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Abstract

In this thesis, the goal of singular learning theory and its methods are

described. To resolve the singularity problem, we will introduce resolution

of singularities, the notion in algebraic geometry. In addition, we will go

over some examples of singular learning theory (focus on strictly singular

model) and show how to resolve singularities by computation. In particu-

lar, in the reduced rank regression model, the process of resolution will be

described by taking blow-ups. Finally, we will introduce a determinantal

variety, and examine the possibility of connection with the reduced rank

regression model.

Keywords : Statistical Learning Theory, Resolution of Singularities

Student number : 2014-22355
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Chapter 1

Introduction

1.1 Main Results

Recently, many people have interest on artificial intelligence. AlphaGo

shocked the human community by defeating Lee Se-dol in the amazing

GO match. As technology of artificial intelligence advances, knowledge of

statistical learning theory has become very important. In this thesis, we

will approach the statistical learning theory from viewpoint of algebraic

geometry.

In Bayesian estimation, a typical method in statistical learning theory,

we want to minimize the Bayes generalization error. When we compute this

error, an invariant, called the “learning coefficient” λ, is very important. In

regular learning theory, it is known that λ is just d/2, where d is dimension

of parameter space ([11]). However, for strictly singular learning theory, it

is not necessarily that the learning coefficient is d/2. Therefore, Watanabe

computes the learning coefficient by showing that it is equal to the real

log canonical threshold. To prove this, he uses the Hironaka’s theorem -
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CHAPTER 1. INTRODUCTION

resolution of singularities. In [11], he covers the reduced rank regression

model, one kind of the neural networks, and computes λ for a case : the

number of inputs and outputs are both 2, the number of hidden nodes is 2,

and the rank of true distribution r = 0.

Therefore, in chapter 4, I will compute λ for the following three cases.

1. M = H = N = n and r = 0 ;

2. M = H = N = n and r = 1 ;

3. M = m, H = 1, N = n, and r = 0.

Hence, we will get the main results in this thesis as follows.

Proposition 1.1.1. In the reduced rank regression model, the real log

canonical threshold λ can be obtained as

1. If M = H = N = n and r = 0, λ = n(n−1)+1
2 ;

2. If M = H = N = n and r = 1, λ = n2

2 ;

3. If M = m, H = 1, N = n and r = 0, λ = min{m,n}
2 .

Finally, in chapter 5, we will look over an object of algebraic geometry

named determinantal variety and describe important propositions in [4],

[7]. In [4], the authors suggest an resolution of singularities of Mk,

M̃k = M̃k(m,n) = {(A,Λ) ∈M ×G(n− k, n)|AΛ = 0},

where Mk is set of matrices of rank at most k. Therefore, we will conclude

this thesis by showing two computations for the real log canonical threshold

;

2



CHAPTER 1. INTRODUCTION

1. By using blow-ups used in chapter 4 ;

2. By using the resolution described in [4].

We will do this for the case of M2 ⊂M = M3,3.

1. For A =

a11 a12

a21 a22

a31 a32

 and B =

(
b11 b12 b13

b21 b22 b23

)
. By taking blow-ups

and isomorphism, 2K(w) can be equivalent to

2K1(w) = a211b
′2
11[1 + F [ ˜b′12,

˜b′13, ã
′′
22, ã

′′
32]],

where F [ ˜b′12,
˜b′13, ã

′′
22, ã

′′
32] is a polynomial with ˜b′12,

˜b′13, ã
′′
22, ã

′′
32.

Therefore, the real log canonical threshold is λ is 5
2 .

2.

X =

x1 x2 x3

x4 x5 x6

x7 x8 x9

 , det(X) = 0.

Consider an resolution

M̃2 = {(X,Λ) ∈M ×G(1, 3)|XΛ = 0}.

Since G(1, 3) ∼= P2, we can rewrite by

M̃2 = {


x1 x2 x3

x4 x5 x6

x7 x8 x9

 ,

ab
c


}

with ax1 + bx2 + cx3 = 0, ax4 + bx5 + cx6 = 0, ax7 + bx8 + cx9 = 0.

On {a = 1}, 2K(w) becomes

3



CHAPTER 1. INTRODUCTION

2K(w) = x5
2[(bx2

′ + cx3
′)2 + x′2

2
+ x′3

2

+ (b+ cx′6)
2 + 1 + x′6

2

+ (bx′8 + cx′6x
′
8)

2 + x′8
2

+ x′6
2
x′8

2
].

Thus, the real log canonical threshold λ is 5
2 .

1.2 Introduction

The term “machine learning” was firstly defined in the Arthur Samuel’s

thesis in 1959, and 8 years later, Frank Rosenblatt designed the first neural

network, perceptron. Finally, in 1990s, scientists began developing com-

puter programs to analyze a lot of data and to “learn” from results, so

machine learning became reality. Recent advances of machine learning can

be approached from viewpoint of statistical learning theory. The learning

theory consists of regular learning theory and strictly singular learning the-

ory. The term “regular” means the following two conditions hold;

1. The map, which maps a parameter w ∈W to p( |w), is one-to-one ;

2. The Fisher information matrix is positive definite.

If a statistical learning theory is not regular, it is called “strictly singular”

learning theory.

Definition 1.2.1 (Fisher information matrix, [11]). For a given learning

machine p(x|w), where x ∈ RN and w ∈ Rd, we can define the “Fisher

information matrix” by

I(w) = {Ijk(w)}

where

4



CHAPTER 1. INTRODUCTION

Ijk(w) =
∫

( ∂
∂wj

log p(x|w))( ∂
∂wk

log p(x|w))p(x|w)dx (1 ≤ j, k ≤ d).

The Fisher information matrix is a real symmetric matrix. Therefore, if

it is positive definite, we can define an inner product, hence it provides

the Riemannian metric on the parameter space {w ∈ W} by defining

gij =< ∂
∂wi

, ∂
∂wj

>. From such an idea, Shun-ichi Amari developed the

information geometry by taking probability distribution for a statistical

model as a point in a Riemannian manifold in [2]. He applied techniques

in differential geometry to the area of probability theory. However, for the

strictly singular learning theory, it is either non-identifiable or not positive

definite. For the latter case, since we cannot define an inner product, such

an argument cannot be applied.

In the statistical learning theory, we need a numerical measure that tells

the difference between two probability density functions.

Definition 1.2.2 (Kullback-Leibler distance, [11]). Let U be an open subset

in RN . For given two probability density functions p(x), q(x) on U , the

“Kullback-Leibler distance” is defined by

K(q||p) =

∫
U
q(x) log

q(x)

p(x)
dx.

For the parameter set W , let W0 := {w ∈ W |K(w) = 0}. If W0 is

not one point set, the distribution of the maximum likelihood estimators

does not converge to the normal distribution ([11]). Hence, in strictly sin-

gular learning theory, the Bayesian estimation is more appropriate than

the maximum likelihood method ([1]). The Bayes estimation minimizes the

Bayes generalization error which is defined by the Kullback-Leibler distance

between the true distribution q(x) and the predictive distribution.

