

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

ıY�¨Y⌅|8

Design and Implementation of a
Flexible and Extensible

Data Processing Runtime

 X‡U•1àîpt0ò¨¿ÑXêx¸l⌅

2018D 2‘

⌧∏�YP�Y–

ÙË0ıYÄ

@¸

Abstract

Design and Implementation of a Flexible
and Extensible Data Processing Runtime

Joo Yeon Kim
Department of Computer Science and Engineering

The Graduate School
Seoul National University

Today’s data analytics applications take a wide variety of characteristics. They are also

executed in various resource environments, with many distinct requirements. To face

these requirements, many systems have been developed with optimization techniques

that are suitable for each system’s needs. However, the field of data processing is con-

tinuously growing with diverse requirements for job characteristics and resource en-

vironments. With current system designs which demonstrate pre-defined runtime be-

haviors, it is extremely difficult to apply new optimization techniques to them. Onyx

is a system that approaches to solve this problem by designing and implementing a

flexible and extensible execution runtime. The Onyx execution runtime is designed and

implemented around the execution properties that must be flexibly controllable and ex-

tensible in order for jobs to be executed under the desired runtime behaviors. It uses

a user configurable job representation, Onyx IR, annotated with execution properties

which control the underlying runtime behaviors for each job to flexibly execute jobs

according to users’ requirements. Examples and evaluations show that new optimiza-

tion techniques are easily applicable to Onyx, which otherwise require a significant

amount of engineering effort using current data processing systems.

i

Keywords: Data Processing, Data Processing Framework, Data Analytics, Data Ana-

lytics Framework, Data Processing Engine, Data Analytics Engine

Student Number: 2016-21194

ii

Contents

Abstract i

Contents iv

List of Tables v

List of Figures vi

List of Code 1

Chapter 1 Introduction 2

Chapter 2 Background 5

2.1 Data Processing Concepts . 5

2.2 Optimizations for Data Processing . 6

2.3 Pre-Defined Runtime Behaviors . 8

2.4 Execution Properties . 11

Chapter 3 Onyx Overview 13

3.1 Onyx IR . 13

3.2 Optimization Passes . 14

3.3 Submitting to the Execution Runtime 15

Chapter 4 The Execution Runtime 17

iii

4.1 Design . 17

4.2 The Processing Backbone . 20

4.3 The Flexible and Extensible Execution Properties 22

Chapter 5 Examples 31

5.1 Push Optimization for Small Scale Workloads 31

5.2 Harnessing Transient Resources: Pado 32

Chapter 6 Evaluation 36

6.1 Small Scale Workloads . 36

6.1.1 Experimental Setup . 36

6.1.2 Results . 36

6.1.3 Discussion . 38

6.2 Harnessing Transient resources . 39

6.2.1 Experimental setup . 39

6.2.2 Results . 39

6.2.3 Discussion . 40

Chapter 7 Conclusion 41

Bibliography 43

m8�] 46

Acknowledgements 47

iv

List of Tables

Table 2.1 Onyx Execution Properties which Determine Runtime Behaviors 12

Table 6.1 Performance Gains of Using Push, Memory 38

v

List of Figures

Figure 4.1 The Execution Runtime Architecture 19

Figure 5.1 With and Without Push Optimization 33

Figure 5.2 With and Without Pado Optimization 35

Figure 6.1 Job Completion Times for 4 Different Workload Scales 37

Figure 6.2 Comparison of Spark and Onyx Job Completion Times for ALS 40

vi

List of Code

4.1 SchedulingPolicy.java . 23

4.2 Scheduler.java . 27

4.3 Partitioner.java . 29

1

Chapter 1

Introduction

Extracting information and gaining insights from big data has become crucial in diverse

domains over the past years. To meet this demand, many data processing systems have

emerged with different designs to implement optimizations of their own. The imple-

mentations not only limit themselves to well-known common optimizations, but also

involve specific techniques the system developers have devised. Such specific opti-

mization techniques are usually tailored towards certain job characteristic and resource

environment requirements. As a result, they have distinct runtime behaviors optimized

for those requirements.

For example, researches to overcome the challenges of processing jobs on cheap,

unreliable transient resources have been conducted on system implementations of their

own [1–3]. Along the lines of improving datacenter efficiency, systems that implement

techniques for disaggregating different types of resources like memory, CPU and GPU,

are being actively developed [4–7]. In this global era, cross datacenter problems must

also be considered [8–10]. The space of resource environments is only becoming richer,

with many potential research questions.

On another axis, we have diverse job characteristics. We have jobs with large scales

of data, and systems that have succeeded in achieving reasonably good performance,

each by implementing optimizations of its own. However, they often overlook to opti-

mize the performance of processing smaller workloads, which are much more common

2

workloads in practice [11]. Solving the common data skew problem can be different

for different jobs, but each system focuses on its own optimization that may be not as

effective for another job.

Although each of the systems performs well with the jobs and in the environments

they target, the systems do not necessarily perform well for other unconsidered cases,

and often do not consider supporting a diversity of environments and jobs in their de-

signs. Thus, it is extremely challenging to quickly adapt such systems to new job char-

acteristics and resource environments without substantial effort.

The fundamental cause of such challenges lies in the design of the system execu-

tion runtimes. Many of the systems often design their runtimes with various parts of job

execution tightly integrated in the system core according to the optimizations they aim

to implement. This is often useful in abstracting away the complexity of distributed

computing, but pre-determines the runtime behaviors of job execution. For instance,

computational parallelism, whether to push or pull input data from previous compu-

tations, and on which type of resources to run the submitted computations are solely

determined by the implementation in the system core, without being configurable. Fur-

thermore, since the system core implementations are monolithic, modifying or extend-

ing them for different job characteristics and resource environments is challenging. For

an application writer to optimize an application to perform well on a certain system

engraved with its underlying behaviors, it requires an understanding of the resource

environments and job characteristics the system was designed for, an overhead that of-

ten requires a lot of time and effort. For a system developer to modify or extend such

a system’s runtime behaviors, the monolithic system cores must be modified, which

requires an even deeper understanding of the system.

To overcome these limitations, we propose Onyx, a system that enables flexible and

extensible runtime behaviors to support diverse job characteristics and resource envi-

ronments. Onyx consists of a compiler and an execution runtime. In achieving our goal,

3

we clearly identify and organize execution properties of data processing jobs and de-

sign our compiler and execution runtime around these properties. The compiler receives

user applications and compiles them in the form of a directed acyclic graph (DAG), an-

notated with various configurable values for execution properties. The runtime executes

the job DAG according to the execution properties for different job executions.

This paper focuses on the runtime of Onyx. The Onyx execution runtime has been

designed to support the basics of data processing in its backbone, while exposing exten-

sible components that can be flexibly configured to adapt to diverse job characteristics

and resource environments.

4

Chapter 2

Background

This chapter explains the current state of the field of data processing, motivating the

need for a more flexible and extensible system like Onyx. In Section 2.1, we clarify

some of the basic concepts and terminology used for Onyx, and data processing systems

in general. Section 2.2 lists out a few examples of job characteristics and resource envi-

ronments that the data processing community is trying to optimize. In Section 2.3, we

show a few examples that illustrate how many current systems often exhibit pre-defined

runtime behaviors and how the system runtime core must be modified to achieve partic-

ular optimizations. Section 2.4 identifies execution properties from observing current

data processing systems, a set of key properties that we use to build Onyx.

