changes the style of speech in order to

accept or support the opinion of the other person, and changes the point of com-

munication according to the previous interlocutor’s speech. Here we constructed a

tagged corpus for alignment, as well as a model for predicting the linguistic align-

ment markers. In this study, the alignment refers to the reaction or attitude of recog-

nizing previous speech and the strategy of choosing words according to the context.

This phenomenon is observed in many different contexts and may vary depending

on various social factors and causes. It is a kind of accommodation or adaptation

behavior, commonly observed in web-based conversations as well as face-to-face sit-

uations. Therefore, it can be used to infer the social dynamics that are potentially

difficult to directly observe the immediate response. Until now, however, there was

no standard method for measuring the aligned response. Its mechanism is unclear

i

whether it is based on the structural level, or the purpose of the conversation. In order

to answer these questions, we try to use the Deep Learning Prediction Model to find

the alignment structure.

Although alignment structure is often found in real world, there was no clear

standard in previous studies, we started to define it theoretically. Alignment response

refers to a structure that continues conversation in line with the context of the im-

mediately preceding utterance. It affirms or rejects the utterance of the other party,

and repeats the preceding statement. On the other hand, non-alignment refers to cases

in which the above-mentioned topics are changed or the flow of the conversation is

interrupted, and the words are not related to each other at all. Linguistic alignment

is observed in many situations and can vary depending on various social factors and

causes.

It is difficult to analyze the alignment response structure in a conventional rule-

based method in that it is a problem that is obviously existent but is difficult to define

in practice. Therefore, we tried to analyze and utilize the state-of-the-art deep learning

method as a solution.

This study has three novelties. Firstly, we applied deep learning for the first

time to detect and classify linguistic alignment. Secondly, we applied the concept of

alignment response to Spanish for the first time. We design RNN, CNN, and Siamese

network models to propose a method for establishing theoretical criteria of align-

ment sentences in Spanish quasi-spoken corpus. Thirdly, we validated the Spanish

vocabulary markers.

Spanish has a very well developed vocabulary structure with lots of explicit

lexical elements. We analyzed the vocabulary and category characteristics with four

textbooks of Seoul National University and crawled web Twitter data. We created a

crawler for collecting Twitter conversations, and constructed the correct answer data

ii

by establishing the linguistic theoretical criteria in which the alignment responded in

the collected corpus. For a model that does not depend on a specific marker, a deep

learning method that takes into account the whole sentence is applied. We developed a

classifier for predicting the alignment using the RNN, CNN, and Siamese networks.

Experiments have shown that it is difficult to classify Spanish sentences based on

specific vocabulary tokens.

In order to train alignment classification, we analyzed the twitter conversation

and the dialogues in Spanish textbooks of Seoul National University. Based on the

established response criteria, we classify 2,000 pairs of twitters and 1,384 dialogue

pairs in textbooks, and validated the quality of training using the valid loss model

selection method. The classifier was trained by 8,400 pairs of augmentation of each

data at 1: 1 ratio (1,960 pairs of alignment, 1,960 pairs of non-alignment in L2 acqui-

sition materials; 2,250 pairs of alignment and 2,250 pairs of non-alignment in Twitter

conversion). The performance of the classifier was fairly good (70-80 %), and higher

than 35-55 % of the baseline (classified as alignment response if the markers existed

in the answer sentence) based on the theory.

The unlabeled data of 50,000 pairs (alignment 27,449 pairs, non-alignment 22,551

pairs) were classified through the trained classifier, and we made a generation model

using 27,449 pairs of alignment-classified dialogues. As a result, we could generate

various responses with better quality from the classified data than those from labeled

data. This shows that using the trained classifier is a useful way to collect a large

amount of data and reduce human labor. We also validated markers based on classi-

fied Spanish data, and found unexpected markers. We confirmed that deep learning

can be very useful in linguistic research, and it is possible to design a system that

generates a context-sensitive response, depending on the user ’s input.

This is the first study to establish the theoretical concept of the linguistic align-

iii

ment and to validate the markers by deep learning to solve this difficult problem.

We have tried to verify the markers by detecting the aligned response syntax and

modeling them through various experiments, and achieved the desired purpose of

generating an answer to the alignment response. The problem we mentioned is very

important in practice, and the lack of high performance of the model reflects the diffi-

culty of the task itself. We are expecting this to be a basic deep learning methodology

for linguistic research and developing a system that will solve the data shortage and

respond appropriately to users.

Keywords : Linguistic Alignment, Spanish Marker, Alignment Classification, Marker

Validation, Aligned Response Generation, Quasi-spoken Corpus

Student Number : 2008-30759

iv

Table of Contents

Abstract . i

1. Introduction . 1

2. Background . 5

2.1 Linguistic Alignment . 5

2.1.1 Linguistic Alignment in short dialogues 7

2.1.2 Linguistic Alignment in long dialogues 8

2.1.3 Definition and Criteria . 9

2.1.4 Related Work . 16

2.2 Natural Language Processing with Deep Learning 19

2.2.1 Traditional Natural Language Processing (NLP) 19

2.2.2 Deep Learning Approach 21

2.2.3 Recurrent Neural Network (RNN) 30

2.2.4 Convolutional Neural Network (CNN) 33

2.2.5 Siamese Network . 37

2.2.6 Sequence to Sequence (Seq2Seq) 38

2.2.7 Attention Model . 38

2.3 Chapter Summary . 45

3. Experiment . 47

3.1 Overview . 47

3.2 Data Acquisition . 51

3.2.1 Data Types . 51

v

3.2.2 Crawling and Preprocessing 52

3.2.3 Data Labeling . 53

3.2.4 Data Augmentation . 54

3.3 Alignment Classification . 58

3.3.1 Baseline - marker-based classification 58

3.3.2 Settings . 60

3.3.3 Results . 79

3.3.4 Qualitative Evaluation . 86

3.4 Generation trained with labeled pairs 88

3.4.1 Settings . 88

3.4.2 Results . 89

3.4.3 Qualitative Evaluation . 89

3.5 Generation trained with classified pairs 95

3.5.1 Settings . 97

3.5.2 Results . 97

3.5.3 Qualitative Evaluation . 97

3.6 Marker Validation . 103

3.6.1 Marker extraction from deep learning model 103

3.6.2 Validation of Marker from human’s and model’s 104

3.6.3 Qualitative Evaluation . 105

3.7 Chapter summary . 115

4. Discussion . 117

4.1 Linguistic Feature of Spanish . 117

4.2 Advantage of Deep Learning . 123

5. Conclusion . 125

vi

References . 127

Appendix . 137

A.1 Crawling and Preprocessing - Whole codes 137

A.2 Alignment Classifier - Whole codes 145

A.3 Generation of Aligned-conversation - Whole codes 166

A.4 Marker Validation - Whole codes 177

A.5 Spanish Conversation Pairs . 180

A.5.1 Textbook corpus . 180

A.5.2 Twitter corpus . 215

vii

viii

List of Figures

Fig. 1. Alignment of a single pair of dialogues 7

Fig. 2. Alignment of a dialogue with several turns 8

Fig. 3. Definition of alignment . 10

Fig. 4. Flowcharts of the different AI systems. 22

Fig. 5. An illustration of Stochastic gradient descent (SGD) 25

Fig. 6. An illustration of dropout . 26

Fig. 7. An illustration of skip-gram 27

Fig. 8. An illustration of word embedding 28

Fig. 9. An illustration of copy mechanism for machine translation . . 29

Fig. 10. Long short term memory and Gated Recurrent Unit 32

Fig. 11. Convolutional neural network for text processing. 35

Fig. 12. Model architecture with two channels for an example sentence. 37

Fig. 13. Siamese LSTM . 38

Fig. 14. Siamese CNN . 39

Fig. 15. Encoder-decoder model . 40

Fig. 16. An illustration of attention mechanism 41

Fig. 17. Example of attention matrix 42

Fig. 18. An illustration of attention over attention 43

Fig. 19. An illustration of self-attention 44

Fig. 20. Alignment classification with deep learning classifier and marker-

based approach . 48

Fig. 21. Aligned response generation with NMT model 49

ix

Fig. 22. Selection of alignment in textbook (Español Básico 1, Chpt 10,

p.172) . 54

Fig. 23. Selection of alignment in Twitter 55

Fig. 24. An illustration of cross-validation 56

Fig. 25. An illustration of early stopping 57

Fig. 26. Models used in the experiment 77

Fig. 27. Best results of models . 80

Fig. 28. BiLSTM result with textbook data. 82

Fig. 29. CNN result with textbook data. 82

Fig. 30. Siamese BiLSTM result with textbook data. 83

Fig. 31. Siamese CNN result with textbook data. 83

Fig. 32. BiLSTM result with twitter data. 84

Fig. 33. CNN result with twitter data. 84

Fig. 34. Siamese BiLSTM result with twitter data. 85

Fig. 35. Siamese CNN result with twitter data. 85

Fig. 36. Attention matrix from Table 39 1st example 93

Fig. 37. Attention matrix from Table 39 2nd example 94

Fig. 38. Outline of the generation trained with classified pairs 96

Fig. 39. Attention matrix from Table 42 1st example 101

Fig. 40. Attention matrix from Table 42 2nd example 102

Fig. 41. Outline of the marker validation 104

x

List of Tables

Table 1. Examples of disruption in short sentences 6

Table 2. Examples of disruption in long sentences 6

Table 3. Examples of disruption in dialogue 6

Table 4. Comparison of alignment definition in previous studies 9

Table 5. Alignment classification 1: Affirmation 12

Table 6. Alignment classification 2: Negation 13

Table 7. Alignment classification 3: Repetition 13

Table 8. Non-alignment classification: Switch, gap, irrelevant speech . . . 14

Table 9. Strict classification criteria for continuous textbook conversation 15

Table 10.Contrasts between autonomous transmission account of language

processing in dialogue and the interactive alignment account (Pick-

ering and Garrod, 2004b) . 18

Table 11.Advantages and challenges of deep learning for natural language

processing. (Table from Li 2017) 23

Table 12.Data composition before adjustment 52

Table 13.Examples of data augmentation using word dropout 56

Table 14.List of 20 components for verification experiments consisting of

4 levels . 59

Table 15.Results of baseline experiment 60

Table 16.Alignment for directly related interpersonal conversations 61

Table 17.Examples of alignment-labeled data: Textbook (1) 63

Table 18.Examples of alignment-labeled data: Textbook (2) 64

Table 19.Examples of alignment-labeled data: Twitter (1) 65

xi

Table 20.Examples of alignment-labeled data: Twitter (2) 66

Table 21.Examples of alignment-labeled data: Twitter (3) 67

Table 22.Examples of alignment-labeled data: Twitter (4) 68

Table 23.Examples of non-alignment data: Textbook (1) 69

Table 24.Examples of non-alignment data: Textbook (2) 70

Table 25.Examples of non-alignment data: Twitter (1) 71

Table 26.Examples of non-alignment data: Twitter (2) 72

Table 27.Examples of non-alignment data: Twitter (3) 73

Table 28.Examples of non-alignment data: Twitter (4) 75

Table 29.Augmented alignment and non-alignment data set 76

Table 30.List of Hyperparameters-BiLSTM 77

Table 31.List of Hyperparameters-CNN 78

Table 32.List of Hyperparameters-Siamese-BiLSTM 79

Table 33.List of Hyperparameters-Siamese-CNN 79

Table 34.Best results of models . 81

Table 35.Evaluation of the results from the alignment classifier 87

Table 36.Hyperparameter lists of Encoder and Attention-decoder 89

Table 37.Example of generated responses from the NMT model trained

with labeled pairs . 90

Table 38.Evaluation of generated responses from the NMT model trained

with labeled pairs . 92

Table 39.Generated responses for investigating attention matrix. 93

Table 40.Example of generated responses from the NMT model trained

with classified pairs . 98

Table 41.Evaluation of generated responses from the NMT model trained

with classified pairs . 99

xii

Table 42.Generated responses for investigating attention matrix. 100

Table 43.Candidates for markers . 105

Table 44.Markers obtained from the model 106

Table 45.Alignment marker. Explicitly distinguished markers and high fluc-

tuation of frequency rate (total appearance / total replies) 107

Table 46.Non-alignment marker. Explicitly distinguished markers and high

fluctuation of frequency rate (total appearance / total replies) . . 107

Table 47.Comparison of the eight vocabulary from alignment sentence pairs

only . 108

Table 48.Eight examples with alignment markers 109

Table 49.Feature specification of subject/object constructions in Spanish

and English (Montrul 2004:130) 121

Table 50.The syntactic differences between Spanish and English with re-

spect to the Null Subject Parameter (Toribio, 2000) 122

Table A1. Examples of labeled data: Textbook (1) 181

Table A2. Examples of labeled data: Textbook (2) 182

Table A3. Examples of labeled data: Textbook (3) 183

Table A4. Examples of labeled data: Textbook (4) 184

Table A5. Examples of labeled data: Textbook (5) 185

Table A6. Examples of labeled data: Textbook (6) 186

Table A7. Examples of labeled data: Textbook (7) 187

Table A8. Examples of labeled data: Textbook (8) 188

Table A9. Examples of labeled data: Textbook (9) 189

Table A10.Examples of labeled data: Textbook (10) 190

Table A11.Examples of labeled data: Textbook (11) 191

Table A12.Examples of labeled data: Textbook (12) 192

xiii

Table A13.Examples of labeled data: Textbook (13) 193

Table A14.Examples of labeled data: Textbook (14) 194

Table A15.Examples of labeled data: Textbook (15) 195

Table A16.Examples of labeled data: Textbook (16) 196

Table A17.Examples of labeled data: Textbook (17) 197

Table A18.Examples of labeled data: Textbook (18) 198

Table A19.Examples of labeled data: Textbook (19) 199

Table A20.Examples of labeled data: Textbook (20) 200

Table A21.Examples of labeled data: Textbook (21) 201

Table A22.Examples of labeled data: Textbook (22) 202

Table A23.Examples of labeled data: Textbook (23) 203

Table A24.Examples of labeled data: Textbook (24) 204

Table A25.Examples of labeled data: Textbook (25) 205

Table A26.Examples of labeled data: Textbook (26) 206

Table A27.Examples of labeled data: Textbook (27) 207

Table A28.Examples of labeled data: Textbook (28) 208

Table A29.Examples of labeled data: Textbook (29) 209

Table A30.Examples of labeled data: Textbook (30) 210

Table A31.Examples of labeled data: Textbook (31) 211

Table A32.Examples of labeled data: Textbook (32) 212

Table A33.Examples of labeled data: Textbook (33) 213

Table A34.Examples of labeled data: Textbook (34) 214

Table A35.Examples of labeled data: Textbook (35) 215

Table A36.Examples of labeled data: Twitter (1) 216

Table A37.Examples of labeled data: Twitter (2) 217

Table A38.Examples of labeled data: Twitter (3) 218

xiv

Table A39.Examples of labeled data: Twitter (4) 219

Table A40.Examples of labeled data: Twitter (5) 220

Table A41.Examples of labeled data: Twitter (6) 221

Table A42.Examples of labeled data: Twitter (7) 222

Table A43.Examples of labeled data: Twitter (8) 223

Table A44.Examples of labeled data: Twitter (9) 224

Table A45.Examples of labeled data: Twitter (10) 225

Table A46.Examples of labeled data: Twitter (11) 226

Table A47.Examples of labeled data: Twitter (12) 227

Table A48.Examples of labeled data: Twitter (13) 228

Table A49.Examples of labeled data: Twitter (14) 229

Table A50.Examples of labeled data: Twitter (15) 230

Table A51.Examples of labeled data: Twitter (16) 231

Table A52.Examples of labeled data: Twitter (17) 232

Table A53.Examples of labeled data: Twitter (18) 233

Table A54.Examples of labeled data: Twitter (19) 234

Table A55.Examples of labeled data: Twitter (20) 235

Table A56.Examples of labeled data: Twitter (21) 236

Table A57.Examples of labeled data: Twitter (22) 237

Table A58.Examples of labeled data: Twitter (23) 238

Table A59.Examples of labeled data: Twitter (24) 239

Table A60.Examples of labeled data: Twitter (25) 240

Table A61.Examples of labeled data: Twitter (26) 241

Table A62.Examples of labeled data: Twitter (27) 242

Table A63.Examples of labeled data: Twitter (28) 243

Table A64.Examples of labeled data: Twitter (29) 244

xv

Table A65.Examples of labeled data: Twitter (30) 245

Table A66.Examples of labeled data: Twitter (31) 246

Table A67.Examples of labeled data: Twitter (32) 247

Table A68.Examples of labeled data: Twitter (33) 248

Table A69.Examples of labeled data: Twitter (34) 249

Table A70.Examples of labeled data: Twitter (35) 250

Table A71.Examples of labeled data: Twitter (36) 251

Table A72.Examples of labeled data: Twitter (37) 252

Table A73.Examples of labeled data: Twitter (38) 253

Table A74.Examples of labeled data: Twitter (39) 254

Table A75.Examples of labeled data: Twitter (40) 255

Table A76.Examples of labeled data: Twitter (41) 256

Table A77.Examples of labeled data: Twitter (42) 257

Table A78.Examples of labeled data: Twitter (43) 258

Table A79.Examples of labeled data: Twitter (44) 259

Table A80.Examples of labeled data: Twitter (45) 260

Table A81.Examples of labeled data: Twitter (46) 261

Table A82.Examples of labeled data: Twitter (47) 262

Table A83.Examples of labeled data: Twitter (48) 263

Table A84.Examples of labeled data: Twitter (49) 264

Table A85.Examples of labeled data: Twitter (50) 265

xvi

List of Codes

Code 1. Crawler.py . 137

Code 2. arrange retweet.py . 139

Code 3. Preprocessing code with library Regular Expression (RE) 141

Code 4. Tokenizing with library Natural Language Tool Kit (NLTK) 141

Code 5. Separating train data into a training set and a validation set with

library scikit-learn . 141

Code 6. split train valid.py . 142

Code 7. arrange data no label.py . 143

Code 8. baseline.py . 145

Code 9. augment word dropout separately.py 146

Code 10. main.py . 148

Code 11. utils.py . 155

Code 12. models.py . 161

Code 13. For hyper-parameter tuning. multi-train text.sh 165

Code 14. main enc dec.py . 166

Code 15. Encoder (BiLSTM) . 173

Code 16. Decoder (LSTM) . 174

Code 17. Attention-Decoder (LSTM with attention) 175

Code 18. find marker.py . 177

Our github URL is https://github.com/eunchung/Alignment, containing twitter

data and whole codes for this dissertation.

xvii

https://github.com/eunchung/Alignment

Chapter 1

Introduction

In contemporary linguistic research, there is a tendency to expand the analy-

sis of discourse on various practical texts. It can be confirmed from the fact that

attempts to approach the various types of speech in the spoken language, dialogue,

and discourse structure. In addition, the research method of approaching grammatical

morphemes, which have been mainly discussed in syntactic theory or semantics has

emerged through discourse data. The analysis data is not limited to the written data

but is expanded to the spoken language. The proportion of the spoken data tends to

be higher than the written language. And modern natural language processing (NLP)

technology is expected to be utilized as a base technology for providing natural lan-

guage interface between human and computer.

Natural language processing is a computational technique for automating human

language analysis and representation. NLP research enables computers to carry out

various tasks such as machine translation and dialogue systems. In particular, when a

pair of sentences is given, to decide how to express and how to establish the relation-

ship is one of the most important tasks in NLP tasks. These kinds of work include

answer selection, paraphrase identification, and textual entailment in the question and

answer pairs.

This study introduces the concept of alignment and applies it to Spanish con-

versation. Linguistic alignment can be a kind of linguistic adaptation phenomenon.

Some previous studies (Pickering and Ferreira, 2008; Kaschak et al., 2011; Reitter

et al., 2011; Wang et al., 2014) give theoretical foundations of linguistic adaptation

1

of the language patterns to match conversational partners, by using word choice, sen-

tence structure, and so on. Especially, in a conversational pair, the phenomenon that

the following speaker’s answer is affected by the previous speech in order to respond

to the immediate utterance of the other is called ’alignment’ (Noh, 2017a,b). Ex-

perimental results provide a clearer understanding of the linguistic alignment of the

Spanish language belonging to the Romance group where many features of Latin re-

main, and can be used to create a dialogue system that generates aligned responses

based on user’s speech.

Until now, there was no standard for defining or measuring the aligned response.

Its mechanism is still unclear. Linguistic alignment is observed in many situations

and can vary depending on various factors and causes. Therefore, it is difficult to

define alignment responses in practice and to analyze its patterns in a conventional

rule-based method. In order to measure and validate the markers, we use the state-

of-the-art deep learning method and detect the alignment pairs from the prediction

model.

Purpose of the study In the two - person dialogue, we try to analyze and model

the user’s utterance intentions revealed through narratives and emotions. We want to

create a model that predicts the alignment sentence pairs.

Until now, there was no standard method for measuring the aligned response by

preliminary studies in which the word category or lexicon was added together, and

the vocabulary, the category, and the concept were unclear. It is necessary to focus

on the vocabulary and the categorical characteristics in a language in which formal

markers such as pronouns and interrogative expressions are explicitly revealed. This

is the very first study to validate markers based on prediction models using deep

learning.

2

Spanish is the second most spoken language in the world, and the number of

users is still increasing. As the number of Internet users increases, the amount of

data in Spanish is also exploding. Developing a system for Spanish speakers seems

beneficial not only in academic research but also in practical usage.

The contributions of this paper are:

1. we applied deep learning for the first time to detect and classify linguistic align-

ment.

2. we applied the concept of alignment response to Spanish for the first time.

We design RNN, CNN, and Siamese network models to propose a method for

establishing theoretical criteria of alignment sentences in Spanish quasi-spoken

corpus.

3. we constructed a tagged corpus for alignment, as well as a model for predicting

the linguistic alignment markers.

Outline of the thesis The composition of this paper is as follows. In chapter 2, we

introduce the concept of linguistic alignment and the deep learning method used in

the model to classify alignments. In chapter 3, alignment classification, aligned re-

sponse generation, and marker validation are described. In chapter 4, we discussed

about linguistic feature of Spanish and advantage of deep learning. Lastly we con-

clude in chapter 5.

3

4

Chapter 2

Background

2.1 Linguistic Alignment

People tend to agree or disagree with the opinion and follow the interlocutor’s

style of speech in communication. There are several ways to follow the speech style,

such as making their sentence structure similar and using some vocabulary repeat-

edly. Besides these methods, people may adapt or imitate each other in pronunci-

ation, posture, attitude, voice or speed, to unconsciously feel a sense of identity to

their conversational partners Doyle and Frank (2016); Doyle et al. (2017); Danescu-

Niculescu-Mizil et al. (2013).

A sentence pairs are properly connected by the words mentioned in the preced-

ing and following sentences. In a coherent structure, the speaker’s utterances contain

necessary information and do not lack explicit or meaningful information. In Table

1, however, when coherence is broken within a sentence, the sentence becomes con-

tradictory.

The longer the sentence length is, the more the coherence is broken. Sentences

without cohesion often contain meaningless contents, as in Table 2. The tense agree-

ment between sentences may also be broken or scrambled. And this kind of disruption

may be observed as well in dialogue with other people, as in Table 3.

People tend to use similar words to their partners in a conversation, as a kind

of acceptance behavior, showing that they adapt to the behavior or words of others

during the conversation. This situation is observed in computers and web-based con-

5

Table 1: Examples of disruption in short sentences

Spanish English
Pepe es un cobarde valiente. Pepe is a brave coward.
Sus ojos ciegos les miraban fijamente. Their blind eyes stared at them.
Las arenas mojadas estaban más secas
que nunca.

The wet sands were drier than ever.

Mi mamá tiene menos edad que yo. My mom is younger than me.
Mi color favorito es el naranja pero
también odio ese color.

My favorite color is orange but I also
hate that color.

Juana me acompañó pero no me
acompañó.

Juana accompanied me but did not
accompany me.

Table 2: Examples of disruption in long sentences

Spanish English
Mi rata, que era de color verde, salió
por la galaxia. Dio una vuelta y trajo
un cometa pero yo ya habı́a hecho
las compras del dı́a y entonces llegó
el campeonato de básquet y
perdimos.

My rat, which was green, came out
through the galaxy. He came around
and brought a kite but I had already
made the purchases of the day
and then the basketball champion
arrived and we lost.

Table 3: Examples of disruption in dialogue

Speaker Spanish English
A ¿Fuiste a correr ayer? Did you go running yesterday?
B ¡Sı́! Yes!
A ¿Y cuánto has corrido? And how much have you run?
B No, yo no he comido nada. No, I haven’t eaten at all.

versations as well as face-to-face situations. And this phenomenon can affect not only

the social factors such as the influence of the other party and the social network cen-

trality, but also personal liking. Therefore, there is a possibility that it can be used to

infer the social dynamics that are potentially difficult to directly observe the immedi-

ate response. However, it is not well understood whether it is based on the underlying

mechanism, its qualities, the structural level, or the purpose of the conversation. In

order to answer these questions, we try to find the appropriate markers by using the

6

deep learning prediction model for the aligned sentences. Some word tokens may do

special function in conversation and work as alignment markers in Spanish.

In this study, we investigate the linguistic alignment in the following two cases.

2.1.1 Linguistic Alignment in short dialogues

In a short dialogue consisting of one turn of Speaker 1 and Speaker 2, the ad-

joining response consists of repeating the word directly or answering the preceding

utterance.

Fig. 1: Alignment of a single pair of dialogues

In the example Fig. 1, the second speaker repeatedly used the word ”vamos”

as spoken by the first speaker. In practice, however, the ”copa” mentioned by the

first speaker conveys the main meaning, and the second speaker has thus chosen

words such as ”brindar” and ”salud”. It is not enough to define as changing word

selection or comparing similarity to the previous sentence. Therefore, it is necessary

to redefine the concept in terms of recognizing and reacting to previous speech and

choosing vocabulary according to context (in accordance with the previous speech

and the strategy of choosing words according to the context).

This study is the very first study of linguistic alignment in Spanish, setting the

simplest task. In short dialogues, we define the problem of identifying alignment

7

from the previous sentence to the following sentence. Conversation data of speaker A

/ speaker B in the textbooks and tweets / replies of Twitter were judged to be available

for such a relationship, in the Spanish quasi-spoken corpus.

2.1.2 Linguistic Alignment in long dialogues

A long conversation consisting of several turns, in which Speaker 1 and Speaker

2 alternately talk, is likely to be more fragile than a short conversation. The longer

the dialogue, the weaker the response structure, while the relationship between the

speakers can be inferred or the centrality of dialogue is also available.

In Fig. 2 the speaker B repeats what he or she has said (Nos vemos mañana por

la tarde) or partly as it is la original. However, in A’, there are no elements related

to the contents of the previous conversation or objects to be repeated. The longer the

conversation takes and the more turns, the more likely this trend will be.

Fig. 2: Alignment of a dialogue with several turns

8

Table 4: Comparison of alignment definition in previous studies

2.1.3 Definition and Criteria

Definition and measures of alignment have varied from study to study and field

to field, leading to incommensurable results. The key reference of this paper is in

Table 4.

Alignment increases in the probability of seeing a given marker (or marker cat-

egory) in the second message of a pair given that it appeared in the preceding mes-

sage (Doyle et al., 2016). Alignment occurs at levels of structure related to meaning,

which is the choice of one alternative over other associated with different semantic

representations. Previous studies have focused on word selection or similarity with

9

previous sentences.

Fig. 3: Definition of alignment

In this study, the criteria of alignment are divided into three categories, as shown

in 3: affirmative, negative, and repetition. Since there were no gold standards or

methodologies in previous studies, we set up empirical standards that fit our research

goals. And, in order to grasp the linguistic characteristics that can be overlooked at

the level of the lexical or syntactic level, we chose to input the sentences of each

dialogue turn.

Criteria Despite the fact that Spanish is a commonly spoken language, there are

not many studies on this field. The topic of linguistic alignment is also not covered.

For this purpose, we classify the alignment and nonalignment statements in the paper

and set the criteria respectively.

In a two-person dialogue, if the conversation of the next person corresponds to

the conversation of the previous person, classify it as an alignment. Based on the pre-

vious conversation, tag the next person in the case of positive, negative, and repetitive

answers in alignment.

1. Select and tag the sentences that correspond to immediate conversation, includ-

ing all the situations within the context.

10

2. If they do not correspond, classify them as non-alignment and sort them by

type: switch, gap (stop), irrelevant speech.

It is important to note that not only the affirmation of the speaker but also the

negation within the context are judged as alignment. And it is also called alignment

to imitate the entire sentence or phrase of the interlocutor. On the other hand, the

alignment relation can be completely changed or interrupted by irrelevant contents.

If there is a completely unrelated element or a topic which is out of context, then

alignment is broken (i.e., non-alignment).

Repeating certain phrases produces some extra effect such as emphasis. Spanish

speakers rarely repeat without changing other words or pronouns. They usually think

that abundant expressions are beauty and virtue of language. So there are many ex-

amples. It is colloquial, and usually assumes a certain situation. And the interactive

alignment of dialogue provides with the central role of imitation within psychologi-

cal and neuroscientific theory (Pickering and Garrod, 2004b). Mirror neurons provide

a reason to expect certain forms of imitation to be straightforward, and the findings

that the same areas of the brain (Brodmann’s Areas 44 and 45; inferior frontal gyrus)

are involved in verbal imitation support the assumption that alignment constitutes a

fundamental aspect of language use.