5
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Definition 1.2.3 ([11]). Let Dn = {X1, X2, · · · , Xn} be a set of random

variables and ϕ(w) be a priori probability density function. Then for given

statistical model p(x|w),

1. The “a posteriori probability density function p(w|Dn) with the in-

verse temperature β > 0 ” is defined by

p(w|Dn) =
1

Zn
ϕ(w)

n∏
i=1

p(Xi|w)β,

where Zn is normalizing factor so that p(w|Dn) is a probability density

function of w. In fact, this Zn is called the “evidence”.

2. The “predictive distribution” p(x|Dn) is defined by

p(x|Dn) =

∫
p(x|w)p(w|Dn)dw.

Then we can define the normalized evidence by Z0
n := Zn∏n

i=1 q(Xi)
β , and

the normalized stochastic complexity F 0
n by − logZ0

n. Then the following

theorem shows importance of this normalized stochastic complexity F 0
n .

Theorem 1.2.1 ([11]). The Bayes generalization error with β = 1 is same

as the increase of the normalized stochastic complexity. In order words,

Bg = EXn+1 [F 0
n+1]− F 0

n .

In [11], the asymptotic expansion of the stochastic complexity is proven as

follows.

Theorem 1.2.2 (Convergence of stochastic complexity, [11]). Let −λ and

m be the largest pole and its order of the zeta function

ζ(z) =

∫
K(w)zϕ(w)dw,

6



CHAPTER 1. INTRODUCTION

where K(w) is the Kullback-Leibler distance between q(x) and p(x|w). Then

the stochastic complexity Fn has the asymptotic expansion

Fn = nβSn + λ log n− (m− 1) log log n+ FR(ξ) + op(1),

where FR(ξ) is a random variable, op(1) is a random variable whch con-

verges to 0 in probability, and Sn will be described in chapter 2.

Due to the above theorem, the learning coefficient λ and its order m are

very important since they asymptotically determine the stochastic complex-

ity. Moreover, when a priori probability density function ϕ(w) is positive

at singularities, this learning coefficient is equal to the real log canonical

threshold, which can be proved by Hironaka’s theorem.

Definition 1.2.4 (Real log canonical threshold, [11]). Let f(x) be a real

analytic function on open set O ⊂ Rd. Let C be a compact set which is con-

tained in O. For each P ∈ C with f(P ) = 0, there exists a triple (W,U, g)

obtained by the Hironaka’s theorem such that

f(g(u)− P ) = Su1
k1u2

k2 · · ·udkd ,

g′(u) = a(u)u1
h1u2

h2 · · ·udhd ,

where (k1, · · · , kd) and (h1, · · · , hd) depend on P and triple (W,U, g). Then

we can define the “real log canonical threshold” for a given compact set C

by

λ(C) := inf
P∈C

min
1≤j≤d

(hj + 1

kj

)
,

where if kj = 0, define (hj + 1)/kj =∞.

Therefore, we can resolve singularity problem in strictly singular learn-

ing theory by using the theorem in algebraic geometry. Furthermore, to

7



CHAPTER 1. INTRODUCTION

compute the real log canonical threshold, we should replace singularities

to images of normal crossing singularities by taking recursive blow-ups. As

mentioned before, the main result of this thesis is clarifying this process

for specific examples. To obtain main result, we will go over basic notions

and facts in the probability theory and statistical learning theory in the

following chapter. In addition, the Hironaka’s theorem in algebraic geome-

try, which is a key to resolve the problem of singular learning theory, will

be described. In chapter 3, I will introduce examples of strictly singular

learning theory such as

1. Bayesian networks ;

2. Hidden Markov models ;

3. Mixtures of statistical models ;

4. Layered neural networks ;

5. Boltzmann machines,

and interpret them as statistical sense. For some examples, I will describe

explicit computation for resolving singularities. And then in chapter 4, we

will focus on the reduced rank regression model, which is an example of

neural networks. The table in the following page represents our examples

which will be considered in chapter 3. When it is impossible to compute

the Kullback-Leibler distance clearly, I leave it blank. The title of the last

column “Pos. def.” means positive definite.

8
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CHAPTER 1. INTRODUCTION

Definition 1.2.5 (The reduced rank regression, [11]). Let M be the number

of inputs and N be that of outputs. Assume there exist H hidden variables,

and r means the rank of the true distribution. The reduced rank regression

is described by a conditional probability density function as follows;

p(y|x,w) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
|y − xAB|2

)
,

where x ∈ RM , y ∈ RN , A is a M ×H matrix, B is a H ×N matrix, and

σ is a constant. Hence, the parameter set W = {(A,B)|A ∈ MM,H , B ∈
MH,N}.

The following table represents the main result aforementioned in the

previous section.

Note that the last case considers a matrix which can be represented by

product of two vectors and this is equivalent to a matrix is of rank at most

1. Thus, in chapter 5, we will look over important propositions related to

the determinantal variety, described in [4], [7].

Proposition 1.2.1 ([7]). Mk is an irreducible algebraic subvariety of M

of codimension (m− k)(n− k).

Proposition 1.2.2 ([7]). The singular locus of Mk is equal to Mk−1.

In [4], in the proof of the first proposition, the authors suggest an reso-

lution of singularities of Mk,

M̃k = M̃k(m,n) = {(A,Λ) ∈M ×G(n− k, n)|AΛ = 0}.

10



CHAPTER 1. INTRODUCTION

Therefore, we will compute the real log canonical threshold by two ways

described in the previous section, and obtain the same result. It shows us

possibilities of connection with the reduced rank regression.

11



Chapter 2

Preliminaries

In this chapter, we will present elementary notions in probability theory

and introduce a markov model. This refers to [12]. And then, we will discuss

the goal of statistical learning theory, one of main objects in this thesis. This

refers to [11]. Finally, we will conclude this chapter by covering singularity

theory in algebraic geometry and describing the Hironaka’s theorem, which

is our key to resolve singularity problem.

2.1 Elementary Probability Theory

Only a man coming from the future may be exactly able to know what

event will happen in the future. It seems impossible that a cat lying in front

of a monitor types the letter “Meow”. However, if someone, with pulling a

knife on you, asks you whether the probability of that event must be zero,

you wouldn’t answer “yes” with confidence. From this point of view, we can

say that full of uncertainty exists in the world where we live. Although every

moment has uncertainty, people desire to find some regularity and make the

12



CHAPTER 2. PRELIMINARIES

best or the most efficient decision with systematic tool. For example, we

naturally have the probability in mind even when making a slight bet with

friends. Therefore, the “Probability Theory” is the theory that helps us

understand uncertain moments with numerical terms and makes a rational

decision with reasonable grounds. In order to achieve this goal, it is required

to introduce some terminologies.

Definition 2.1.1 (Probability Space, [11]). Let Ω be a metric space and

a set B be a sigma algebra which consists of subsets in Ω. A function

P : B→ [0, 1] is called a “probability measure” if it satisfies

1. P (Ω) = 1

2. For disjoint subsets {Ak}, P (∪∞k=1Ak) =
∑∞

k=1 P (Ak).

Then we call a triple of a metric space, a sigma algebra, and a probability

measure (Ω,B, P ) a “probability space”.

Definition 2.1.2 (Random Variable, [11]). Let (Ω,B, P ) be a probability

space. For a measurable space (Ω1,B1), a function

X : Ω 3 ω 7→ X(ω) ∈ Ω1

is called “random variable” if it is measurable.