2.1 Data Processing Concepts

A typical data processing system consists of two major components, a compiler and

an execution runtime. First, the compiler accepts an application from users, converts

it into a dataflow job expressed as a directed acyclic graph (DAG), where the vertices

represent operators for the application connected by edges that represent the dataflow

between the operators. When the job DAG is submitted to the execution runtime, the

runtime partitions the DAG into multiple sub-DAGs called stages. A stage is a unit of

execution the runtime uses for scheduling a job. It often becomes useful when dealing

with faults because the runtime can keep track of the job progress, knowing exactly

5

where to restart when faults occur. After stage partitioning, each vertex(operator) is

replicated in the form of multiple tasks, for the computation to be executed simultane-

ously as multiple parallel tasks. Each task is run on an executor, launched on a container

allocated by a resource manager of the resource environment the job is executing on.

Dataflow between operators occur from a task to another, in blocks and/or a partitions.

The relationships between the sending and the receiving tasks are defined by commu-

nication patterns of the corresponding operators. Common patterns are many-to-many

(a.k.a shuffle), one-to-many (a.k.a broadcast), many-to-one and one-to-one.

2.2 Optimizations for Data Processing

Researches have been conducted to optimize data processing jobs over the past years.

Many have succeeded in identifying common problems in data processing and have

come up with well working optimizations. Many others have succeeded in devising

optimizations for specific problems. However, as the domain continues to evolve, new

challenges continue to arise with the necessity for new optimizations. From observing

numerous factors that bring about challenges in data processing jobs, we can categorize

them into two big categories - job characteristics and resource environments. Here are

examples in each category:

1. Job characteristics

• Data skew is a popular problem which can vary depending on the work-

load. In many cases, there are high possibilities of input data being skewed,

with a small number of unevenly popular keys such as internet traces [12].

Works like Optimus [13] solve this problem by applying optimizations dur-

ing runtime, to detect data skew and evenly re-distribute data among tasks.

• Workload scale varies from one job to another. For example, due to the

prevalence of larger workloads, we mainly focus on optimizing the systems

6

for large scales as challenges mainly arise when processing them. Many

general processing systems have implemented optimization techniques for

relatively large workload scales starting from a few hundred GB upto PB

scales by implementing optimizations of their own [14, 15]. But different

optimization techniques may be applicable to different workload scales.

2. Resource environments:

• Enhancing datacenter efficiency has many approaches to it. Borrowing

and using cheap transient resources from over-provisioned resources for

latency-critical jobs is one of many important approaches. Works includ-

ing Pado [1], TR-Spark [2], and Flint [3] study optimizations to effectively

recover from evictions in order to make decent progress even in frequent

evictions of such transient resources.

• Recent datacenters have started to disaggregate different types of resources

like CPU, memory, GPU, and disk from one another. This approach not

only increases datacenter efficiency, but also facilitates datacenter manage-

ment. Facebook has announced and publicized a lot of their work related to

resource disaggregation at several talks [5]. Along the resource disaggrega-

tion approach, the use of I-Files in Sailfish [4] is an optimization applicable

to reduce disk I/O.

• Many of today’s online applications are serviced globally with multiple

geo-distributed datacenters. Data processing across datacenters is becom-

ing more widespread with many researches for optimizations in such wide

area data analytics being conducted [8–10].

Specific data processing systems are optimized for the specific optimizations they

aim to achieve. General data processing systems are often optimized for common an-

alytics on common datasets running on common computing resources. Whether it be

7

specific or general, they have limitations in covering unconsidered cases. We have only

listed a few examples here. The diversity of job characteristics and resource environ-

ments only continues to grow. In order to face the upcoming diversity, one could simply

say that we could implement new optimization techniques which define new job exe-

cution behaviors on an existing, general data processing system if necessary. Then two

questions arise. 1. ”How easy is it to add a new method of job execution?” - a ques-

tion of extensibility and 2. ”How easy is it to configure parts of a job to control how

a job is executed?” - a question of flexibility, to get the system to use the new method

of execution for new cases, or even to change small, existing parts of a job execution.

Nevertheless, this turns out very challenging as it requires modifications to pre-defined

runtime behaviors, which are often designed strongly tied to the system core, as we will

see in the following section.

2.3 Pre-Defined Runtime Behaviors

This section illustrates how today’s state-of-the-art systems have pre-defined runtime

behaviors for optimization techniques they choose to implement.

• Spark [15] is by far the most popular data processing system widely used for

many applications. Its contributions include enhancing performance using in-

memory computations based on resilient distributed datasets (RDDs) [16], and

fault tolerance using lineages. In Spark, applications are translated into graphs of

user-defined RDD transformations. These applications determine the computa-

tion parallelism and data partitioning inside a job, and remain unchanged during

job execution. In the Spark runtime, the order in which stages are executed is

fixed. With the graph of RDD transformations, stage partitioning occurs before

the actual execution of a job. Stages are fixed to be partitioned at shuffle bound-

aries, and the Spark scheduler schedules these stages according to a topological

8

ordered lineage of produced RDDs. Factors related to dataflow are fixed in the

system runtime as well. Dataflow channel is fixed to memory backed by disk

for shuffle transformations and other transformations are pipelined in memory.

The dataflow model is fixed to the pull based model where the sender operator

is complete and all its output blocks are ready before the data is transferred to

the receiver operator. Spark can support machines with different number of cores

and memory when placing executors. However, this turns out to take a lot of ef-

fort. Moreover, in order to make ”labeling” different executors more meaningful,

scheduling specific tasks to specific executors must come together, which is not

configurable in the Spark runtime.

• Flint [3] is an optimization technique that implements automated checkpoint-

ing and server selection policies to handle evictions of transient resources. The

Flint prototype has been implemented by modifying the system core of Spark. As

mentioned above, Spark does not allow flexible scheduling for various resources,

so Flint modifies Spark to implement its server selection policy. Flint marks the

inter-stage edges of the job DAG to be checkpointed for automated checkpoint-

ing. This requires an implementation of Flint’s checkpointing policy into Spark’s

system core. Note that after the modifications, Flint no longer behaves like Spark

during job execution. It has its own pre-defined runtime behaviors.

• Pado [1] is another optimization technique that places tasks appropriately to ex-

ecutors on transient or reserved resources. In order to make the placement more

effective, Pado has a different stage partitioning strategy from Spark. Moreover,

Pado uses the push dataflow model - the sender operator begins pushing its pro-

duced data to the receiving operator in smaller chunks (could be as small as

pipelining the data) - in order to evacuate data out of transient resources as soon

as possible. As Pado has many different approaches to job execution from Spark

9

and because Spark runtime is not easy to modify, Pado implements its own exe-

cution runtime, with its own pre-defined behaviors.

• Optimus [13] is a framework that optimizes jobs dynamically by rewriting job

execution graphs, built on top of an execution engine, Dryad [17]. It collects run-

time statistics to rewrite the execution graph, but such graph rewrites are fixed in

the system core as the controllable factors of the underlying system, Dryad, are

pre-defined. For example, one of Optimus’ major contributions is dynamic data

skew handling, but this is only supported for the conventional data partitioning

mechanisms because it is an extension to Dryad which keeps the scope of par-

titioning methods bounded. Optimus supports user-defined rewrites integrated

with a high-level data-parallel language, but this is still restricted to choosing a

sub-query to execute from a set of alternative sub-queries.

The above systems all exhibit pre-defined runtime behaviors tightly built into the

system core. If a modification needs to be made, a deep understanding of the sys-

tem core is necessary. Even if a modification is successfully made, the system can no

longer behave in the old manner as the modification changes the pre-defined behav-

iors. Moreover, runtime level options like caching data in memory or checkpointing

data in persistent storage is sometimes exposed to application writers. This requires

them to not only write data processing applications, but also to understand the system

core and the underlying runtime behaviors to optimize and fine-tune their applications.