In the tagged data, we tried to allot each alignment structures by 1/3 of total

alignment data. However, there was a difference in the actual frequency. For exam-

ple, in Spanish, it is rarely used repeatedly without replacing with other words or

pronouns. Therefore, the proportion of repetition is relatively low compared to other

alignment structures.

The non-alignment syntax was also selected for training the model and extract-

ing the specific markers.

Each syntactic type was judged based on the used vocabulary and its meaning.

11

Table 5: Alignment classification 1: Affirmation

12

Table 6: Alignment classification 2: Negation

Table 7: Alignment classification 3: Repetition

13

Table 8: Non-alignment classification: Switch, gap, irrelevant speech

14

The type of Gap is the termination of the conversation and often appears on Twit-

ter. It may also occur in the real-world situation, however, it is beyond our research

topic. We aim at generating aligned response model, and it is meaningless to train the

intentionally unanswered sentence.

Table 9: Strict classification criteria for continuous textbook conversation

We refined the criteria several times while excluding the subjective factors as

much as possible. As the criteria become more stringent, the alignment classifica-

tion and aligned response generation task becomes much harder. In the textbook

data, firstly we assumed that they are almost all alignment structure, but as the non-

alignment criterion became strict, some pairs are judged to be non-alignment. For

more detailed description see Table 5, 6, 7, 8, and Table 9.

15

2.1.4 Related Work

Some studies (Reitter and Moore, 2006; Fusaroli et al., 2012) provide empirical

confirmation to this research. Repetition effects are sometimes moderated in response

to situational requirements or framing: they can vary in strength when the speaker

(believes to) communicate with computers (Branigan et al., 2010). Repetition inten-

sifies when the purpose of conversation is to collaborate on a common task (Reitter

and Moore, 2006). Of course, communication between people is not only a linguistic

but social event. Social relationships in film scripts (Danescu-Niculescu-Mizil and

Lee, 2011) can be found as a cue example. A more specific aspect of language-based

interaction is pragmatic convention including turn-taking, shifts in topic, and so on.

Linguistic alignment in social interaction may happen consciously. Garrod and

Pickering (2009) suggest that people flexibly adapt their linguistic patterns to those

of their interlocutor’s. It’s a sign of social coordination, or cultural fit (Doyle et al.,

2017), enculturation or success of individuals and the groups to which they belong.

Linguistic alignment also could happen unconsciously and be realized at different

levels due to linguistic adaptation. Pickering and Garrod (2004a) show that conver-

sations have linguistic coordination at lexical level. Branigan et al. (2000) and Gries

(2005) suggest that priming effects exist at syntactic level.

Linguistic alignment has been found in written conversational text. Danescu-

Niculescu-Mizil and Lee (2011) analyzes tweet conversations and confirms that lin-

guistic alignment exists in written online social media. Backstrom et al. (2013) also

show that people adjust their linguistic style and features on online. Besides, priming

effects at syntactic level Gries (2005); Branigan et al. (2010). They introduced several

quantitative measures for linguistic alignment phenomenon. Some methods of eval-

uation focus on linguistic events, such as the use of words, syntactic rules or a small

set of expressions (Church, 2000; Reitter and Moore, 2006; Fusaroli et al., 2012) to

16

test intrinsic repetition. Linguistic feature similarity (Stenchikova and Stent, 2007;

Danescu-Niculescu-Mizil and Lee, 2011) is also widely used to measure linguistic

adaptation precisely.

The alignment also used in machine translation (MT) is for the bilingual frame-

work in two language corpus, which is different from this study (Bahdanau et al.,

2014). Navarro Colorado et al. (2004) uses the concept ‘alignment’ in order to ex-

plain that two different languages align with the same verb sense, the same number

of arguments, the same syntactic function of each argument, and the same semantic

features of each argument. Branigan et al. (2010) emphasized the importance of align-

ment in HCI. He pointed out that alignment strictly refers to interlocutors’ mental

representations, not their actual behavior (Pickering and Garrod, 2004a; Costa et al.,

2008). Two aspects to alignment in HCI reflect the two directions of communication:

the computer’s contributions directed towards the user, and the user’s contributions

directed towards the computer. The first aspect relates to computers that align with

a human user’s contributions, and how such computers affect the user. The second

aspect relates to humans’ alignment with a computer’s contributions.

Accommodation can even influence human-computer interactions, with people

rating interactions with accommodating computer systems as more satisfying even

when the conversant is known to be a computer (Nass and Lee, 2000; Branigan et al.,

2010; Li et al., 2015a).

17

Table 10: Contrasts between autonomous transmission account of language process-
ing in dialogue and the interactive alignment account (Pickering and Garrod, 2004b)

18

2.2 Natural Language Processing with Deep Learn-
ing

2.2.1 Traditional Natural Language Processing (NLP)

Types of NLP task Natural Language Processing (NLP) is huge field, consist of

speech recognition, named entity recognition, automatic summarization, question an-

swering, machine translation, sentiment analysis, document classification and so on.

Among them, the sentence pair tasks such as recognizing textual entailment, spell

correction, answer selection, and paraphrase identification are close to our linguistic

alignment tasks.

Recognizing textual entailment (TE) is the task that given two sentences, classi-

fying if one sentence entails the other sentence (positive TE) or one sentence contra-

dicts the other sentence (negative TE), or non-textual entailment.

Spell correction task revises the wrong words with correct words, given two

sentences where one sentence has wrong spell words in the sentence and the other

sentence has correct words.

Answer selection task chooses the answer in a document sentence, given two

sentences where one sentence is a question and the other sentence is the document

which contains the answer information(word, phrase, and so on).

Paraphrase identification is the task that checks whether the one sentence has

paraphrased to the other sentence or not.

Rule-based approach A method that uses multiple ’IF’ statements to perform NLP

tasks. It is based on many experiments, trials and errors, and experience of engineers.

In other words, rule-based approach, or hand-designed program, is made through

numerous trial and error. If you are confined to a specific environment, and you cope

19

with all situations that may arise in that environment, you can achieve very good

performance.

It, however, is vulnerable to exceptions because it consists of ’IF’ statements.

Usually we can not address all situations. It is hard to anticipate every situation or as

many situations as possible, and to write an ’IF’ statement for each situation. It takes

a lot of time and effort.

Traditional machine learning approach The traditional machine learning approaches

to solve the Natural Language Processing (NLP) problem are well-known for logistic

regression, SVM (Cortes and Vapnik, 1995), and hidden Markov Model (Rabiner,

1989). With well-extracted features, they are known to perform NLP tasks well.

However, obtaining well-extracted features usually requires many feature engi-

neerings and that engineering is too expensive to handle many data. In other words,

the NLP system based on traditional machine learning strongly depends on the hand-

crafted features, and refining these features are often time-consuming.

20

2.2.2 Deep Learning Approach

In recent years, Deep learning approach based on neural networks have per-

formed well in various NLP tasks. This trend has been fueled by the success of

word embedding (Mikolov, 2010; Mikolov et al., 2013a,b) and deep-learning tech-

niques (Socher et al., 2013; Graves et al., 2013b). Deep learning could be regarded as

automated feature representation learning. This is the huge advantage of using deep

learning. Contrary to the NLP system based on classic machine learning, deep learn-

ing does not need many feature engineering to perform well. Deep learning just learn

feature representation instead of feature engineering (Fig. 4). We review papers and

try to summarize the NLP task using deep learning. Instead of minutely explaining

deep-learning techniques and models, we focus on recapping conceptual content and

putting them together with the necessary details.

Advantage of deep learning for natural language processing. Advantages over

previous methods have been identified.

1. First of all, deep learning approach in the NLP tasks shows better performance

than traditional ones. In addition, there is still much room for improvement.

2. As mentioned earlier (Fig. 4), it reduces the burden for feature engineering.

With this, it is even possible to end-to-end learning which outputs desired re-

sults by putting relatively raw data.

3. Other advantages are summarized in detail in the following table, in addition

to challenges.

Neural Networks At the beginning, we should check what is neural networks and

what brings the boom of deep learning. Neural networks means that the artificial

21

Fig. 4: Flowcharts of the different AI systems. Shaded boxes indicate components
that are able to learn from data. It means that deep learning does not need hand-
designed program/features, and even can do end-to-end learning (Figure from Good-
fellow et al. 2016).

neural networks which mimic human brain networks. Neural networks have been a

long time ago. But recently, performance has been getting better and booming. Three

things are said to have contributed to the deep learning boom.

22

Table 11: Advantages and challenges of deep learning for natural language process-
ing. (Table from Li 2017)

1. A sufficient amount of data, called bigdata,

2. Graphics processing unit (GPU) calculation is introduced into the neural net-

work,

3. Development of main algorithms such as Stochastic Gradient Descent, dropout,

convolutional neural networks, recurrent neural networks and so on.

We are living in a information society. Numerous data are becoming information

every day, and the number of these data exceeds trillion. It is super big data. Decades

ago, there was not enough space and tools to store big data. Nowadays, each research

institute and company have tools to store big data and deal with big data. That is, big

data has become relatively close to us. This is the first thing that contributed to the

deep learning boom.

The second is the introduction of Graphics processing unit (GPU) calculations

into neural networks. As the data bigger, it takes longer to calculate. It took several

23

days in short, and several weeks to months in long. Raina et al. (2009) suggested that

use the GPU, which usually be used for graphics operations, to the neural networks.

GPU is made up of a number of cores that perform simple operations such as addition

or multiplication. In other words, simple operations can be done very quickly with

parallel computation. The neural network consists of a number of additions and mul-

tiplications, which is suitable for using GPU. The neural network learning through

GPU reduced learning time, from several days to several hours, or from several weeks

/ months to several days. This is the second thing that led to the deep learning boom.

The third thing is the development of main algorithms. Typically, the develop-

ment of Stochastic Gradient Descent (SGD), dropout, convolutional neural networks

(CNN), recurrent neural networks (RNN) can be considered as main contribution.

There was a method to train neural network, called gradient descent (GD). Gra-

dient descents are an effective learning method, but it takes too long time to apply

large amounts of data at once. SGD is a method of learning in one data or mini batch,

and it converges relatively faster than GD (Fig. 5). In other words, SGD made train-

ing of neural network faster and realistically usable. A typical SGD technique is a

technique using Adam optimizer (Kingma and Ba, 2014).

Dropout is a way to train neural networks by excluding a portion of the neural

net with a certain probability (Fig. 6. It causes the ensemble of several sub neural

networks. As a result, the performance was noticeably improved.

Collobert et al. (2011) presented a simple deep-learning framework for NLP

tasks. This framework was a state-of-the-art technique in some NLP tasks such as

Named Entity Recognition (NER), Semantic Role Labeling (SRL), and POS tagging.

Since then, a number of complex deep-learning-based algorithms have been proposed

to solve the difficult NLP problem. There are two major deep-learning models such

2site: https://wikidocs.net/3413

24

https://wikidocs.net/3413

Fig. 5: Illustration of gradient descent and stochastic gradient descent (Figure from
the site2

as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). We

review them in the subsequent subsection. Before talking about these two things, we

cover word embedding first, which is used in almost all NLP tasks with the deep

learning approach.

Word Embedding Distributional vectors or Word Embedding is the embedding of

a word into a low dimensional space (eg 300 dimensions). Simply speaking, it is a

technique of converting a word into a real-valued vector of 300 dimensions.

Previous machine learning methods have treated words as one-hot vectors, sparse,

with higher dimensions (eg, more than 20,000 dimensions). In recent years, in var-

ious NLP assignments, we have used low-dimensional dense word embedding for

superior performance.

25

Fig. 6: Dropout trains an ensemble consisting of all subnetworks that can be con-
structed by removing units (except output y) from an base network. (Figure from
Goodfellow et al. 2016).

Word embedding presupposes distributional hypothesis. This assumption is cen-

tral to the fact that words with similar meanings will tend to appear in similar con-

texts. Word vectors try to capture the characteristics of neighboring words. The main

advantage of word embedding is that similarity between words can be measured by

using indexes such as cosine similarity between word vectors.

Word embedding is often used in the first data processing layer of the deep

26

learning model. In general, word embedding is pre-learned by optimizing an auxil-

iary objective function in an unlabeled corpus. In other words, word embedding is a

byproduct of learning a certain task, such as the skip gram model (Fig. 7) that predicts

the surrounding words given the current word (Mikolov et al., 2013a,b).

Fig. 7: An illustration of skip-gram. Skip-gram predicts surrounding words given the
current word. w(t) represents t-th word. (Figure from Mikolov et al. 2013a).

Word embedding has proven to be efficient in capturing context similarities. As

shown in Fig. 8, words with similar meaning tend to gather nearby in the word em-

bedding space. This is one of the most attractive characteristics of word embedding.

Limitation : Out of vocabulary When using a trained model, words that have

never been used in the training can come in as input, due to a unique word such

as a name or newly-coined words. These words are usually called unknown words

4site: https://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-
interview-1st-place-alex-andreas-nurlan/

27

https://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/
https://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

Fig. 8: An illustration of word embedding. Words with similar meaning tend to gather
close. (Figure from the site4).

(UNK), which are not in the vocabulary at training. One of the limitations of word

embedding is that it would not respond well to unknown words, and this limitation is

called out of vocabulary (OOV) problem. To cope with this limitation, three methods

are largely achieved.

1. simply enlarge size of vocabulary.

2. use copy mechanism for unknown words.

3. use character-level embedding.

The simple way of enlarging the vocabulary can alleviate the limitation, but

causes the problem that the amount of calculation becomes too large as the vocabu-

lary size increases. To address this problem that calculation increase, methodologies

such as sampled softmax have emerged (Jean et al., 2014).

28

Second way is use of copy mechanism. When the same words are used in the

input and output sentences, we can just copy the same words in the input sentences

to output sentences (Fig. 9. That is, when an unknown words come in, the trained

model can address the unknown words by simply moving it to the output Gulcehre

et al. (2016); Merity et al. (2016). The limitations of this method are expected to be

difficult to cope with when the words is only in input sentence and is not in the output

sentence.

Fig. 9: An illustration of copy mechanism for machine translation (Figure from Gul-
cehre et al. 2016).

Character-level embedding Character embedding naturally copes with the un-

known word issue. The word is a combination of individual characters. In a lan-

guage in which the text consists of a combination of characters as well as letters

and the meaning of the words corresponds to the synthesis of the characters (e.g.

Chinese), character-level system construction is a natural choice to avoid word seg-

mentation (Chen et al., 2015). Therefore, studies applying deep-learning techniques

to these languages tend to favor character embedding over words (Zheng et al., 2013).

See, for example, Peng et al. (2017) proved that radical based processing can signifi-

cantly improve sentiment analysis performance.

Word embedding can capture grammatical and semantic information. However,

in tasks such as part-of-speech tagging and entity name recognition, the type infor-

mation within words is also very useful. The natural language understanding of the

29

character level is of some interest (Dos Santos and Gatti, 2014; Santos and Zadrozny,

2014; Santos and Guimaraes, 2015; Kim et al., 2016).

For certain NLP tasks, improved results for morphologically complex languages

are reported. Santos and Guimaraes (2015) applied state-of-the-art levels to Por-

tuguese and Spanish corpus by applying character-level embedding with word em-

bedding to the object name recognition problem. Kim et al. (2016) showed a positive

result by constructing a neural language model using only character embedding.

However, as words change into character units, the length of the sentence be-

comes several times longer. The performance of widely used deep learning models

tends to degrade as the sentence becomes longer, thus character-level embedding is

not used more than expected. The relationship between out of vocabulary problem

and performance degradation as sentence length longer is in a trade-off relationship.

2.2.3 Recurrent Neural Network (RNN)

Recurrent Neural Network (Elman, 1990; Hochreiter and Schmidhuber, 1997;

Schmidhuber, 2008; Graves et al., 2012; Sutskever, 2013) is a network that processes

sequential information. Unlike traditional neural networks, RNN assumes that all in-

puts are independent. The term ’recurrent’ comes from the fact that the model does

the same for each instance of the input sequence, and that the output is dependent

on previous operations and results. Generally, a fixed-size vector is created to rep-

resent a sequence by entering a single token into the recurrent unit. In this way,

the RNN ’memorizes’ the previous operation results and utilizes this information in

the current operation. These templates can be used in language modeling (Mikolov,

2010; Sutskever et al., 2011), machine translation (Auli et al., 2013; Liu et al., 2014;

Sutskever et al., 2014), speech recognition (Graves et al., 2013b; Graves and Jaitly,

2014; Sak et al., 2014), and image captioning (Vinyals et al., 2015b; Karpathy and

30

Fei-Fei, 2015; Xu et al., 2015). This has led to widespread adoption of RNN in NLP

applications over the last few years.

The need for RNN Because the RNN processes data sequentially, it has the ability

to capture the sequential nature inherent in the language. The word has a meaning

based on the previous word. A simple example of this would be the difference in

meaning between ’dog’ and ’hot dog’. RNN is designed to model this context depen-

dency and researchers have been a strong motivation to use RNN over CNN. Another

factor suitable for this RNN sequence modeling is the ability to model various text

lengths, including very long sentences, paragraphs, and even documents (Tang et al.,

2015). Unlike CNN, RNN has a flexible calculation step that can capture unlimited

contexts. This ability to process input values of arbitrary length has become one of

the selling points of major studies using RNN (Chung et al., 2014).

Many NLP tasks also require semantic modeling for the entire sentence. This is

related to creating a gist of sentences within a fixed-dimensional hyperspace. These

instances are appropriately captured by the RNN. RNN usage has increased for tasks

such as machine translation (Cho et al., 2014) where the entire sentence is summa-

rized as a fixed vector and then mapped to a variable-length target sequence.

The RNN also provides network support for time distributed joint processing.

Most of the sequence labeling tasks, such as part-of-speech tagging (Santos and

Zadrozny, 2014), are based on these domains. More specific use cases are document

classification (Li et al., 2015b; Yang et al., 2016; Liu et al., 2016), question answer-

ing (Xiong et al., 2016; Lu et al., 2016), and sentiment analysis (Poria et al., 2017;

Zadeh et al., 2017; Tong et al., 2017).

31

Long Short-Term Memory and Gated Recurrent Unit Learning long-term de-

pendencies with RNN is difficult problem. When you try to learn long-term de-

pendencies, you would encounter two main problems, vanishing gradient problem

and exploding gradient problem (Bengio et al., 1994). Long short term memory

(LSTM (Hochreiter and Schmidhuber, 1997; Gers et al., 1999)) and Gated Recur-

rent Unit (GRU (Chung et al., 2014)) address these problem. LSTM, as shown in

the following illustration Fig. 10, adds gates, and memory cell to a simple RNN, and

GRU adds gates to a simple RNN.

Fig. 10: (a) Long short term memory, i, f and o are the input, forget and output gates,
respectively. c and c̃ denote the memory cell and the new memory cell content. (b)
Gated Recurrent Unit, r and z are the reset and update gates, and h and h̃ are the
activation and the candidate activation. (Figure from Chung et al. 2014)

LSTM consists of three gates, input / forget / output gate, and the memory cell.

Hidden state of LSTM is calculated according to the following equation.

32

it = σ(Wixt + Uiht−1 + bi) (2.1)

ft = σ(Wfxt + Ufht−1 + bf) (2.2)

ot = σ(Woxt + Uoht−1 + bo) (2.3)

C̃t = tanh(Wcxt + Ucht−1 + bc) (2.4)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (2.5)

ht = ot ⊙ tanh(Ct) (2.6)

GRU consists of tow gate, reset / update gate. Hidden state of GRU is calculated

according to the following equation.

zt = σ(Wzxt + Uzht−1 + bz) (2.7)

rt = σ(Wrxt + Urht−1 + br) (2.8)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (2.9)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (2.10)

With this unique mechanism, unlike RNN, LSTM and GRU allow errors to be

propagated back to longer time steps. By using LSTM or GRU, you can alleviate

vanishing / exploding gradient problem.

2.2.4 Convolutional Neural Network (CNN)

The facts already mentioned are some of the motivations for researchers to

choose RNN. However, it is wrong to conclude that RNN is superior to other net-

33

works. Several recent studies provide evidence that CNN is superior to RNN. CNN

achieved a more competitive performance than RNN, even though it is an appropriate

task for RNNs such as Language modeling (Dauphin et al., 2016). CNN and RNN

have different purposes (functions) when modeling sentences. CNN tries to extract

the most important n-grams while RNN tries to generate long boundless sentences.

Both are efficient in capturing n-gram features, but the sensitivity to word order is

locally limited and long-term dependencies are usually ignored.

Yin et al. (2017) presents an interesting insight into RNN and CNN perfor-

mance. After evaluating several NLP tasks including sentiment analysis, QA, and

part-of-speech tagging, they concluded that there was no ”complete winner.” The

performance of each network depends on the global semantics required by the task.

Some of the RNN models used extensively in recent studies are described below.

Deep learning models have recently achieved remarkable results in computer

vision (Krizhevsky et al., 2012) and speech recognition (Graves et al., 2013b). Many

studies using deep learning, even only in natural language processing, have shown

that the word vector representation (Bengio et al., 2003; Mikolov et al., 2013a,b,c;

Pennington et al., 2014) vector (Collobert et al., 2011). CNN utilizes layers that wrap

around filters that apply to regional features (LeCun et al., 1998). Although the CNN

model was originally invented in computer vision, the CNN model has been known

to be effective in NLP and can be applied to semantic parsing (Yih et al., 2014),

information retrieval (Shen et al., 2014), sentence modeling (Kalchbrenner et al.,

2014), and other traditional NLP tasks (Collobert et al., 2011).

Since word embedding has become popular and its performance has been veri-

fied, the need for efficient functions to extract high-level features from word combi-

nations or n-grams has increased. These abstracted features can be used for a variety

of NLP problems such as sentiment analysis, summarization, machine translation,

34

and QA. CNN was a natural choice due to its superior performance in computer vi-

sion (Krizhevsky et al., 2012; Sharif Razavian et al., 2014; Jia et al., 2014).

CNN has the ability to extract key n-gram features from input sentences to pro-

duce a potential semantic representation of the sentence. A pioneering achievement

in this area is Collobert et al. (2011), Kalchbrenner et al. (2014), and Kim (2014).

These follow-up studies have enabled CNN-based networks to spread widely.

Fig. 11: Convolutional neural network for text processing. (Figure from Zhang and
Wallace 2015)

35

Sentence modeling If an embedding vector corresponding to the i-th word of the

sentence is xi, and the number of dimensions of the embedding vector is d, given a

sentence consisting of n words, the sentence can be represented by an n× d embed-

ding matrix. The following shows the input sentences of the CNN framework.

Let xi:i+j be the concatenation of xi, xi+1, ..., xi+j . Convolution is performed

on this value. Convolution filter w is a vector with dimension dimension hd. This

filter is applied to h word vectors. For example, the feature ci newly extracted by the

convolution filter is generated using xi:i+h−1. The expression is:

ci = f(w · xi:i+h−1 + b). (2.11)

Where scalar b is the bias term and f is the nonlinear active function, such as

hyperbolic tangent. The filter w uses the same weights to generate feature maps and

applies to all possible windows:

c = [c1, c2, ..., cn−h+1] (2.12)

The number of convolution filters (also called kernels) on CNN is typically hun-

dreds. The widths of the filters are different, and each filter extracts a specific pattern

of n-grams.

The convolution layer usually follows the max pooling layer, ie ĉ = max(c).

Max pooling sub-samples the input by taking the maximum value for c. There are

two reasons for using this strategy.

First, max pooling generally provides a fixed-length output required for classi-

fication. Therefore, even when the size of the filter is different, max pooling always

maps the input value to a fixed-dimension output.

Second, max pooling reduces the dimension of output while maintaining the

36

most essential n-gram features in the entire sentence. This is done in an invariant

manner because the individual filter can extract a particular feature (for example,

’no’) at any point in the sentence and can append it to the final sentence representa-

tion.

Word embedding can be randomly initialized or pre-learned in a large, unlabeled

corpus. The latter is sometimes useful for improving performance, especially when

the amount of correct data is small (Kim, 2014). This combination of convolution

layer and Max pooling often overlaps to create a deeper CNN network. This sequen-

tial convolution allows to improve the analysis of my sentences by grabbing highly

abstracted representations containing rich semantic information. A deep convolution

filter (kernel) covers a large part of the sentence until you create a complete summary

of the sentence feature.

Fig. 12: Model architecture with two channels for an example sentence. (Figure
from Kim 2014)

2.2.5 Siamese Network

Siamese Network (Bromley et al., 1994; Mueller and Thyagarajan, 2016; Yin

et al., 2015) is a frequently used model for tasks that deal with sentence pairs. Divide

37

the sentence pair into two sentences, and use each sentence as input to the same model

sharing the parameters. The figure below shows Siamese LSTM and Siamese CNN.

Fig. 13: Siamese LSTM. (Figure from Mueller and Thyagarajan 2016)

2.2.6 Sequence to Sequence (Seq2Seq)

There is the famous model to generate sequence well, called encoder-decoder

model or seq2seq (Cho et al., 2014; Sutskever et al., 2014). Two RNN is usually

used, one as encoder and the other as decoder (Fig. 15. Encoder make input sentence

into a vector, and decoder take the vector as a initial state of RNN. The vector usually

is called sentence embedding which represent the sentence information.

2.2.7 Attention Model

To generate sentence better, the concept of attention is introduced (Bahdanau

et al., 2014; Vinyals et al., 2015a; Luong et al., 2015; Xu et al., 2015) (Fig. 16).

38

Fig. 14: Siamese CNN. (Figure from Yin et al. 2015)

39

Fig. 15: An illustration of encoder-decoder model (Figure from Cho et al. 2014)

Attention means that the align between input sentence and output sentence. The result

of attention, attention matrix as shown in Fig. 17, shows a match of each words

in the input and output sentence. This is very useful information to investigate the

generation performance of trained model.

co-attention model Attention also can be applied to sentence pair tasks. The at-

tention mechanism for sentence pair is usually called as co-attention (Xiong et al.,

2016; Lu et al., 2016). It takes two sentences as input and calculate attention between

them which represents the relationship between them (Fig. 18. After that, with the

attention information, try to address sentence pair tasks such as answer selection,

paraphrase identification, and textual entailment (Yin et al., 2015; Cui et al., 2016). It

has some variants, called attention based CNN (ABCNN, Yin et al. 2015), attention

over attention (Cui et al., 2016) and so on.

40

Fig. 16: An illustration of attention mechanism. (Figure from Luong et al. 2015)

self-attentive model Nowadays, attention is calculated between sentence even it-

self, called self-attention (Fig. 19). Strictly speaking, it’s not the same state of a sen-

tence, but a slightly different state of the sentence. In machine translation task, this

method is currently state of the art. It suggests that the attention mechanism has much

potential to solve some problems well.

5Google research blog: https://research.googleblog.com/2017/08/transformer-novel-neural-
network.html

41

https://research.googleblog.com/2017/08/transformer-novel-neural-network.html
https://research.googleblog.com/2017/08/transformer-novel-neural-network.html

Fig. 17: Example of attention matrix. (Figure from Bahdanau et al. 2014)

42

Fig. 18: An illustration of attention over attention. (Figure from Cui et al. 2016)

43

Fig. 19: An illustration of self-attention (Figure from the site5)

44

2.3 Chapter Summary

In this chapter we compared and analyzed the concept of linguistic alignment,

and defined alignment / non-alignment criteria. We briefly took a look at deep learn-

ing and NLP technology and its model for alignment classification and generation.

Since there was no adequate study of the linguistic alignment criteria, we set

standards first. Since preceding alignment studies have pointed to different phenom-

ena, it is meaningful to set standards for them and to classify the conversation. Lin-

guistic alignment refers to the structure of continuing conversations within the con-

text of the previous utterance: Affirms [affirmation] or denies [negation] the words

of the preceding interlocutor, and repeats the previous statements [repetition]. Non-

alignment refers to cases in which the topic changes suddenly [switch], and conver-

sational flow is interrupted [stop] or completely irrelevant [irrelevant speech].

Linguistic alignment is a phenomenon which can be recognized as analogous,

but it is difficult to establish rules for each situation. Therefore, it is not easy to

analyze the alignment structure by the rule-based method. So, we tried to utilize the

state-of-the-art deep learning method to investigate the linguistic characteristics.

45

46

Chapter 3

Experiment

3.1 Overview

This chapter describes data acquisition, alignment classification experiments,

aligned response generation experiments and marker validation.

In section 3.2, we made 2 types of the corpus; textbook and twitter corpus by la-

beling 1,384 sentence pairs of textbooks and 2,000 sentence pairs of tweets. Labeling

was performed based on the linguistic alignment criteria in section 2.1. When human

determined alignment, the whole sentence was usually taken into account, not just

some of the words involved (we will discuss it in more detail in section 3.2.3). To

train alignment classification model, a researcher created several sets of inputs and

outputs. The model learns how to classify the sentences based on what the researcher

tagged as alignment / non-alignment. Through training, a machine makes the similar

judgment as what human did. Then, we conducted data augmentation because we

had too small and unbalanced data to train deep neural networks models, alignment

classifiers.

In section 3.3, we tried to classify sentence pairs into alignment and non-alignment

with deep learning classifier and marker-based approach (see Fig. 20). The classifiers

were trained with 3,920 pairs in textbook corpus and 4,500 pairs in twitter corpus,

after data augmentation. The performance of the classifiers was compared to the base-

line marker experiments. The classifiers shows quite good performance (70− 80%),

better than the baseline (35− 55%).

47

Fig. 20: Alignment classification with deep learning classifier and marker-based ap-
proach

In section 3.4 and 3.5, we tried to generate aligned responses with neural ma-

chine translation (NMT) model (see Fig. 21).