Remark 2.1.1. If we define

µ(A) := P (X−1(A)),

µ becomes a probability measure on (Ω1,B1). Then (Ω1,B1, µ) is a probabil-

ity space. Here, the probability measure µ is called a “probability distribution

of the random variable X”. For convenience, we will denote µ by PX .

13
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Definition 2.1.3 (Expectation, [12]). Let X be a random variable from

the probability space (Ω,B, P ) to (Ω1,B1) with the probability distribution

PX . Then we can define the “Expectation of X” as follows;

E[X] =
∫
X(ω)P (dω) =

∫
xPX(dx)

if the integration is finite in Ω1.

There are well-known probability distributions, such as Bernoulli distri-

bution, exponential distribution and so on, used to explain specific circum-

stance. Particularly, the “Poisson distribution” can be used in microbiology,

since the Poisson process is an example of the counting process. When we

conduct a experiment about conjugation between Hfr strain and F- strain,

we need to count the Colony forming unit (CFU). Since we already know

the value of CFU over time is subject to the Poisson distribution, we can

calculate the CFU more effectively.

In case Ω is not finite space, many differences can be found compared

to the finite case. However, if the sequence of random variables satisfies the

good condition, we can deduce a lot of meaningful results such as the law

of large numbers and Central limit theorem.

Definition 2.1.4 (i.i.d. sequence, [12]). A sequence of random variables

{Xi} is called a “independent and identically distributed (shortly, i.i.d.)”

if each Xi has the same probability distribution as the others and all are

mutually independent.

Unfortunately, when trying to make a model from real circumstances,

there are few cases which can be explained by i.i.d. sequence. Instead, let’s

consider more weaker condition preferred to apply to many cases.

14



CHAPTER 2. PRELIMINARIES

Definition 2.1.5 (Markov process, [12]). Let {Xn|n ≥ 0} be a sequence of

random variables. {Xn|n ≥ 0} is called the “Markov process” if it satisfies

the following condition;

P (Xn+1 ∈ A|X0 = x0, X1 = x1, · · · , Xn = xn) = P (Xn+1 ∈ A|Xn = xn)

for arbitrary x0, · · · , xn and a set A.

In that case, we say {Xn} has the Markov property and if the random

variables are discrete, it is called “Markov chain”.

Remark 2.1.2. In Markov chain, the range of random variables is called

“state space” and its element becomes “state”. If the state space is the set of

integers, the process is completely described by pij, where pij := P (Xn+1 =

j|Xn = i). Thus, we call a matrix P = (pij) with entries pij “transition

matrix”.

If pii = 1, i is called “absorbing state”.

Example 2.1.1. Obviously, if {Xn} are mutually independent, it satisfies

the Markov property.

Now, let’s introduce a binary relation on the state space.

Definition 2.1.6 ([12]). If there exists n ≥ 0 such that p
(n)
ij > 0, we say “i

is accessible from j” and denote i → j. If i → j and j → i, denote i ↔ j

and we can check it is an equivalence relation. In other words, we can divide

the state space under this relation.

Definition 2.1.7 ([12]). Let {Xn} be a Markov chain and Ni be a number

of visiting i state.

1. If P (Ni <∞|X0 = i) = 1, i is called “transient” state.
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2. If P (Ni =∞|X0 = i) = 1, i is called “recurrent” state.

Definition 2.1.8 (First return time, [12]). If we let Ri := min{n ≥ 1|Xn =

i}, Ri means the first time to return i from i. Then we can define two kinds

of recurrent states.

1. If E(Ri|X0 = i) <∞, i is called “positively recurrent state” ;

2. If E(Ri|X0 = i) =∞, i is called “null-recurrent state”.

We have already known weather prediction is one of the most used exam-

ples of Markov chain. However, there can be some interesting applications

in medical area.

Example 2.1.2. Let’s suppose there is a patient who thinks carefully which

method is the best for his health among drug treatments and having surgery.

If he takes drug treatments, several results are possible: no reaction (remain

original state), death because of fatal side effects, and becoming healthy. On

the other hand, if he takes a surgery, there are possible results: becoming

healthy, death because of hemorrhage. Thus, in this example, there exist 3

states: with disease, healthy, dead. Since it is impossible that the deceased

can be neither one with disease nor healthy, we can say “dead” is absorbing

state. In this case, Markov chain is useful to explain the principle of this

situation. Thus, we can describe this situation as in Figure 2.1.
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Figure 2.1: Decision of efficient treatment

In the above example, the patient and doctors should decide what pro-

cess would be the best choice for patient’s recovery. Since it is possible that

a person who got better after treatment (drug or surgery) can come with

the disease again, “healthy→ with disease” holds with the use of the afore-

mentioned symbol. Therefore, if we consider all possible cases, there will be

a infinite tree. At this point, it is natural to inquire about what will be the

limit of state distribution.

Definition 2.1.9 (Stability condition, [12]). We say “a given Markov chain

{Xn|n ≥ 0} has the stability condition” if the following holds;

For arbitrary i, j, there exists πj which is independent to i and satisfies

limn→∞ p
(n)
ij = πj and

∑
j πj = 1.
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Remark 2.1.3. The above stability condition can be restated by

π = πP ,∑
j πj = 1 , πj ≥ 0.

For convenience, let’s put the above two equations “(*) condition”.

The following theorem shows us when a given Markov chain converges

to the stationary Markov chain.

Theorem 2.1.1 ([12]). For a given irreducible( under relation ↔ ) and

non-periodic Markov chain, the following holds;

1. If all the states are positively recurrent, the chain has the stability

condition. In other words, for i, j, there exists πj = limn→∞ p
(n)
ij

which satisfies (*) condition. And this is the unique solution and πj

is equal to the expectation of the first return time of j.

2. Conversely, if there exists a solution of equations in (*), for arbitrary

i, j,

lim
n→∞

p
(n)
ij = πj

holds and all states are positively recurrent.

3. If all states are transient or null-recurrent, for arbitrary i, j,

lim
n→∞

p
(n)
ij = 0.

4. If there is no solution of equations in (*), for arbitrary i, j,

lim
n→∞

p
(n)
ij = 0.

Remark 2.1.4. Therefore, in the example 2.1.2, we can calculate the rate

of healthy state for each treatment respectively. By comparing these results,

it would be possible to decide what treatment is the best choice.
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2.2 Statistical Learning Theory

In our world, understanding the given data is essential in various fields.

For example, in the medical area, we can consider the situation that re-

searchers should determine whether a particular drug causes severe adverse

reaction when it is taken. In this situation, we can let {Xn} be characteris-

tics of a patient’s blood sample and Y be the patient’s risk of side effect. If

we can predict Y from {Xn}, it is possible to avoid prescribing the medicine

to patients whose estimate of Y is high. As in the aforementioned, mod-

eling and prediction are ultimate goals of statistical learning theory. Now,

let’s study some basic concepts in statistical learning theory, which refers

to [11].

Definition 2.2.1 (Random samples, [11]). For (Ω,B, P ) a probability space,

let X : Ω→ RN be a random variable which is subject to a probability distri-

bution q(x)dx. Here, we will call q(x) a “true probability density function”,

and random variables {Xn} subject to the same probability distribution of

X are called “random samples”.

In this paper, we will denote Dn by the set of random samples {Xn}.