System designs with pre-defined runtime behaviors are successful in achieving opti-

mized performance for given job characteristics and resource environments. However,

the systems’ core components must be thoroughly understood and rewritten in order to

adapt to new requirements. This can be extremely laborious and challenging work.

10

2.4 Execution Properties

To facilitate implementing optimizations for new requirements, we need a system de-

sign that can flexibly change its execution when configured. Moreover, we need such

configurable parts to be exposed for further extensions. From observing many data pro-

cessing systems and optimization techniques, we have identified and organized several

common execution properties that such systems have altered and configured flexibly

for the execution runtime to behave as intended. Execution properties are parts of a job

execution that determine runtime behaviors. Our idea is that when such execution prop-

erties are made flexible and extensible in the execution runtime, the runtime behaviors

will no longer be pre-defined and the system would be able to easily support many

optimization techniques for diverse job characteristics and resource environments. Ta-

ble 2.1 lists the execution properties we have identified and defined to build Onyx.

Regarding operator computation, these properties include choosing the type of ex-

ecutor to run each task on (executor placement), determining the number of simulta-

neous parallel tasks (parallelism), and grouping operators together and ordering them

for execution (stages and schedule groups). Regarding intermediate data transfer, we

expose the option to choose where to store the data produced for each operator (data

store), in which pattern the communication should occur (data communication pattern),

how the output intermediate data should be partitioned (partitioner), how the input in-

termediate data should be assigned (key assignment), whether the data should be pulled

or pushed (dataflow model), whether or not the data should be cached (caching), and

how the used intermediate data should be handled (used data handling).

For example, executor placement can be applied to scheduling specific tasks to

executors on resources like transient containers which are prone to evictions, or more

stable reserved containers. While transferring data, intermediate data can be stored in

memory or even on remotely distributed file systems, depending on the requirements.

11

Execution Property Description

Executor Placement Executor type to run a task on.

Parallelism Number of simultaneous parallel tasks for

an operation.
Stage Stage ID given to each operator after stage

partitioning.
Schedule Group Priority number for scheduling a stage.

Stages that belong to the same schedule

group can be scheduled simultaneously.
Data Store Where to store the intermediate data.

Data Communication Pattern The pattern to write and read the

intermediate data.
Partitioner How to partition the output intermediate

data.
Key Assignment How to assign the partition keys to the

receiving tasks.
Dataflow Model How to fetch data from previous

computations.
Caching Whether to cache the intermediate data or

not.
Used Data Handling How the used intermediate data should be

handled. e.g., delete, and save a backup in

disk, if in memory.

Table 2.1: Onyx Execution Properties which Determine Runtime Behaviors

12

Chapter 3

Onyx Overview

In section 2.4, we identify the execution properties which should be exposed so that

we can configure them to adjust runtime behaviors. This chapter gives an overview of

our system, Onyx as a whole, in achieving this goal. Onyx consists of two main com-

ponents, the compiler and the execution runtime. The compiler takes a user application

as input and outputs an optimized physical execution plan. The Onyx system itself is

implemented in Java 8, but its goal is to understand dataflow applications written in

several high-level programming models, like applications written for Spark or written

in Apache Beam [18]. When receiving applications, the compiler translates this logical

layer into expressive, general-purpose intermediate representations (IR), called Onyx

IR. Onyx IR involves a series of optimization passes which enable users to control op-

timizations for their jobs with execution properties made configurable by the runtime.

Once Onyx IR completes going through the optimization passes, it is converted to an

execution plan to be executed by the execution runtime.

3.1 Onyx IR

In this section, we briefly explain how the compiler uses Onyx IR to facilitate users to

flexibly control execution properties made configurable and extensible in the execution

runtime.

Onyx IR is a DAG of vertices which represent operators connected by dataflow

13

edges between them. Each of the IR vertices and IR edges can be annotated to be able

to express the different execution properties mentioned earlier (§2.4). Out of the 11

execution properties, executor placement, parallelism, stage and schedule group are

related to the computational operators; thus we annotate vertices with values for each

of these properties. The remaining execution properties (except for caching which we

leave for future work) are related to the intermediate dataflow; thus we annotate edges

with values for each of these properties. For example, edges that a user wants to store

the intermediate data as local file can be annotated to use the ”local file” implementation

of the execution runtime for the data store execution property.

3.2 Optimization Passes

When annotating each of the execution properties, the compiler goes through a series

of optimization passes. Onyx IR can be flexibly modified, both in its logical struc-

ture and annotations, through the optimization pass interfaces. The modification during

compile-time occurs in two ways: through annotating passes and reshaping passes.

First, annotating passes annotate IR vertices and edges with specific execution prop-

erties to execute jobs with desirably configured runtime behaviors. For simplicity, an

annotating pass requires a set of prerequisite execution properties to be annotated, and

annotates the value for a single execution property. Second, reshaping passes modify

the shape of IR DAGs by inserting, regrouping, or deleting IR vertices and edges, such

as inserting vertices to collect runtime metric for dynamic optimizations. Furthermore,

a runtime pass can also be performed during runtime for dynamic optimizations, such

as data skew, using runtime statistics. This action occurs dynamically after the sub-

mitted job begins execution. It modifies the execution plan using the received runtime

metric, so that the execution is dynamically optimized during runtime using the pro-

vided optimization logic specified by the user.

14

By utilizing a series of passes, users can optimize an application to exploit specific

optimization techniques depending on job characteristics and resource environments,

by choosing or adding appropriate configurations for the execution runtime. For ex-

ample, in order to optimize an application to run on evictable transient containers, we

can use a specialized executor placement pass, to place each operator appropriately on

different types of resources, and a dataflow model pass to control the fashion in which

each computation should fetch its input data, with a number of other passes for further

optimizations.

This greatly simplifies the work by eliminating the burden of exploring and rewrit-

ing system internals for modifying pre-defined runtime behaviors. If an option for an

execution property is already supported by the Onyx execution runtime, users can op-

timize their jobs with a simple process of using a new combination of optimization

passes. If an implementation for a specific execution property is not supported, (e.g., a

key-value store for a type of data store) a developer can easily add such implementation

(explained in detail in Chapter 4) and configure applications to use the implementation

by adding passes for IR DAGs.

3.3 Submitting to the Execution Runtime

Onyx IR is a logical representation of the job to be executed. It must be converted into

a physical form for the execution runtime to execute. This involves translations like

expanding an operator annotated with parallelism in Onyx IR to the desired number of

tasks and connecting the tasks according to the data communication patterns annotated

on the IR edges. Physical execution plan is also in the form of a DAG, with the same

values annotated for execution properties as the given IR DAG if necessary. Onyx IR

DAG and physical execution plan can be translated from one another by sharing the

identifiers. After a series of Onyx IR transformations through optimization passes, the

15

compiler translates Onyx IR to a physical execution plan, submitting it to the runtime

for execution.

16

Chapter 4

The Execution Runtime

4.1 Design

The main goal of the Onyx execution runtime is to support the diversity of job char-

acteristics and resource environments with the least amount of implementation effort.

To achieve this, the runtime must a) be flexible to easily control different execution

properties and provide the options to users and b) exhibit a design that allows an easy

extension to the execution properties. But at the same time, it should achieve such a

design with the least amount of performance overhead.