In section 3.4, we tried to train aligned response generator with 1,226 aligned

sentence pairs in twitter corpus, labeled by us in section 3.2), Training, however, did

not work out as we expected. We assumed that the training requires more data to

produce appropriately aligned responses.

In section 3.5, to solve the lack of data, 50,000 pairs of unlabeled tweets were

classified through a trained alignment classifier, CNN. As a result, 27,449 sentence

pairs were classified as alignment pairs and we used this as larger alignment cor-

pus. By using the larger alignment corpus, we would train better aligned response

generation model and generate more appropriate aligned response to the user. It was

possible to get a better performance and quite good results from the training with the

48

Fig. 21: Aligned response generation with NMT model

classified 27,449 aligned sentence pairs than with the labeled 1,226 aligned sentence

pairs. This means that by using the trained classifier, the data can be acquired with

ease and can reduce the human labor cost.

The more labeled data, the better results. To get numerous data conveniently,

we used a high-performance classifier which could replace human labor. The models

classify unlabeled new sentences based on the correctly labeled answers made by

human researchers. Using classified sentences reduces the cost of human effort to

label sentences, and the whole procedure becomes less costly.

In section 3.6, we validated Spanish markers based on the linguistic human cri-

teria and were able to find interesting and meaningful markers in the classified 27,449

aligned sentence pairs, different from those expected by humans. In other words, the

computer learned human-like ability to judge aligned sentence pairs. We used the

deep learning method to imitate human judgment without any rules. This suggests

49

that obtaining a large corpus by the trained classifier and then analyzing the large

corpus classified by the trained classifier could be a useful language analysis method.

50

3.2 Data Acquisition

This study is based on the existing natural language processing techniques, and

it implements and validates the deep learning model based on the latest research.

3.2.1 Data Types

We mainly analyze conversational data which are composed of dialogue, which

are written in colloquial tone, called quasi-spoken corpus. The source of data that

can be obtained directly include 4 collections of Spanish language learning materials

at Seoul National University, 3 scripts for foreign language theatrical performances,

and Spanish tweets crawled from web. Due to privacy protection and accessibility

limitation, other SNS or posts were limited to use, while Twitter was relatively easy

and available.

At the beginning of the study, play script data was also used, but in the case

of scenario was removed due to copyright problems. All dramas are very famous

Spanish works, and were used as a script for the foreign drama festival at Seoul

National University: Prohibido suicidarse en primavera, Siete gritos en el mar, and

Morir (o no). The play Prohibido suicidarse en primavera was premiered in Mexico

in 1937 and later was also produced as a TV soap opera. Siete gritos en el mar was

performed in Argentina from 1952 to 1968 and was made into a film in 1954. Morir

(o no) is a play written by Sergi Belbel, and was also filmed in 2000. He won the

award for this play in 1994 and 1996, respectively.

In addition to the refined data from textbooks, it also has the advantage of being

able to obtain more vivid dialogue that is often used on the web.

Textbook A total of 4 textbooks are used. They were published in 2013 for un-

dergraduate students at Seoul National University: Beginner and Basic, Intermediate,

51

Table 12: Data composition before adjustment

Conversation and Writing (published in 2008) textbooks (Shin et al., 2013a,b; Macı́as

et al., 2013; Shin et al., 2008). Each book is composed of highly refined dialogues. It

is useful for learning situational and specific phrases because the chapters are topic-

specific. Most of the conversations are an alignment structure.

Twitter Textbook data are suitable for learning the alignment structure for specific

topic, but were not suitable for obtaining a sufficient amount of non-alignment data.

In order to make a model to train the patterns on a computer, Twitter data was suitable

in a highly flexible syntax. Twitter is known as a good linguistic resource that can be

freely and automatically collected without restrictions.

3.2.2 Crawling and Preprocessing

(1) Firstly, need to be approved on twitter for crawling1.

• Open https://apps.twitter.com/ and click the button: ‘Create New App’

• Once the app is created, you will be redirected to the app page.

• Open the ‘Keys and Access Tokens’ tab.

• Copy ‘Consumer Key’, ‘Consumer Secret’, ‘Access token’ and ‘Access

Token Secret’.

1Reference site: http://www.geeksforgeeks.org/twitter-sentiment-analysis-using-python/

52

https://apps.twitter.com/
http://www.geeksforgeeks.org/twitter-sentiment-analysis-using-python/

(2) Crawl the tweets with more than 100 times RT(retweeted) on twitter and its

comments.

(3) Preprocessing : Erase unnecessary information from the crawled data and use

a tokenizer.

Due to the nature of Twitter, misleading or unscripted expressions and unre-

fined sentences are mixed. To crawl proper conversations among these sentences, we

needed to select Spanish sentences that were mentioned many times by the users.

Thus, we picked out the tweets with more than 100 times RT and its comments.

We removed account(accountname), hashtag (#something), ’RT’, links, special

characters to clean tweet text. The python library ‘Regular Expression’ is utilized for

preprocessing.

We used ToktokTokenizer, a tokenizer for Spanish. When using ToktokTok-

enizer only, the ’word’ + ’.’ sometimes are not be separated properly. For example,

’done.’ should be separated into ’done’ + ’.’ but they were not separated. Thus we

additionally used nltk.wordpunct tokenize.2.

3.2.3 Data Labeling

Although we had the colloquial data for research such as Spanish textbooks,

play scripts, and Twitter data, it is difficult to acquire the labeled data to train. There-

fore, we should attach labels to sentence pairs by ourselves. Assuming conversational

communication situations, labels were attached to the sentence pairs in which neigh-

boring responses exist.

Alignment The data input and output values used in this study are as follows.

2Reference site: https://github.com/nltk/nltk/issues/1558

53

https://github.com/nltk/nltk/issues/1558

• Input: sentence 1, sentence 2 — Output: Alignment / None

We did not judge based on specific words for labeling. Instead, we distinguished

by the meaning of the whole sentence. The reason for this is that judging based on

only a specific word can artificially affect the experimental results, and the mean-

ing of the actual conversation can not be represented by only a few words. In order

to distinguish between alignment and non-alignment based on the meanings in the

whole sentence, the entire sentence was entered to avoid overlooking or omitting any

elements.

Fig. 22: Selection of alignment in textbook (Español Básico 1, Chpt 10, p.172)

3.2.4 Data Augmentation

Deep learning models require more than thousands of data. We have relatively

small data. So we try to supplement the amount of data by doing a data augmentation.

According to a forum3, currently there is no effective text data augmentation

technique. Among very few candidates, data augmentation using thesaurus is most

3Forum site: http://forums.fast.ai/t/data-augmentation-for-nlp/229

54

http://forums.fast.ai/t/data-augmentation-for-nlp/229

Fig. 23: Selection of alignment in Twitter

effective. However, there is no thesaurus available for Spanish, and since it was costly

to make it, we look for another way.

Another simple augmentation technique is to increase the number of sentences

by making each word of the sentence into an unknown token (UNK) with a certain

probability. This method is called word dropout(Dai and Le, 2015; Bowman et al.,

2015; Xie et al., 2017). There are two main ways; one is to change a certain percent

of words in a sentence into UNK, and the other is to change each word into UNK

with a certain probability. Since we could make more patterns by changing each

word (increased by 2|NumberofWords|), we used the word-by-word method in this

study. This method is known to increase the generalization capability of the model

by preventing the model from overfitting to small train data.

55

Table 13: Examples of data augmentation using word dropout

Cross-validation and test data in deep learning In the traditional machine learn-

ing field, cross-validation was usually used, especially when the data size is hun-

dreds (Kohavi et al., 1995) (Fig. 24). Cross-validation, however, is not often used in

deep learning4. Cross-validation usually takes more time, at least five times longer

to perform one experiment, and each deep learning experiment usually takes over an

hour. Thus, using cross-validation is time-consuming and inefficient in deep learning

field.

Fig. 24: An illustration of cross-validation

Instead of cross-validation, many researchers tend to train the model with valid

4Quora Q&A: https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-
too-expensive-to-be-used

56

https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-too-expensive-to-be-used
https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-too-expensive-to-be-used

loss for model selection (called early stopping Prechelt 2012, Fig. 25). The train data

divided into a training set is used to train the model and a validation set is used to

estimate model performance during training. A validation set is never used for model

training, and valid loss is calculated from a validation set. Deep learning researchers

usually make previously a test set that reflects the target performance. We also made

a selected test set (See chapter 3.3). In this study, 10% of train data was used as

validation set. With the premade test set, model performance was assessed.

Fig. 25: An illustration of early stopping

57

3.3 Alignment Classification

Before the generation of aligned responses, we assumed that we should identify

alignment sentence pairs to collect them for training. Since it is difficult for a person

to identify every sentence, this study designs an automatic classifier to reduce high

cost for identification of alignment sentence pairs. Based on the trained classifier, we

could identify and collect alignment sentence pairs.

Hypothesis 1 Spanish has a systematic lexical structure, and there will be many

markers for alignment sentences compared to those that are not.

Hypothesis 2 Markers will play a significant role in automatically determining

whether or not to align.

This study introduces deep learning method to dialogue analysis, linguistic align-

ment, based on existing NLP theory. Recently, various model designs and techniques

are blooming in natural language processing field. In this paper, we utilized the mean-

ingful deep learning models and techniques applied to a large number of NLP tasks,

and compared the models to each other by applying them to the linguistic alignment.

3.3.1 Baseline - marker-based classification

Marker-based (rule-based) classification was used as baseline approach. We cre-

ated a marker list first. If any of the words in the marker list appear in the second sen-

tence (following sentence), the second sentence is classified as the aligned response.

We called this approach as marker-based (rule-based) classification.

There are very few studies on Spanish markers, especially in the dialogue model.

Here we proceed with an empirical validation of the alignment phenomenon on the

58

Table 14: List of 20 components for verification experiments consisting of 4 levels

Twitter social media conversation data.

The markers were classified into four stages in the order of significant fea-

tures and semantic factors. We use 7 types of markers from Danescu-Niculescu-Mizil

(2012), which are considered to be processed by humans in a generally non-conscious

fashion: articles (el, la, los, las), auxiliary verbs (hay), conjunctions (y, pero, si),

high-frequency adverbs (bien, siempre, nunca, ası́, mucho), pronouns (lo, la, los, las),

prepositions (con, a, por, en), and quantifiers (mucho).

In the first step, definite articles el, la, los, las and object pronouns lo, la, los,

las are selected as the representative terms. In the second level, we select affirma-

tive/negative expressions to the previous speech and frequently used adverbs. Step

59

Table 15: Results of baseline experiment

3 consists of some principal prepositions containing detailed explanations of previ-

ous dialogues and auxiliary verb hay, which represents both the meaning of presence

and duty. Step 4 contains elements that enrich the previous conversations, providing

additional contents or emphasizing something.

Again, If any of the words in these step of marker list appear in the second

sentence (following sentence), the second sentence is classified as aligned response.

We tested baseline approach with selected test data (described in section 3.3.2). As

the step progresses, markers of each step are cumulated. In other words, the accuracy

is evaluated about whether any of each word belongs to the step: 5 elements in step

1, 10 in step 2, 15 in step 3, and 20 in all. The results are shown in Table 15. It is

contrary to the hypothesis 2 that we assumed before the study. That is, the results are

about 50-60%, which means the vocabulary elements predicted to be important are

not functioning as alignment markers.

3.3.2 Settings

There are four types of deep learning models used in this study. Above all, the

model is simplified and abstracted at Fig. 26. Each model (BiLSTM, CNN, Siamese

BiLSTM, Siamese CNN) was implemented with Windows 10, python 3.5.4, pytorch

0.3.0, GPU-GeForce GTX 1070.

60

Selection of test data To investigate model performance properly, we previously

selected appropriate test data. In Section 2.1, we divided six subcategories in detail.

Linguistic alignment classification can be a much more difficult problem than sen-

timent analysis, which is a representative binary classification problem among NLP

tasks. The alignment statement includes not only a positive response, but also an neg-

ative response, such as the criteria previously mentioned. Repeating or re-mentioning

the previous topics is also included in the alignment.

Table 16: Alignment for directly related interpersonal conversations

And, in addition to the non-alignment criteria mentioned in Chapter 2.1, we

exclude some sentences, since we are targeting a conversation between two people

who are directly related. For example, in the dialogue of Table 16, second row, the

sentence ”Siento llegar retrasada ... I’m sorry I’m late” is not the wrong sentence.

But it is not the aligned response for a interlocutor who has heard ”¡Mira! ¡Ahı́ viene

ya, viene corriendo! Look! There she comes, she’s running!” Therefore, it is judged

to be a non-alignment. A more appropriate response to B’s utterance would be ”¡De

verdad! ¡Me alegra que haya venido! Yes! I’m glad that she comes!” or so. There are

many complicated situations like above example.

There is another example; even if it is the same responses, whether it is aligned

response or not depends on the situation. The simple example is ’hello’. If you re-

61

spond ’hello’ to the greeting, that is aligned response. If you reply ’hello’ to someone

who is asking about ’where are you living?’, that is non-aligned response.

Considering such points, we made a test set by selecting sentences that need to

be classified well. The selected test data is in the following Tables from 17 to 28.

140 pairs (70 alignment pairs and 70 non-alignment pairs) for textbook corpus and

200 pairs (100 alignment pairs and 100 non-alignment pairs) for twitter corpus are

selected as test data.

62

Table 17: Examples of alignment-labeled data: Textbook (1)

63

Table 18: Examples of alignment-labeled data: Textbook (2)

64

Table 19: Examples of alignment-labeled data: Twitter (1)

65

Table 20: Examples of alignment-labeled data: Twitter (2)

66

Table 21: Examples of alignment-labeled data: Twitter (3)

67

Table 22: Examples of alignment-labeled data: Twitter (4)

68

Table 23: Examples of non-alignment data: Textbook (1)

69

Table 24: Examples of non-alignment data: Textbook (2)

70

Table 25: Examples of non-alignment data: Twitter (1)

71

Table 26: Examples of non-alignment data: Twitter (2)

72

Table 27: Examples of non-alignment data: Twitter (3)

73

Data ratio equalization As shown in Table 12, the ratio of the data was not equal

(1:1). At the beginning, we tested with this data and noticed that the classifiers did

not classify non-alignment pairs well. We assumed that the low rate of non-alignment

pairs in corpus caused this low accuracy of non-alignment classification.

We tried to keep the data ratio of alignment and non-alignment close to 1:1. (The

test data ratio was already set to 1:1; 70 alignment/70 non-alignment for textbook

corpus, 100 alignment/100 non-alignment for twitter corpus.) For this purpose, we

have implemented data augmentation with word dropout (see section 3.2.4). At this

time, the word dropout rate was set to 0.1.

We had 980 alignment and 264 non-alignment pairs among 1,244 textbook pairs

of training data. We octupled the 264 non-alignment pairs and made 2,112 pairs. The

last 152 pairs were excluded, and 1,960 non-alignment pairs was acquired. We also

doubled the 980 alignment pairs and made 1,960 pairs. 3,920 pairs were consisted of

1:1 ratio of 1,960 each. We use 392 pairs (10% of them) as valid data, and the rest

3,528 pairs as train data.

We had 1,226 alignment and 574 non-alignment pairs among 1,800 tweet pairs

of training data. We quadrupled the 574 non-alignment pairs and made 2,296 pairs.

The last 46 pairs were excluded, and 2,250 non-alignment pairs was acquired. We

also doubled the 1,226 alignment pairs and made 2,452 pairs. By deleting last 202

pairs from 2,452 pairs, 2,250 pairs was acquired. 4,500 pairs were consisted of 1:1

ratio of 2,250 each. We use 450 pairs (10% of them) as valid data, and the rest 4,050

pairs as train data.

After adjusting the ratio to 1:1, the performance of deep learning model im-

proved. The reason for improvement could be the data augmentation method itself or

data ratio equalization. Identifying which was the main reason for the improvement

was beyond the scope of this study, thus we did not investigated it deeply.

74

Table 28: Examples of non-alignment data: Twitter (4)

75

Table 29: Augmented alignment and non-alignment data set

Deep learning library-Tensorflow and pytorch Two types of deep learning li-

braries are mainly used: Tensorflow, developed by Google, and pytorch, developed

by Facebook. Google’s tensorflow has been developed for research and production.

On the contrary, Facebook uses pytorch for research and development, and another

deep-running library caffe2 for production5. Because of this difference, Facebook’s

pytorch code has been simplified compared to Google’s tensorflow code. The code is

concise and has the advantage of being able to create prototypes quickly and easily,

and is now preferred widely. In this study, pytorch was used to take advantage of its

advantage.

Technique to mitigate performance fluctuations due to initialization Deep learn-

ing models change learning patterns according to the initial values of the network, and

eventually the performance of the trained models changes. In order to alleviate this

phenomenon, we experimented 5 times for each setting, taking the best value as the

best performance that the model can produce.

BiLSTM As mentioned at subsection 2.2.3, the general LSTM considers the for-

ward direction only, and it becomes difficult to reflect the information of the past. In

order to mitigate this phenomenon, Bidirectional LSTM is considered which takes re-

verse direction into consideration (Schuster and Paliwal, 1997; Graves et al., 2013a).

5Reference site: http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture8.pdf

76

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf

Fig. 26: Models used in the experiment

We experimented with this model6.

The major hyper parameters used in BiLSTM are as follows.

Table 30: List of Hyperparameters-BiLSTM

Hyper parameter Value

Learning rate 0.001
Number of layers 2
Number of epoch 30
Batch size 150
Word embedding size 300
Hidden size 256
Dropout rate 0

CNN As mentioned at subsection 2.2.4, CNN moves the Kernel (window) to words

in the sentence and changes the sentence into the feature. It is believed that it is pos-

6Reference code: https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-
intermediate/bidirectional recurrent neural network/main.py

77

https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/bidirectional_recurrent_neural_network/main.py
https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/bidirectional_recurrent_neural_network/main.py

sible to simultaneously consider surrounding words as much as the kernel size (Kim,

2014). We used Kernelsize = [3, 4, 5], Kernelnumber = 256 as in Kim (2014)7.

The major hyper parameters used in CNN are as follows.

Table 31: List of Hyperparameters-CNN

Hyper parameter Value

Learning rate 0.001
Number of layers 1
Number of epoch 30
Batch size 150
Word embedding size 300
Kernel size 3,4,5
Kernel number 256
Dropout rate 0

Siamese-BiLSTM As mentioned at subsection 2.2.5, each sentence is put sepa-

rately into BiLSTM, and the resulting features are grouped together. And we used it

as an input data for logistic regression, and trained the alignment of pair sentences as

an output8.

The major hyper parameters used in Siamese-BiLSTM are as follows.

Siamese-CNN This is the CNN version of the Siamese network(Hadsell et al.,

2006; Yin et al., 2015). Siamese-CNN is difficult to use because NAN is floating

even if setting is changed a little9 10. After plenty times of tuning, we found the

current setting11.

7Reference code: https://github.com/Shawn1993/cnn-text-classification-pytorch
8Reference site: https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-

Pytorch/blob/master/Siamese-networks-medium.ipynb
9https://discuss.pytorch.org/t/how-to-implement-siamese-network/2302

10https://discuss.pytorch.org/t/possible-data-parallel-memory-leak-for-siamese-network/4976
11Reference code: https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-

intermediate/convolutional-neural-network/main.py

78

https://github.com/Shawn1993/cnn-text-classification-pytorch
https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ipynb
https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ipynb
https://discuss.pytorch.org/t/how-to-implement-siamese-network/2302
https://discuss.pytorch.org/t/possible-data-parallel-memory-leak-for-siamese-network/4976
https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/convolutional_neural_network/main.py
https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/convolutional_neural_network/main.py

Table 32: List of Hyperparameters-Siamese-BiLSTM

Hyper parameter Value

Learning rate 0.001
Number of layers 2
Number of epoch 30
Batch size 150
Word embedding size 300
Hidden size 256
Dropout rate 0

The major hyper parameters used in Siamese-CNN are as follows.

Table 33: List of Hyperparameters-Siamese-CNN

Hyper parameter Value

Learning rate 0.001
Number of layers 2
Number of epoch 30
Batch size 150
Word embedding size 300
Kernel size 3
Kernel number 256
Dropout rate 0

3.3.3 Results

Fig. 27 and Table 34 show the result of alignment classification by each model.

The result shows that Siamese CNN has the highest performance with the textbook

data, and CNN has the highest performance with the twitter data. Deep learning mod-

els show superior performance than baseline, about 30-40% higher with textbook

data, about 20-25% higher with twitter data. Notice that the result of Siamese CNN

has even double accuracy rate than baseline. This suggests that deep learning ap-

proach is much better than marker-based (rule-based) approach.

79

Fig. 27: Best results of models

Hyper-parameter tuning We chose best hyper-parameter setting for comparison

of models in Table 34. To find best hyper-parameter setting, we performed numer-

ous experiments. We modified hidden size [32, 64, 128, 256, 512], and dropout rate

[0, 10%, 20%, 50%]. Total number of experiments is 800, 4 models × 2 data-types ×

5 hidden sizes × 4 dropout rates × 5 to mitigate performance fluctuations caused by

initialization. The results are shown in the following graphs.

80

Table 34: Best results of models

Data type Model Accuracy (%) Hidden size Dropout (%)

Textbook

Baseline 40.00 Marker Lv.2
BiLSTM 80.00 512 0.5
CNN 75.71 64 0.0
Siamese BiLSTM 77.14 512 0.1
Siamese CNN 82.14 64 0.0

Twitter

Baseline 53.00 Marker Lv.4
BiLSTM 71.00 512 0.2
CNN 77.00 128 0.5
Siamese BiLSTM 73.00 128 0.2
Siamese CNN 67.00 512 0.2

81

Fig. 28: BiLSTM result with textbook data. Accuracy for alignment classification as
a function of hidden size

Fig. 29: CNN result with textbook data. Accuracy for alignment classification as a
function of hidden size

82

Fig. 30: Siamese BiLSTM result with textbook data. Accuracy for alignment classi-
fication as a function of hidden size

Fig. 31: Siamese CNN result with textbook data. Accuracy for alignment classifica-
tion as a function of hidden size

83

Fig. 32: BiLSTM result with twitter data. Accuracy for alignment classification as a
function of hidden size

Fig. 33: CNN result with twitter data. Accuracy for alignment classification as a
function of hidden size

84

Fig. 34: Siamese BiLSTM result with twitter data. Accuracy for alignment classifi-
cation as a function of hidden size

Fig. 35: Siamese CNN result with twitter data. Accuracy for alignment classification
as a function of hidden size

85

3.3.4 Qualitative Evaluation

Since the results depend on the data, we must determine the model according

to the data. We experimented a number of times to find the best hyper parameter

settings. Each graphical representation of the results is shown from Fig.28 up to Fig.

35. The better we set up for our data, the higher the performance we may get, and

the more appropriate classified data we will gather. As a result of experiments, it is

recommended to change the type of model used in Classifier according to the nature

of data. We have analyzed qualitatively the results of the highest performing Siamese

CNN model in Textbook and the highest performing CNN model in Twitter. In order

to evaluate the data qualitatively, the sentence must be determined semantically and

appropriately.

In the textbook, Siamese CNN model, which showed the highest performance,

was able to classify the following sentences as well. And an example of the most

successful CNN model on Twitter is following together in Table 35.

Among the wrongly classified results, there were mixed sentences that were

difficult to judge mechanically without lexicon or background knowledge.

From the perspective of pragmatic strategy in the context of maintaining the con-

sistency of conversation, in the adjacent replies, the preceding words and concepts

must be balanced by being co-referenced, reused or omitted, and the conversation

proceeded in a way that introduces another word or concept. Therefore, in the align-

ment structure, the current or new information is balanced according to the speaker’s

speech.

86

Table 35: Evaluation of the results from the alignment classifier

87

3.4 Generation trained with labeled pairs

Our ultimate purpose is creating the system which generates aligned responses

corresponding to input sentence. To create this system, we are going to use neural

machine translation (NMT) model, which translate an input source language into a

output target language. In our case, the input source language is sentence 1 which

is previous speech of the interlocutor, and the output target language is sentence 2

which is aligned response.

Specifically using only the sentence pairs labeled as alignment among the 1,800

sentence pairs which used in section 3.3 as train data, we create an NMT model

which generates sentence 2 as aligned response when sentence 1 is entered as an

input sentence.

hypothesis By using the alignment corpus (1,226 alignment sentence pairs labeled

by us in section 3.2), we would train the aligned response generation model (same

with NMT model) and generate appropriate aligned response to the user.

3.4.1 Settings

As NMT model, Encoder-Decoder model (Cho et al., 2014; Sutskever et al.,

2014) with attention are used (Bahdanau et al., 2014; Vinyals et al., 2015a; Luong

et al., 2015; Xu et al., 2015) 12 for this study.

The train and valid data are 1,100 alignment pairs / 126 alignment pairs, respec-

tively. Test data is 100 alignment pairs from section 3.3.2.

The major hyper parameters used in encoder (BiLSTM), attention decoder (LSTM

with attention) are as follows.

12Reference link: http://pytorch.org/tutorials/intermediate/seq2seq-translation-tutorial.html

88

http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Table 36: Hyperparameter lists of Encoder and Attention-decoder

Hyper parameter Encoder Attention-decoder
Learning rate 0.001 0.001
Number of layers 1 1
Number of epoch 50 50
Batch size 150 150
Word embedding size 300 300
Hidden size 256 256
Dropout rate 0 0
Max sequence length 50

3.4.2 Results

We experimented with encoder (BiLSTM)-attention decoder (LSTM). The gen-

erated result with test data input (= sentence 1 of test data) is as shown in Table 37.

Our goal is to generate a response which is similar to the target response correspond-

ing to the input sentence. The result from the trained NMT model is the generated

response.

3.4.3 Qualitative Evaluation

We make a lexicon with all the words from the data that we use at the training.

When a word that does not appear in the vocabulary comes as input, the word is

treated as [unk] token (unknown word).

After reviewing the results, as shown in the 2nd and 4th examples of Table 37,

many [unk] tokens appear in input sentences. This would cause the trained NMT

model to misrecognize the input sentence. As a result, the generated responses from

the trained NMT model seem weird. In other words, as many [unk] token exists,

recognizing input sentences would be hard and then misrecognizing would cause

weird sentence. The 3rd example of Table 38 shows that when the main word in the

input sentence is UNK, generates the weird sentence, bad case.

89

Table 37: Example of generated responses from the NMT model trained with labeled
pairs

Examples
Input sentence que dicen ?? ?
Target response [unk] todo te queda perfecto
Generated response y dale con su puta “ trabajo “ el tachira a la muerte

eterna claro que se puede subsidiar a la muerte eterna
claro que hacer . . .

Input sentence la justicia no es venganza ni [unk] . uno es inocente hasta
[unk] [unk] . pero prisión preventiva es [unk] para [unk] . . .

Target response tal cual . de acuerdo . asi debe ser .
Generated response y ası́ es un show
Input sentence ¿ cómo habéis [unk] la semana familia ?
Target response la he [unk] increı́ble , gracias a tu me gusta soy la mas

feliz del mundo ahora mismo . gracias . . .
Generated response es muy estupido
Input sentence [unk] la [unk] del [unk] a [unk] paz .
Target response me gustarı́a saber cómo hace para usar esta cuenta ud .

desde donde esta .
Generated response yo quisiera tocar las tuyas ..
Input sentence la fiscalı́a belga respondiendo a todas las preguntas ...

igual que aquı́ ! ! !
Target response esto lo tenemos en cuenta ? es lo mismo con la gente

de su paı́s , me gustarı́a . . .
Generated response y no lo puedo entender ! ! !

90

Although no [unk] tokens are in the input sentences as shown in the 1st and 2nd

examples of Table 38, there are cases where it is not generated well, bad cases. From

the 1st and 2nd examples of Table 38, it was assumed that there was not enough train

data to learn the appropriate generation.

We decided to increase the data to solve the [unk] problem and to generate better

response. The method of increasing the data is presented in section 3.5, and further

experiments are carried out after increasing.

Attention Matrix We conducted the inner test (which means investigate with train

data) to confirm if attention matrix was well learned. As shown in Fig. 36, 37, the

attention matrix was not well learned. Due to the nature of the task, the input sentence

words and the target output sentence words may not match well. But more than this,

the main reason would be the lack of train data to learn attention matrix.

We decided to increase the data to learn attention matrix well. The method of

increasing the data is presented in section 3.5, and further experiments are carried out

after increasing.

91

Table 38: Evaluation of generated responses from the NMT model trained with la-
beled pairs

Examples
Input sentence buenos dı́as
In English good morning
Target response hola buenos dı́as
In English hello good morning
Generated response es que votar no hay nada más fiel a los catalanes y no
(Bad) se quede con la plata de mierda tienen la plata de mierda

tienen una masa y duro con su lucha es un crack !
In English Nothing is more faithful to Catalans than voting.

People do not stay with the money. They have the money
of shit. They have a mass, and have hard time
with his fight. It’s amazing!

Input sentence te amo
In English I love you
Target response yo tambien te amo
In English I love you too
Generated response yo creo que calladita es un androide estoy seguro que
(Bad) no tiene cultura . . .
In English I believe that Calladita is an Android and I’m sure that

it doesn’t have culture ...
Input sentence españa no tiene [unk] posible
In English Spain does not have possible [unk]
Target response a mi sin [unk] me encanta nuestro [unk] [unk] y nuestra

[unk] de [unk] de casi todo .
In English to me without [unk] I love our [unk] [unk] and our

[unk] of [unk] almost everything
Generated response y el instigador en el 2019 son los amo mucho que se
(Bad) puede
In English and the instigator in 2019 are I love you so much that

you can

92

Table 39: Generated responses for investigating attention matrix. Each sentence cor-
responds with Fig. 36 and Fig. 37

Examples
Input sentence Siempre se hacen bromas de la mala memoria del venezolano

, pero jamás pensé que muchos se olvidarı́an de la lucha de
ello . . .