Definition 2.2.2 (Learning machine, [11]). Let W be the set of parameters.

For a given w ∈ W , a conditional probability density function p(x|w) =

pw(x) for x ∈ RN is called a “learning machine” or “statistical model”.

Hence, w 7→ pw becomes a map from the parameter to the possibility density

function.

In statistical learning theory, one of goals is the development of a method

to find a probability density function p∗(x) from Dn by using p(x|w).

Here, p∗ is called the estimated probability density function. To determine

whether an approximation is good, we need a numerical measure.
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Definition 2.2.3 (Kullback-Leibler distance, [11]). Let U be an open subset

in RN . For given two probability density functions p(x), q(x) on U , the

“Kullback-Leibler distance” is defined by

K(q||p) =

∫
U
q(x) log

q(x)

p(x)
dx.

Now, we can measure the difference between the true density function

q(x) and the estimated function p∗(x).

Definition 2.2.4 (Generalization error and Training error, [11]). From

the above definition, K(q||p∗) is called the generalization error of statistical

estimation Dn 7→ p∗.

The “training error” is defined by

Kn(q||p∗) =
1

n

n∑
i=1

log
q(Xi)

p∗(Xi)
,

In statistical learning, it is important to find a mathematical relation be-

tween these two errors. If the generalization error can be estimated from the

training error, we can choose the best model among many possible models.

Definition 2.2.5 (Likelihood function and Log likelihood ratio function,

[11]). Let q(x) be a true distribution and p(x|w) be a parametric model.

Then we can define the following;

1. The “likelihood function” Ln(w) is defined by

Ln(w) =
n∏
i=1

p(Xi|w).

2. The “log density ratio function” f(x,w) is defined by

f(x,w) = log
q(x)

p(x|w)
.
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3. The “Kullback-Leibler distance” K(w) is defined by

K(w) =

∫
q(x)f(x,w)dx.

4. The “log likelihood ratio function” Kn(w) is defined by

Kn(w) =
1

n

n∑
i=1

f(Xi, w).

Remark 2.2.1. If we consider the empirical entropy Sn = − 1
n

∑n
i=1 log q(Xi),

we can deduce the following equality;

− 1

n
logLn(w) = Kn(w) + Sn.

Since Sn is independent to w, maximization of Ln(w) is equivalent to min-

imization of Kn(w).

Remark 2.2.2. When E[K(w)] is finite, by the law of big numbers,

Kn(w) 7→ K(w)

converges in probability for w ∈W .

If E[K(w)2] is also finite, by the central limit law,
√
n(Kn(w)−K(w))

converges in distribution to the normal distribution for w ∈W . Thus, if we

let S := −
∫
q(x) log q(x)dx, we can deduce that

− 1

n
logLn(w) 7→ K(w)− S

holds for w ∈W .

Anyone who reads the above remark would hope that minimization of

Kn(w) is equivalent to that of K(w) because once it holds, then maximiza-

tion of Ln(w) would be the best method in statistical estimation. Unfortu-

nately, since minimization and expectation are not commutative, we cannot
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obtain such a result. To analyze the difference between K(w) and Kn(w),

we need the notion of convergence in a functional space.

Definition 2.2.6 (Fisher information matrix, [11]). For a given learning

machine p(x|w), where x ∈ RN and w ∈ Rd, we can define the “Fisher

information matrix” by

I(w) = {Ijk(w)}

where

Ijk(w) =
∫

( ∂
∂wj

log p(x|w))( ∂
∂wk

log p(x|w))p(x|w)dx (1 ≤ j, k ≤ d).

Remark 2.2.3. By the definition, the Fisher information matrix is always

symmetric. Besides, if we let X = (∂1 log p(x|w), · · · , ∂d log p(x|w)), I be-

comes E[XXt]. Thus, for non-zero column vector u,

utIu = utE[XXt]u = E[utXXtu] = E[||Xtu||2] ≥ 0,

hence the matrix is always positive semi-definite.

Remark 2.2.4. Since
∫
p(x|w)dx = 1, we can deduce that

Ijk(w) = −
∫

(
∂2

∂wj∂wk
log p(x|w))p(x|w)dx.

Therefore, for the true parameter w0 which satisfies q(x) = p(x|w0), then

Ijk(w0) =
∂2

∂wj∂wk
K(w0)

i.e, the Fisher information matrix is same to the Hessian matrix of the

Kullback-Leibler distance at the true parameter.
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Definition 2.2.7 (Identifiability, [11]). A learning machine is called “iden-

tifiable” if the map

W 3 w 7→ p( |w)

is one-to-one. A model is called “nonidentifiable” if it is not identifiable.

Definition 2.2.8 (Positive definite metric, [11]). A learning machine p(x|w)

is said to “have a positive definite metric” if its Fisher information matrix

I(ω) is positive definite for each w ∈W .

Now, we are ready to define singular statistical model.

Definition 2.2.9 (Singular statistical models, [11]). Suppose that the sup-

port of p(x|w) is independent to w. A learning machine p(x|w) is said to be

“regular” if it is identifiable and has a positive definite metric. If it is not

regular, then it is called “strictly singular”. The set of singular statistical

models consists of both regular and strictly singular models.

Remark 2.2.5. In this remark, we will discuss the reason why the “positive

definite” condition for regular learning machine is important. The Fisher

information matrix is real symmetric matrix, so when it is positive definite,

we can define an inner product. If we define gij =< ∂
∂wi

, ∂
∂wj

>, it gives a

Riemannian metric g =< , > on {w ∈W}. Therefore, for regular learning

machine, we can consider the parameter space as a Riemannian manifold.

From such an idea, Shun-ichi Amari developed the information geome-

try by taking probability distributions for a statistical model as a point in

Riemannian manifold in [2]. He applied the techniques in differential ge-

ometry to the area of probability theory. However, for the strictly singular

learning theory, such an argument cannot be applied.

Remark 2.2.6. If we introduce an equivalence relation ∼ on the set of

parameters W ;
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w1 ∼ w2 ⇐⇒ p(x|w1) = p(x|w2) for all x.

Then the map (W/ ∼) 3 w → pw becomes one-to-one. However, the quo-

tient set (W/ ∼) is neither the Euclidean space nor a manifold, so it is

difficult to construct statistical learning theory on (W/ ∼).

For a strictly singular learning machine, the Bayesian estimation is more

appropriate than the maximum likelihood method.([1])

Definition 2.2.10 ([11]). Let Dn = {X1, X2, · · · , Xn} be a set of random

variables and ϕ(w) be a priori probability density function. Then for given

statistical model p(x|w),

1. The “a posteriori probability density function p(w|Dn) with the in-

verse temperature β > 0” is defined by

p(w|Dn) =
1

Zn
ϕ(w)

n∏
i=1

p(Xi|w)β,

where Zn is normalizing factor such that p(w|Dn) is a probability

density function of w. In fact, this Zn is called the “evidence”.

In particular, for β = 1, p(w|Dn) is called a “strict Bayes a posteriori

density”.

2. The “predictive distribution” p(x|Dn) is defined by

p(x|Dn) =

∫
p(x|w)p(w|Dn)dw.

Now, we are ready to define the Bayes estimation.