First, we identify components that are inherent and essential to any data process-

ing job and do not change. We implement these components as the backbone of our

runtime, so that the code that needs no modifications is tightly implemented for better

performance. Then, in order to make it a flexible and extensible system, we categorize

the execution properties into 3 categories and take the necessary designs to handle each

category:

1. We identify execution properties that are subject to extensions - executor place-

ment, parallelism(any integer), data store, partitioner, and key assignment. For

example, a new executor type may be added. We may want to customize parti-

tioning our data and use different key assignment methods accordingly. We may

always want to add support for new files systems as our data stores. Data store,

17

partitioner, and key assignment are big and independent enough execution prop-

erties that can each be separated as modules. However, the rest of the execution

properties are simple values or patterns that are only parts of processing a job in

the backbone. We carry the values for each of these properties in an appropriate,

extensible data structure, and use it in the backbone which has been implemented

to execute jobs flexibly with values given in the data structure.

2. We identify execution properties that can be handled in many different ways dur-

ing job execution - executor placement, stage, and schedule group. These prop-

erties can always be handled using new mechanisms, which we should be able

to easily add to our runtime. For example, we may want to change the executor

placement policy, or we may want to implement a new technique of scheduling

using our stage and schedule group definitions. We expose the mechanisms to

control these properties as a set of interfaces. New implementations can be added

and integrated transparently to support other components of the job through these

well-defined interfaces.

3. By this point, the remaining execution properties are data communication pat-

tern, dataflow model, and used data handling. Data communication pattern has 4

options, many-to-many(shuffle), one-to-many(broadcast), many-to-one and one-

to-one. Dataflow model only has 2 options, pull and push, and remains fixed.

Used data handling has 2 options, discard and keep. These properties simply

need to be flexibly configured. We tightly implement these properties in the back-

bone of the runtime. Even if implemented in the backbone, their runtime behav-

iors follow the physical execution plan translated from Onyx IR, which users can

flexibly control (§3).

In the sections to follow, we use Figure 4.1 to describe the execution runtime’s

architecture which reflects the design choices made.

18

The Processing BackboneExtensible Interface

MetricData Plane MessagingControl Plane

Legend

RuntimeMaster

a) Runtime Master

BlockManagerMaster

MessageEnvironment

MetricManagerMaster Scheduler

JobStateManager SchedulingPolicy

ContainerManager

Executor

b) Executor

TaskGroupStateManagerTaskGroupExecutor
TaskGroupStateManagerTaskGroupExecutor

TaskGroupStateManagerTaskGroupExecutor

BlockManagerWorker

DataStore

MetricManagerWorkerTaskGroupStateManagerTaskGroupExecutor

MessageEnvironment

Partitioner

Key Assignment

TaskGroup

Figure 4.1: The Execution Runtime Architecture. The double stroked, shaded boxes belong to

the processing backbone. The single stroked, unshaded boxes are extensible modules integrated

with other components through interfaces. Refer to the legend for more information.

19

4.2 The Processing Backbone

At the heart of the Onyx execution runtime is the processing backbone, denoted by the

double stroked, shaded boxes in Figure 4.1. The backbone includes code that must be

executed for all Onyx jobs, with references to the extensible data structures that carry

user configured values for some of the execution properties as previously mentioned

(§4.1).

Executor Management: Onyx is implemented on top of Apache REEF [19] to

handle container management. ContainerManager uses REEF’s APIs to launch

an executor per container. When requesting for containers, Onyx uses user configura-

tions to label appropriate containers with corresponding executor types. The labeled

executor information maintained in ContainerManager reacts to the set of events

like onExecutorLaunched() or onExecutorRemoved() propagated through

REEF’s APIs.

Computation: All Onyx jobs are composed of a set of stages. Each stage consists

of one or more task groups. A task group is a computation unit composed of one or

more tasks that can be computed in a single executor, distributed across executors to be

conducted in parallel according to the Scheduler implementation of user’s choice.

Each executor runs a user defined number of task groups in parallel, each assigned

to a separate thread. A task group is executed in TaskGroupExecutor essentially

executing its list of tasks. A task executes the given user function by reading inputs and

writing outputs through BlockManagerWorker.

Dataflow: BlockManagerMaster manages the locations of blocks and coor-

dinates data transfers by communicating with BlockManagerWorker in each ex-

ecutor. BlockManagerWorker manages reading inputs and writing outputs of tasks

executed on each executor. A task produces a block, which consists of one or more

partitions as determined by the Partitioner implementation. A task consumes

20

data from multiple producer tasks according to the data communication pattern an-

notated to the corresponding edge in the physical execution plan. From each pro-

ducer task, the consumer task consumes one or more partitions as determined by the

KeyAssignment implementation. Once the locations of the data to be written/read

are determined, the actual data is written/read depending on the DataStore imple-

mentation.

Physical Data Transfer: Data transfers in data processing jobs can occur in various

granularities of batches (e.g., a block all at once, element by element), and can flexibly

be pulled by the consumers or pushed by the producers depending on the chosen data

flow model. The two data flow models at multiple granularities have been implemented

as a part of our lower data plane.

Execution States: During the entire job execution, the execution runtime maintains

the computation states of tasks, task groups, and stages. JobStateManager man-

ages the stage states by communicating with Scheduler. TaskGroup and task states

are managed by receiving state change messages from TaskGroupStateManager

created for each TaskGroup running on an executor. This facilitates the work of flex-

ible job execution in a distributed environment as all executions must conform to the

defined state transitions. Extending Onyx with new implementations for optimizations

is also easier because all implementations as well as the backbone, must comply with

these states, showing signs of inconsistent integration when state violations occur.

Metric Management: The processing backbone includes metric management with

MetricManagerWorker on each executor and MetricManagerMaster in the

master. The execution runtime collects system metric for each computation unit. More-

over, we leave application metric for customization and our processing backbone takes

care of the propagation and the management of these metrics.

Dynamic Optimization: The processing backbone includes a dynamic optimiza-

tion mechanism. It uses user customizable metrics that can be collected during runtime

21

by inserting a metric collection operator to the job DAG (first, the IR DAG the trans-

lated to the physical execution plan) using a reshaping pass(§3.2). The collected metric

is published back to the compiler where the job DAG is optimized according to the

user defined runtime pass. When the optimized execution plan is received, the execu-

tion runtime continues executing the job, restarting from where it left off.

4.3 The Flexible and Extensible Execution Properties

• Executor Placement Users can label different containers with different spec-

ifications using a JSON format file. Onyx uses the JSON format file to build

an extensible data structure named ResourceSpecification and uses this

when maintaining executors for each type of ResourceSpecification in

ContainerManager. The labels used for this data structure is shared with the

compiler so that users can flexibly control executor placements using Onyx IR

and optimization passes. In addition to simply having different types of execu-

tors, we want to be able to control and add new mechanisms to schedule specific

operators to different types of executors. We achieve this by leaving the mecha-

nism up to the SchedulingPolicy implementation. SchedulingPolicy

(Listing 4.1) should communicate with ContainerManager to use la-

beled executors for different ResourceSpecification when schedul-

ing task groups. The implemented methods onExecutorAdded() and

onExecutorRemoved() would include the communication.

• Parallelism Controlling the parallelism of each operation simply occurs when

the annotated IR DAG is translated to the physical execution plan, where an

operator vertex is expanded to the number of tasks as specified by the annotated

parallelism.

22

1 /**

2 * Defines the policy by which {@link Scheduler} assigns task

groups to executors.

3 */

4 public interface SchedulingPolicy {

5

6 /**

7 * Returns this scheduling policy’s timeout before an executor

assignment.

8 * @return the timeout in milliseconds.

9 */

10 long getScheduleTimeoutMs();

11

12 /**

13 * Attempts to schedule the given taskGroup to an executor

according to this policy.