In English There are always jokes about the poor memory of the
Venezuelan, but I never thought that many would forget about
their struggle ...

Generated response que gran equipo !
In English what a great team!
Input sentence De ustedes depende para qué utilizar sus manos ... acariciar ,

abrazar o dar palmas
In English It depends on you to use your hands ... caress, hug or clap
Generated response yo quisiera tocar las tuyas ..
In English I would like to touch yours ..

Fig. 36: Attention matrix from Table 39 1st example

93

Fig. 37: Attention matrix from Table 39 2nd example

94

3.5 Generation trained with classified pairs

This section have the same purpose with section 3.4, and only one difference is

the train data which is increased by following steps. To increase the data, we planed

to use more twitter data and trained alignment classifier CNN, which perform 77%

accuracy on twitter data (as shown in section 3.3.3). Detail as follows.

1. crawled more twitter data (50,000 sentence pairs).

2. utilized the alignment classifier CNN to classify a large number of sentences

pairs (50,000 sentences pairs)

3. acquired the classified sentence pairs. 27,449 sentence pairs were classified as

alignment pairs, and 22,551 sentence pairs were classified as non-alignment

pairs.

4. used 27,449 alignment sentence pairs as train data for training aligned response

generation model.

In other words, using only the sentence pairs classified as alignment among

the 50,000 sentence pairs, we create an NMT model which generates sentence 2

as aligned response when sentence 1 is entered as an input sentence. Specifically,

through the classifier, the 27,449 sentence pairs were classified as alignment pairs,

and they are used for the aligned response generation model (See Fig. 38).

hypothesis 1 By using the larger alignment corpus (27,449 alignment sentence

pairs classified by trained alignment classifier, CNN), we would train better aligned

response generation model and generate more appropriate aligned response to the

user.

95

Fig. 38: Outline of the generation trained with classified pairs

hypothesis 2 Using large data would be better than using small data, even if large

data would include misclassified data with 23% probability. Using CNN classifier

which performs 77% accuracy would make over 23% misclassification. We expected

that even though over 23% misclassified data was mixed to 27,449 classified align-

ment pairs, about 77% of 27,449 classified alignment pairs are rightly classified. The

training would be weighted by many data, that is, 77% rightly classified data would

lead the model to generate the aligned response. As a result, the aligned response

generation model would be better.

96

3.5.1 Settings

The NMT model and the major hyper parameters used in encoder (BiLSTM),

attention decoder (LSTM with attention) are same with section 3.4.1.

Only one difference with section 3.4.1 is the train data, changing from 1,226

labeled pairs that we directly labeled, to 27,449 classified pairs that the trained align-

ment classifier CNN classified. More specifically the train and valid data changed

from 1,100 pairs / 126 pairs to 27,000 pairs / 449 pairs. Test data is same 100 align-

ment pairs from section 3.3.2.

3.5.2 Results

We experimented with encoder (BiLSTM)-attention decoder (LSTM). The gen-

erated result with test data input is as shown in Table 40. Notice that the number

of [unk] token remarkably decreases in input sentence than the one from the model

trained with labeled pairs (Table 37).

3.5.3 Qualitative Evaluation

Analysis of results In the examples of Table 41, the second example still produces

a bad response, but the first and third examples generated the good-aligned responses.

When comparing Table 37 and Table 40, the number of [unk] tokens is significantly

reduced when recognizing input sentences. By contrast training with labeled data

has vocabulary whose size 4,577, training with classified data has vocabulary whose

size 35,925. As 31,000 more words occur in train data, the number of [unk] tokens

reduced when test data comes as input sentence. As [unk] tokens are fewer in the

input sentence, the trained model could recognize the input sentence well, and it

would lead the trained model to generate aligned response well, a good case. But this

97

Table 40: Example of generated responses from the NMT model trained with classi-
fied pairs

Examples
Input sentence que dicen ?? ?
Target response obviamente todo te queda perfecto
Generated response qué pasa si no te vas a ver a mi le gusta la gana ... me

voy a seguir rezando que me lo has dicho . es
mi papa . . .

Input sentence la justicia no es venganza ni morbo . uno es inocente
hasta condena firme . pero prisión preventiva es
válida para [unk] . . .

Target response tal cual . de acuerdo . asi debe ser .
Generated response son trabajadores ! ! !
Input sentence ¿ cómo habéis empezado la semana familia ?
Target response la he empezado increı́ble , gracias a tu me gusta

soy la mas feliz del mundo ahora mismo . gracias . . .
Generated response qué pasa si no te vas a decir esto ? por que no te digan ,

no me lo creo . se me ha hecho una falta . . .
Input sentence agradecemos la visita del compañero a marcos paz .
Target response me gustarı́a saber cómo hace para usar esta cuenta ud .

desde donde esta .
Generated response qué pasa si eres un analfabeto una cosa que no te hace

caso a las 4 dı́as . si las hay que ver co . . .
Input sentence la fiscalı́a belga respondiendo a todas las preguntas ...

igual que aquı́ ! ! !
Target response esto lo tenemos en cuenta ? es lo mismo con la gente

de su paı́s , me gustarı́a . . .
Generated response no mames , no importa que no le hagas caso a los

demás cuando les conviene en sus . . .

98

is only the case like the third example.

The first example changed from bad case to good case, not because of less [unk],

but because the model could be trained with more various patterns as much as the

amount of data increased. Larger data would lead the model to generate more appro-

priate aligned responses.

Table 41: Evaluation of generated responses from the NMT model trained with clas-
sified pairs

Examples
Input sentence buenos dı́as
In English good morning
Target response hola buenos dı́as
In English hello good morning
Generated response buenos dı́as ! ! ! que tengas una excelente dı́a
(Good) hecho por dios !
In English Good Morning! Hope you have an excellent day
Input sentence te amo
In English I love you
Target response yo tambien te amo
In English I love you too
Generated response que si sos hombre por que no te solo importa lo que
(Bad) importa es que mi jajajaja
In English if you are a man, then why don’t you care

what matters to me hahahaha
Input sentence españa no tiene salvación posible
In English Spain does not have possible salvation
Target response a mi sin embargo me encanta nuestro espı́ritu [unk] y

nuestra capacidad de [unk] de casi todo .
In English to me however I love our spirit [unk] and

our ability to [unk] of almost everything
Generated response me encanta el corazón ! no vale nada que a eso se lo
(Good) ha dicho la verdad ! ! !
In English I love it, sweetheart! There is no value

in telling the truth.

99

Attention Matrix We conducted the inner test to confirm if attention matrix was

well learned. Due to the nature of the task, the input sentence words and the tar-

get output sentence words may not match well. In spite of this, as the number of

data increased, the attention matrix was learned better than Fig. 36, 37 as shown

in Fig. 39, 40. Words like in Fig. 39 [con(with)-la(the)], [exc=excepto(without)-

solo(only)] and in Fig. 40 [en(in)-tatuarse(to have a tattoo done)], [el(the)-primer(first)],

[el(the)-tobillo(ankle)] were relatively well matched. These examples would indicate

that the model still did not learn perfectly well but the model at least learned a certain

amount. Due to learned attention matrix, the trained model generate better aligned

response like the first and third examples of Table 41, good cases.

Table 42: Generated responses for investigating attention matrix. Each sentence cor-
responds with Fig. 39 and Fig. 40

Examples
Input sentence felicidades por alcanzar la meta en teletón para ayudar

a compatriotas con capacidades especiales . exc . . .
In English congratulations for reaching the telethon goal to help

compatriots with special abilities. exc ...
Generated response solo eso faltaba que en su desesperacion se meta con

la teleton . cuesta no ve más que la . . .
In English That alone was missing in his despair to get with the teleton.

The price does not seem more than the ...
Input sentence os tatuáis la fecha de nacimiento en números romanos ,

el nombre del perro en cirı́lico , el del hijo en japonés ,
“ te quiero . . .

In English you tattoo the date of birth in Roman numerals
the name of the dog in Cyrillic, that of the son in Japanese,
I love you ...

Generated response yo aún sigo esperando a que salga el primer idiota en
tatuarse el 155 , aunque sea el tobillo ...

In English I’m still waiting for the first idiot to come out
to tattoo his 155, even if it’s his ankle ...

100

Fig. 39: Attention matrix from Table 42 1st example

101

Fig. 40: Attention matrix from Table 42 2nd example

102

3.6 Marker Validation

In Spanish there are enriched lexical components expected as markers, and the

alignment syntax may depend on such elements. We first made a list that could regard

as marker in section 3.3.1. In addition, marker extraction was performed on the data

classified by the trained classifier, CNN.

hypothesis 1 The top 50 frequent vocabularies in classified data could be alignment

markers.

hypothesis 2 Among the top 50 frequent vocabularies in classified-alignment data

and classified-non-alignment data, the different words can be markers.

3.6.1 Marker extraction from deep learning model

1. For the 50,000 unlabeled sentence pairs, apply the alignment classifier trained

in Section 3.3 to distinguish the aligned response. Based on this, construct an

alignment corpus.

2. Measure the frequency of each word in the alignment corpus13.

3. After deleting special characters/proper nouns, select the top 50 markers.

The frequency rate (total appearance / total replies in the corpus) of the words

was measured.

13Reference site: https://www.kaggle.com/anokas/data-analysis-xgboost-starter-0-35460-lb

103

https://www.kaggle.com/anokas/data-analysis-xgboost-starter-0-35460-lb

Fig. 41: Outline of the marker validation

3.6.2 Validation of Marker from human’s and model’s

Marker from human’s The experimental results show low performance as shown

at section 3.3, table 15. We predicted that human selected markers will guarantee

better performance based on the theory, but it was different from our initial prediction.

This is not only a motivation for research, but also a contribution of this study.

Marker from model’s We classified the unlabeled 50,000 sentence pairs and ex-

tracted the markers by deep learning. However, the markers were not classified well,

suggesting that deep learning does not classify linguistic data by a marker word, and

the alignment should be categorized into other units than marker units.

RNN is known as a model that considers the order of the whole sentence, and

104

Table 43: Candidates for markers
Category Examples
article artı́culo el, la, los, las, unos
certainty certeza siempre, jamás
conjunction conjunción pero, y, aunque
discrepancy discrepancia condicional; deber, hay que
exclusive exclusivo sin, excepto
inclusive inclusivo con, incluso
negation negación no, nunca
preposition preposición a, en, por, desde
pronoun pronombre lo, la, los, las, ti, ellos
quantifier cuantificador mucho, poco
tentative tentativo quizás, tal vez

supportive backchannel
sı́, es verdad, de acuerdo, por supuesto,
vale, entiendo, ¡Claro que sı́!,
¡Qué buena idea!

Adverbial/prepositional phrase
ası́, ojalá, ahora (mismo), hoy, en
seguida, contigo

CNN is known as a model that takes account the part (phrases) of the sentence. The

fact that CNN performs better implies that it may be appropriate to pay attention to

the phrase information for the alignment classification.

3.6.3 Qualitative Evaluation

The selected markers were manually categorized into the categories accord-

ing to Syntactic and Conceptual as defined by Linguistic Inquiry and Word Count

(LIWC) 2015 (Pennebaker et al., 2015). LIWC is a transparent text analysis program

that counts words in psychologically meaningful categories. Empirical results using

LIWC are known to be useful in demonstrating the ability to detect meaning in a

variety of experimental settings, including attention, emotions, social relationships,

ways of thinking, and individual differences.

We also excluded proper nouns, verbs, and stopwords from the analysis so that

105

we could focus more on linguistic features before analyzing markers obtained from

actual language data and models.

We compared the high frequency vocabulary list presented by CREA (Corpus

de Referencia del Español Actual) provided by Real Academia Española and selected

the essential words for each category.

Table 44: Markers obtained from the model
Category 50 th top frequency from 50,000
article artı́culo la, el, los, las, unos, unas
certainty certeza siempre
conjunction conjunción que, y, pero, o, si, cuando, porque
exclusive exclusivo sin
inclusive inclusivo con, también . . .
negation negación no, nada
preposition preposición de, a, en, por, para
pronoun pronombre lo, se, te, me, su, le, tu, yo, este, esta,

nos, eso, esto
quantifier cuantificador todo, mucho
backchannel sı́; mmmm, jajaja
adverbial/prepositional phrase más, ya, muy, bien, mejor, solo, ası́

Effect of sentence classifier In the results, words appearing in both alignment (Ta-

ble 45) and non-alignment (Table 46 are not considered to be alignment markers. The

properties of the components are analyzed based on the results from the deep learn-

ing model, as described in the previous chapter, and extracted from the classified data

set by its order of frequency. As we used the whole sentence, the unexpected de and

que were ranked equally high in each experiment. This was a possible because we

experimented with the entire sentences as a whole.

We expected pronouns, definite articles, or supportive backchannels to be at a

high rate; however, thanks to the sentence classifier, unexpected interesting results

were obtained. Among the top 50 words, there were 8 kinds of characters that ap-

106

Table 45: Alignment marker. Explicitly distinguished markers and high fluctuation
of frequency rate (total appearance / total replies)

Table 46: Non-alignment marker. Explicitly distinguished markers and high fluctua-
tion of frequency rate (total appearance / total replies)

107

Table 47: Comparison of the eight vocabulary from alignment sentence pairs only

peared only in alignment: yo, todo, gracias, esto, nos, muy, eso, and ni. Then, we

reexamined vocabulary that appeared only in alignment, except for words in both

cases. We attempted to retest these words using only 8 vocabularies. The re-test re-

sult was 61.5%, which was about 10% higher than the baseline result.

The word yo is the word for ′I’ in English, with the highest frequency among

the eight elements. Spanish can omit the subject because the verb is inflectional, but

in real conversation, subject is often present to express the meaning of contrast or em-

phasis. And todo corresponds to ′every’ but unlike English, it changes according to

gender and number. Interestingly, the plural form of todos appeared in non-alignment.

The word gracias is a noun to mean ′thanks’. It is mostly used idiomatically because

it often expresses gratitude for previous speech of interlocutor in aligned responses.

And esto is a pronoun corresponding to ′this’, an abstract form that does not match

gender or number. The word nos is used as a pronoun, a direct object ′us’ or an indi-

rect object. If someone asked a question to you (plural), the aligned response usually

answer the question, using ′us’. And muy is an adverb corresponding to ′very’. In

the answer, emotional expression or impression often appears. The word eso is a pro-

noun, a pronoun corresponding to ′that’, similar to esto (this). This word is also a

108

Table 48: Eight examples with alignment markers

basic form that does not match gender and number. It is used when it refers to abstract

rather than to specific object. The word ni is the word for negation and is used in ni

... ni (neither ... nor). It is used in front of words to negate, such as nouns or verbs.

Despite the certain usage of these words, there is no helpful literature study to

support theoretical explanations. It is difficult to capture the commonality of these

words, except that they appear more frequently in the answers than in the questions.

Although it is interesting to note that they only appeared in aligned responses and that

the result was 10% higher than baseline when we experimented with these words. The

deep learning, however, still performs much better than that.

Then, we examined the case of the most preposition de. In both cases, de ap-

peared the most. This is because de is the most commonly used vocabulary in Span-

ish. Demonte and Soriano (2005) argued that de is a pure preposition and, obviously,

not an evidentiality marker. The preposition de varies depending on the position or

109

contexts in the sentence:

(1) Posession

A: ¿De parte de quién?

B: De José.

(Español básico 1, Chpt. 10, p.177)

(2) Time

@GuillermoBotero El 7 de agosto de 2010

(3) Function word

a. Recepcionista: De nada. Lo que se le ofrezca, con gusto la ayudaremos.

(Curso de Conversación y Redacción en español, Chpt. 1, p.12)

b. Roberto: De acuerdo. Vamos.

(Curso de Conversación y Redacción en español, Chpt. 20, p.186)

Que is also the most commonly used vocabulary in Spanish. We should note that

the Spanish que does not correspond to that of English. It can be misunderstood as

a pronoun, however, it does not function like that as a pronoun (eso), but rather acts

like that as a conjunction (que). They are not matched equally:

a. That’s it. I knew that. That sounds interesting.

b. Eso es. Lo sabı́a. (Eso) suena interesante.

c. *Que es. *Yo sabı́a que. *Que suena interesante.

Here are the usage and examples of que in our data. Three main types are found:

110

(1) Relative pronoun

a. Roberto: Si quieres vamos a ese restaurante chileno que te guste tanto.

b. Natalia: ¡Genial! Es el restaurante que me gusta más que ningún otro.

(Español intermedio, Chpt. 14, p. 148)

(2) Comparative

a. RT @MonsieurSansFoy Aquı́ no hay nada más que mentirosos y embau-

cadores! A ver quien miente más para gatear al poder.

b. @soyunapringada mola, ya cobra más que la mayorı́a de los que suben

zumos detox y demás mierdas.

(3) Conjunctions

a. Quiero que vengas/*vienes. [Subjunctive]

I want that you come-subj/*come-indic

“I want you to come.”

b. Es importante que tengas/*tienes cuidado [Subjunctive]

it is important that you have-subj/*have-indic care

“It is important that you be careful.”

c. Creo que *sea/es verdad. [Indicative]

I believe that it *is-subj/is-indic true

“I believe it is true.”

d. @PabloMM Es que esta noche ha soñado y aún no se ha despejado.

As in the above, que in Spanish mainly plays a role in connecting clauses. And in

another case, as the proportion of Twitter data increases, the sentences which ignores

accents and punctuation are included, that is qué is also mixed together.

111

(1) Interjection

a. Anabel: Menos mal que estás aquı́. ¡Qué alegrı́a encontrarte!

b. Lorena: ¡Qué sorpresa! ¿Qué haces aquı́?

(Español intermedio, Chpt. 17, p. 177)

(2) Interrogative

a. Ruben: ¿Ah, sı́? No lo sabı́a. ¿Qué tipo de voluntariado?

(Español intermedio, Chpt. 2, p.30)

b. @gabrielrufian Y por qué no fuiste a visitar al hospital a ninguno de los

miles de apaleados? No te ha vergüenza?

The prepositions de also vary depending on the position or contexts in the sen-

tence:

(1) Posession

A: ¿De parte de quién?

B: De José.

(Español básico 1, Chpt. 10, p.177)

(2) Time

@GuillermoBotero El 7 de agosto de 2010

(3) Function word

a. Recepcionista: De nada. Lo que se le ofrezca, con gusto la ayudaremos.

(Curso de Conversación y Redacción en español, Chpt. 1, p.12)

b. Roberto: De acuerdo. Vamos.

112

(Curso de Conversación y Redacción en español, Chpt. 20, p.186)

We firstly assumed in Spanish where are abundant lexical elements expected as

markers characterizing the alignment structure. But the results were different from

our earlier hypotheses. Even without specific marker, it can be an alignment struc-

ture, even if the sentence pair is not aligned, they may contain explicit markers as

well. Then, in Spanish, it can be concluded that it is not possible to classify the align-

ment only based on certain markers. This is a contradictory result to what second

language (L2) learners in general think about Spanish. The combination of sentence

components is more important than specific rules that include markers. Focusing on

some of the prominent vocabularies does not necessarily guarantee coherence.

Interestingly, despite the fact that the natural language sentence pairs were in-

serted just after the preprocessing, the sentence pairs were classified as aligned or

non-aligned, and the performance was higher than markers. This can also be a way to

study how deep learning works. The frequency of the marker could suggest the prin-

ciple of operation. The deep learning model determines alignment structure based on

a whole sentence level.

Interim summary We have obtained a model that can simulate about 80% of hu-

man judgment ability through several experiments. And the words which are fre-

quently appeared in sentences are classified as markers. Except 8 examples, however,

any significant difference was not found between the vocabulary found in the align-

ment and the vocabulary found in the non-alignment. While creating the correct an-

swer data, we have confirmed that alignment criteria are not limited to specific words

or vocabularies. This means that one or two specific components do not greatly in-

fluence the whole sentence. It is a meaningful study in that it was verified through

113

actual experiments based on empirical data.

114

3.7 Chapter summary

We collected Spanish textbooks and Twitter data, and trained alignment clas-

sifiers by adjusting the ratio of alignment / non-alignment data to 1:1 using data

augmentation method. Then we performed experiments with baselines as selected

markers, then compared the results with deep learning classifiers.

Here we also tried aligned response generation. To get more data, we utilized the

best performance classifier, CNN, among the deep learning models that we designed

in section 3.3. Since the best performance of the alignment classifier is 77%, it is

expected that 77% probability would gather proper data and generate the alignment

sentence with 77% probability. It did not work out well in every sentence, but we

noticed some cases that properly generated the aligned responses. We analyzed some

samples of generated results, and validated how aligned the sentences were.

In the marker validation section, we also utilized the best performance model,

CNN, among the deep learning models that we designed in section 3.3. We compared

baseline markers with those obtained from deep learning, and found better markers

with deep learning models. It was, however, still better to classify sentence pairs with

deep learning rather than marker dependent baseline.

115

116

Chapter 4

Discussion

Alignment is a strategy used by speakers to achieve communication objectives.

We have developed a model that recognizes alignment to identify and validate mark-

ers, and tried to create a deep learning model that can make language research more

efficient.

Ultimately, we aim to create a model that can generate responses that are close

to each input answer. In addition, this study is not only for a linguistic model, but for

establishing the standards and introducing deep learning to solve the problem which

is difficult to define easily. The poor performance of the model reflects the difficulty

of the task itself.

The goal is to create a system that always gives aligned replies to individuals.

Regardless of any markers in the user’s message, we want to create a system that pro-

vides context-sensitive responses at all times. Alignment research gives implications

for the maintenance of conversational context. In a real-world conversation, it is im-

portant not only to maintain the dialogue context, but also to switch appropriately. It

would be more user-friendly if the system could change the dialogue turns and topics

moderately at the right moment.

4.1 Linguistic Feature of Spanish

Spanish is a group of Indo-European languages. Spanish is also called Castel-

lano, originating from the Castilla region of northern Spain. Some of the Twitter we

117

collected for the study includes comments on Spanish in Portuguese, Italian, and

Catalan. In this case, we exclude them because they are somewhat deviated from the

actual research goal.

Each marker has some interesting properties. One of the main candidates for

markers is the target pronoun, used in front of the verb, in order of [indirect object

pronoun] - [direct object pronoun] - [verb]. In the case of third person, it is used

as lo, la, los, las respectively according to the gender of the object word. Direct

object pronouns are used in Spanish as a pronoun function in place of nouns that do

not appear externally. And when the transitive verb forms a dual object phrase, the

indirect object must appear in the form of dative pronoun (pronombres dativos) in the

verb phrase.

Spanish objects Spanish has a very rich system of pronominal object clitics. Clitics

are syntactically independent words or constituents, but depend phonologically on

accents. Accusative clitics (la) are direct objects, and dative clitics les and se are

indirect objects. Both animate and inanimate objects are replaced by the accusative

clitics lo and la, but only animate direct object NPs are preceded by what looks like

the preposition a, which is typically assumed to be an animate marker or marked

accusative case.

(1) a. ¿Ves a aquel chico?

Ø see-2ND-SG 3RD-PER-ACC that boy

“Do you see that boy?”

b. Sı́, lo veo.

Yes, Ø him-ACC see

“Yes, I see him. ” (Español Básico 1, Chpt 9, p.163)

118

(2) a. Marı́a le quiere regalar su coche a su hermana.

Mary them-DAT want present her car to her sister

“Mary wants to give a present her car to her sister.”

b. Creo que sı́. Se lo quiere regalar.

Ø think-1ST–SG that yes Ø her-DAT it-ACC-MAS want present

“I think so. She wants to give it to her.” (Español Básico 1, Chpt 9, p.166)

According to Torrego (1998), the distribution of the preposition a with animate

direct objects appears to be sensitive to definiteness/specificity and lexical aspect of

the verb and animacy/agentivity of the subject. For example, with stative and activ-

ity verbs, the preposition a is required depending on whether the subject is animate

or not. If the subject is animate, then the preposition is required, but if the subject

is inanimate, the preposition is not necessary. On the contrary, accomplishment and

achievement predicates require the preposition a with animate direct objects, regard-

less of whether the subject is animate or not.

In Romance languages the syntactic feature of clitics has been an insistent issue.

There has been a debate on whether clitics are XPs (or phrases) base-generated in

argument positions, which then move to preverbal position (Kayne, 1975; Strozer,

1976; Rivas, 1977; Borer, 1984), or whether they are Xs (i.e. heads) that head their

own agreement projections and act as morphological (agreement) affixes (Franco,

1993; Sportiche, 1996). While the essential feature of clitics is not particularly rele-

vant for the purposes of this article, Franco (1993) and Sportiche (1996) assume that

direct and indirect object clitics in Spanish are generated in two functional projec-

tions above VP and below TP – AgrOP and AgrIOP. Direct and indirect object DPs

move to the Specifier of these functional categories and check accusative and dative

case, respectively.

119

Since English lacks object clitics and has strong pronouns, the functional pro-

jections for clitics may be assumed not to be instantiated. (Alternatively, these pro-

jections may be assumed not to have weak agreement features.) In addition to syntax,

semantics plays a role in the realization of objects and their corresponding clitics in

Spanish.

Indirect objects are always preceded by the dative preposition a, and replaced

by the dative clitic le/les. Clitic doubling, the co-occurrence of the clitic and the PP, is

a possible option in all Spanish dialects. The clitic of indirect objects is generated as

the head of functional category AgrIOP. The dative PP captures structural syntactic

dative case through Spec-head agreement.

(3) a. ¿A quién le regalas estas flores tan bonitas?

to whom him/her-DAT present-2ND-SG these flowers such pretty

“To whom do you give these such pretty flowers?”

b. Se las regalo a mi mujer.

him/her-DAT them-ACC present-1ST-SG to my wife

“I gave them to my wife.” (Español Básico 1, Chpt 9, p.166)

By contrast, dative clitic doubling is obligatory in some Spanish constructions.

Those clitics are not related to structural cases, but appears to have semantic func-

tions, related to affectedness or aspect.

The syntactic, pragmatic and semantic properties of subjects and objects in

Spanish are shown:

In Spanish, clitic pronouns are commonly used as pronouns in place of nouns.

However, when a direct object or an indirect object containing definite qualities is

transposed by a verb, the accusative pronoun must appear and be used in a dual form.

120

Table 49: Feature specification of subject/object constructions in Spanish and En-
glish (Montrul 2004:130)

Features Subjects Direct Objects Indirect Objects

Spanish
-interpretable
(strong)

Agreement
Structural
accusative

Structural dative

+ interpretable Topic/focus
Marked (inherent)
accusative

Marked (inherent)
dative

English -interpretable
(weak)

agreement
Structural
accusative

Structural dative

However, in addition to the pronoun usage, there are phrases that are mandatory

in dual form, even though direct - purpose bore or indirect bore which appear in

the same direct relation with oneself appears externally. This is the case when an

accusative bore containing definite qualities is transposed to the verb.

If we look at this object transposition phrase, if the noun phrase mentioned in the

transposition of the direct object is confined to the verb, it must be accompanied by

a direct object pronoun. On the other hand, when a displaced noun phrase lacks defi-

niteness, it can not be used like a direct object pronoun. The use of direct accusative

pronouns in a dual form is associated with information related to information re-

lated to information (Vivanco, 2013; Groppi, 2008; Alconchel, 2002). In Spanish, the

accusative pronoun is used in a dual form when the objective bore is a definite indi-

cation element of the speaker, and because the element having the definite qualities

contains the old information qualities, the result is that the direct pronoun is used by

the pseudo- . In other words, the reason why the dual form syntax with accusative

pronoun is used is not the object pronoun function but the accusative predicate.

Null subject language Spanish has rich verbal inflection, which allows person and

number information about the subject to be recoverable.

121

(4) a. ¿ Ø Conoces a alguien en este hospital?

know-2ND-SG 3RD-PER-ACC somebody in this hospital

“Do you know anybody in this hospital?”

b. Ø No, no conozco a nadie.

No, no know-1ST-SG 3RD-PERSON-ACC nobody

“No, I don’t know anybody.” (Español Básico 2, Chpt 3, p.47)

Toribio (2000) explains that Standard Spanish has strong nominal (PER, NUM)

features in T and strong Nfeatures in Agr. By contrast, null subjects in English are

typically not possible, except for imperative sentences. Therefore, English has weak

nominal (also verbal) features of Agr and T syntactically, and subjects are realized

overtly.

Table 50: The syntactic differences between Spanish and English with respect to the
Null Subject Parameter (Toribio, 2000)

N-features in T N-features in Agr Subject expression

English Strong Weak Overt
Standard Spanish Weak Strong Null

Zagona (2002), however, explains it is not the case that null and overt subjects

are entirely optional. In fact, there are constructions that strictly require the use of null

subjects, such as existentials with haber, weather verbs, and pleonastic constructions.

(5) a. Ø Hace buen tiempo. [weather verb] (Español Básico 1, Chpt 8, p.141)

b. Ø Hace años que no sé nada de ella. [time verb] (Español intermedio, Chpt

5, p.62)

c. Ø No hay ningún inconveniente. [existential] (Curso de conversación y redacción

en español, Chpt 19, p.178)

122

d. Siendo entrevistador Ø es lógico que tuviera que ser objectivo. [pleonastic]

(Español intermedio, Chpt 4, p.52)

4.2 Advantage of Deep Learning

Recently, deep learning methods achieve the state-of-the-art performance in var-

ious machine learning tasks. It is known to perform better than rule-based approaches.