Definition 2.2.11 ([11]). For the same as above notations,
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1. The “Bayes estimation” is the map

Dn 7→ p∗(x) := p(x|Dn).

2. The “Bayes generalization error” Bg is defined by the Kullback-Leibler

distance between q(x) and p∗(x), i.e.,

Bg =

∫
q(x) log

q(x)

p(x|Dn)
dx.

3. The “Bayes training error” Bt is defined by

Bt =
1

n

n∑
i=1

log
q(Xi)

p(Xi|Dn)
.

4. The “stochastic complexity” Fn is defined by

Fn = − logZn.

Remark 2.2.7. The “normalized evidence” is defined by

Z0
n :=

Zn∏n
i=1 q(Xi)β

.

Likewise, the “normalized stochastic complexity” is defined by

F 0
n := − logZ0

n.

Then we can find an important relation between this F 0
n and the Bayes

generalization Bg when β = 1.

Theorem 2.2.1 ([11]). The Bayes generalization error with β = 1 is same

as the increase of the normalized stochastic complexity. In order words,

Bg = EXn+1 [F 0
n+1]− F 0

n .
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As we can see in the above theorem, the stochastic complexity is crucial

thing in Bayes learning theory. In [11], the asymptotic expansion of the

stochastic complexity is proven as follows.

Theorem 2.2.2 (Convergence of stochastic complexity, [11]). Let −λ and

m be the largest pole and its order of the zeta function

ζ(z) =

∫
K(w)zϕ(w)dw,

where K(w) is the Kullback-Leibler distance between q(x) and p(x|w). Then

the stochastic complexity Fn has the asymptotic expansion

Fn = nβSn + λ log n− (m− 1) log log n+ FR(ξ) + op(1),

where FR(ξ) is a random variable, op(1) is a random variable which con-

verges to 0 in probability, and Sn is defined as in Remark 2.2.1.

Remark 2.2.8. In the following chapter, the constant λ is an birational

invariant and it is real log canonical threshold if ϕ(w) is positive at singu-

larities. Thus, the above theorem tells us that the stochastic complexity Fn

is asympototically determined by the algebraic geometrical birational invari-

ant ([11]). For this reason, in Chapter 3 and 4, we will describe concrete

computation of this λ for specific cases, which are main results of this the-

sis.

2.3 Singularity Theory

For a strictly singular statistical model, the set of true parameters W0

is not one point but a real analytic set. Since W0 contains complicated

singularities, it is difficult to predict its behavior in a neighborhood of W0.

In order to solve this problem, we should introduce a powerful theorem
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in algebraic geometry, called Hironaka’s theorem. Before introducing this

theorem, let’s study basic singularity theory, which refers to [11].

Definition 2.3.1 (Singularities of a set, [11]). Let A be a nonempty set in

Rd.

1. A point P ∈ A is called “nonsingular” if there exists open sets U ,

V ⊂ Rd and an analytic isomorphism f : U → V such that

f(A ∩ U) = {(x1, · · · , xr, 0, · · · , 0)|xi ∈ R} ∩ V,

where r is a nonnegative integer.

2. If a point P is not nonsingular, it is called a “singular point of A”.

The set of all singularities of A is called the “singular locus of A” and

is denoted by Sing(A).

Then we can find the sufficient condition for a nonsingular point as

follows.

Theorem 2.3.1 ([11]). Let U be an open set in Rd, and f1(x), · · · , fk(x) be

a set of analytic functions (1 ≤ k ≤ d). Consider a real analytic set defined

by

A = {x ∈ U |f1(x) = f2(x) = · · · = fk(x) = 0}.

If a point P ∈ A satisfies detJ(P ) 6= 0, then P is a nonsingular point of A,

where J(P ) is Jacobian matrix at P .

As we mentioned before, it is difficult to analyze a function in a neigh-

borhood of singular point. However, any neighborhood of a real analytic set

can be considered as an image of normal crossing singularities as follows.
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Theorem 2.3.2 (Resolution of singularities, [11]). Let f(x) be a noncon-

stant real analytic function from a neighborhood of the origin in Rd to R with

f(0) = 0. Then there exists a triple (W,U, g) where W is open in Rd which

contains 0, U is a d-dimensional real analytic manifold, and g : U →W is

a real analytic map, which satisfies the following;

1. The map g is proper.

2. Let W0 := {x ∈W |f(x) = 0} and U0 := {u ∈ U |f(g(u)) = 0}, then g

is a real analytic isomorphism of U\U0 and W\W0.

3. For all P ∈ U0, there exists a local coordinate u = (u1, · · · , ud) of U

in which P is the origin and

f(g(u)) = Su1
k1u2

k2 · · ·udkd ,

where S = 1 or −1, ki’s are nonnegative integers, and the Jacobian

determinant of x = g(u) is

g′(u) = a(u)u1
h1u2

h2 · · ·udhd ,

where a(u) is a real analytic function, and hi’s are nonnegative inte-

gers.

Remark 2.3.1. The above theorem states that any analytic function can

be represented by a normal crossing function by choosing an appropriate

manifold.

Definition 2.3.2 (Real log canonical threshold, [11]). Let f(x) be a real

analytic function on open set O ⊂ Rd. Let C be a compact set which is con-

tained in O. For each P ∈ C with f(P ) = 0, there exists a triple (W,U, g)

described in the above theorem such that
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f(g(u)− P ) = Su1
k1u2

k2 · · ·udkd ,

g′(u) = a(u)u1
h1u2

h2 · · ·udhd ,

where (k1, · · · , kd) and (h1, · · · , hd) depend on P and triple (W,U, g). Then

we can define the “real log canonical threshold” for a given compact set C

by

λ(C) := inf
P∈C

min
1≤j≤d

(hj + 1

kj

)
,

where if kj = 0, define (hj + 1)/kj =∞.

Remark 2.3.2. We can prove that the real log canonical threshold does not

depend on the triple (W,U, g). Such a number that does not depend on the

triple is called a birational invariant. Thus, the real log canonical threshold

is one example of birational invariants.

Definition 2.3.3 (Normal crossing, [11]). Let U ⊂ Rd be an open set.

A real analytic function f(x) on U is called “normal crossing at x∗ =

(x∗1, · · · , x∗d)”, if there exists an open U ′ ⊂ U such that

f(x) = a(x)
d∏
j=1

(xj − x∗j )kj

for x ∈ U ′, where a(x) is a real analytic function and ki’s are nonnegative

integers.

From now on, we will present important tools in algebraic geometry,

which are used to solve singularity problems. In particular, we will introduce

the specific method to find a resolution map described before. In order to

do this, we should study blow-up.

At first, we should introduce the criterion for nonsingularity.
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Definition 2.3.4 (Dimension of a real algebraic set, [11]). Let V be a

nonempty real algebraic set in Rd. Let I(V ) =< f1, · · · , fr >.

The “dimension of the real algebraic set V ” is defined by the maximum

value of the rank of the Jacobian matrix, i.e.,

d0 = max
x∈V

rankJ(x).

Theorem 2.3.3 ([11]). Let V be a nonempty real algebraic set in Rd whose

dimension is d0.

Then x ∈ V is a nonsingular point of V if and only if rankJ(x) = d0.

In other words, x ∈ V is a singularity if and only if rankJ(x) < d0.