14 * If there is no executor available for the taskGroup, it

waits for an executor to be assigned before it times out.

15 * (Depending on the executor’s resource type)

16 *

17 * @param scheduledTaskGroup to schedule

18 * @return the ID of the executor on which the taskGroup is

scheduled if successful, an empty Optional otherwise.

19 */

20 Optional<String> attemptSchedule(final ScheduledTaskGroup

scheduledTaskGroup);

21

22 /**

23 * Adds the executorId to the pool of available executors.

24 * Unlocks this policy to schedule a next taskGroup if locked.

25 * (Depending on the executor’s resource type)

26 *

27 * @param executorId for the executor that has been added.

28 */

29 void onExecutorAdded(String executorId);

30

31 /**

23

32 * Deletes the executorId from the pool of available executors.

33 * Locks this policy from scheduling if there is no more

executor currently available for the next taskGroup.

34 * (Depending on the executor’s resource type)

35 *

36 * @param executorId for the executor that has been deleted.

37 * @return the ids of the set of task groups that were running

on the executor.

38 */

39 Set<String> onExecutorRemoved(String executorId);

40

41 /**

42 * Marks the executorId scheduled for the taskGroup.

43 * Locks this policy from scheduling if there is no more

executor currently available for the next taskGroup.

44 * (Depending on the executor’s resource type)

45 *

46 * @param executorId of the executor assigned for the taskGroup.

47 * @param scheduledTaskGroup scheduled to the executorId.

48 */

49 void onTaskGroupScheduled(final String executorId, final

ScheduledTaskGroup scheduledTaskGroup);

50

51 /**

52 * Marks the taskGroup’s completion in the executor.

53 * Unlocks this policy to schedule a next taskGroup if locked.

54 * (Depending on the executor’s resource type)

55 *

56 * @param executorId of the executor where the taskGroup’s

execution has completed.

57 * @param taskGroupId whose execution has completed.

58 */

59 void onTaskGroupExecutionComplete(String executorId, String

taskGroupId);

60

61 /**

62 * Marks the taskGroup’s failure in the executor.

63 * Unlocks this policy to reschedule this taskGroup if locked.

24

64 * (Depending on the executor’s resource type)

65 *

66 * @param executorId of the executor where the taskGroup’s

execution has failed.

67 * @param taskGroupId whose execution has completed.

68 */

69 void onTaskGroupExecutionFailed(String executorId, String

taskGroupId);

70 }

Listing 4.1: SchedulingPolicy.java

• Stage and Schedule Group Though a typical scheduler would execute

a job stage by stage, Scheduler as shown in Listing 4.2, has no re-

strictions about how to schedule sub-parts of a job. Moreover, the given

interface suggests that we can also define how scheduler should behave

upon faults. Implementations of Scheduler can utilize task group states

in onTaskGroupStateChanged() to define the fault tolerance mech-

anism for input read and output write failures, while container failures can

be handled using onExecutorRemoved(). While leaving a lot of room

for flexibility, we understand that this may lead to too much flexibility with-

out much guide. This is the reason why we make stage partitioning and

assigning schedule group flexible. Both stages and schedule groups can be

flexibly adjusted in the compiler’s optimization pass when annotating each

vertex with these execution properties, allowing users control over scheduling

even in typical situations like stage by stage scheduling. updateJob()

is used for dynamic optimization of executing jobs. When actually select-

ing an executor to schedule a task group, Scheduler should coordinate

with SchedulingPolicy. SchedulingPolicy (Listing 4.1) should

look at executor placements and other factors like executor capacity when

25

scheduling a task group in the attemptSchedule() method. A common

implementation of a policy would be round-robin selection or locality-aware

selection. Task group states should also be updated to SchedulingPolicy

to update the task group assignment information through

onTaskGroupScheduled(), onTaskGroupExecutionComplete(),

and onTaskGroupExecutionFailed().

• Data Store The execution runtime can store blocks in various types

of stores. We define interfaces for DataStore and allow various im-

plementations to be plugged in as modules. We provide three de-

fault options for DataStore: MemoryStore, LocalFileStore and

RemoteFileStore. MemoryStore resides in the memory of the execu-

tor the producing task runs on. LocalFileStore saves data in the lo-

cal file system of the executor the producing task runs on, in a serial-

ized form. RemoteFileStore saves data elsewhere, in a remote file sys-

tem. Such a remote file system may of a single data node, or may be

a distributed file system. DataStore involves multiple interface and ab-

stract classes including the simple and general DataStore APIs (e.g.,

putBlock(), getBlock()) with FileStore and RemoteFileStore

APIs (e.g., readFile(), writeBlockToFile()), so we omit the specific

classes for the scope of this paper.

26

1 public interface Scheduler {

2

3 /**

4 * Schedules the given job.

5 * @param physicalPlan of the job being submitted.

6 * @param jobStateManager to manage the states of the submitted

job.

7 */

8 void scheduleJob(PhysicalPlan physicalPlan,

9 JobStateManager jobStateManager);

10

11 /**

12 * Receives and updates the scheduler with a new physical plan

for a job.

13 * @param jobId the ID of the job to change the physical plan.

14 * @param newPhysicalPlan new physical plan for the job.

15 * @param taskInfo pair containing the information of the

executor id and task group to mark as complete after the

16 * update.

17 */

18 void updateJob(String jobId, PhysicalPlan newPhysicalPlan,

Pair<String, TaskGroup> taskInfo);

19

20 /**

21 * Called when an executor is added to Runtime, so that the

extra resource can be used to execute the job.

22 * @param executorId of the executor that has been added.

23 */

24 void onExecutorAdded(String executorId);

25

26 /**

27 * Called when an executor is removed from Runtime, so that

faults related to the removal can be handled.

28 * @param executorId of the executor that has been removed.

29 */

30 void onExecutorRemoved(String executorId);

31

27

32 /**

33 * Called when a TaskGroup’s execution state changes.

34 * @param executorId of the executor in which the TaskGroup is

executing.

35 * @param taskGroupId of the TaskGroup whose state must be

updated.

36 * @param newState for the TaskGroup.

37 * @param attemptIdx the number of times this TaskGroup has

executed.

38 *************** the below parameters are only valid for

failures *****************

39 * @param tasksPutOnHold the IDs of tasks that are put on hold.

It is null otherwise.

40 * @param failureCause for which the TaskGroup failed in the

case of a recoverable failure.

41 */

42 void onTaskGroupStateChanged(String executorId,

43 String taskGroupId,

44 TaskGroupState.State newState,

45 int attemptIdx,

46 List<String> tasksPutOnHold,

47 TaskGroupState.RecoverableFailureCause failureCause);

48

49 /**

50 * To be called when a job should be terminated.

51 * Any clean up code should be implemented in this method.

52 */

53 void terminate();

54 }

Listing 4.2: Scheduler.java

• Partitioner, Key Assignment and Data Communication Pattern:

All tasks read input data partitions and write output data blocks

through BlockManagerWorker. For each edge between operators,

BlockManagerWorker uses data communication pattern to understand

28

the number of source and destination tasks. When resolving the partitions to

write for the produced block, it refers to Partitioner as shown in List-

ing 4.3. Partitioner can use keys for the elements to control the number of

partitions and the partitioning mechanism flexibly. A typical way of partitioning

data would be to find the hash of the keys, modulo the number of destination

tasks. When resolving the partitions to read given the source task index,

BlockManagerWorker refers to the KeyAssignment implementation,

which determines which key assignments (a range of partition keys) to read

from.