Since feature engineering is not (or pretty less) performed in deep learning, deep

learning requires pretty less cost. The deep learning method will learn the rules by

itself from input and output data. It is a method by recognizing a pattern rather than

specifying each rule.

The process used in this study indicates that deep learning could be helpful in

theoretical linguistic study. Since the lexical components are very well developed in

Spanish, we thought that there would be significant markers in the aligned responses.

From our experiments and comparison with deep learning methods, however, there

were no markers that showed a significant difference. That is, we found that a single

marker is not very important in Spanish, which contradict to our original expectation,

as discussed in section 3.6. With deep learning method, which does not need any

rules, we could have achieved this conclusion.

123

124

Chapter 5

Conclusion

We hypothesized that certain verbal elements quantify one’s conversational style

corresponding to categories of alignment markers. Aligned response refers to a con-

versational structure that continues communication in the context of the preceding

utterance. It affirms or rejects the utterance of the interlocutor, or repeats the pre-

ceding statement. On the other hand, non-alignment refers to the cases in which the

previous-mentioned topics are changed or the flow of the conversation is interrupted,

or the words are not related to each other at all. Since the purpose of a general dia-

logue is to exchange information, it is common to be presented sequentially.

In section 3.3, the alignment classifiers were trained with 3,920 pairs in textbook

corpus and 4,500 pairs in twitter corpus, after data augmentation. The performance

of the classifiers was compared to the baseline marker experiments. The classifiers

shows quite good performance (70−80%), better than the baseline (35−55%). Deep

learning models are better to classify sentence pairs than marker dependent baseline.

In section 3.4 and 3.5, we also tried aligned response generation. The responses

did not align well corresponding to every sentence, but we noticed some cases where

the aligned responses were generated appropriately.

We expected that there would be significant markers affecting the aligned re-

sponses, because the lexical components are very well developed in Spanish. How-

ever, aligned response is not strongly influenced by lexical factors, and there were no

markers that showed a critical difference, according to our experiments. With deep

learning and marker-based approach, we found that a single marker is not very im-

125

portant in Spanish, which was not what we originally expected as discussed in sec-

tion 3.6. If we had not used the deep learning method, we would not have achieved

this conclusion. This process also indicates that deep learning could be helpful in

theoretical linguistic study.

This study established the standards of linguistic alignment and introduced deep

learning to classify alignment sentence pairs and to generate aligned responses. We

have accomplished our purpose through various experiments. It is valuable as a re-

search to focus on alignment problem in conversation, establish theoretical basis,

and perform marker validation using deep learning. We are expecting to extend this

methodology to other languages.

126

References

Auli, M., Galley, M., Quirk, C., Zweig, G., 2013. Joint language and translation mod-

eling with recurrent neural networks.

Backstrom, L., Kleinberg, J., Lee, L., Danescu-Niculescu-Mizil, C., 2013. Charac-

terizing and curating conversation threads: expansion, focus, volume, re-entry. In:

Proceedings of the sixth ACM international conference on Web search and data

mining. ACM, pp. 13–22.

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learn-

ing to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., 2003. A neural probabilistic lan-

guage model. Journal of machine learning research 3 (Feb), 1137–1155.

Bengio, Y., Simard, P., Frasconi, P., 1994. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks 5 (2), 157–166.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., Bengio, S., 2015.

Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

Branigan, H. P., Pickering, M. J., Cleland, A. A., 2000. Syntactic co-ordination in

dialogue. Cognition 75 (2), B13–B25.

Branigan, H. P., Pickering, M. J., Pearson, J., McLean, J. F., 2010. Linguistic align-

ment between people and computers. Journal of Pragmatics 42 (9), 2355–2368.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R., 1994. Signature verifica-

tion using a” siamese” time delay neural network. In: Advances in Neural Infor-

mation Processing Systems. pp. 737–744.

Chen, X., Qiu, X., Zhu, C., Liu, P., Huang, X., 2015. Long short-term memory neural

networks for chinese word segmentation. In: EMNLP. pp. 1197–1206.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., Bengio, Y., 2014. Learning phrase representations using rnn encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078.

127

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Church, K. W., 2000. Empirical estimates of adaptation: the chance of two noriegas

is closer to p/2 than p 2. In: Proceedings of the 18th conference on Computational

linguistics-Volume 1. Association for Computational Linguistics, pp. 180–186.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P., 2011.

Natural language processing (almost) from scratch. Journal of Machine Learning

Research 12 (Aug), 2493–2537.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine learning 20 (3), 273–

297.

Costa, A., Pickering, M. J., Sorace, A., 2008. Alignment in second language dialogue.

Language and Cognitive Processes 23 (4), 528–556.

Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G., 2016. Attention-over-attention

neural networks for reading comprehension. arXiv preprint arXiv:1607.04423.

Dai, A. M., Le, Q. V., 2015. Semi-supervised sequence learning. In: Advances in

Neural Information Processing Systems. pp. 3079–3087.

Danescu-Niculescu-Mizil, C., 2012. A computational approach to linguistic coordi-

nation. Ph.D. thesis, Cornell University.

Danescu-Niculescu-Mizil, C., Lee, L., 2011. Chameleons in imagined conversations:

A new approach to understanding coordination of linguistic style in dialogs. In:

Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Lin-

guistics. Association for Computational Linguistics, pp. 76–87.

Danescu-Niculescu-Mizil, C., West, R., Jurafsky, D., Leskovec, J., Potts, C., 2013. No

country for old members: User lifecycle and linguistic change in online commu-

nities. In: Proceedings of the 22nd international conference on World Wide Web.

ACM, pp. 307–318.

Dauphin, Y. N., Fan, A., Auli, M., Grangier, D., 2016. Language modeling with gated

convolutional networks. arXiv preprint arXiv:1612.08083.

128

Demonte, V., Soriano, O. F., 2005. Features in comp and syntactic variation: the case

of ‘(de) queısmo’in spanish. Lingua 115 (8), 1063–1082.

Dos Santos, C. N., Gatti, M., 2014. Deep convolutional neural networks for sentiment

analysis of short texts. In: Proceedings of the 25th International Conference on

Computational Linguistics (COLING). pp. 69–78.

Doyle, G., Frank, M. C., 2016. Investigating the sources of linguistic alignment in

conversation. In: Proceedings of the 54th Annual Conference of the Association

for Computational Linguistics. (Volume 1: Long Papers). Vol. 1. pp. 526–536.

Doyle, G., Goldberg, A., Srivastava, S., Frank, M., 2017. Alignment at work: Us-

ing language to distinguish the internalization and self-regulation components of

cultural fit in organizations. In: Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. pp.

603–612.

Doyle, G., Yurovsky, D., Frank, M. C., 2016. A robust framework for estimating

linguistic alignment in twitter conversations. In: Proceedings of the 25th interna-

tional conference on world wide web. International World Wide Web Conferences

Steering Committee, pp. 637–648.

Elman, J. L., 1990. Finding structure in time. Cognitive science 14 (2), 179–211.

Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, G., Frith, C., Tylén, K.,

2012. Coming to terms: quantifying the benefits of linguistic coordination. Psy-

chological science 23 (8), 931–939.

Garrod, S., Pickering, M. J., 2009. Joint action, interactive alignment, and dialog.

Topics in Cognitive Science 1 (2), 292–304.

Gers, F. A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual pre-

diction with lstm.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, http:

//www.deeplearningbook.org.

Graves, A., Jaitly, N., 2014. Towards end-to-end speech recognition with recurrent

neural networks. In: Proceedings of the 31st International Conference on Machine

Learning (ICML-14). pp. 1764–1772.

129

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Graves, A., Jaitly, N., Mohamed, A.-r., 2013a. Hybrid speech recognition with deep

bidirectional lstm. In: Automatic Speech Recognition and Understanding (ASRU),

2013 IEEE Workshop on. IEEE, pp. 273–278.

Graves, A., Mohamed, A.-r., Hinton, G., 2013b. Speech recognition with deep recur-

rent neural networks. In: Acoustics, speech and signal processing (icassp), 2013

ieee international conference on. IEEE, pp. 6645–6649.

Graves, A., et al., 2012. Supervised sequence labelling with recurrent neural net-

works. Vol. 385. Springer.

Gries, S. T., 2005. Syntactic priming: A corpus-based approach. Journal of psycholin-

guistic research 34 (4), 365–399.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., Bengio, Y., 2016. Pointing the un-

known words. arXiv preprint arXiv:1603.08148.

Hadsell, R., Chopra, S., LeCun, Y., 2006. Dimensionality reduction by learning an

invariant mapping. In: Computer vision and pattern recognition, 2006 IEEE com-

puter society conference on. Vol. 2. IEEE, pp. 1735–1742.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation

9 (8), 1735–1780.

Jean, S., Cho, K., Memisevic, R., Bengio, Y., 2014. On using very large target vocab-

ulary for neural machine translation. arXiv preprint arXiv:1412.2007.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,

S., Darrell, T., 2014. Caffe: Convolutional architecture for fast feature embedding.

In: Proceedings of the 22nd ACM international conference on Multimedia. ACM,

pp. 675–678.

Kalchbrenner, N., Grefenstette, E., Blunsom, P., 2014. A convolutional neural net-

work for modelling sentences. arXiv preprint arXiv:1404.2188.

Karpathy, A., Fei-Fei, L., 2015. Deep visual-semantic alignments for generating im-

age descriptions. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. pp. 3128–3137.

130

Kaschak, M. P., Kutta, T. J., Jones, J. L., 2011. Structural priming as implicit learning:

Cumulative priming effects and individual differences. Psychonomic bulletin &

review 18 (6), 1133–1139.

Kim, Y., 2014. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882.

Kim, Y., Jernite, Y., Sontag, D., Rush, A. M., 2016. Character-aware neural language

models. In: AAAI. pp. 2741–2749.

Kingma, D., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kohavi, R., et al., 1995. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection.

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing sys-

tems. pp. 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied

to document recognition. Proceedings of the IEEE 86 (11), 2278–2324.

Li, H., 2017. Deep learning for natural language processing: advantages and chal-

lenges. National Science Review.

Li, J., Ju, W., Nass, C., 2015a. Observer perception of dominance and mirror-

ing behavior in human-robot relationships. In: Proceedings of the Tenth Annual

ACM/IEEE International Conference on Human-Robot Interaction. ACM, pp.

133–140.

Li, J., Luong, M.-T., Jurafsky, D., 2015b. A hierarchical neural autoencoder for para-

graphs and documents. arXiv preprint arXiv:1506.01057.

Liu, P., Qiu, X., Huang, X., 2016. Recurrent neural network for text classification

with multi-task learning. arXiv preprint arXiv:1605.05101.

Liu, S., Yang, N., Li, M., Zhou, M., 2014. A recursive recurrent neural network for

statistical machine translation.

131

Lu, J., Yang, J., Batra, D., Parikh, D., 2016. Hierarchical question-image co-attention

for visual question answering. In: Advances In Neural Information Processing Sys-

tems. pp. 289–297.

Luong, M.-T., Pham, H., Manning, C. D., 2015. Effective approaches to attention-

based neural machine translation. arXiv preprint arXiv:1508.04025.

Macı́as, C., Kim, H.-K., Yim, H.-J., Lee, K., 2013.중급스페인어 Español interme-

dio. SNU Press.

Merity, S., Xiong, C., Bradbury, J., Socher, R., 2016. Pointer sentinel mixture models.

arXiv preprint arXiv:1609.07843.

Mikolov, T., 2010. Recurrent neural network based language model.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013a. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J., 2013b. Distributed

representations of words and phrases and their compositionality. In: Advances in

neural information processing systems. pp. 3111–3119.

Mikolov, T., Yih, W.-t., Zweig, G., 2013c. Linguistic regularities in continuous space

word representations.

Mueller, J., Thyagarajan, A., 2016. Siamese recurrent architectures for learning sen-

tence similarity.

Nass, C., Lee, K. M., 2000. Does computer-generated speech manifest personality?

an experimental test of similarity-attraction. In: Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems. CHI ’00. ACM, New York, NY,

USA, pp. 329–336.

URL http://doi.acm.org/10.1145/332040.332452

Navarro Colorado, B., Palomar, M., Martı́nez-Barco, P., et al., 2004. Automatic ex-

traction of syntactic semantic patterns for multilingual resources.

Noh, E., 2017a. Linguistic alignment in quasi-spoken corpus in spanish and marker

list extraction modeling. In: Proceedings of the 2017 ACML workshop on Machine

Learning for AI Platforms (MLAIP).

132

http://doi.acm.org/10.1145/332040.332452

Noh, E., 2017b. The structural and cognitive characteristics of linguistic alignment

in the spanish spoken corpus. In: Proceedings of the 8th Annual Conference of

Association of History, Literature, Science and Technology.

Peng, H., Cambria, E., Zou, X., 2017. Radical-based hierarchical embeddings for

chinese sentiment analysis at sentence level. In: Proceedings of the Thirtieth Inter-

national Florida Artificial Intelligence Research Society Conference (FLAIRS).

Pennebaker, J., Booth, R., Boyd, R., Francis, M., 2015. Linguistic inquiry and word

count: Liwc2015.

Pennington, J., Socher, R., Manning, C., 2014. Glove: Global vectors for word repre-

sentation. In: Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP). pp. 1532–1543.

Pickering, M. J., Ferreira, V. S., 2008. Structural priming: A critical review. Psycho-

logical bulletin 134 (3), 427.

Pickering, M. J., Garrod, S., 2004a. The interactive-alignment model: Developments

and refinements. Behavioral and Brain Sciences 27 (2), 212–225.

Pickering, M. J., Garrod, S., 2004b. Toward a mechanistic psychology of dialogue.

Behavioral and brain sciences 27 (2), 169–190.

Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A., Morency, L.-P., 2017.

Context-dependent sentiment analysis in user-generated videos. In: Proceedings of

the 55th Annual Meeting of the Association for Computational Linguistics (Vol-

ume 1: Long Papers). Vol. 1. pp. 873–883.

Prechelt, L., 2012. Early stopping—but when? In: Neural networks: tricks of the

trade. Springer, pp. 53–67.

Rabiner, L. R., 1989. A tutorial on hidden markov models and selected applications

in speech recognition. Proceedings of the IEEE 77 (2), 257–286.

Raina, R., Madhavan, A., Ng, A. Y., 2009. Large-scale deep unsupervised learning

using graphics processors. In: Proceedings of the 26th annual international confer-

ence on machine learning. ACM, pp. 873–880.

133

Reitter, D., Keller, F., Moore, J. D., 2011. A computational cognitive model of syn-

tactic priming. Cognitive science 35 (4), 587–637.

Reitter, D., Moore, J. D., 2006. Priming of syntactic rules in task-oriented dialogue

and spontaneous conversation. In: Proceedings of the Cognitive Science Society.

Vol. 28.

Sak, H., Senior, A., Beaufays, F., 2014. Long short-term memory based recurrent neu-

ral network architectures for large vocabulary speech recognition. arXiv preprint

arXiv:1402.1128.

Santos, C. D., Zadrozny, B., 2014. Learning character-level representations for part-

of-speech tagging. In: Proceedings of the 31st International Conference on Ma-

chine Learning (ICML-14). pp. 1818–1826.

Santos, C. N. d., Guimaraes, V., 2015. Boosting named entity recognition with neural

character embeddings. arXiv preprint arXiv:1505.05008.

Schmidhuber, J., 2008. Learning complex, extended sequences using the principle of

history compression. Learning 4 (2).

Schuster, M., Paliwal, K. K., 1997. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing 45 (11), 2673–2681.

Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S., 2014. Cnn features off-

the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition workshops. pp. 806–813.

Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G., 2014. A latent semantic model with

convolutional-pooling structure for information retrieval. In: Proceedings of the

23rd ACM International Conference on Conference on Information and Knowl-

edge Management. ACM, pp. 101–110.

Shin, J.-Y., Cho, E. Y., Kim, U.-K., Macı́as, C., 2008. 스페인어회화작문 Curso de

Conversación y Redacción en Español. SNU Press.

Shin, J.-Y., Lee, M.-K., Kim, U.-K., Blancafort, R., 2013a.초급스페인어 1 Español

básico 1. SNU Press.

134

Shin, J.-Y., Lee, M.-K., Kim, U.-K., Blancafort, R., 2013b.초급스페인어 2 Español

básico 2. SNU Press.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., Potts, C., 2013.

Recursive deep models for semantic compositionality over a sentiment treebank.

In: Proceedings of the 2013 conference on empirical methods in natural language

processing. pp. 1631–1642.

Stenchikova, S., Stent, A., 2007. Measuring adaptation between dialogs. In: Proc. of

the 8th SIGdial Workshop on Discourse and Dialogue.

Sutskever, I., 2013. Training recurrent neural networks. University of Toronto,

Toronto, Ont., Canada.

Sutskever, I., Martens, J., Hinton, G. E., 2011. Generating text with recurrent neu-

ral networks. In: Proceedings of the 28th International Conference on Machine

Learning (ICML-11). pp. 1017–1024.

Sutskever, I., Vinyals, O., Le, Q. V., 2014. Sequence to sequence learning with neural

networks. In: Advances in neural information processing systems. pp. 3104–3112.

Tang, D., Qin, B., Liu, T., 2015. Document modeling with gated recurrent neural

network for sentiment classification.

Tong, E., Zadeh, A., Jones, C., Morency, L.-P., 2017. Combating human trafficking

with deep multimodal models. arXiv preprint arXiv:1705.02735.

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G., 2015a. Grammar

as a foreign language. In: Advances in Neural Information Processing Systems. pp.

2773–2781.

Vinyals, O., Toshev, A., Bengio, S., Erhan, D., 2015b. Show and tell: A neural image

caption generator. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 3156–3164.

Wang, Y., Reitter, D., Yen, J., 2014. Linguistic adaptation in conversation threads:

Analyzing alignment in online health communities. In: Proceedings of the 2014

ACL Workshop on Cognitive Modeling and Computational Linguistics. pp. 55–

62.

135

Xie, Z., Wang, S. I., Li, J., Lévy, D., Nie, A., Jurafsky, D., Ng, A. Y., 2017.

Data noising as smoothing in neural network language models. arXiv preprint

arXiv:1703.02573.

Xiong, C., Zhong, V., Socher, R., 2016. Dynamic coattention networks for question

answering. arXiv preprint arXiv:1611.01604.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Ben-

gio, Y., 2015. Show, attend and tell: Neural image caption generation with visual

attention. In: International Conference on Machine Learning. pp. 2048–2057.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. J., Hovy, E. H., 2016. Hierarchical

attention networks for document classification.

Yih, S. W.-t., He, X., Meek, C., 2014. Semantic parsing for single-relation question

answering.

Yin, W., Kann, K., Yu, M., Schütze, H., 2017. Comparative study of cnn and rnn for

natural language processing. arXiv preprint arXiv:1702.01923.

Yin, W., Schütze, H., Xiang, B., Zhou, B., 2015. Abcnn: Attention-based

convolutional neural network for modeling sentence pairs. arXiv preprint

arXiv:1512.05193.

Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.-P., 2017. Tensor fusion

network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250.

Zhang, Y., Wallace, B., 2015. A sensitivity analysis of (and practitioners’ guide

to) convolutional neural networks for sentence classification. arXiv preprint

arXiv:1510.03820.

Zheng, X., Chen, H., Xu, T., 2013. Deep learning for chinese word segmentation and

pos tagging. In: EMNLP. pp. 647–657.

136

Our github URL is https://github.com/eunchung/Alignment, containing twitter

data and whole codes for this dissertation.

A.1 Crawling and Preprocessing - Whole codes

Code 1: Crawler.py
import os
import re
import tweepy
import time
from tweepy import OAuthHandler

class TwitterClient(object):
’’’
Generic Twitter Class for sentiment analysis.
’’’
def __init__(self):

’’’
Class constructor or initialization method.
’’’
keys and tokens from the Twitter Dev Console
consumer_key = ’트위터에서 승인받은 정보를 입력 ’
consumer_secret = ’트위터에서 승인받은 정보를 입력 ’
access_token = ’트위터에서 승인받은 정보를 입력 ’
access_token_secret = ’트위터에서 승인받은 정보를 입력 ’

attempt authentication
try:

create OAuthHandler object
self.auth = OAuthHandler(consumer_key, consumer_secret)
set access token and secret
self.auth.set_access_token(access_token,

access_token_secret)
create tweepy API object to fetch tweets
self.api = tweepy.API(self.auth)

except:
print("Error: Authentication Failed")

def get_tweets(self, query, count = 10, RT_number = 0):
’’’
Main function to fetch tweets and parse them.
’’’
empty list to store parsed tweets
tweets = []

try:
filtered_fetched_tweets = []
filtered_fetched_tweet_ids = []
call twitter api to fetch tweets. count 만큼 lang="es"

서치하고, 그 중에서 리트윗횟수 높은거만 추출하자 .

137

https://github.com/eunchung/Alignment

fetched_tweets = self.api.search(q = query, count = count,
lang="es")

그냥 id_str 이 아니라, retweeted_status.id_str 을 써야,
제대로 된 트위터 status 아이디로 감.

리트윗 수 높은 것만 추출 .
for tweet in fetched_tweets:

if tweet.retweet_count >= RT_number and tweet.text:
#not in filtered_fetched_tweets:
filtered_fetched_tweets.append(tweet.text)
filtered_fetched_tweet_ids.append(tweet.retweeted_status.id_str)

parsing tweets one by one
for tweet, id in zip(filtered_fetched_tweets,

filtered_fetched_tweet_ids) :
empty dictionary to store required params of a tweet
parsed_tweet = {}

saving text of tweet
parsed_tweet[’raw_text’] = tweet.strip()
parsed_tweet[’tweet_id’] = id
tweets.append(parsed_tweet)

return parsed tweets
return tweets

except tweepy.TweepError as e:
print("Error : " + str(e))

def get_replies(self, query, tweet_id, count):
’’’
트위터의 reply 들을 얻기위한 코드
참조 :

https://stackoverflow.com/questions/29928638/getting-tweet-replies-to-a-particular-tweet-from-a-particular-user

그냥 tweet.id_str 이 아니라, tweet.retweeted_status.id_str 을
써야, 제대로 된 트위터 status 아이디로 감. !!

’’’
replies = []

try:
filtered_fetched_replies = []
fetched_tweets = self.api.search(q = query, since_id =

tweet_id, count = count, lang="es")

그냥 리트윗은 제외하고 , 리트윗에 맨션 있는것만 추출 .
for tweet in fetched_tweets:

if tweet.in_reply_to_status_id==int(tweet_id):
filtered_fetched_replies.append(tweet.text)

parsing tweets one by one
for reply in filtered_fetched_replies:

parsed_reply = {}
parsed_reply[’raw_text’] = reply.strip()
replies.append(parsed_reply)

138

return parsed tweets
return replies

except tweepy.TweepError as e:
print("Error : " + str(e))

def main():
creating object of TwitterClient Class
api = TwitterClient()
count = 100
query = ’RT’ #independencia’
RT_number = 100

if not os.path.exists(’./data/tweet/crawled’):
os.makedirs(’./data/tweet/crawled’)

print(query)

count_file = 0
for _ in range(100):

count_file +=1
if count_file % 5 == 0:

print(’crawled %s times’ % count_file)

time_now = time.time()
with open(’./data/tweet/crawled/’ + query + ’_’+

str(RT_number)+’_’+str(time_now)+’.txt’,
’w’,encoding=’UTF-8’) as w:
calling function to get tweets
w.write(’RT 로 리트윗 검색. 리트윗 100개 넘은 것들 + 그것에

달린 reply 들 기록. \n’)
tweets = api.get_tweets(query, count, RT_number)

for tweet in tweets:
query_reply = tweet[’raw_text’].split()[1][:-1]
replies = api.get_replies(query_reply,

tweet[’tweet_id’],100)

if replies:
w.write(tweet[’raw_text’]+’\n’)
for reply in replies:

w.write(reply[’raw_text’]+’\n’)
w.write(’\n’)

wait 3*60 sec to avoid ’Rate limit exceeded’
time.sleep(3*60)

if __name__ == "__main__":
calling main function
main()

Code 2: arrange retweet.py

139

import sys
import os

def main():
output = ’./data/tweet/total_retweet.txt’

count = 0 # tweet/retweet pair 수 세기
with open(output, ’w’, encoding =’utf-8’) as w:

for root, dirs, files in os.walk("./data/tweet/crawled/",
topdown = False):

for name in files:
print(os.path.join(root, name))
with open(os.path.join(root, name), ’r’, encoding =

’utf-8’) as r:
sentence_continue = ""
finished_list = [’empty’]
next_is_Blank = False
for sentence in r.readlines():

count += 1
if count % 100 == 0:

print(count)

if sentence.strip() == "":
next_is_Blank = True
count -= 1 # 빈칸은 세지않음 .

tweet 사이에 개행이 있는 tweet 는 sentence_continue
로 두고, 개행들 다 합침.

if sentence.strip() != "" and ’@’ not in sentence:
sentence_continue = sentence_continue +

sentence.strip()
count -= 1 # 개행되어 있는 건 하나의 트윗으로

세기때문에 count 하지않음 .
continue

elif sentence.strip() != "":
sentence_finished = sentence_continue
sentence_continue = sentence.strip()
finished_list.append(sentence_finished)

if next_is_Blank:
next_is_Blank = False
finished_list.append(’empty’)
count -= 1 # empty 표시는 세지않음.

next_is_RT = False
finished_list.pop(1) # 한글 한 줄 빼기
count -= 1
for sentence in finished_list:

if sentence == ’empty’:
next_is_RT = True
continue

if next_is_RT == True:
RT = sentence
next_is_RT = False
continue

140

w.write(RT+’\t’+sentence+’\n’)
count -= 1 # 파일의 마지막 빈 한줄 지움 .

print(’Total number of tweet-retweet pair:’,count) #미세하게
다를때가 있네..

if __name__ == "__main__":
main()

As we mentioned at section 3.2.2, we removed account(accountname), hashtag

(#something), ’RT’, links, special characters to clean tweet text. The python library

‘Regular Expression’ is utilized for preprocessing.

Code 3: Preprocessing code with library Regular Expression (RE)
def clean_tweet(tweet):

return ’ ’.join(re.sub("(@[A-Za-z0-9_:]+)|(#[A-Za-z0-9]+)|(RT)|
(\w+:\/\/\S+)|([ˆA-Za-z0-9 áÁéÉı́ÍóÓúÚñÑüÜao€¡ !?¿(){}<>,....
@#$%& ‘’\" 「 」 \[\]˜\:\;\-_\+*\’\‘\"\ˆ])", " ", tweet).split())

We used ToktokTokenizer, a tokenizer for Spanish. When using ToktokTok-

enizer only, the ’word’ + ’.’ sometimes are not be separated properly. For example,

’done.’ should be separated into ’done’ + ’.’ but they were not separated. Thus we

additionally used nltk.wordpunct tokenize.1.

Code 4: Tokenizing with library Natural Language Tool Kit (NLTK)
import nltk
from nltk.tokenize.toktok import ToktokTokenizer
toktok = ToktokTokenizer()
word_list = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sentence)))

Then, we separate tweet corpus into train, valid and test data. 80% of the corpus

belongs to train data, 10%of the corpus belongs to valid data and 10%of the corpus

belongs to test data2.