There are a lot of learning machines which contain singularities in pa-

rameter space. In order to obtain statistical learning theory, we should

resolve the complexity of singularities. The notion of blow-up is the key

to resolve this problem. Any singularities can be desingularized by finitely

many recursive blow-ups.

Definition 2.3.5 (Blow-up of a real algebraic set, [11]). Let r be an integer

satisfying 2 ≤ r ≤ d. Let V be defined by as follows;

V := {x ∈ Rd|x1 = x2 = · · · = xr = 0}.

Let W be a real algebraic set containing V . Then, the “blow-up of W with

center V ” is defined by

BV (W ) := {(x, (x1 : · · · : xr))|x ∈W\V }.

Definition 2.3.6 (Strict and total transform, exceptional set, [11]). Let

π : BV (W ) → W be a map defined by π((x, y)) = x. Then the following
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relation holds;

BV (W ) ⊂ π−1(W ).

The set BV (W ) is called a “strict transform of W” while π−1(W ) is a “total

transform”.

The “exceptional set” is defined by the closure of π−1(W )\BV (W ).

Definition 2.3.7 (General blow-up in Euclidean space, [11]). Let r be an

integer satisfying 2 ≤ r ≤ d. V and W are real algebraic sets in Rd such

that V ⊂ W . Let I(V ) =< f1, · · · , fr >. Then the “blow-up of W with

center V ”, BV (W ), is defined by

BV (W ) := {(x, (f1 : · · · : fr))|x ∈W\V }.

The following two theorems describe the process of desingularization.

Theorem 2.3.4 (Hironaka’s theorem 1). For real algebraic set V , there ex-

ists a sequence of real algebraic varieties V0(= V ), V1, · · · , Vn which satisfies

the following conditions.

1. Vn is nonsingular

2. For i = 1, 2, · · · , n, Vi = BCi−1(Vi−1), where Vi is a blow-up of Vi−1

with center Ci−1.

3. Ci is a nonsingular real algebraic variety which is contained in Sing(Vi).

Theorem 2.3.5 (Hironaka’s theorem 2). Let f(x) ∈ R[x1, x2, · · · , xd].
Then there exists a sequence of pairs of real algebraic varieties (V0,W0), · · · , (Vn,Wn)

which satisfies the following;

1. Vi ⊂Wi (1 ≤ i ≤ n).
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2. V0 = V (f), W0 = Rd.

3. {Wi|i = 0, · · · , n} are nonsingular algebraic varieties.

4. Vn is defined by a normal crossing polynomial on each local coordinate

of Wn.

5. For i = 1, 2, · · · , n, Wi = BCi−1(Wi−1), where Wi is a blow-up of

Wi−1 with center Ci.

6. Let πi : Wi → Wi−1 be a projection map defined in BCi−1(Wi−1) .

Then Vi is the total transform of πi.

7. The center Ci of each blow-up is a nonsingular real algebraic variety

which is contained in the set of critical points of f ◦ π1 ◦ π2 ◦ · · · ◦ πi.

Remark 2.3.3. The theorem 1 states that any real algebraic set can be

understood as an image of a nonsingular real algebraic variety. Here, ex-

ceptional sets are not contained in the blow-ups, while the theorem 2 are.

Therefore, in the theorem 2, any singularities of a real algebraic set are im-

ages of normal crossing singularities since exceptional sets are contained.
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Chapter 3

Examples of Singular

Learning Theory

In this chapter, we will look over some examples of singular learning

theory. If possible, we will compute the Kullback-Leibler distance and ob-

tain the real canonical threshold. Before we consider each of the cases, the

following table represents all the examples which will be described in this

chapter. When it is impossible to compute the Kullback-Leibler distance

clearly, I leave it blank. The title of the last column “Pos. def.” means

positive definite.
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CHAPTER 3. EXAMPLES OF SINGULAR LEARNING THEORY

3.1 Bayesian Networks

There are many cases of which variables are dependent. A Bayesian

network represents conditional dependencies between variables. Thus, it is

commonly used to describe cause and effect. Formal definitions refer to [10].

Definition 3.1.1 ([10]). A “directed graph” is a pair (V,E), where V is

a finite, nonempty set whose elements are called nodes, and E is a set of

ordered pairs of distinct elements of V . Elements of E are called directed

edges, and if there exists an edge from X to Y , denote (X,Y ) ∈ E.

In particular, a directed graph is called “directed acylic graph (in short,

DAG)” if it contains no cycles.

Remark 3.1.1. Let G = (V,E) be a DAG. For nodes X, Y in V , if

(X,Y ) ∈ E, X is called a “parent” of Y and Y is called a “descendent” of

X, respectively. If Y is neither a descendent of X nor a parent of X, Y is

called “nondescendent” of X.

Definition 3.1.2 (Bayesian network, [10]). A joint probability distribution

P of random variables in set V and a DAG G = (V,E) are given. We say

(G,P ) satisfies the “Markov condition” if for each X ∈ V , X is condition-

ally independent of the set of all its nondescendents given the set of all its

parents. If (G,P ) satisfies the Markov condition, it is called a “Bayesian

network”.

Since singular model contains regular model as a special case, we will go

over one example of regular model and then focus only on strictly singular

model.

Example 3.1.1 (Gaussian Bayesian Networks). Suppose the number of

antibodies in our body becomes 10 times more than before a day when some
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virus infected. Let’s assume that viral life cycle would be subject to normal

distribution with mean 10 and standard deviation σ. However, if that virus

infected before, the number of antibodies increases faster due to the effect of

memory cells. Therefore, the other influences should be considered, and they

are assumed to be normally distributed with mean 0 and standard deviation

σ. Let two random variables X be the days under virus influence and Y be

the number of antibodies in our body. That is, the number of antibodies will

be 10x if the virus survives x days. However, antibodies may be made more

or less than this based on the other influences. In other words,

Y = 10X + εY ,

where εY ∼ N(0, σ2). Since the expectation of those other influences is 0,

we can deduce that E[Y |x] = 10x, and since the variance of those other

influences is σ2, V [Y |x] = σ2. Consequently, Y is distributed conditionally

as follows;

P (y|x) = NormalDen(10x, σ2),

where NormalDen(·, ·) means the probability density function of normal

distribution with given mean and variance.

Generally, we can consider the case Y is a linear function of its parents

plus an error term εY which is subject to normal distribution with mean 0

and variance σ2. Let X1, · · · , Xk be the parents of Y , then we can describe

the situation by

y = a1x1 + a2x2 + · · ·+ akxk + εY ,

where P (εY ) = NormalDen(0, σ2), and Y is distributed conditionally as

follows;

P (y|x) = NormalDen(a1x1 + a2x2 + · · ·+ akxk, σ
2).
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Remark 3.1.2. In the above example, consider the case σ = 1 and {Xn} is

a i.i.d sequence, each Xn is subject to standard normal distribution. Then

by the argument in previous example, we can deduce

P (x, y|a1, · · · , ak) =
1√
2π

exp
−(y − a1x1 − · · · − akxk)2

2

If the true distribution is given by (b1, · · · , bk), then the Kullback-Leibler

distance K(a1, · · · , ak) can be computed as follows;

K(a1, · · · , ak) =
1

2

∫
((a1 − b1)x1 + · · ·+ (ak − bk)xk)2q(x, y)dxdy.