1 /**

2 * This interface represents the way of partitioning output

data from a producer task.

3 * It takes an iterable of elements and divides the data into

multiple {@link Partition}s.

4 *

5 * It can use the number of destination tasks as a guide when

determining the partitioning mechanism.

6 */

7 public interface Partitioner {

8

9 /**

10 * Divides the output data from a task into multiple partitions.

11 *

12 * @param elements the output data from a producer task.

13 * @param dstParallelism the number of destination tasks.

14 * @param keyExtractor extracts keys from elements.

15 * @return the list of partitions.

16 */

17 List<Partition> partition(Iterable elements, int

dstParallelism, KeyExtractor keyExtractor);

18 }

Listing 4.3: Partitioner.java

29

• Dataflow Model and Used Data Handling: When BlockManagerWorker

reads inputs or writes outputs through DataStore, it refers to the

dataflow model to handle data appropriately in our lower data plane.

BlockManagerWorker also takes care of used data according to the anno-

tated configuration when transferring intermediate data is complete.

• MessageEnvironment: Although not related to flexibly running a job,

we also open the MessageEnvironment interface for control message ex-

changes. Any underlying implementation that suits the user/system developers’

needs can be used or added.

For all of the extensible modules with interfaces, the Onyx execution runtime in-

cludes one or more practical and common implementations. Those who only need flex-

ibility requirements can configure their jobs to use the provided implementations. Oth-

ers who need more and have extensibility requirements can use these implementations

as guides when extending the system with new implementations.

30

Chapter 5

Examples

In this chapter, we demonstrate running real-world applications on Onyx using exam-

ples from Chapter 2. For each of these examples, we show how a job is configured

flexibly with the job DAG (but in the form of Onyx IR which gets translated directly to

the physical execution plan for simplicity). We then demonstrate how each job DAG is

executed in the Onyx execution runtime.

5.1 Push Optimization for Small Scale Workloads

When we talk about batch data processing systems, we mainly focus on optimizing

the systems for large scales as challenges mainly arise when processing them. But are

large scale workloads the usual case? What if small scale workloads are actually more

common in practice? Chen et al. analyze common industry MapReduce workloads in

their work [11]. The workload traces are from various Hadoop deployments for real-

life, business critical clusters (Cloudera and Facebook). One of their key contributions

invalidates a major assumption of batch data processing - the prevalence of large scale

workloads. Despite the expectation that most jobs will be at large scales, most jobs

actually turn out to have input, shuffle and output sizes from a few MB to a GB. If

workloads are small and the existing systems mainly target processing large scales,

there must be numerous factors that can be optimized to process small scales of data.

For example, a simple optimization would be to process the entire workload in memory

31

instead of using any form of disk. This would require changing the data store. Another

optimization technique would be to push the intermediate data to the consumer tasks

before all the producer tasks complete execution, saving on data transfer time. Chang-

ing the dataflow model enables the consumer tasks to begin processing the arrived data

while the producer tasks continue with their execution simultaneously.

Figure 5.1 shows the expression of a MapReduce job with and without push opti-

mization in Onyx. a) shows the job DAG without push optimization. Dataflow model

is ”pull” and data store is ”memory”. This is how a job would be executed on Spark

according to its pre-defined runtime behaviors. On the other hand, simply by changing

the dataflow model execution property to ”push” using an annotating pass (§3.2), users

can execute a MapReduce job for small scale workloads with the IR DAG after push

optimization shown in b). Users can assign schedule group to each operator, to enable

map tasks and reduce tasks to be scheduled simultaneously for the intermediate data to

be pushed.

c) shows the job execution of a) where the reduce tasks must wait until the last map

task completes. They must wait even if the blocks of 2 complete map tasks are ready

to be transferred. d) shows the job execution of b). Grouped by schedule group 0, all

tasks can be scheduled simultaneously, and the reduce tasks can receive the blocks of 2

complete map tasks even if there is a map task that has not yet completed.

With Onyx, both of the job executions are easily configurable.

5.2 Harnessing Transient Resources: Pado

Pado (§2.3) proposes an optimization technique for harnessing transient resources in

datacenters. Transient resources are prone to evictions. This implies that computations

and data on these resources are lost and need to be recomputed upon evictions. In

contrast, reserved resources are limited, but stable and thus the computations and data

32

Map Reduce

a) Onyx IR DAG without Push Optimization

Parallelism: 3
Stage: 0

Schedule Group: 0

Parallelism: 2
Stage: 1

Schedule Group: 1

Dataflow Model: Pull
Data Store: Memory

Communication Pattern: Shuffle

Barrier

Complete Executing Not Yet
Scheduled

Intermediate
Data Partition

(Complete)

Intermediate
Data Partition

(Being Produced)

Map Tasks Reduce Tasks Map Tasks Reduce Tasks

Map Reduce

b) Onyx IR DAG with Push Optimization

Parallelism: 3
Stage: 0

Schedule Group: 0

Parallelism: 2
Stage: 1

Schedule Group: 0

Dataflow Model: Push
Data Store: Memory

Communication Pattern: Shuffle

c) Job Execution without Push Optimization

Schedule Group 0

d) Job Execution with Push Optimization

Figure 5.1: With and Without Push Optimization

33

residing on these resources are safe even during evictions. Pado’s technique schedules

the consumer tasks of ”expensive” dependencies (e.g., shuffle, where an eviction can

cause many producer tasks to be recomputed) on reserved containers, and pushes data

to the consumer tasks to evacuate data out of unsafe transient containers.

Figure 6.2 shows the expression of a MapReduce job with and without Pado opti-

mization in Onyx. a) shows the job DAG without Pado optimization. Such a job exe-

cution is shown in c). Since the map stage takes schedule group 0 and the reduce stage

takes schedule group 1, the reduce tasks are not scheduled until all map tasks complete.

The map tasks can take any executor placement. As a result, 2 map tasks are executed

in a transient container, while a map task is executed in a reserved container. When an

eviction occurs, the output partitions of those run on the transient container are all lost,

and need to be recomputed.

b) shows the job DAG with Pado optimization. Such a job execution is shown in

d). Since both the map and reduce stages take schedule group 0, they can be scheduled

simultaneously. The map tasks are scheduled to a transient container according to the

executor placement. The reduce tasks are scheduled to a reserved container according

to the executor placement. In order to evacuate data as soon as possible, we choose

to push the intermediate data. As a result, even when an eviction occurs, the output

partitions of those run on the transient container have already been transferred to the

reserved container, and do not need to be recomputed.

Implementing the Pado optimization technique requires adding executor place-

ment values, implementing a SchedulingPolicy that schedules different tasks

to different executor placements. SchedulingPolicy should coordinate with

ContainerManager which has already been implemented in an extensible man-

ner to use the user configured executor placement values. Although not reflected in the

figure, applications that are much more complex than simple MapReduce have com-

plex job DAGs. In order to exploit the stability of reserved containers, Pado proposes

34

Reserved Container

Transient Container

c) Job Execution without Pado Optimization

Complete Executing Not Yet
Scheduled

Intermediate
Data Partition

(Complete)

Intermediate
Data Partition

(Being Produced)
Lost by Eviction

Transient Container

d) Job Execution with Pado Optimization

Dataflow Model: Pull
Data Store: Local File

Data Communication Pattern: Shuffle

Map Tasks Reduce Tasks Map Tasks Reduce Tasks

Barrier

Map Reduce

a) Onyx IR DAG without Pado Optimization

Parallelism: 3
Stage: 0

Schedule Group: 0
Executor Placement: Any

Parallelism: 2
Stage: 1

Schedule Group: 1
Executor Placement: Any

Map Reduce

b) Onyx IR DAG with Pado Optimization

Parallelism: 3
Stage: 0

Schedule Group: 0
Executor Placement: Transient

Parallelism: 2
Stage: 1

Schedule Group: 0
Executor Placement: Reserved

Dataflow Model: Push
Data Store: Local File

Data Communication Pattern: Shuffle

Figure 5.2: With and Without Pado Optimization

a stage partitioning mechanism which differs from traditional stage partitioning. A dif-

ferent stage partitioning mechanism can be simply added as an optimization pass, and

the common Scheduler implementation in the execution runtime needs no modifi-

cation.