Code 5: Separating train data into a training set and a validation set with library

1Reference site: https://github.com/nltk/nltk/issues/1558
2Reference site: http://scikit-learn.org/stable/modules/generated/sklearn.model selection.train test split.html

141

https://github.com/nltk/nltk/issues/1558
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

scikit-learn
from sklearn.model_selection import train_test_split
corpus = data.readlines()
train, valid = train_test_split(corpus, test_size=0.1,

random_state=6)

Code 6: split train valid.py
import sys
from sklearn.model_selection import train_test_split

output_train = ’train_’ + sys.argv[1]
output_valid = ’valid_’ + sys.argv[1]
#output_test = ’test_twitter.txt’
#output_test = ’test_text.txt’
#output_test = ’test_all.txt’ # 이건 위의 두 데이터를 합쳐서 만듬.

import re
import nltk
from nltk.tokenize.toktok import ToktokTokenizer
toktok = ToktokTokenizer()

import unicodedata
import string

윈도우에서 스페인어 보기 위해 .
Turn a Unicode string to plain ASCII, thanks to

http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):

all_letters = string.ascii_letters + " .,;’"
return ’’.join(

c for c in unicodedata.normalize(’NFD’, s)
if unicodedata.category(c) != ’Mn’
and c in all_letters

)

def clean_tweet(tweet):
’’’
Utility function to clean tweet text by removing links, special

characters
using simple regex statements.
’’’
return ’

’.join(re.sub("(@[A-Za-z0-9_:]+)|(#[A-Za-z0-9]+)|(RT)|(\w+:\/\/\S+)|([ˆA-Za-z0-9áÁéÉı́ÍóÓúÚñÑüÜao€¡!?¿(){}<>,....@#$%&‘’\" 「
」 \[\]˜\:\;\-_\+*\’\‘\"\ˆ])", " ", tweet).split()) # 최종버전

with open(output_train, ’w’, encoding =’utf-8’) as w_train,\
open(output_valid, ’w’, encoding =’utf-8’) as w_valid,\
open(output_test, ’w’, encoding =’utf-8’) as w_test,\
open(’./’+sys.argv[1], ’r’, encoding=’utf-8’) as data, \
open(’./’+sys.argv[2], ’r’, encoding=’utf-8’) as test_data:

corpus = data.readlines()
clean_tokenized_corpus = []

142

for i, line in enumerate(corpus):
#print(unicodeToAscii(line))
sent1, sent2, label = line.strip().split(’\t’)
sent1 = clean_tweet(sent1)
sent2 = clean_tweet(sent2)
if (len(sent1) == 0 or len(sent2) == 0):

print(’[train_data] %d-th sentence is empty after cleaning’
% (i+1))

continue
word_list_1 = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sent1)))
word_list_2 = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sent2)))
sent1=’ ’.join(word_list_1)
sent2=’ ’.join(word_list_2)
clean_tokenized_corpus.append(sent1.strip()+’\t’+sent2.strip()+’\t’+

label.strip() +’\n’)

train, valid = train_test_split(clean_tokenized_corpus,
test_size=0.1, random_state=6)

print(’length of train_data’, len(train))
print(’length of valid_data’, len(valid))

for train_sent in train:
sent1, sent2, label = train_sent.strip().split(’\t’)
w_train.write(sent1.strip()+’ endofsentence\t’+sent2.strip()+’

endofsentence\t’+ label.strip() +’\n’)
#w_train.write(sent1.strip()+’\t’+sent2.strip()+’\t’+

label.strip() +’\n’) # 나중에 augmented 할때 endofsentence
추가하는 방식을 사용. 이때 추가해두면 worddropout 시에 unk 되버림.

for valid_sent in valid:
sent1, sent2, label = valid_sent.strip().split(’\t’)
w_valid.write(sent1.strip()+’ endofsentence\t’+sent2.strip()+’

endofsentence\t’+ label.strip() +’\n’)

test_corpus = test_data.readlines()
for i, line in enumerate(test_corpus):

sent1, sent2, label = line.strip().split(’\t’)
sent1 = clean_tweet(sent1)
sent2 = clean_tweet(sent2)
if (len(sent1) == 0 or len(sent2) == 0):

print(’[test_data] %d-th sentence is empty after cleaning’ %
(i+1))

continue
word_list_1 = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sent1)))
word_list_2 = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sent2)))
sent1=’ ’.join(word_list_1)
sent2=’ ’.join(word_list_2)
w_test.write(sent1.strip()+’ endofsentence\t’+sent2.strip()+’

endofsentence\t’+ label.strip() +’\n’)

143

Code 7: arrange data no label.py

import sys
import re
import nltk
from nltk.tokenize.toktok import ToktokTokenizer
toktok = ToktokTokenizer()

import unicodedata
import string

윈도우에서 스페인어 보기 위해 .
Turn a Unicode string to plain ASCII, thanks to

http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):

all_letters = string.ascii_letters + " .,;’"
return ’’.join(

c for c in unicodedata.normalize(’NFD’, s)
if unicodedata.category(c) != ’Mn’
and c in all_letters

)

def clean_tweet(tweet):
’’’
Utility function to clean tweet text by removing links, special

characters
using simple regex statements.
’’’
return ’

’.join(re.sub("(@[A-Za-z0-9_:]+)|(#[A-Za-z0-9]+)|(RT)|(\w+:\/\/\S+)|([ˆA-Za-z0-9áÁéÉı́ÍóÓúÚñÑüÜao€¡!?¿(){}<>,....@#$%&‘’\" 「
」 \[\]˜\:\;\-_\+*\’\‘\"\ˆ])", " ", tweet).split()) # 최종버전

def main():
output = ’preprocessed_’ + sys.argv[1]
count = 0
with open(output, ’w’, encoding =’utf-8’) as w,

open(’./’+sys.argv[1], ’r’, encoding=’utf-8’) as tweet:

tweet_corpus = tweet.readlines()
for i, line in enumerate(tweet_corpus):

sent1, sent2 = line.strip().split(’\t’)
sent1 = clean_tweet(sent1)
sent2 = clean_tweet(sent2)
if (len(sent1) == 0 or len(sent2) == 0):

print(’[twitter_crawled_data] %d-th sentence is empty
after cleaning’ % (i+1))

continue
word_list_1 = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sent1)))
word_list_2 = toktok.tokenize(’

’.join(nltk.wordpunct_tokenize(sent2)))
sent1=’ ’.join(word_list_1)
sent2=’ ’.join(word_list_2)
w.write(sent1.strip()+’ endofsentence\t’+sent2.strip()+’

endofsentence\ttemp_label\n’)

count += 1

144

if count % 100 == 0:
print(count)

if __name__ == "__main__":
main()

A.2 Alignment Classifier - Whole codes

Code 8: baseline.py
import sys
import unicodedata
import string
import os

test_data_path = sys.argv[1]
directory_name = sys.argv[2]
alignment_marker_type = sys.argv[3]

윈도우에서 스페인어 보기 위해 .
Turn a Unicode string to plain ASCII, thanks to

http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):

all_letters = string.ascii_letters + " .,;’"
return ’’.join(

c for c in unicodedata.normalize(’NFD’, s)
if unicodedata.category(c) != ’Mn’
and c in all_letters

)

대표하는 alignment markers = 이 단어가 후속 문장에 포함되면
alignment 다 라고 생각가능한 마커만 뽑음 .

def marker_set(x):
return {

’1’: [’el’, ’la’, ’los’, ’las’, ’lo’],
’2’: [’el’, ’la’, ’los’, ’las’, ’lo’, ’sı́’, ’bien’, ’si’,

’mucho’, ’no’],
’3’: [’el’, ’la’, ’los’, ’las’, ’lo’, ’sı́’, ’bien’, ’si’,

’mucho’, ’no’, ’con’, ’a’, ’en’,’por’, ’hay’],
’4’: [’el’, ’la’, ’los’, ’las’, ’lo’, ’sı́’, ’bien’, ’si’,

’mucho’, ’no’, ’con’, ’a’, ’en’,’por’, ’hay’, ’siempre’,
’nunca’, ’y’,’pero’,’ası́’],

’d1’: [’de’, ’que’, ’a’, ’la’, ’y’],
’d2’: [’de’, ’que’, ’a’, ’la’, ’y’, ’no’, ’el’, ’en’, ’es’,

’los’],
’d3’: [’de’, ’que’, ’a’, ’la’, ’y’, ’no’, ’el’, ’en’, ’es’,

’los’, ’por’, ’lo’, ’un’, ’se’, ’con’],
’d4’: [’de’, ’que’, ’a’, ’la’, ’y’, ’no’, ’el’, ’en’, ’es’,

’los’, ’por’, ’lo’, ’un’, ’se’, ’con’, ’me’, ’si’, ’te’,
’para’, ’del’],

’d5’: [’de’, ’que’, ’a’, ’la’, ’y’, ’no’, ’el’, ’en’, ’es’,
’los’, ’por’, ’lo’, ’un’, ’se’, ’con’, ’me’, ’si’, ’te’,

145

’para’, ’del’, \
’una’,’las’,’mi’,’pero’,’al’,’más’,’le’,’como’,’ya’,’yo’,’q’,’todo’,’gracias’,’su’,’todos’,’son’,’esto’,’este’,’qué’,’hay’,\
’nos’,’tu’,’o’,’esta’,’hoy’,’muy’,’ha’,’eso’,’ni’,’porque’],

’differ’:[’yo’,’todo’,’gracias’,’esto’,’nos’,’muy’,’eso’,’ni’],
}.get(x)

alignment_markers = marker_set(alignment_marker_type)
print([unicodeToAscii(marker) for marker in alignment_markers])

Test baseline
correct = 0
total = 0
if not os.path.exists(’./result’):

os.makedirs(’./result’)
if not os.path.exists(’./result/’+directory_name):

os.makedirs(’./result/’+directory_name)

with
open(’./result/’+directory_name+’/baseline_makrer_%s.txt’%alignment_marker_type,
’w’, encoding =’utf-8’) as w, open(test_data_path, ’r’,
encoding =’utf-8’) as test_data:

for line in test_data.readlines():
sentence_1, sentence_2, label =

line.lower().strip().split(’\t’)
word_list = sentence_2.split() # 후속 문장의 단어만 보고 판단.

predicted = 2 # 기본은 none (2) 이고, marker 가 포함되었을때만
alignment (1) 로 함.

for candidate in alignment_markers:
if candidate in word_list:

predicted = 1
break

total += 1

if int(predicted) != int(label):
w.write(’label\t’ + str(label) +’\t’ + ’predicted\t’ +

str(predicted) +’\t’ + sentence_1 +’\t’+ sentence_2
+’\n’)

correct += (int(predicted) == int(label))

print(’Test Accuracy of baseline: %0.2f %%’ % (100 * correct /
total))

w.write(’[Test Accuracy of baseline] : %0.2f %% \n\n’ % (100 *
correct / total))

os.rename(’./result/’+directory_name+’/baseline_makrer_%s.txt’%alignment_marker_type,
’./result/’+directory_name+’/baseline_makrer_%s_Acc%0.2f.txt’%(alignment_marker_type,
(100 * correct / total)))

Code 9: augment word dropout separately.py
import sys

146

import numpy as np

import unicodedata
import string

윈도우에서 스페인어 보기 위해 .
Turn a Unicode string to plain ASCII, thanks to

http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):

all_letters = string.ascii_letters + " .,;’"
return ’’.join(

c for c in unicodedata.normalize(’NFD’, s)
if unicodedata.category(c) != ’Mn’
and c in all_letters

)

word_dropout_rate = 0.1 # 0.2

#output = ’WD_%0.2f_aug_train_twitter.txt’%word_dropout_rate
output = ’WD_%0.2f_aug_train_text.txt’%word_dropout_rate

number_of_augmented_align = 2
number_of_augmented_none = 8

with open(output, ’w’, encoding =’utf-8’) as w_augmented,\
open(’./’+sys.argv[1], ’r’, encoding=’utf-8’) as align,\
open(’./’+sys.argv[2], ’r’, encoding=’utf-8’) as none:
align_corpus = align.readlines()
none_corpus = none.readlines()

본래 align_data
for align_sent in align_corpus:

w_augmented.write(align_sent)

number_of_augmented_align - 1 만큼 augmented 한 데이터를 추가함.
for _ in range(number_of_augmented_align - 1):

for align_sent in align_corpus:
#print(unicodeToAscii(train_sent))
sent1, sent2, label = align_sent.strip().split(’\t’)

word_list_1 = sent1.split()
replace_index_1 = np.random.rand(len(word_list_1)) <

word_dropout_rate # will return list of ture / false. ex)
[True False True]

replaced_word_list_1 = []
for word, replace in zip(word_list_1, replace_index_1):

if replace:
word = ’unk’

replaced_word_list_1.append(word)
sent1=’ ’.join(replaced_word_list_1)
#print(unicodeToAscii(sent1))

word_list_2 = sent2.split()
replace_index_2 = np.random.rand(len(word_list_2)) <

word_dropout_rate # will return list of ture / false. ex)
[True False True]

replaced_word_list_2 = []

147

for word, replace in zip(word_list_2, replace_index_2):
if replace:

word = ’unk’
replaced_word_list_2.append(word)

sent2=’ ’.join(replaced_word_list_2)
#print(unicodeToAscii(sent2))

w_augmented.write(sent1.strip()+’\t’+sent2.strip()+’\t’+
label.strip() +’\n’)

본래 train_data
for none_sent in none_corpus:

w_augmented.write(none_sent)

number_of_augmented_none - 1 만큼 augmented 한 데이터를 추가함.
for _ in range(number_of_augmented_none - 1):

for none_sent in none_corpus:
#print(unicodeToAscii(train_sent))
sent1, sent2, label = none_sent.strip().split(’\t’)

word_list_1 = sent1.split()
replace_index_1 = np.random.rand(len(word_list_1)) <

word_dropout_rate # will return list of ture / false. ex)
[True False True]

replaced_word_list_1 = []
for word, replace in zip(word_list_1, replace_index_1):

if replace:
word = ’unk’

replaced_word_list_1.append(word)
sent1=’ ’.join(replaced_word_list_1)
#print(unicodeToAscii(sent1))

word_list_2 = sent2.split()
replace_index_2 = np.random.rand(len(word_list_2)) <

word_dropout_rate # will return list of ture / false. ex)
[True False True]

replaced_word_list_2 = []
for word, replace in zip(word_list_2, replace_index_2):

if replace:
word = ’unk’

replaced_word_list_2.append(word)
sent2=’ ’.join(replaced_word_list_2)
#print(unicodeToAscii(sent2))

w_augmented.write(sent1.strip()+’\t’+sent2.strip()+’\t’+
label.strip() +’\n’)

Code 10: main.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import Dataset, DataLoader

148

from torch.autograd import Variable

import sys
import numpy
import os

from utils import *
from models import *

Hyper Parameters
max_sequence_length = 30
max_vocabulary_size = 25000
embedding_size = 300
hidden_size = int(sys.argv[6])#256
num_layers = 2
num_classes = 2
batch_size = 150
num_epochs = 30
learning_rate = 0.001
dropout_rate = float(sys.argv[7]) #0

train_data_path = sys.argv[1]
valid_data_path = sys.argv[2]
test_data_path = sys.argv[3]
directory_name = sys.argv[4] #’Twit_CNN’
model_name = sys.argv[5] #’CNN’

word_to_ix, ix_to_word, vocab_size =
make_or_load_dict(train_data_path, character=False)

def model(x):
return {

’BiLSTM’: BiLSTM(vocab_size, embedding_size, hidden_size,
num_layers, num_classes, dropout_rate),

’CNN’: CNN(vocab_size, embedding_size, num_classes,
dropout_rate, kernel_num=hidden_size),

’Cha_CNN_LSTM’: Cha_CNN_LSTM(vocab_size, embedding_size,
num_classes, dropout_rate, kernel_num =hidden_size),

’Siamese_BiLSTM’: Siamese_BiLSTM(vocab_size, embedding_size,
hidden_size, num_layers, num_classes, dropout_rate),

’Siamese_CNN’: Siamese_CNN(vocab_size, num_classes,
embedding_size, kernel_num = hidden_size),

}.get(x)

model = model(model_name)
model.cuda()
print(model)

if model_name in [’BiLSTM’,’CNN’,’Cha_CNN_LSTM’] :
train_dataset = AlignmentDataset(train_data_path, word_to_ix,

batch_size)
valid_dataset = AlignmentDataset(valid_data_path, word_to_ix, 1)
test_dataset = AlignmentDataset(test_data_path, word_to_ix, 1)

elif model_name in [’Siamese_BiLSTM’,’Siamese_CNN’]:
train_dataset = AlignmentDataset_seperate_sent(train_data_path,

word_to_ix, batch_size)
valid_dataset = AlignmentDataset_seperate_sent(valid_data_path,

149

word_to_ix, 1)
test_dataset = AlignmentDataset_seperate_sent(test_data_path,

word_to_ix, 1)

train_loader = DataLoader(dataset=train_dataset, shuffle=True)
valid_loader = DataLoader(dataset=valid_dataset)
test_loader = DataLoader(dataset=test_dataset)
print(’length of train dataset’, len(train_dataset)*batch_size)
print(’length of valid dataset’, len(valid_dataset))
print(’length of test dataset’, len(test_dataset))

Loss and Optimizer
loss_function = nn.CrossEntropyLoss() # = log softmax + NLL loss
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

print_every = (len(train_dataset)/2)*2
losses = 0
keep_valid_loss = 1e06
keep_valid_accuracy= 0
if not os.path.exists(’./models’):

os.makedirs(’./models’)
if not os.path.exists(’./models/’+directory_name):

os.makedirs(’./models/’+directory_name)

for epoch in range(num_epochs): # again, normally you would NOT do
300 epochs, it is toy data
if model_name in [’BiLSTM’,’CNN’,’Cha_CNN_LSTM’]:

for i, (sentences, labels) in enumerate(train_loader):
model.zero_grad()
logits = model(Variable(sentences.view(batch_size,

-1)).cuda())
loss = loss_function(logits,

Variable(labels.view(batch_size)).cuda())
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 1)
optimizer.step()
losses += loss.data[0]

if ((i+1)+epoch*len(train_dataset)) % print_every == 0:
valid set test
valid_loss = 0
valid_correct = 0
valid_total = 0
for sentence, label in valid_loader:

output = model(Variable(sentence.view(1,
-1)).cuda(), train=False)

loss = loss_function(output,
Variable(label.view(1)).cuda())

valid_loss += loss.data[0]

_, predicted = torch.max(output.data, 1) # 두번째
아웃풋 값은 argmax 를 반환

valid_total += label.size(0)
valid_correct += (predicted.cpu() == label).sum()

valid_accuracy = (100 * valid_correct / valid_total)

150

test set test
test_loss = 0
test_correct = 0
test_total = 0
for sentence, label in test_loader:

output = model(Variable(sentence.view(1,
-1)).cuda(), train=False)

loss = loss_function(output,
Variable(label.view(1)).cuda())

test_loss += loss.data[0]

_, predicted = torch.max(output.data, 1) # 두번째
아웃풋 값은 argmax 를 반환

test_total += label.size(0)
test_correct += (predicted.cpu() == label).sum()

test_accuracy = (100 * test_correct / test_total)

if valid_accuracy > keep_valid_accuracy:
keep_valid_accuracy = valid_accuracy

if valid_loss < keep_valid_loss:
keep_valid_loss = valid_loss
best_valid_epoch = epoch + 1
torch.save(model.state_dict(),

’./models/’+directory_name+’/%s_hid%d_D%0.2f_epoch_%d_best_valid_accuracy.pkl’
% (model_name, hidden_size, dropout_rate,
(epoch+1)))

print (’Ep [%d/%d], Step [%d/%d], L: %.4f, V_L:
%.4f, V_ACC: %0.2f %%, Te_L: %.4f, Te_ACC: %0.2f
%% <best valid>’

%(epoch+1, num_epochs,
(i+1)+epoch*len(train_dataset),
num_epochs*len(train_dataset), losses,
valid_loss, valid_accuracy, test_loss,
test_accuracy))

else:
torch.save(model.state_dict(),

’./models/’+directory_name+’/%s_hid%d_D%0.2f_epoch_%d.pkl’
% (model_name, hidden_size, dropout_rate,
(epoch+1)))

print (’Ep [%d/%d], Step [%d/%d], L: %.4f, V_L:
%.4f, V_ACC: %0.2f %%, Te_L: %.4f, Te_ACC: %0.2f
%%’

%(epoch+1, num_epochs,
(i+1)+epoch*len(train_dataset),
num_epochs*len(train_dataset), losses,
valid_loss, valid_accuracy, test_loss,
test_accuracy))

losses = 0

elif model_name in [’Siamese_BiLSTM’,’Siamese_CNN’]:
for i, (sentence_1, sentence_2, labels) in

enumerate(train_loader):
model.zero_grad()
logits = model(Variable(sentence_1.view(batch_size,

-1)).cuda(), Variable(sentence_2.view(batch_size,

151

-1)).cuda())
loss = loss_function(logits,

Variable(labels.view(batch_size)).cuda())
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 1)
optimizer.step()
losses += loss.data[0]

if ((i+1)+epoch*len(train_dataset)) % print_every == 0:
valid set test
valid_loss = 0
valid_correct = 0
valid_total = 0
for sentence_1, sentence_2, label in valid_loader:

output = model(Variable(sentence_1.view(1,
-1)).cuda(), Variable(sentence_2.view(1,
-1)).cuda(), train=False)

loss = loss_function(output,
Variable(label.view(1)).cuda())

valid_loss += loss.data[0]

_, predicted = torch.max(output.data, 1) # 두번째
아웃풋 값은 argmax 를 반환

valid_total += label.size(0)
valid_correct += (predicted.cpu() == label).sum()

valid_accuracy = (100 * valid_correct / valid_total)

test set test
test_loss = 0
test_correct = 0
test_total = 0
for sentence_1, sentence_2, label in test_loader:

output = model(Variable(sentence_1.view(1,
-1)).cuda(), Variable(sentence_2.view(1,
-1)).cuda(), train=False)

loss = loss_function(output,
Variable(label.view(1)).cuda())

test_loss += loss.data[0]

_, predicted = torch.max(output.data, 1) # 두번째
아웃풋 값은 argmax 를 반환

test_total += label.size(0)
test_correct += (predicted.cpu() == label).sum()

test_accuracy = (100 * test_correct / test_total)

if valid_accuracy > keep_valid_accuracy:
keep_valid_accuracy = valid_accuracy

if valid_loss < keep_valid_loss:
keep_valid_loss = valid_loss
best_valid_epoch = epoch + 1
torch.save(model.state_dict(),

’./models/’+directory_name+’/%s_hid%d_D%0.2f_epoch_%d_best_valid_accuracy.pkl’
% (model_name, hidden_size, dropout_rate,
(epoch+1)))

print (’Ep [%d/%d], Step [%d/%d], L: %.4f, V_L:
%.4f, V_ACC: %0.2f %%, Te_L: %.4f, Te_ACC: %0.2f
%% <best valid>’

152

%(epoch+1, num_epochs,
(i+1)+epoch*len(train_dataset),
num_epochs*len(train_dataset), losses,
valid_loss, valid_accuracy, test_loss,
test_accuracy))

else:
torch.save(model.state_dict(),

’./models/’+directory_name+’/%s_hid%d_D%0.2f_epoch_%d.pkl’
% (model_name, hidden_size, dropout_rate,
(epoch+1)))

print (’Ep [%d/%d], Step [%d/%d], L: %.4f, V_L:
%.4f, V_ACC: %0.2f %%, Te_L: %.4f, Te_ACC: %0.2f
%%’

%(epoch+1, num_epochs,
(i+1)+epoch*len(train_dataset),
num_epochs*len(train_dataset), losses,
valid_loss, valid_accuracy, test_loss,
test_accuracy))

losses = 0

Test the Model
correct = 0
total = 0
missed_pairs = []
if model_name in [’BiLSTM’,’CNN’,’Cha_CNN_LSTM’]:

for sentence, label in test_loader:

outputs = model(Variable(sentence.view(1, -1)).cuda(),
train=False)

_, predicted = torch.max(outputs.data, 1) # 두번째 아웃풋 값은
argmax 를 반환

total += label.size(0) # batch 쓰는 경우.
if (predicted.cpu().numpy() != label.numpy()):

sentence = [ix_to_word[word_idx] for word_idx in
sentence.long()[0][0].numpy()]

missed_pairs.append(’label: ’ + str(label.numpy()[0][0])
+’\t’ + ’predicted: ’+str(predicted.cpu().numpy()) +
’\t’ + ’ ’.join(sentence)+’\n’)

correct += (predicted.cpu() == label).sum()

elif model_name in [’Siamese_BiLSTM’,’Siamese_CNN’]:
for sentence_1, sentence_2, label in test_loader:

output = model(Variable(sentence_1.view(1, -1)).cuda(),
Variable(sentence_2.view(1, -1)).cuda(), train=False)

_, predicted = torch.max(output.data, 1) # 두번째 아웃풋 값은
argmax 를 반환

total += label.size(0) # batch 쓰는 경우.
if (predicted.cpu().numpy() != label.numpy()):

sentence_1 = [ix_to_word[word_idx] for word_idx in
sentence_1.long()[0][0].numpy()]

sentence_2 = [ix_to_word[word_idx] for word_idx in
sentence_2.long()[0][0].numpy()]

153

missed_pairs.append(’label: ’ + str(label.numpy()[0][0])
+’\t’ + ’predicted: ’+str(predicted.cpu().numpy()) +
’\t’ + ’ ’.join(sentence_1)+’\t’+’
’.join(sentence_2)+’\n’)

correct += (predicted.cpu() == label).sum()

print(’Test Accuracy of the model: %0.2f %%’ % (100 * correct /
total))

write result and save model
if not os.path.exists(’./result’):

os.makedirs(’./result’)
if not os.path.exists(’./result/’+directory_name):

os.makedirs(’./result/’+directory_name)

with
open(’./result/’+directory_name+’/%s_hid%d_D%0.2f_Acc%0.2f.txt’
% (model_name, hidden_size, dropout_rate, 100 * correct /
total), ’a’, encoding =’utf-8’) as w:

w.write(’[setting]:
’+’\tbatch_size\t’+str(batch_size)+’\temb_size\t’+str(embedding_size)+’\tHid\t’+str(hidden_size)+’\tD\t’+str(dropout_rate)+’\n’)

w.write(’[Test Accuracy of the model]: %0.2f %% \n’ % (100 *
correct / total))

w.write(’[saved to]: ./models/%s_hid%d_D%0.2f_Acc%0.2f.pkl\n’ %
(model_name, hidden_size, dropout_rate, 100 * correct /
total))

torch.save(model.state_dict(),
’./models/’+directory_name+’/%s_hid%d_D%0.2f_Acc%0.2f_last_epoch.pkl’
% (model_name, hidden_size, dropout_rate, 100 * correct /
total))

for miss in missed_pairs:
w.write(miss)

w.write(’-’*100+’\n\n’)

load the best valid model.
correct = 0
total = 0
missed_pairs = []
#best_valid_epoch = 10
model.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_epoch_%d_best_valid_accuracy.pkl’

% (model_name, hidden_size, dropout_rate, best_valid_epoch)))
if model_name in [’BiLSTM’,’CNN’,’Cha_CNN_LSTM’]:

for sentence, label in test_loader:

outputs = model(Variable(sentence.view(1, -1)).cuda(),
train=False)

_, predicted = torch.max(outputs.data, 1) # 두번째 아웃풋 값은
argmax 를 반환

total += label.size(0) # batch 쓰는 경우.
if (predicted.cpu().numpy() != label.numpy()):

sentence = [ix_to_word[word_idx] for word_idx in
sentence.long()[0][0].numpy()]

missed_pairs.append(’label: ’ + str(label.numpy()[0][0])
+’\t’ + ’predicted: ’+str(predicted.cpu().numpy()) +

154

’\t’ + ’ ’.join(sentence)+’\n’)
correct += (predicted.cpu() == label).sum()

elif model_name in [’Siamese_BiLSTM’,’Siamese_CNN’]:
for sentence_1, sentence_2, label in test_loader:

output = model(Variable(sentence_1.view(1, -1)).cuda(),
Variable(sentence_2.view(1, -1)).cuda(), train=False)

_, predicted = torch.max(output.data, 1) # 두번째 아웃풋 값은
argmax 를 반환

total += label.size(0) # batch 쓰는 경우.
if (predicted.cpu().numpy() != label.numpy()):

sentence_1 = [ix_to_word[word_idx] for word_idx in
sentence_1.long()[0][0].numpy()]

sentence_2 = [ix_to_word[word_idx] for word_idx in
sentence_2.long()[0][0].numpy()]

missed_pairs.append(’label: ’ + str(label.numpy()[0][0])
+’\t’ + ’predicted: ’+str(predicted.cpu().numpy()) +
’\t’ + ’ ’.join(sentence_1)+’\t’+’
’.join(sentence_2)+’\n’)

correct += (predicted.cpu() == label).sum()

print(’Test Accuracy of the best valid accuracy model: %0.2f %%’ %
(100 * correct / total))

write result
with

open(’./result/’+directory_name+’/%s_hid%d_D%0.2f_Acc%0.2f_best_valid_accuracy.txt’
% (model_name, hidden_size, dropout_rate, 100 * correct /
total), ’a’, encoding =’utf-8’) as w:

w.write(’[setting]:
’+’\tbatch_size\t’+str(batch_size)+’\temb_size\t’+str(embedding_size)+’\tHid\t’+str(hidden_size)+’\tD\t’+str(dropout_rate)+’\n’)

w.write(’[Test Accuracy of the model]: %0.2f %% \n’ % (100 *
correct / total))

w.write(’[saved to]:
./models/%s_hid%d_D%0.2f_Acc%0.2f_best_valid_accuracy.pkl\n’
% (model_name, hidden_size, dropout_rate, 100 * correct /
total))

torch.save(model.state_dict(),
’./models/’+directory_name+’/%s_hid%d_D%0.2f_Acc%0.2f_best_valid_accuracy.pkl’
% (model_name, hidden_size, dropout_rate, 100 * correct /
total))

for miss in missed_pairs:
w.write(miss)

w.write(’-’*100+’\n\n’)

Code 11: utils.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import Dataset, DataLoader

155

from torch.autograd import Variable

import sys
import numpy
import os.path

import unicodedata
import string
import math

train_data_path = sys.argv[1] #"train_data.txt"
test_data_path = sys.argv[2] #"test_data.txt"

윈도우에서 스페인어 보기 위해 .
Turn a Unicode string to plain ASCII, thanks to

http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):

all_letters = string.ascii_letters + " .,;’"
return ’’.join(

c for c in unicodedata.normalize(’NFD’, s)
if unicodedata.category(c) != ’Mn’
and c in all_letters

)
#print(unicodeToAscii(’Ślusàrski’))

def make_or_load_dict(train_data_path, character=False):
something_to_ix = ’word_to_ix_’ if not character else

’character_to_ix_’ # 케릭터래벨은, 데이터 저장시에 케릭터 단위로하면
되도록 해둠.