If we let Z := (a1−b1)x1+ · · ·+(ak−bk)xk, K(a1, · · · , ak) becomes 1
2E[Z2],

which is equal to 1
2V ar[Z] because expectation of Z is 0.

The condition i.i.d. implies V ar[(a1 − b1)x1 + · · · + (ak − bk)xk] = (a1 −
b1)

2V ar[x1] + · · ·+ (ak − bk)2V ar[xk], so we can conclude

K(a1, · · · , ak) =
1

2
((a1 − b1)2 + · · ·+ (ak − bk)2).

Note that K(a1, · · · , ak) = 0 if and only if ai = bi for all 1 ≤ i ≤ k. The

Fisher information matrix

I(a1, · · · , ak) =



1 0 0 · · · 0

0 1 0 · · · 0

0 0
. . .

...
...

...
. . .

...

0 0 · · · · · · 1


k×k identity matrix, hence it is positive definite for an arbitrary (a1, · · · , ak).
Therefore, it is an example of regular statistical model.

However, strictly singular case can also be found in Bayesian network.
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Example 3.1.2 ([11]). (Discrete exponential Bayesian network) Let X1, X2, X3,

and Y are random variables which take values {−1, 1}. Consider a Bayesian

network which is defined by the probability distribution

P (x, y|a, b, c) =
1

Z
exp(ax1y + bx2y + cx3y),

where Z = Z(a, b, c) is normalizing constant. Hence, the probability distri-

Figure 3.1: Discrete exponential Bayesian network

bution of X is given by

P (x|a, b, c) =
1

Z

∑
y=±1

exp(ax1y + bx2y + cx3y)

=
1

2Z
cosh(ax1 + bx2 + cx3).

Note that tanh(axi) = tanh(a)xi for xi = ±1, and

cosh(u+ v) = cosh(u) cosh(v) + sinh(u) sinh(v),

sinh(u+ v) = sinh(u) cosh(v) + cosh(u) sinh(v).
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Thus, we can deduce that

P (x|a, b, c) =
1

8
[1+tanh(a) tanh(b)x1x2+tanh(b) tanh(c)x2x3+tanh(c) tanh(a)x3x1].

If the true parameters (a0, b0, c0) = (0, 0, 0)

K(a, b, c) =
1

2
(a2b2 + b2c2 + c2a2) + · · · ,

and the Fisher information matrix is equal to zero at (0, 0, 0). Thus, this is

an example of strictly singular statistical model.

3.2 Hidden Markov Models

In the Markov model introduced in chapter 2, we know all the states

and transition matrix. However, if we have little knowledge about a given

word, can we deduce it exactly? To be specific, given information is just

the number of intersection points when we draw a vertical line on middle of

alphabet. When we observe a sequence 3, 3, 2, we can try to predict what

is the original word. This is one example of Hidden Markov models.

Definition 3.2.1 (Hidden Markov Model, [8]). Let {S1, · · · , Sn} be a set of

states and pij be a transition probability P (Sj |Si), and B is a set of outputs

in a Markov model. An observation sequence is given by O = {o1, · · · , ot},
where oi ∈ B for all i. Then the goal of hidden Markov model is compute

P (S1, · · · , St|o1, · · · , ot). In other words, from observation, we want to find

hidden states. Note that

P (S1, · · · , St|o1, · · · , ot) =
P (o1, · · · , ot|S1, · · · , St)P (S1, · · · , St)

P (o1, · · · , ot)
.

Here, by the Markov property, we can deduce

P (S1, · · · , St) =
t∏
i=1

P (Si|Si−1).

39



CHAPTER 3. EXAMPLES OF SINGULAR LEARNING THEORY

Besides, since each of observations are independent,

P (o1, · · · , ot|S1, · · · , St) =
t∏
i=1

P (oi|Si).

Thus, if we let πi := P (Si) be initial state probabilities and bi := P (oi|Si),
a hidden Markov model is parametrized by {pij}, {bi}, and {πi}.

Example 3.2.1. Consider the case when the emission probabilities are in-

dependently subject to the standard normal distribution. In addition, assume

that πi = 1
t for all i. For convenience, let oi = [ai, bi] ⊂ R. for i = 1, · · · , t.

Thus, for a given observation sequence O = {o1, · · · , ot}, we can compute

P (S1, · · · , St|o1, · · · , ot) as follows;

P (S1, · · · , St|o1, · · · , ot) =
P (o1, · · · , ot|S1, · · · , St)P (S1, · · · , St)

P (o1, · · · , ot)
.

By the argument in the above definition,

P (S1, · · · , St|o1, · · · , ot) =

∏t
i=1 P (oi|Si)

∏t
i=1 P (Si|Si−1)

P (o1, · · · , ot)
.

By substituting P (Si|Si−1) = pi−1,i and P (oi|Si) =
∫
[ai,bi]

1√
2π

exp−1
2x

2dx,

P (S1, · · · , St|o1, · · · , ot) =

∏t
i=1 pi−1,i

∏t
i=1

∫
[ai,bi]

1√
2π

exp−1
2x

2dx

P (o1, · · · , ot)
,

where the parameter space is {(pi,j , ai, bi)|ai,j ≥ 0,
∑

j pij = 1, ai, bi ∈
R, ai ≤ bi}. Therefore, we can deduce that

∂
∂pi−1,i

logP (S1, · · · , St|o1, · · · , ot)

=
∏
j 6=i pj−1,j

P (S1,··· ,St|o1,··· ,ot)
F (ai,bi)P (O)−pi−1,iF (ai,bi)P (O)′

P (O)2
,
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where F (ai, bi) =
∏t
i=1

∫
[ai,bi]

1√
2π

exp−1
2x

2dx. On the other hand,

∂
∂aj

logP (S1, · · · , St|o1, · · · , ot)

=
∏t
i=1 pi−1,i

P (S1,··· ,St|o1,··· ,ot)
− exp(− 1

2
a2
j )P (O)−F (ai,bi)P (O)′

P (O)2
,

and

∂
∂bj

logP (S1, · · · , St|o1, · · · , ot)

=
∏t
i=1 pi−1,i

P (S1,··· ,St|o1,··· ,ot)
exp(− 1

2
b2j )P (O)−F (ai,bi)P (O)′

P (O)2
,

where F (ai, bi) :=
∏t
i=1

∫
[ai,bi]

1√
2π

exp−1
2x

2dx and P (O) := P (o1, · · · , ot).
Therefore, for parameters (pi,j , ai, bi) with pi−1,i = 0, the Fisher informa-

tion matrix is zero, hence it is a strictly singular statistical model.

3.3 Mixtures of Statistical Models

There are many cases which are poorly suited for a single specific dis-

tribution. Hence, if we consider the mixture of several distributions, it will

explain the case more adequately. It is possible to treat mixtures of any sta-

tistical model we already know, but Gaussian mixtures is the most popular

example.

Definition 3.3.1 (Gaussian mixtures). The probability density function of

“Gaussian mixtures” is given by weighted sum of n probability density func-

tions of normal distribution. In other words, if we let P (x) the probability

density function of mixtures from N(µ1, σ
2
1), · · · , N(µn, σ

2
n),

P (x) =
n∑
i=1

ci√
2πσi

exp[−1

2
(
x− µi
σi

)
2

],

where {ci} is positive mixture weights, i.e.,
∑n

i=1 ci = 1.
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Therefore, a Gaussian mixture model is parametrized by weights {ci},
means {µi}, and standard deviations {σi}.