35

Chapter 6

Evaluation

In this chapter, we evaluate Onyx by implementing the optimization techniques shown

as examples in Section 5.1 and Section 5.2.

6.1 Small Scale Workloads

6.1.1 Experimental Setup

We ran MapReduce applications shown in Figure 5.1 on a YARN [20] cluster of 3

AWS EC2 instances. The 3 instances were of identical type, m3.xlarge, with 4 cores

and 15GB of memory, running on a network of 1Gbps of measured bandwidth using

the Iperf [21] tool. One of the instances was used as the master while the other two in-

stances were each used to run a single executor with 4 threads. Input data of 4 different

sizes, 10MB, 100MB, 300MB, and 1GB were used from Wikipedia’s 2016 pagecounts

dataset [22] for simple word count MapReduce jobs. For each input, 3 experiments

were conducted: the ”pull” dataflow model with 2 varying data store types - ”local

file” and ”memory” - and the ”push” dataflow model in ”memory” data store.

6.1.2 Results

The experiment results in Figure 6.1 show that the push model performs better than the

pull model for all of the small scale workloads chosen.

36

(a) 10MB (b) 100MB

(c) 300MB (d) 1GB

Figure 6.1: Job Completion Times for 4 Different Workload Scales. 3 runs for each workload

are conducted: 1. Dataflow model : pull, Data store: local file, 2. Dataflow model : pull, Data

store: memory, and 3. Dataflow model : push, Data store: memory. Job completions times take

the least for the ”push” dataflow model for all workloads.

Table 6.1 shows the performance gains of using the push model in memory as

compared to pulling the intermediate data from disk or memory. The push model using

memory is upto approximately 21% faster than pulling intermediate from disk and 15%

faster than pulling intermediate data from memory. One thing important to note here is

that the push model can achieve an even better performance because the workload is

small enough to entirely fit in memory, without incurring any disk overhead.

37

Table 6.1: Performance Gains of Using Push, Memory

Workload Size over Pull, Local File over Pull, Memory

10MB 21.05% 15.49%

100MB 14.78% 10.50%

300MB 16.80% 13.67%

1GB 20.00% 15.51%

6.1.3 Discussion

We investigated the performance of using the ”push” based dataflow model on common

workload scales. Although the benefit is rather clear, there is still some room for fur-

ther optimization. The granularities at which the intermediate data is transferred to the

reduce tasks may vary. For simplicity, our implementation transfers intermediate data

produced by each map task upon completion, but the performance may be enhanced

if the transfer occurs at finer granularities, for example, by pipelining the intermediate

data records between the map and reduce tasks. By pipelining intermediate data record

by record, the combiner functions on the reduce tasks can begin their computation

earlier, contributing to a larger performance gain in the push model. We are currently

working on pipelining intermediate data, especially for the stream processing domain.

38

6.2 Harnessing Transient resources

6.2.1 Experimental setup

We ran an alternating least squares (ALS) application, a machine learning algorithm

commonly used for recommendation systems. We used the 10GB Yahoo! music dataset

on a cluster of 40 AWS EC2 m4.2xlarge instances with 8 cores and 32GB of memory.

For this experiment, we ran the same application with the same dataset on the same

cluster with Spark 2.2.0 for performance comparisons. Onyx used 35 transient contain-

ers and 5 reserved containers, a setting not easily configurable in Spark.

We ran ALS for two scenarios. The first scenario was without any eviction. For this

scenario, we ran ALS once on Spark and once on Onyx without Pado optimization.

The other scenario was with evictions. Executors running on transient containers were

evicted at a 5-minute eviction arrival rate. The system was allowed to reclaim executors

right after an eviction. For this scenario, we ran ALS once on Spark and once on Onyx

with Pado optimization.

6.2.2 Results

Figure 6.2 shows the experiment results. When there is no eviction, Spark performs

better than Onyx. Spark’s pre-defined runtime behavior computes as much of inter-

mediate data as possible in memory and flushes to disk before the executors run out

of memory. Onyx currently does not have a DataStore that behaves this way, so

we used the local file implementation for data store. We are currently working on this

”as much as possible in memory, backed by disk” DataStore implementation. Once

implemented, running the same experiments would be extremely easy, by using the

different implementation instead of the local file implementation and changing the op-

timization pass to annotate the job DAG with the new value for data store. Despite

the differences, Onyx yields a comparable performance. When evictions occur, Spark

39

Figure 6.2: Comparison of Spark (light grey) and Onyx (dark grey) Job Completion Times for

ALS.

stops making progress because it needs frequent recomputations of lost intermediate

data. On the other hand, Onyx successfully implements the Pado optimization tech-

nique and completes the job in not much longer time than that of without evictions. We

have cross-verified that the results are similar to those reported by the authors of Pado.

6.2.3 Discussion

Pado on Onyx has room for further improvements. Pado implements several other

system optimizations such as task input caching and task output partial aggrega-

tion. Caching is an execution property we have identified (§2.4) but not yet imple-

mented in the execution runtime. Once caching is supported, we expect to have addi-

tional SchedulingPolicy implementations that exploit cached data locality when

scheduling tasks. It is important here again to note that other existing systems would re-

quire the monolithic system core to be modified even when adding a new feature, while

it means simply plugging in the new implementation in the Onyx execution runtime.

40

Chapter 7

Conclusion

Each data processing system has its unique optimization techniques and benefits suit-

able for its main requirements. However, we have a diversity of job characteristics and

resource environments with many distinct requirements. Optimization techniques for

some requirements have been researched while those for other requirements remain as

open questions. As gaining insights from data processing is becoming more and more

popular, the diversity only continues to prosper. Systems with pre-defined runtime be-

haviors are not flexible enough to manage the growing diversity.

Onyx addresses this challenge by proposing and implementing a system design

whose runtime behaviors can be flexibly determined. Moreover, Onyx’s design enables

the execution runtime to extended should new requirements arise. We identify the exe-

cution properties of data processing jobs that need to be provided as configurable knobs

in order to flexibly control runtime behaviors.

Onyx IR plays an important role as a simple configuration tool to control the run-

time behaviors by annotating computation vertices and dataflow edges with choices for

execution properties. The Onyx execution runtime uses execution properties in its sys-

tem design. It appropriately implements the core components in the processing back-

bone with options to control the behavior for the execution properties that only require

flexibility. For other execution properties that can be extended, the execution runtime

provides interfaces to be implemented for new requirements and integrates the extensi-

41

ble components transparently using the interfaces.

Onyx facilitates many users and system developers in applying desired optimiza-

tion techniques to meet their requirements. We hope that Onyx’s ability to flexibly

leverage job executions would open up more opportunities for many more optimization

techniques to be researched for diverse job characteristics and resource environments

in the field of data processing.

42

Bibliography

[1] Y. Yang, G.-W. Kim, W. W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and B.-

G. Chun, “Pado: A data processing engine for harnessing transient resources in

datacenters,” in EuroSys, 2017.