if not os.path.exists(’./vocab’):
os.makedirs(’./vocab’)

word_to_ix
if os.path.isfile(’./vocab/’+something_to_ix+train_data_path):

word_to_ix = {}
with open(’./vocab/’+something_to_ix+train_data_path,’r’,

encoding=’utf-8’) as dictionary:
for line in dictionary.readlines():

word, idx = line.strip().split(’\t’)
word_to_ix[word] = int(idx)

else:
word_to_ix = {"unk":0, "endofsentence":1}
with open(train_data_path, ’r’, encoding =’utf-8’) as data:

for line in data.readlines():
sentence_1, sentence_2, label =

line.lower().strip().split(’\t’)
word_list = (sentence_1+’ ’+sentence_2).split()
for word in word_list:

if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)

with open(’./vocab/’+something_to_ix+train_data_path, ’w’,
encoding =’utf-8’) as w:
for word, idx in word_to_ix.items():

156

w.write(word+’\t’+str(idx)+’\n’)

ix to word
ix_to_word = [i for i in range(len(word_to_ix))]
for word, idx in word_to_ix.items():

ix_to_word[idx] = word

with
open(’./vocab/’+something_to_ix+train_data_path[:-4]+’_inverse_dict.txt’,
’w’, encoding =’utf-8’) as w:
for idx, word in enumerate(ix_to_word):

w.write(word+’\t’+str(idx)+’\n’)

vocab_size=len(word_to_ix)
print(vocab_size)
return word_to_ix, ix_to_word, vocab_size

def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] if w in to_ix else to_ix[’unk’] for w in seq]
#tensor = torch.FloatTensor([idxs])
tensor = torch.LongTensor([idxs])
return tensor

def prepare_label(label, to_ix):
idxs = to_ix[label]
tensor = torch.LongTensor([idxs])
return tensor

pad sequences from
https://docs.google.com/presentation/d/18JvZ5n49tt3-8nhBappz6aaraZMazF06v2YuQxGVKEQ/edit#slide=id.g29bd0a4235_0_107

def pad_sequences(vectorized_seqs, seq_lengths):
seq_lengths_tensor = torch.LongTensor(seq_lengths)
seq_tensor = torch.zeros((len(vectorized_seqs),

seq_lengths_tensor.max())).long()
for idx, (seq, seq_len) in enumerate(zip(vectorized_seqs,

seq_lengths_tensor)):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)

return seq_tensor

class AlignmentDataset(Dataset):
""" Alignment dataset."""
Initialize your data, download, etc.
def __init__(self, data_path, word_to_ix, batch_size):

data_file = open(data_path, ’r’, encoding =’utf-8’)
self.data = data_file.readlines()
self.len = math.floor(len(self.data)/batch_size)
self.word_to_ix = word_to_ix
self.label_to_ix = {"1": 0, "2": 1}
self.batch_size = batch_size
#self.label_to_ix = {"Alignment": 0, "None": 1}

def __getitem__(self, index):

157

vectorized_seqs, seq_lengths = [], []
label_batch = torch.zeros(self.batch_size, 1).long()

for i in range(self.batch_size):
self.line = self.data[index*self.batch_size + i]
sentence_1, sentence_2, label =

self.line.lower().strip().split(’\t’)

self.sentence = (sentence_1+’ ’+sentence_2).split()
self.sentence_tensor = prepare_sequence(self.sentence,

self.word_to_ix)
seq_lengths.append(len(self.sentence))
vectorized_seqs.append(self.sentence_tensor)

self.label = prepare_label(label, self.label_to_ix)
label_batch[i] = self.label

return pad_sequences(vectorized_seqs, seq_lengths),
label_batch

def __len__(self):
return self.len

class AlignmentDataset_seperate_sent(Dataset):
""" Alignment dataset."""
Initialize your data, download, etc.
def __init__(self, data_path, word_to_ix, batch_size):

data_file = open(data_path, ’r’, encoding =’utf-8’)
self.data = data_file.readlines()
self.len = math.floor(len(self.data)/batch_size)
self.word_to_ix = word_to_ix
self.label_to_ix = {"1": 0, "2": 1}
self.batch_size = batch_size
#self.label_to_ix = {"Alignment": 0, "None": 1}

def __getitem__(self, index):
vectorized_seqs_1, vectorized_seqs_2, seq_lengths_1,

seq_lengths_2 = [], [], [], []
label_batch = torch.zeros(self.batch_size, 1).long()

for i in range(self.batch_size):
self.line = self.data[index*self.batch_size + i]
sentence_1, sentence_2, label =

self.line.lower().strip().split(’\t’)

self.sentence_1 = sentence_1.split()
self.sentence_1_tensor = prepare_sequence(self.sentence_1,

self.word_to_ix)
seq_lengths_1.append(len(self.sentence_1))
vectorized_seqs_1.append(self.sentence_1_tensor)

self.sentence_2 = sentence_2.split()
self.sentence_2_tensor = prepare_sequence(self.sentence_2,

self.word_to_ix)
seq_lengths_2.append(len(self.sentence_2))

158

vectorized_seqs_2.append(self.sentence_2_tensor)

self.label = prepare_label(label, self.label_to_ix)
label_batch[i] = self.label

return pad_sequences(vectorized_seqs_1, seq_lengths_1),
pad_sequences(vectorized_seqs_2, seq_lengths_2),
label_batch

def __len__(self):
return self.len

class AlignmentDataset_cha_cnn(Dataset):
""" Alignment dataset."""
Initialize your data, download, etc.
def __init__(self, data_path, character_to_ix):

data_file = open(data_path, ’r’, encoding =’utf-8’)
self.data = data_file.readlines()
self.len = len(self.data)
self.character_to_ix = character_to_ix
self.label_to_ix = {"1": 0, "2": 1}
#self.label_to_ix = {"Alignment": 0, "None": 1}

def __getitem__(self, index):
self.line = self.data[index]
sentence_1, sentence_2, label =

self.line.lower().strip().split(’\t’)

self.sentence = (sentence_1+’ ’+sentence_2).split()
self.sentence = [prepare_sequence(list(word),

character_to_ix) for word in self.sentence]
self.label = prepare_label(label, label_to_ix)

return self.sentence, self.label

def __len__(self):
return self.len

class GenerateDataset(Dataset):
""" Alignment dataset."""
Initialize your data, download, etc.
def __init__(self, data_path, word_to_ix, batch_size):

data_file = open(data_path, ’r’, encoding =’utf-8’)
self.data = data_file.readlines()
self.len = math.floor(len(self.data)/batch_size)
self.word_to_ix = word_to_ix
self.batch_size = batch_size

def __getitem__(self, index):
vectorized_seqs_1, vectorized_seqs_2, seq_lengths_1,

seq_lengths_2 = [], [], [], []

for i in range(self.batch_size):
self.line = self.data[index*self.batch_size + i]

159

sentence_1, sentence_2, label =
self.line.lower().strip().split(’\t’)

self.sentence_1 = sentence_1.split()
self.sentence_1_tensor = prepare_sequence(self.sentence_1,

self.word_to_ix)
seq_lengths_1.append(len(self.sentence_1))
vectorized_seqs_1.append(self.sentence_1_tensor)

self.sentence_2 = sentence_2.split()
self.sentence_2_tensor = prepare_sequence(self.sentence_2,

self.word_to_ix)
seq_lengths_2.append(len(self.sentence_2))
vectorized_seqs_2.append(self.sentence_2_tensor)

return pad_sequences(vectorized_seqs_1, seq_lengths_1),
pad_sequences(vectorized_seqs_2, seq_lengths_2)

def __len__(self):
return self.len

class GenerateDataset_AE(Dataset):
""" Alignment dataset."""
Initialize your data, download, etc.
def __init__(self, data_path, word_to_ix, batch_size):

data_file = open(data_path, ’r’, encoding =’utf-8’)
self.data = data_file.readlines()
self.len = math.floor(len(self.data)/batch_size)
self.word_to_ix = word_to_ix
self.batch_size = batch_size

def __getitem__(self, index):
vectorized_seqs, seq_lengths = [], []

for i in range(self.batch_size):
self.line = self.data[index*self.batch_size + i]
sentence_1, sentence_2, label =

self.line.lower().strip().split(’\t’)

self.sentence = (sentence_1+’ ’+sentence_2).split()
self.sentence_tensor = prepare_sequence(self.sentence,

self.word_to_ix)
seq_lengths.append(len(self.sentence))
vectorized_seqs.append(self.sentence_tensor)

return pad_sequences(vectorized_seqs, seq_lengths),
pad_sequences(vectorized_seqs, seq_lengths)

def __len__(self):
return self.len

class ContrastiveLoss(torch.nn.Module):
"""
Borrowed from:

https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ipynb

160

Contrastive loss function.
Based on:

http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""

def __init__(self, margin=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin

def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((1-label.float()) *

torch.pow(euclidean_distance, 2) +
(label.float()) *

torch.pow(torch.clamp(self.margin -
euclidean_distance, min=0.0), 2))

return loss_contrastive

from
http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

This is a helper function to print time elapsed and estimated time
remaining given the current time and progress %.
import time
import math

def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return ’%dm %ds’ % (m, s)

def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return ’%s (- %s)’ % (asMinutes(s), asMinutes(rs))

Code 12: models.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.autograd import Variable

import sys
import numpy
import math

BiRNN Model (Many-to-One)
class BiLSTM(nn.Module):

def __init__(self, vocab_size, embedding_size, hidden_size,

161

num_layers, num_classes, dropout_rate):
super(BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.dropout = nn.Dropout(p=dropout_rate)

self.word_embedding = nn.Embedding(vocab_size, embedding_size)

self.num_layers = num_layers
self.lstm = nn.LSTM(embedding_size, self.hidden_size,

num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(self.hidden_size*2, num_classes) # 2 for

bidirection

def forward(self, sentence, train = True):
embeds = self.word_embedding(sentence)
if train:

embeds = self.dropout(embeds)

Set initial states
h0 = Variable(torch.zeros(self.num_layers*2, embeds.size(0),

self.hidden_size)).cuda() # 2 for bidirection
c0 = Variable(torch.zeros(self.num_layers*2, embeds.size(0),

self.hidden_size)).cuda()

Forward propagate RNN
out, _ = self.lstm(embeds, (h0, c0))

Decode hidden state of last time step
if train:

out = self.fc(self.dropout(out[:, -1, :]))
else:

out = self.fc(out[:, -1, :])

return out

class CNN(nn.Module):
def __init__(self, vocab_size, embedding_size, num_classes,

dropout_rate, Ci = 1, kernel_num = 100, \
kernel_sizes=[3,4,5]):
super(CNN, self).__init__()
self.embed = nn.Embedding(vocab_size, embedding_size)
self.padding = nn.ReflectionPad2d((0,0,1,1))
self.convs1 = nn.ModuleList([nn.Conv2d(Ci, kernel_num, (K,

embedding_size)) for K in kernel_sizes])
self.dropout = nn.Dropout(dropout_rate)
self.highway_t = nn.Linear(len(kernel_sizes)*kernel_num,

len(kernel_sizes)*kernel_num) # square matrix
self.highway_g = nn.Linear(len(kernel_sizes)*kernel_num,

len(kernel_sizes)*kernel_num) # square matrix
self.fc1 = nn.Linear(len(kernel_sizes)*kernel_num,

num_classes)

def highway(self, input_, num_layers=1, bias=-2.0):
"""
Recently, Kim Yoon’s text CNN model usually use highway

networks.

162

Highway Network (cf. http://arxiv.org/abs/1505.00387).
borrowed from https://github.com/mkroutikov/tf-lstm-char-cnn
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is

carry gate.
"""
for idx in range(num_layers):

t = F.sigmoid(self.highway_t(input_) + bias)
g = F.relu(self.highway_g(input_))

output = t * g + (1. - t) * input_
input_ = output

return output

def forward(self, x, train = True):
x = self.embed(x) # (N,W,D)

x = x.unsqueeze(1) # (N,Ci,W,D) # N 은 뱃치수, Ci 가 채널수, W 가
단어 윈도우수-3개보다 작으면 안됨 . D가 embedding_size

x = self.padding(x)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1]

#[(N,Co,W), ...]*len(Ks)
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]

#[(N,Co), ...]*len(Ks)
x = torch.cat(x, 1)

x = self.highway(x, 1, 0)

if train:
x = self.dropout(x) # (N,len(Ks)*Co)

logit = self.fc1(x) # (N,C)
return logit

class Cha_CNN_LSTM(nn.Module):
def __init__(self, vocab_size, embedding_size, num_classes,

dropout_rate, Ci = 1, kernel_num = 100, \
kernel_sizes=[3,4,5]):
super(Cha_CNN_LSTM, self).__init__()
self.embed = nn.Embedding(vocab_size, embedding_size)
self.padding = nn.ReflectionPad2d((0,0,1,1))
self.convs1 = nn.ModuleList([nn.Conv2d(Ci, kernel_num, (K,

embedding_size)) for K in kernel_sizes])
self.dropout = nn.Dropout(dropout_rate)
self.fc1 = nn.Linear(len(kernel_sizes)*kernel_num,

num_classes)

def forward(self, x, train = True):
x = self.embed(x) # (N,W,D)

x = x.unsqueeze(1) # (N,Ci,W,D) # N 은 뱃치수, Ci 가 채널수, W 가
단어 윈도우수-3개보다 작으면 안됨 . D가 embedding_size

x = self.padding(x)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1]

163

#[(N,Co,W), ...]*len(Ks)
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]

#[(N,Co), ...]*len(Ks)
x = torch.cat(x, 1)

if train:
x = self.dropout(x) # (N,len(Ks)*Co)

logit = self.fc1(x) # (N,C)
return logit

class Siamese_CNN(nn.Module):
def __init__(self, vocab_size, num_classes, embedding_size=100,

max_sequence_length = 30, kernel_size = 3, kernel_num=32):
super(Siamese_CNN, self).__init__()
self.max_sequence_length = max_sequence_length
self.kernel_size = kernel_size

#ABCNN 논문에서 BCNN 의 네트웍 구조를 빌림 .
self.layer1 = nn.Sequential(

nn.ReflectionPad2d((0,0,self.kernel_size-1,self.kernel_size-1)),
nn.Conv2d(embedding_size, kernel_num, (self.kernel_size,

1)),
nn.ReLU(),
nn.AvgPool2d((self.kernel_size,1), stride=1))

self.layer2 = nn.Sequential(
nn.ReflectionPad2d((0,0,self.kernel_size-1,self.kernel_size-1)),
nn.Conv2d(kernel_num, kernel_num, (self.kernel_size, 1)),
nn.ReLU(),
nn.AvgPool2d((max_sequence_length+2,1), stride=1))

self.LogisticRegression = nn.Linear(kernel_num*2, num_classes)

self.embed = nn.Embedding(vocab_size, embedding_size)
self.sentence_pad = nn.ReflectionPad2d((0,0,0,1))

def siamese(self, x):
x = self.embed(x) # (N,W,D)
x = x.unsqueeze(1) # (N,Ci,W,D) # N 은 뱃치수, Ci 가 채널수, W 가

단어 윈도우수-3개보다 작으면 안됨 . D가 embedding_size
x = x.permute(0,3,2,1) # (N,D,W,Ci)
if x.size(2)>self.max_sequence_length:

x=x[:,:,:self.max_sequence_length,:]
while (x.size(2)<self.max_sequence_length):

x = self.sentence_pad(x)

out = self.layer1(x)
out = self.layer2(out)
out = out.view(out.size(0), -1)

return out

def forward(self, sentence_1, sentence_2, train = True):
represent_1 = self.siamese(sentence_1)
represent_2 = self.siamese(sentence_2)
similarity = torch.cat([represent_1, represent_2],1)

164

logit = self.LogisticRegression(similarity)

return logit

Siamese_BiLSTM Model (Many-to-One)
class Siamese_BiLSTM(nn.Module):

def __init__(self, vocab_size, embedding_size, hidden_size,
num_layers, num_classes, dropout_rate):
super(Siamese_BiLSTM, self).__init__()
self.hidden_size = hidden_size
self.dropout = nn.Dropout(p=dropout_rate)
self.word_embedding = nn.Embedding(vocab_size, embedding_size)

self.num_layers = num_layers
self.lstm = nn.LSTM(embedding_size, self.hidden_size,

num_layers, batch_first=True, bidirectional=True)

self.LogisticRegression = nn.Linear(self.hidden_size*2*2,
num_classes) # 2 for bidirection, 2 for siamese

def siamese(self, sentence, train = True):
embeds = self.word_embedding(sentence)
if train:

embeds = self.dropout(embeds)

Set initial states
h0 = Variable(torch.zeros(self.num_layers*2, embeds.size(0),

self.hidden_size)).cuda() # 2 for bidirection
c0 = Variable(torch.zeros(self.num_layers*2, embeds.size(0),

self.hidden_size)).cuda()

Forward propagate BRNN
out, _ = self.lstm(embeds, (h0, c0))

Decode hidden state of last time step
if train:

out = self.dropout(out[:, -1, :])
else:

out = out[:, -1, :]

return out

def forward(self, sentence_1, sentence_2, train = True):
represent_1 = self.siamese(sentence_1, train)
represent_2 = self.siamese(sentence_2, train)
similarity = torch.cat([represent_1, represent_2], 1)
logit = self.LogisticRegression(similarity)

return logit

Code 13: For hyper-parameter tuning. multi-train text.sh
#!/bin/sh

165

echo -n "type [model name]: "
read model_name
echo model_name: $model_name

echo -n "type [train data]: "
read train_data
echo train_data: $train_data

echo -n "type [valid data]: "
read valid_data
echo valid_data: $valid_data

echo -n "type [test data]: "
read test_data
echo test_data: $test_data

train_data=train_WD_0.10_aug_train_text.txt
valid_data=valid_WD_0.10_aug_train_text.txt
test_data=test_text.txt

echo -n "type [directory name]: "
read directory_name
echo directory_name: $directory_name

#embedding_size=300
#hidden_size=256
#dropout=0
for hidden_size in 32 64 128 256 512
do

for dropout in 0 0.1 0.2 0.5
do

for try in {1..5..1}
do

echo hidden_size: $hidden_size
echo dropout: $dropout
python main.py $train_data $valid_data $test_data

$directory_name $model_name $hidden_size $dropout
done

done
done

A.3 Generation of Aligned-conversation - Whole codes

Code 14: main enc dec.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable

166

import sys
import numpy
import random

from utils import *
from models import *

Hyper Parameters
max_sequence_length = 50
max_vocabulary_size = 25000
embedding_size = 300
hidden_size = int(sys.argv[6])#256
num_layers = 1
batch_size = 150
num_epochs = 50
learning_rate = 0.001
dropout_rate = float(sys.argv[7]) #0
teacher_forcing_ratio = float(sys.argv[8]) #0.5

train_data_path = sys.argv[1]
valid_data_path = sys.argv[2]
test_data_path = sys.argv[3] # test_twitter.txt
directory_name = sys.argv[4] #’twit_gen’

encoder_name = ’AttENC’
decoder_name = sys.argv[5] #’DEC’

word_to_ix, ix_to_word, vocab_size =
make_or_load_dict(train_data_path, character=False)

num_classes = vocab_size

encoder = EncoderRNN(vocab_size, embedding_size, hidden_size,
num_layers, 2, dropout_rate)

if decoder_name == ’AttDEC’:
decoder = AttnDecoderRNN(vocab_size, embedding_size,

hidden_size, num_layers, num_classes, dropout_rate,
max_sequence_length)

else:
decoder = DecoderRNN(vocab_size, embedding_size, hidden_size,

num_layers, num_classes, dropout_rate)

encoder = encoder.cuda()
decoder = decoder.cuda()
print(encoder)
print(decoder)

if decoder_name == ’AE’: #for autoencoder
train_dataset = GenerateDataset_AE(train_data_path, word_to_ix,

batch_size)
valid_dataset = GenerateDataset_AE(valid_data_path, word_to_ix,

1)
test_dataset = GenerateDataset_AE(test_data_path, word_to_ix, 1)

else:
train_dataset = GenerateDataset(train_data_path, word_to_ix,

batch_size)
valid_dataset = GenerateDataset(valid_data_path, word_to_ix, 1)
test_dataset = GenerateDataset(test_data_path, word_to_ix, 1)

167

train_loader = DataLoader(dataset=train_dataset, shuffle=True)
valid_loader = DataLoader(dataset=valid_dataset)
test_loader = DataLoader(dataset=test_dataset)
print(’length of train dataset’, len(train_dataset)*batch_size)
print(’length of valid dataset’, len(valid_dataset))
print(’length of test dataset’, len(test_dataset))

def train(input_variable, target_variable, batch_size, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion,
train_data = True):
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()

loss = 0

encoder_outputs, encoder_hidden = encoder(input_variable)

SOS_token = 0
SOS_token_batch = torch.zeros(batch_size, 1).long()
decoder_input = Variable(torch.LongTensor(SOS_token_batch))
decoder_input = decoder_input.cuda()
decoder_hidden = decoder.initHidden(batch_size, encoder_hidden)

decoder_input_list = torch.unbind(target_variable, dim=1)

Choose whether to use teacher forcing
use_teacher_forcing = random.random() < teacher_forcing_ratio
if use_teacher_forcing:

if decoder_name == ’AttDEC’:
for next_input in decoder_input_list:

decoder_output, decoder_hidden, decoder_attention =
decoder(decoder_input, decoder_hidden,
encoder_outputs)

loss += criterion(decoder_output, next_input)
decoder_input = next_input.unsqueeze(1)

else:
for next_input in decoder_input_list:

decoder_output, decoder_hidden = decoder(decoder_input,
decoder_hidden)

loss += criterion(decoder_output, next_input)
decoder_input = next_input.unsqueeze(1)

else:
if decoder_name == ’AttDEC’:

for next_input in decoder_input_list:
decoder_output, decoder_hidden, decoder_attention =

decoder(decoder_input, decoder_hidden,
encoder_outputs)

loss += criterion(decoder_output, next_input)

Get most likely word index (highest value) from output
topv, topi = decoder_output.data.topk(1)
decoder_input = Variable(topi).cuda() # Chosen word is

next input

else:

168

for next_input in decoder_input_list:
decoder_output, decoder_hidden = decoder(decoder_input,

decoder_hidden)
loss += criterion(decoder_output, next_input)

Get most likely word index (highest value) from output
topv, topi = decoder_output.data.topk(1)
decoder_input = topi.cuda() # Chosen word is next input

if train_data:
loss.backward()
torch.nn.utils.clip_grad_norm(encoder.parameters(), 1)
torch.nn.utils.clip_grad_norm(decoder.parameters(), 1)
encoder_optimizer.step()
decoder_optimizer.step()

return loss.data[0] / target_variable.size()[0]

def evaluate(encoder, decoder, input_variable):
encoder_outputs, encoder_hidden = encoder(input_variable,

train=False)
#max_sequence_length = encoder_outputs.size(1) # for

attention-simple dot product mode

SOS_token = 0
decoder_input = Variable(torch.LongTensor([[SOS_token]]))
decoder_input = decoder_input.cuda()
decoder_hidden = encoder_hidden
decoder_hidden = decoder.initHidden(1, encoder_hidden)

decoded_words = []
decoder_attentions = torch.zeros(max_sequence_length,

max_sequence_length)

stop_at_next_endofsentence = 0
if decoder_name == ’AttDEC’:

for di in range(max_sequence_length):
decoder_output, decoder_hidden, decoder_attention =

decoder(decoder_input, decoder_hidden,
encoder_outputs, train = False)

decoder_attentions[di] = decoder_attention.view(-1,
max_sequence_length).data

Choose top word from output
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
decoded_words.append(ni)
if ni ==1: break

Next input is chosen word
decoder_input = Variable(torch.LongTensor([[ni]])).cuda()

else:
for _ in range(max_sequence_length):

decoder_output, decoder_hidden = decoder(decoder_input,
decoder_hidden, train = False)

169

Choose top word from output
topv, topi = decoder_output.data.topk(1)
ni = topi[0][0]
decoded_words.append(ni)
if ni ==1:

if decoder_name == ’AE’ and stop_at_next_endofsentence
!=1:
stop_at_next_endofsentence = 1

elif decoder_name == ’AE’ and
stop_at_next_endofsentence == 1:
break

else:
break

Next input is chosen word
decoder_input = Variable(torch.LongTensor([[ni]])).cuda()

if decoder_name == ’AttDEC’:
return decoded_words, decoder_attentions[:di + 1]

else:
return decoded_words

print_every = (len(train_dataset)/2)

Loss and Optimizer
loss_function = nn.CrossEntropyLoss() # = log softmax + NLL loss
encoder_optimizer = torch.optim.Adam(encoder.parameters(),

lr=learning_rate)
decoder_optimizer = torch.optim.Adam(decoder.parameters(),

lr=learning_rate)

print_loss_total = 0
keep_valid_loss = 1e06
if not os.path.exists(’./models’):

os.makedirs(’./models’)
if not os.path.exists(’./models/’+directory_name):

os.makedirs(’./models/’+directory_name)

for epoch in range(num_epochs):
for i, (sentence_1, sentence_2) in enumerate(train_loader):

start = time.time()
sentence_1 = Variable(sentence_1.view(batch_size, -1)).cuda()
sentence_2 = Variable(sentence_2.view(batch_size, -1)).cuda()
loss = train(sentence_1, sentence_2, batch_size, encoder,

decoder, encoder_optimizer, decoder_optimizer,
loss_function)

print_loss_total += loss

if ((i+1)+epoch*len(train_dataset)) % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0

valid set test
valid_loss = 0
for sentence_1, sentence_2 in valid_loader:

sentence_1 = Variable(sentence_1.view(1, -1)).cuda()

170

sentence_2 = Variable(sentence_2.view(1, -1)).cuda()
loss = train(sentence_1, sentence_2, 1, encoder,

decoder, encoder_optimizer, decoder_optimizer,
loss_function, train_data = False)

valid_loss += loss

if valid_loss < keep_valid_loss:
keep_valid_loss = valid_loss
best_valid_epoch = epoch + 1
torch.save(encoder.state_dict(),

’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_epoch_%d_best_valid_loss.pkl’
% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio, (epoch+1)))

torch.save(decoder.state_dict(),
’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_epoch_%d_best_valid_loss.pkl’
% (decoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio, (epoch+1)))

print(’%s (%d %d%%) loss %.4f, valid loss: %.4f <best
valid>’ % (timeSince(start,
((i+1)+epoch*len(train_dataset)) /
(num_epochs*len(train_dataset))),

(i+1)+epoch*len(train_dataset),
((i+1)+epoch*len(train_dataset))
/ (num_epochs*len(train_dataset))
* 100, print_loss_avg,
valid_loss))

else:
torch.save(encoder.state_dict(),

’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_epoch_%d.pkl’
% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio, (epoch+1)))

torch.save(decoder.state_dict(),
’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_epoch_%d.pkl’
% (decoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio, (epoch+1)))

print(’%s (%d %d%%) loss %.4f, valid loss: %.4f’ %
(timeSince(start, ((i+1)+epoch*len(train_dataset)) /
(num_epochs*len(train_dataset))),

(i+1)+epoch*len(train_dataset),
((i+1)+epoch*len(train_dataset))
/ (num_epochs*len(train_dataset))
* 100, print_loss_avg,
valid_loss))

losses = 0

Test the Model
if not os.path.exists(’./result’):

os.makedirs(’./result’)
if not os.path.exists(’./result/’+directory_name):

os.makedirs(’./result/’+directory_name)

encoder.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_last_epoch.pkl’
% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio)))

171

decoder.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_last_epoch.pkl’
% (decoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio)))

with
open(’./result/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_generation.txt’%(decoder_name,
hidden_size, dropout_rate, teacher_forcing_ratio), ’a’,
encoding =’utf-8’) as w:

attention_result = []
for sentence_1, sentence_2 in test_loader:

sentence_variable = Variable(sentence_1.view(1, -1)).cuda()

if decoder_name == ’AttDEC’:
predicted, attention = evaluate(encoder, decoder,

sentence_variable)
attention_result.append(attention)

else:
predicted = evaluate(encoder, decoder, sentence_variable)

sentence_1 = [ix_to_word[word_idx] for word_idx in
sentence_1.long()[0][0].numpy()]

sentence_2 = [ix_to_word[word_idx] for word_idx in
sentence_2.long()[0][0].numpy()]

predicted = [ix_to_word[word_idx] for word_idx in predicted]
w.write(’Input_sentence: \t’ + ’ ’.join(sentence_1)+’\n’)
w.write(’Target_sentence: \t’ + ’ ’.join(sentence_2)+’\n’)
w.write(’Genera_sentence: \t’ + ’ ’.join(predicted)+’\n’)

w.write(’[setting]:
’+’\tbatch_size\t’+str(batch_size)+’\temb_size\t’+str(embedding_size)+’\tHid\t’+str(hidden_size)+’\tD\t’+str(dropout_rate)+’\n’)

w.write(’saved to
./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f.pkl\n’
% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio))

w.write(’saved to
./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f.pkl\n’
% (decoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio))

torch.save(encoder.state_dict(),
’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_last_epoch.pkl’
% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio))

torch.save(decoder.state_dict(),
’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_last_epoch.pkl’
% (decoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio))

w.write(’-’*100+’\n\n’)

load the best valid model.
#best_valid_epoch = 5
encoder.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_epoch_%d_best_valid_loss.pkl’

% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio, best_valid_epoch)))

decoder.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_epoch_%d_best_valid_loss.pkl’
% (decoder_name, hidden_size, dropout_rate,

172

teacher_forcing_ratio, best_valid_epoch)))

with
open(’./result/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_with_best_valid_loss.txt’%(decoder_name,
hidden_size, dropout_rate, teacher_forcing_ratio), ’a’,
encoding =’utf-8’) as w:

attention_result = []
for sentence_1, sentence_2 in test_loader:

sentence_variable = Variable(sentence_1.view(1, -1)).cuda()

if decoder_name == ’AttDEC’:
predicted, attention = evaluate(encoder, decoder,

sentence_variable)
attention_result.append(attention)

else:
predicted = evaluate(encoder, decoder, sentence_variable)

sentence_1 = [ix_to_word[word_idx] for word_idx in
sentence_1.long()[0][0].numpy()]

sentence_2 = [ix_to_word[word_idx] for word_idx in
sentence_2.long()[0][0].numpy()]

predicted = [ix_to_word[word_idx] for word_idx in predicted]
w.write(’Input_sentence: \t’ + ’ ’.join(sentence_1)+’\n’)
w.write(’Target_sentence: \t’ + ’ ’.join(sentence_2)+’\n’)
w.write(’Genera_sentence: \t’ + ’ ’.join(predicted)+’\n’)

w.write(’[setting]:
’+’\tbatch_size\t’+str(batch_size)+’\temb_size\t’+str(embedding_size)+’\tHid\t’+str(hidden_size)+’\tD\t’+str(dropout_rate)+’\n’)

w.write(’saved to
./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_best_valid_loss.pkl\n’
% (encoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio))

w.write(’saved to
./models/’+directory_name+’/%s_hid%d_D%0.2f_tfr%0.1f_best_valid_loss.pkl\n’
% (decoder_name, hidden_size, dropout_rate,
teacher_forcing_ratio))

w.write(’-’*100+’\n\n’)

Code 15: Encoder (BiLSTM)
class EncoderRNN(nn.Module):

def __init__(self, vocab_size, embedding_size, hidden_size,
num_layers, num_classes, dropout_rate):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.dropout = nn.Dropout(p=dropout_rate)
self.word_embedding = nn.Embedding(vocab_size, embedding_size)

self.num_layers = num_layers
self.lstm = nn.LSTM(embedding_size, self.hidden_size,

num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(self.hidden_size*2, num_classes) # *2 for

bidirection, BiLSTM 을 오토인코더로 초기화할 때 필요.

173

def initHidden(self, batch_size):
Set initial states
h0 = Variable(torch.zeros(self.num_layers*2, batch_size,

self.hidden_size)).cuda() # 2 for bidirection
c0 = Variable(torch.zeros(self.num_layers*2, batch_size,

self.hidden_size)).cuda()
return (h0, c0)

def forward(self, sentence, train = True):
#print(sentence)
embeds = self.word_embedding(sentence)
if train:

embeds = self.dropout(embeds)

Set initial states
h0 = Variable(torch.zeros(self.num_layers*2, embeds.size(0),

self.hidden_size)).cuda() # 2 for bidirection
c0 = Variable(torch.zeros(self.num_layers*2, embeds.size(0),

self.hidden_size)).cuda()

Forward propagate RNN
output, hidden = self.lstm(embeds, (h0, c0))

return output, hidden

Code 16: Decoder (LSTM)
class DecoderRNN(nn.Module):

def __init__(self, vocab_size, embedding_size, hidden_size,
num_layers, num_classes, dropout_rate):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.dropout = nn.Dropout(p=dropout_rate)

self.word_embedding = nn.Embedding(vocab_size, embedding_size)
self.to_decoder_init_hidden = nn.Linear(2*num_layers,

num_layers)

self.num_layers = num_layers
self.lstm = nn.LSTM(embedding_size, self.hidden_size,

num_layers, batch_first=True)
self.fc = nn.Linear(self.hidden_size, num_classes) # 2 for

bidirection

def initHidden(self, batch_size, init_hidden):
Set initial states
decoder_init_hidden =

self.to_decoder_init_hidden(init_hidden[0].transpose(2,
0)).transpose(2, 0).contiguous()

decoder_init_c = Variable(torch.zeros(self.num_layers,
batch_size, self.hidden_size)).cuda()

return (decoder_init_hidden, decoder_init_c)

174

def forward(self, sentence, hidden, train = True):
embeds = self.word_embedding(sentence)
if train:

embeds = self.dropout(embeds)

Forward propagate RNN
#embeds = F.relu(embeds)
output, hidden = self.lstm(embeds, hidden)

Decode hidden state of last time step
if train:

output = self.fc(self.dropout(output[:, -1, :]))
else:

output = self.fc(output[:, -1, :])

return output, hidden

Code 17: Attention-Decoder (LSTM with attention)
from pytorch tutorial

http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
class AttnDecoderRNN(nn.Module):

def __init__(self, vocab_size, embedding_size, hidden_size,
num_layers, num_classes, dropout_rate,
max_sequence_length=50):
super(AttnDecoderRNN, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout = nn.Dropout(p=dropout_rate)
self.max_sequence_length = max_sequence_length

self.W_A = nn.Linear(embedding_size + 2*self.hidden_size,
self.max_sequence_length)

self.word_embedding = nn.Embedding(vocab_size, embedding_size)
self.W_C = nn.Linear(embedding_size + 2*self.hidden_size,

2*self.hidden_size)
self.lstm = nn.LSTM(2*self.hidden_size, 2*self.hidden_size,

num_layers, batch_first=True)
self.fc = nn.Linear(2*self.hidden_size, num_classes)

def initHidden(self, batch_size, init_hidden):
Set initial states
tmp = torch.unbind(init_hidden[0], dim=0)
decoder_init_hidden = torch.cat(tmp, dim=1).unsqueeze(0)
decoder_init_c = Variable(torch.zeros(self.num_layers,

batch_size, 2*self.hidden_size)).cuda()
return (decoder_init_hidden, decoder_init_c)

def forward(self, input, hidden, encoder_outputs, train = True):
embeds = self.word_embedding(input)
if train:

embeds = self.dropout(embeds)

175

encoder_outputs_max = Variable(torch.zeros(embeds.size(0),
self.max_sequence_length, 2*self.hidden_size)).cuda()

encoder_outputs_max[:, :encoder_outputs.size(1), :] =
encoder_outputs

score = self.W_A(torch.cat((embeds,
hidden[0].transpose(0,1)), 2))

attn_weights = F.softmax(score, dim=2)
context = torch.bmm(attn_weights, encoder_outputs_max)

output = torch.cat((embeds, context), 2)
output = F.relu(self.W_C(output))

output, hidden = self.lstm(output, hidden)

Decode hidden state of last time step
if train:

output = self.fc(self.dropout(output[:, -1, :]))
else:

output = self.fc(output[:, -1, :])

return output, hidden, attn_weights

from Effective Approaches to Attention-based Neural Machine
Translation https://arxiv.org/pdf/1508.04025.pdf.

class AttnDecoderRNN_simple_dotproduct(nn.Module):
def __init__(self, vocab_size, embedding_size, hidden_size,

num_layers, num_classes, dropout_rate, max_sequence_length):
super(AttnDecoderRNN_simple_dotproduct, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout = nn.Dropout(p=dropout_rate)

self.word_embedding = nn.Embedding(vocab_size, embedding_size)
self.W_C = nn.Linear(embedding_size + 2*self.hidden_size,

2*self.hidden_size)
self.lstm = nn.LSTM(2*self.hidden_size, 2*self.hidden_size,

num_layers, batch_first=True)
self.fc = nn.Linear(2*self.hidden_size, num_classes)

def initHidden(self, batch_size, init_hidden):
Set initial states
tmp = torch.unbind(init_hidden[0], dim=0)
decoder_init_hidden = torch.cat(tmp, dim=1).unsqueeze(0)
decoder_init_c = Variable(torch.zeros(self.num_layers,

batch_size, 2*self.hidden_size)).cuda()
return (decoder_init_hidden, decoder_init_c)

def forward(self, input, hidden, encoder_outputs, train = True):
embeds = self.word_embedding(input)
if train:

embeds = self.dropout(embeds)

176

W_enc= encoder_outputs # for simple dot product attention
score = torch.bmm(hidden[0].transpose(0,1),

W_enc.transpose(1,2)) # eq(7), dot product
attn_weights = F.softmax(score, dim=2)
context = torch.bmm(attn_weights, encoder_outputs)

output = torch.cat((embeds, context), 2)
output = F.tanh(self.W_C(output)) # eq(5)
#output = F.relu(self.W_C(output)) # eq(5)

output, hidden = self.lstm(output, hidden)

Decode hidden state of last time step
if train:

output = self.fc(self.dropout(output[:, -1, :])) # eq (6)
else:

output = self.fc(output[:, -1, :])
return output, hidden, attn_weights

A.4 Marker Validation - Whole codes

Code 18: find marker.py
import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.utils.data import Dataset, DataLoader
from torch.autograd import Variable

import sys
import numpy

from utils import *
from models import *

Hyper Parameters
max_sequence_length = 30
max_vocabulary_size = 25000
embedding_size = 300
hidden_size = int(sys.argv[5]) # 256
num_layers = 2
num_classes = 2
batch_size = 1
num_epochs = 30
learning_rate = 0.001
dropout_rate = float(sys.argv[6]) #0

train_data_path = ’train_WD_0.10_aug_train_twitter.txt’
unlabeled_data_path = sys.argv[1] # preprocessed_50000unlabeled.txt
directory_name = sys.argv[2] #’twit_marker’
accuracy = float(sys.argv[3]) # 77.00

177

model_name = sys.argv[4] #’CNN’

word_to_ix, ix_to_word, vocab_size =
make_or_load_dict(train_data_path, character=False)

def model(x):
return {

’BiLSTM’: BiLSTM(vocab_size, embedding_size, hidden_size,
num_layers, num_classes, dropout_rate),

’CNN’: CNN(vocab_size, embedding_size, num_classes,
dropout_rate, kernel_num=hidden_size),

’Cha_CNN_LSTM’: Cha_CNN_LSTM(vocab_size, embedding_size,
num_classes, dropout_rate, kernel_num =hidden_size),

’Siamese_BiLSTM’: Siamese_BiLSTM(vocab_size, embedding_size,
hidden_size, num_layers, num_classes, dropout_rate),

’Siamese_CNN’: Siamese_CNN(vocab_size, num_classes,
embedding_size, kernel_num = hidden_size),

}.get(x)

model = model(model_name)
model.cuda()
model.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_Acc%0.2f_best_valid_accuracy.pkl’

% (model_name, hidden_size, dropout_rate, accuracy)))
#model.load_state_dict(torch.load(’./models/’+directory_name+’/%s_hid%d_D%0.2f_Acc%0.2f.pkl’

% (model_name, hidden_size, dropout_rate, accuracy)))
print(model)

Predict whether tweet-reply pair is alignment or not
correct = 0
total = 0
if not os.path.exists(’./result’):

os.makedirs(’./result’)
if not os.path.exists(’./result/’+directory_name):

os.makedirs(’./result/’+directory_name)

with open(unlabeled_data_path,’r’, encoding = ’utf-8’) as tweet, \
open(’./result/’+directory_name+’/Align_%s_hid%d_D%0.2f_Acc%0.2f.txt’%(model_name,

hidden_size, dropout_rate, accuracy), ’w’, encoding
=’utf-8’) as Align, \

open(’./result/’+directory_name+’/None_%s_hid%d_D%0.2f_Acc%0.2f.txt’%(model_name,
hidden_size, dropout_rate, accuracy), ’w’, encoding
=’utf-8’) as none:

count = 0
for sentences in tweet.readlines():

count += 1
if count % 100 == 0:

print(’pair_count’, count)

sentence_1_origin, sentence_2_origin, _ =
sentences.lower().strip().split(’\t’)

if model_name in [’BiLSTM’,’CNN’,’Cha_CNN_LSTM’]:
sentence_concat = (sentence_1_origin+’

’+sentence_2_origin).split()
sentence_concat = prepare_sequence(sentence_concat,

word_to_ix)

178

outputs = model(Variable(sentence_concat.view(batch_size,
-1)).cuda(), train=False)

_, predicted = torch.max(outputs.data, 1) # 두번째 아웃풋
값은 argmax 를 반환

elif model_name in [’Siamese_BiLSTM’,’Siamese_CNN’]:
sentence_1 = sentence_1_origin.split()
sentence_1 = prepare_sequence(sentence_1, word_to_ix)

sentence_2 = sentence_2_origin.split()
sentence_2 = prepare_sequence(sentence_2, word_to_ix)

output = model(Variable(sentence_1.view(batch_size,
-1)).cuda(), Variable(sentence_2.view(batch_size,
-1)).cuda(), train=False)

_, predicted = torch.max(output.data, 1) # 두번째 아웃풋 값은
argmax 를 반환

if predicted.cpu().numpy() == 0:
Align.write(sentence_1_origin+’\t’+sentence_2_origin+’\t’+’1’+’\n’)

alignment pair 를 원문 그대로 저장.
else:

none.write(sentence_1_origin+’\t’+sentence_2_origin+’\t’+’2’+’\n’)
non-alignment pair 를 원문 그대로 저장.

코퍼스의 각 단어별 빈도를 센 뒤, 빈도순으로 나열해서 저장 .
from

https://www.kaggle.com/anokas/data-analysis-xgboost-starter-0-35460-lb
from collections import Counter
counts = Counter()
align_count = 0
with

open(’./result/’+directory_name+’/Align_%s_hid%d_D%0.2f_Acc%0.2f.txt’%(model_name,
hidden_size, dropout_rate, accuracy), ’r’, encoding = ’utf-8’)
as r_align, \
open(’./result/’+directory_name+’/%s_Align_marker_%0.2f.txt’%(model_name,

accuracy), ’w’, encoding = ’utf-8’) as w_align:
for line in r_align.readlines():

counts.update(line.rstrip().split())
align_count += 1

weights = {word: count/align_count for word, count in
counts.items()}

print(’align_count’, align_count)
for key, count in sorted(weights.items(), key=lambda x: x[1],

reverse=True):
w_align.write(key+’\t’+str(count)+’\n’)

counts_none = Counter()
none_count = 0
with

open(’./result/’+directory_name+’/None_%s_hid%d_D%0.2f_Acc%0.2f.txt’%(model_name,
hidden_size, dropout_rate, accuracy), ’r’, encoding = ’utf-8’)

179

as r_none, \
open(’./result/’+directory_name+’/%s_None_marker_%0.2f.txt’%(model_name,

accuracy), ’w’, encoding = ’utf-8’) as w_none:
for line in r_none.readlines():

counts_none.update(line.rstrip().split())
none_count +=1

weights_none = {word: count/none_count for word, count in
counts_none.items()}

print(’none_count’, none_count)

for key, count in sorted(weights_none.items(), key=lambda x:
x[1], reverse=True):
w_none.write(key+’\t’+str(count)+’\n’)

A.5 Spanish Conversation Pairs

Each example is stored in the format; [sentence 1 / sentence 2 / label (1=align-

ment, 2=non-alignment)]

A.5.1 Textbook corpus

180

Table A1: Examples of labeled data: Textbook (1)

181

Table A2: Examples of labeled data: Textbook (2)

182

Table A3: Examples of labeled data: Textbook (3)

183

Table A4: Examples of labeled data: Textbook (4)

184

Table A5: Examples of labeled data: Textbook (5)

185

Table A6: Examples of labeled data: Textbook (6)

186

Table A7: Examples of labeled data: Textbook (7)

187

Table A8: Examples of labeled data: Textbook (8)

188

Table A9: Examples of labeled data: Textbook (9)

189

Table A10: Examples of labeled data: Textbook (10)

190

Table A11: Examples of labeled data: Textbook (11)

191

Table A12: Examples of labeled data: Textbook (12)

192

Table A13: Examples of labeled data: Textbook (13)

193

Table A14: Examples of labeled data: Textbook (14)

194

Table A15: Examples of labeled data: Textbook (15)

195

Table A16: Examples of labeled data: Textbook (16)

196

Table A17: Examples of labeled data: Textbook (17)

197

Table A18: Examples of labeled data: Textbook (18)

198

Table A19: Examples of labeled data: Textbook (19)

199

Table A20: Examples of labeled data: Textbook (20)

200

Table A21: Examples of labeled data: Textbook (21)

201

Table A22: Examples of labeled data: Textbook (22)

202

Table A23: Examples of labeled data: Textbook (23)

203

Table A24: Examples of labeled data: Textbook (24)

204

Table A25: Examples of labeled data: Textbook (25)

205

Table A26: Examples of labeled data: Textbook (26)

206

Table A27: Examples of labeled data: Textbook (27)

207

Table A28: Examples of labeled data: Textbook (28)

208

Table A29: Examples of labeled data: Textbook (29)

209

Table A30: Examples of labeled data: Textbook (30)

210

Table A31: Examples of labeled data: Textbook (31)

211

Table A32: Examples of labeled data: Textbook (32)

212

Table A33: Examples of labeled data: Textbook (33)

213

Table A34: Examples of labeled data: Textbook (34)

214

Table A35: Examples of labeled data: Textbook (35)

A.5.2 Twitter corpus

215

Table A36: Examples of labeled data: Twitter (1)

216

Table A37: Examples of labeled data: Twitter (2)

217

Table A38: Examples of labeled data: Twitter (3)

218

Table A39: Examples of labeled data: Twitter (4)

219

Table A40: Examples of labeled data: Twitter (5)

220

Table A41: Examples of labeled data: Twitter (6)

221

Table A42: Examples of labeled data: Twitter (7)

222

Table A43: Examples of labeled data: Twitter (8)

223

Table A44: Examples of labeled data: Twitter (9)

224

Table A45: Examples of labeled data: Twitter (10)

225

Table A46: Examples of labeled data: Twitter (11)

226

Table A47: Examples of labeled data: Twitter (12)

227

Table A48: Examples of labeled data: Twitter (13)

228

Table A49: Examples of labeled data: Twitter (14)

229

Table A50: Examples of labeled data: Twitter (15)

230

Table A51: Examples of labeled data: Twitter (16)

231

Table A52: Examples of labeled data: Twitter (17)

232

Table A53: Examples of labeled data: Twitter (18)

233

Table A54: Examples of labeled data: Twitter (19)

234

Table A55: Examples of labeled data: Twitter (20)

235

Table A56: Examples of labeled data: Twitter (21)

236

Table A57: Examples of labeled data: Twitter (22)

237

Table A58: Examples of labeled data: Twitter (23)

238

Table A59: Examples of labeled data: Twitter (24)

239

Table A60: Examples of labeled data: Twitter (25)

240

Table A61: Examples of labeled data: Twitter (26)

241

Table A62: Examples of labeled data: Twitter (27)

242

Table A63: Examples of labeled data: Twitter (28)

243

Table A64: Examples of labeled data: Twitter (29)

244

Table A65: Examples of labeled data: Twitter (30)

245

Table A66: Examples of labeled data: Twitter (31)

246

Table A67: Examples of labeled data: Twitter (32)

247

Table A68: Examples of labeled data: Twitter (33)

248

Table A69: Examples of labeled data: Twitter (34)

249

Table A70: Examples of labeled data: Twitter (35)

250

Table A71: Examples of labeled data: Twitter (36)

251

Table A72: Examples of labeled data: Twitter (37)

252

Table A73: Examples of labeled data: Twitter (38)

253

Table A74: Examples of labeled data: Twitter (39)

254

Table A75: Examples of labeled data: Twitter (40)

255

Table A76: Examples of labeled data: Twitter (41)

256

Table A77: Examples of labeled data: Twitter (42)

257

Table A78: Examples of labeled data: Twitter (43)

258

Table A79: Examples of labeled data: Twitter (44)

259

Table A80: Examples of labeled data: Twitter (45)

260

Table A81: Examples of labeled data: Twitter (46)

261

Table A82: Examples of labeled data: Twitter (47)

262

Table A83: Examples of labeled data: Twitter (48)

263

Table A84: Examples of labeled data: Twitter (49)

264

Table A85: Examples of labeled data: Twitter (50)

265

266

초록

인접 호응(linguistic alignment)은 대화에서 상대방이 직전에 말한 문장에 대

해, 맥락에 맞는 말을 하는 것이다. 일반적으로 의사 소통에서, 화자는 상대방의

의견을수락하거나지지하기위해발화의스타일을변경하고,상대방의발언에따

라 의사 전달의 요지를 변경한다. 인접 호응 구조는 실생활에서 자주 발견되지만,

선행연구에명확한기준이없었기에먼저어학적으로이문제를정의하는것에서

시작하였다. 인접 호응은 직전 발화의 맥락에 맞춰 대화를 이어가는 구조를 가리

키며, 상대방의 앞선 발화를 긍정하거나 부정하는 경우, 그리고 앞에 나온 말을

반복하는 경우에 성립한다. 한편, non-alignment에는 앞에 나온 주제가 바뀌거나

대화의 흐름이 끊기고 더 이어지지 않거나 전혀 무관한 말을 하는 경우가 해당된

다.이현상은여러상황에서관찰되며다양한사회적요인및원인에따라달라질

수있다.이것은일종의적응이나수용행동으로,웹상에서의대화와대면상황에

서일반적으로관찰된다.분명존재하나실제로규정하기어려운문제라는점에서

전통적인 규칙기반 방식으로 인접 호응 구조를 분석하는 것은 쉽지 않다고 판단

하였다. 따라서 그 해결책으로서 최신 딥러닝 방식을 활용하여 분석하고, 언어적

특성을파악하고자했다.

이연구는세가지신규성을가지고있다.첫째,인접호응을탐지하고분류하

기 위해 최초로 딥러닝을 적용하였다. 둘째, 최초로 스페인어에 인접 호응 개념을

적용하였으며, 이를 위해 스페인어 인접 호응 코퍼스와 인접 호응을 예측하는 모

델을 만들었다. RNN과 CNN, Siamese network 모델을 설계하여 스페인 준구어

코퍼스에서 인접 호응 구문의 언어적 이론적 기준을 수립하고 분석하는 방법을

제안하였다.셋째,스페인어어휘표지자(marker)의타당성을검증하였다.

스페인어는어휘요소가풍부하게발달되어있으며대용어등의문장성분이

명시적으로 다양하게 드러난 언어다. 우리는 어휘와 범주 특성에 따라 주요 표지

267

자를 추출하여 연구할 필요가 있다고 보고, 서울대학교 학부 대상 교과서 4권과

주제별 웹 트위터 데이터를 크롤링하여 수집하였다. 트위터 대화를 수집하기 위

한 크롤러를 만들고, 수집한 스페인어 준구어 코퍼스에서 인접 호응이 발생하는

언어적이론기준을정립하여정답데이터를구축하였다.특정표지자에의존하지

않는 모델을 위하여 문장 전체를 고려하는 딥러닝 방식을 적용하였다. 각각 RNN

과 CNN, Siamese network기반의인접호응여부를예측하는분류기를만들어적

합한표지자를추출하고검증하였다.실험을통해일반적인예상과달리특정어휘

요소에기반하여스페인어문장을구분하는것에는무리가있음을확인하였다.

인접호응분류(alignment classification)를학습하기위해서트위터대화와서

울대학교스페인어학습교재대화문을사용하였다.정립한인접호응기준을바탕

으로트위터 2,000쌍과교재 1,384쌍데이터를분류하였다.그리고각데이터를 1:1

비율로 증대(augmentation)한 8,400여 쌍(교재 alignment 1,960쌍, non-alignment

1,960쌍;트위터 alignment 2,250쌍, non-alignment 2,250쌍)데이터로분류기(clas-

sifier)를학습시켰다.분류기의성능은이론에기초하여예상한베이스라인(표지자

가 답변 문장에 존재하면 인접 호응으로 분류)의 성능 35-55% 보다 높은 70-80%

로상당히 fair한수준의성능을보였다.

학습한 인접 호응 분류기(alignment classifier)를 통해 총 50,000쌍(alignment

27,449쌍, non-alignment 22,551쌍)의 unlabeled데이터를분류하도록하였고,분류

된 27,449쌍의인접호응대화문을이용하여생성모델을만들었다.그결과 labeled

data만으로생성을하려했던것보다양질의인접호응문장생성이가능하였다.이

는학습된분류기를사용하여,데이터를확보하는방법을통하여사람의노동력을

상당량경감시키면서학습에필요한데이터를확보할수있음을나타낸다.우리는

대량의 분류된 스페인어 데이터를 기반으로 마커 검증을 하였고, 사람이 예상한

것외의마커를발견하는것이가능했다.이를통해언어학연구에도딥러닝기술

이유용하게사용될수있음을확인하였고,인접호응코퍼스및모델을기반으로

사용자의입력에맞춰맥락에맞는응답을생성하는시스템을만들수있었다.

268

이 논문은 실제 언어 상황에서 발견되는 인접 호응 현상에 대한 이론적 개념

을 정립하고, 쉽사리 규정하기 힘든 이 문제를 해결하기 위해 데이터를 수집하고

학습시켜 딥러닝을 통해 검증한 최초의 연구이다. 다양한 실험을 통해 인접 호응

구문을탐지하고모델을만들어표지자에대한검증을시도하였으며,인접호응에

성립하는답변을생성하는소기의목적을달성하였다.지적한문제는현재실무적

으로도어려우면서도필요한기술이며,모델의성능이높지않은것은문제자체의

난이도를 반영하는 것으로 볼 수 있다. 데이터 부족 문제를 해결하고 사용자에게

적절하게 응답할 시스템을 개발하는 데에 필요한 기준 및 연구 방법으로 활용될

것으로예상한다.

주요어 : 인접호응,스페인어표지자,인접호응분류,표지자검증,인접호응답변

생성,준구어코퍼스

학번 : 2008-30759

269

	1. Introduction
	2. Background
	2.1 Linguistic Alignment
	2.1.1 Linguistic Alignment in short dialogues
	2.1.2 Linguistic Alignment in long dialogues
	2.1.3 Definition and Criteria
	2.1.4 Related Work

	2.2 Natural Language Processing with Deep Learning
	2.2.1 Traditional Natural Language Processing (NLP)
	2.2.2 Deep Learning Approach
	2.2.3 Recurrent Neural Network (RNN)
	2.2.4 Convolutional Neural Network (CNN)
	2.2.5 Siamese Network
	2.2.6 Sequence to Sequence (Seq2Seq)
	2.2.7 Attention Model

	2.3 Chapter Summary

	3. Experiment
	3.1 Overview
	3.2 Data Acquisition
	3.2.1 Data Types
	3.2.2 Crawling and Preprocessing
	3.2.3 Data Labeling
	3.2.4 Data Augmentation

	3.3 Alignment Classification
	3.3.1 Baseline - marker-based classification
	3.3.2 Settings
	3.3.3 Results
	3.3.4 Qualitative Evaluation

	3.4 Generation trained with labeled pairs
	3.4.1 Settings
	3.4.2 Results
	3.4.3 Qualitative Evaluation

	3.5 Generation trained with classified pairs
	3.5.1 Settings
	3.5.2 Results
	3.5.3 Qualitative Evaluation

	3.6 Marker Validation
	3.6.1 Marker extraction from deep learning model
	3.6.2 Validation of Marker from human’s and model’s
	3.6.3 Qualitative Evaluation

	3.7 Chapter summary

	4. Discussion
	4.1 Linguistic Feature of Spanish
	4.2 Advantage of Deep Learning

	5. Conclusion
	References
	Appendix
	A.1 Crawling and Preprocessing - Whole codes
	A.2 Alignment Classifier - Whole codes
	A.3 Generation of Aligned-conversation - Whole codes
	A.4 Marker Validation - Whole codes
	A.5 Spanish Conversation Pairs
	A.5.1 Textbook corpus
	A.5.2 Twitter corpus

<startpage>23
1. Introduction 1
2. Background 5
 2.1 Linguistic Alignment 5
 2.1.1 Linguistic Alignment in short dialogues 7
 2.1.2 Linguistic Alignment in long dialogues 8
 2.1.3 Definition and Criteria 9
 2.1.4 Related Work 16
 2.2 Natural Language Processing with Deep Learning 19
 2.2.1 Traditional Natural Language Processing (NLP) 19
 2.2.2 Deep Learning Approach 21
 2.2.3 Recurrent Neural Network (RNN) 30
 2.2.4 Convolutional Neural Network (CNN) 33
 2.2.5 Siamese Network 37
 2.2.6 Sequence to Sequence (Seq2Seq) 38
 2.2.7 Attention Model 38
 2.3 Chapter Summary 45
3. Experiment 47
 3.1 Overview 47
 3.2 Data Acquisition 51
 3.2.1 Data Types 51
 3.2.2 Crawling and Preprocessing 52
 3.2.3 Data Labeling 53
 3.2.4 Data Augmentation 54
 3.3 Alignment Classification 58
 3.3.1 Baseline - marker-based classification 58
 3.3.2 Settings 60
 3.3.3 Results 79
 3.3.4 Qualitative Evaluation 86
 3.4 Generation trained with labeled pairs 88
 3.4.1 Settings 88
 3.4.2 Results 89
 3.4.3 Qualitative Evaluation 89
 3.5 Generation trained with classified pairs 95
 3.5.1 Settings 97
 3.5.2 Results 97
 3.5.3 Qualitative Evaluation 97
 3.6 Marker Validation 103
 3.6.1 Marker extraction from deep learning model 103
 3.6.2 Validation of Marker from human’s and model’s 104
 3.6.3 Qualitative Evaluation 105
 3.7 Chapter summary 115
4. Discussion 117
 4.1 Linguistic Feature of Spanish 117
 4.2 Advantage of Deep Learning 123
5. Conclusion 125
References 127
Appendix 137
 A.1 Crawling and Preprocessing - Whole codes 137
 A.2 Alignment Classifier - Whole codes 145
 A.3 Generation of Aligned-conversation - Whole codes 166
 A.4 Marker Validation - Whole codes 177
 A.5 Spanish Conversation Pairs 180
 A.5.1 Textbook corpus 180
 A.5.2 Twitter corpus 215
</body>