[2] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, “Tr-spark: Tran-

sient computing for big data analytics,” in SOCC, 2016.

[3] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint: Batch-interactive data-

intensive processing on transient servers,” in EuroSys, 2016.

[4] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves, “Sail-

fish: A framework for large scale data processing,” in SOCC, 2012.

[5] “Facebook’s disaggregated storage and compute for Map/Re-

duce.” https://atscaleconference.com/videos/

facebooks-disaggregated-storage-and-compute-for-mapreduce/.

[6] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, “Network support

for resource disaggregation in next-generation datacenters,” in Proceedings of the

Twelfth ACM Workshop on Hot Topics in Networks, p. 10, ACM, 2013.

[7] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Rat-

nasamy, and S. Shenker, “Network requirements for resource disaggregation.,” in

OSDI, pp. 249–264, 2016.

43

https://atscaleconference.com/videos/facebooks-disaggregated-storage-and-compute-for-mapreduce/
https://atscaleconference.com/videos/facebooks-disaggregated-storage-and-compute-for-mapreduce/

[8] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Sto-

ica, “Low latency geo-distributed data analytics,” ACM SIGCOMM Computer

Communication Review, vol. 45, no. 4, pp. 421–434, 2015.

[9] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and G. Varghese,

“Global analytics in the face of bandwidth and regulatory constraints.,” in NSDI,

pp. 323–336, 2015.

[10] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-aware op-

timization for analytics queries,” in OSDI, 2016.

[11] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data

systems: A cross-industry study of mapreduce workloads,” Proceedings of the

VLDB Endowment, vol. 5, no. 12, pp. 1802–1813, 2012.

[12] “The CAIDA Anonymized Internet Traces.” https://www.caida.org/

data/.

[13] Q. Ke, M. Isard, and Y. Yu, “Optimus: A dynamic rewriting framework for data-

parallel execution plans,” in EuroSys, 2013.

[14] “Apache Hadoop.” http://hadoop.apache.org.

[15] “Spark.” http://spark.apache.org.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing,” in NSDI, 2012.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-

parallel programs from sequential building blocks,” in EuroSys, 2007.

[18] “Apache Beam.” https://beam.apache.org/.

44

https://www.caida.org/data/
https://www.caida.org/data/
http://hadoop.apache.org
http://spark.apache.org
https://beam.apache.org/

[19] M. Weimer, Y. Chen, B.-G. Chun, T. Condie, C. Curino, C. Douglas, Y. Lee,

T. Majestro, D. Malkhi, S. Matusevych, et al., “Reef: Retainable evaluator ex-

ecution framework,” in Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pp. 1343–1355, ACM, 2015.

[20] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop yarn: Yet another re-

source negotiator,” in Proceedings of the 4th annual Symposium on Cloud Com-

puting, p. 5, ACM, 2013.

[21] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf: The tcp/udp

bandwidth measurement tool,” http://dast. nlanr. net/Projects, 2005.

[22] “Wikipedia Pagecounts.” https://wikitech.wikimedia.org/wiki/

Analytics/Archive/Data/Pagecounts-raw.

45

https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw
https://wikitech.wikimedia.org/wiki/Analytics/Archive/Data/Pagecounts-raw

m8�]

$ò†X pt0 Ñ� `�¨�tX‰@ ‰ë\ π1‰D �ƒ‰. ⇣\, t `�¨

�tX‰@‰ë\ê–XΩ–⌧⇠â(<\h��tú7Xålƒ⇠îîl¨

m‰D �¿å ⌧‰. t îl ¨m‰D Ãq‹§0 ⌅XÏ, ⇠Œ@ pt0 ò¨

‹§\‰t ⌧⌧⇠»‡, � ‹§\‰@ ê‡‰t ©\\ Xî îl ¨m– \�T

⌧0ïD�©X�‰.X¿Ã,pt0ò¨Ñ|î‰ë\ë≈π1¸ê–XΩ–

fi∞ ©à ⌧⌅X‡ à‰. ⌅tXî ‹§\‰@ ¿ÑX ⇠â)›D ¨⌅– �

XXƒ] êx⇠¥ »\¥ \�T 0ïD �©X0� I•à ¥5‰. t 8⌧|

t∞X0 ⌅t ⌧⌧⌧ Onyx î X‡ U•1 àî ¿ÑD êxX‡ l⌅\

‹§\t‰. OnyxX¿Ñ@ Xåp�⇠‡U•⇠¥|Xî⇠âîå‰D

�EX‡, t˘ îå‰D ⌘⇣<\ êx ✏ l⌅⇠¥ ¨©ê� $�\)›<\

ë≈t ⇠â⇠ƒ] X�‰. ¨©êî ë≈X \⌅)›x Onyx IR– ¿Ñ ⇠â

)›D ⌧¥Xî ⇠â îå‰D Ö‹XÏ, ê‡X îl ¨m– fiå ¿ÑX ⇠â

)›D$�`⇠à‰.t|8H–¸¥ƒ�⌧‰¸‰ÿ∞¸‰Dµt‰x0t

X‹§\–⌧îl⌅X0ò‡»\¥\�T0ï‰t Onyx–î}å�© ⇠

àLDUx`⇠à‰.

¸î¥: pt0 ò¨, pt0 ò¨ ‘ƒ, pt0 Ñ�, Ñ� ‘ƒ, pt0 Ñ� ‘ƒ,

pt0Ñ�⌅�ÑÃl

Yà: 2016-21194

46

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Data Processing Concepts
	2.2 Optimizations for Data Processing
	2.3 Pre-Defined Runtime Behaviors
	2.4 Execution Properties

	Chapter 3 Onyx Overview
	3.1 Onyx IR
	3.2 Optimization Passes
	3.3 Submitting to the Execution Runtime

	Chapter 4 The Execution Runtime
	4.1 Design
	4.2 The Processing Backbone
	4.3 The Flexible and Extensible Execution Properties

	Chapter 5 Examples
	5.1 Push Optimization for Small Scale Workloads
	5.2 Harnessing Transient Resources: Pado

	Chapter 6 Evaluation
	6.1 Small Scale Workloads
	6.1.1 Experimental Setup
	6.1.2 Results
	6.1.3 Discussion

	6.2 Harnessing Transient resources
	6.2.1 Experimental setup
	6.2.2 Results
	6.2.3 Discussion

	Chapter 7 Conclusion
	Bibliography
	국문초록

<startpage>10
Chapter 1 Introduction 1
Chapter 2 Background 4
 2.1 Data Processing Concepts 4
 2.2 Optimizations for Data Processing 5
 2.3 Pre-Defined Runtime Behaviors 7
 2.4 Execution Properties 10
Chapter 3 Onyx Overview 12
 3.1 Onyx IR 12
 3.2 Optimization Passes 13
 3.3 Submitting to the Execution Runtime 14
Chapter 4 The Execution Runtime 16
 4.1 Design 16
 4.2 The Processing Backbone 19
 4.3 The Flexible and Extensible Execution Properties 21
Chapter 5 Examples 30
 5.1 Push Optimization for Small Scale Workloads 30
 5.2 Harnessing Transient Resources: Pado 31
Chapter 6 Evaluation 35
 6.1 Small Scale Workloads 35
 6.1.1 Experimental Setup 35
 6.1.2 Results 35
 6.1.3 Discussion 37
 6.2 Harnessing Transient resources 38
 6.2.1 Experimental setup 38
 6.2.2 Results 38
 6.2.3 Discussion 39
Chapter 7 Conclusion 40
Bibliography 42
국문초록 45
</body>