At first, let’s discuss some simple examples.

Example 3.3.1. Consider the case of mixture of two normal distributions

whose standard deviations are equally 1. Also, assume that both normal

distributions influence equally to the mixture, i.e., c1 = c2 = 1/2. Then, the

probability density function is computed as;

P (x|µ1, µ2) =
1

2
√

2π

[
exp[−(x− µ1)2

2
] + exp[−(x− µ2)2

2
]

]
,

with parameter space {(µ1, µ2)|µi ∈ R}. Then for (µ1, µ2) with µ1 6= µ2,

if we interchange their roles, we can get same probability density function.

Therefore, this model is not identifiable.

Example 3.3.2 ([11]). Here, let’s consider the case with different param-

eter set. The probability density function is given by

P (x|c, µ) =
1√
2π

[(1− c) exp[−x
2

2
] + c exp[−(x− µ)2

2
]],

with parameter space {(c, µ)|0 ≤ c ≤ 1,−∞ < µ <∞}.
Then we can deduce that

∂

∂c
logP (x|c, µ) =

1√
2π

(exp −(x−µ)
2

2 − exp −x
2

2 )

P (x|c, µ)
,

∂

∂µ
logP (x|c, µ) =

c√
2π

(exp−(x−µ)
2

2 (x− µ))

P (x|c, µ)
.

Therefore, for (c, µ) = (0, 0), the Fisher information matrix is zero, so this

is a strictly singular statistical model.

It is also possible to consider the mixture of discrete probability distri-

butions.

42



CHAPTER 3. EXAMPLES OF SINGULAR LEARNING THEORY

Example 3.3.3. (Poisson mixtures) For λ1, λ2, consider the case of mix-

ture of two Poisson distribution with parameter λi. Assume both influence

equally to the mixture, i.e., c1 = c2 = 1/2. In other words,

P (x|λ1, λ2) =
1

2

[
exp(−λ1)λx1

x!
+

exp(−λ2)λx2
x!

]
.

Then by the same argument in example 3.3.1, this model is not identifiable,

so it is an example of strictly singular model.

Example 3.3.4. Consider the probability density function is given by

P (x|c, λ) = c
exp(−1)

x!
+ (1− c)exp(−λ)λx

x!
,

with parameter space {(c, λ)|0 ≤ c ≤ 1, λ > 0}. Then

∂

∂c
logP (x|c, λ) =

1
ex! −

exp(−λ)λx
x!

P (x|c, λ)
,

and

∂

∂λ
logP (x|c, λ) =

(1− c)× exp(−λ)λx−1(x−λ)
x!

P (x|c, λ)
.

Therefore, for (c, λ) = (1, 1), the Fisher information matrix is zero, so this

is a strictly singular statistical model.

Then, it is natural that we want to find an relationship between a

Kullback-Leibler distance of mixture model and that of components. There

is an useful inequality between them as follows.

Lemma 3.3.1. For {xi, yi ≥ 0|i = 1, · · · , n}, the equality

n∑
i=1

xi log
xi
yi
≥

(
n∑
i=1

xi

)
log

∑n
i=1 xi∑n
i=1 yi

,

with equality holds if and only if xi/yi are constant.
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Proof. Without loss of generality, we can assume xi, yi > 0 for all i. Then

we can get the following inequality∑
ci(ti log ti) ≥ (

∑
citi) log(

∑
citi),

for ci ≥ 0 with
∑

i ci = 1 by applying the Jensen’s inequality to a convex

function t log t. The equality holds if and only if t1 = · · · = tn. If we

substantiate ci = yi∑
j yj

and ti = xi
yi

, the above inequality becomes∑ xi∑
yj

log
xi
yi
≥
∑ xi∑

yj
log
∑ xi∑

yj
.

By multiplying
∑
yj to both sides, we can prove lemma.

Now, we can find an relationship between Kullback-Leibler distance of

mixture and that of its components.

Theorem 3.3.1 ([6]). Given two mixture densities
∑n

i=1 cifi and
∑n

i=1 digi.

Then the Kullback-Leibler distance of these densities has a upper bound as

follows;

K(
n∑
i=1

cifi||
n∑
i=1

digi) ≤ K(c||d) +
n∑
i=1

ciK(fi||gi),

where c = (c1, · · · , cn) and d = (d1, · · · , dn). The equality holds if and only

if cifi∑
i cifi

= digi∑
i digi

for all i.

Proof. By definition,K(
∑n

i=1 cifi||
∑n

i=1 digi) =
∫

(
∑

i cifi) log
∑
i cifi∑
i digi

. Then

by applying the above lemma,∫
(
∑
i

cifi) log

∑
i cifi∑
i digi

≤
∫ ∑

i

cifi log
cifi
digi

=
∑
i

ci log
ci
di

+
∑
i

ci

∫
fi log

fi
gi

= K(c||d) +
∑
i

ciK(fi||gi).
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Example 3.3.5. By using the above theorem, we can find an upper bound

of Kullback-Leibler distance for Poisson mixture described in example 3.3.3.

Let (λ′1, λ
′
2) be a true parameter. Then

K

(
2∑
i=1

1

2

exp(−λ′i)λ′xi
x!

||
2∑
i=1

1

2

exp(−λi)λxi
x!

)
≤

2∑
i=1

1

2
K(

exp(−λ′i)λ′xi
x!

||exp(−λi)λxi
x!

).

Note that we can compute the right side. Since log(
exp(−λ′i)λ′xi

x! /
exp(−λi)λxi

x! ) =

x log(
λ′i
λi

) +λi − λ′i and the Kullback-Leibler distance is the expectation with

respect to true distribution, we can deduce that

K(
exp(−λ′i)λ′xi

x!
||exp(−λi)λxi

x!
) = λ′i log(

λ′i
λi

) + λi − λ′i.

3.4 Layered Neural Networks

Definition 3.4.1 (Neural Networks, [9]). A “neural network” is a network

of simple elements called “neurons”, which receive input and change their

state according to given input and an “activation function”, then it produces

“output”. The network has a form of directed and weighted graph, where

the neurons are the nodes and the connection between neurons are weighted

directed edges, called “synapses”.

Example 3.4.1 (Perceptron, [9]). Neural networks can be used to solve

the pattern recognition problem. Specifically, by comparing the output with

a given threshold, if the output is bigger then the input vector is assigned

to class 0, and otherwise it belongs to class 1. The simplest example is a
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perceptron, which has only one unit. If x1, · · · , xd are given inputs, by taking

sign of x1w1+ · · ·+xdwd, where each xi is connected to the unit with weight

wi, we can classify the input vector into two classes. In this case, the value

of threshold would be 0.

The neural networks is a method used to explain human brains. How-

ever, in the above definition, there exists one problem. If a loop exists in

the network, it is difficult to decide the result of computation performed by

network. Therefore, more adaptable notion should be needed.

Definition 3.4.2 (Layered Neural Networks, [9]). The units in a layered

neural network are organized in layers, with the output of neurons in a layer

serving as the inputs to the next layer’s neurons. Therefore, there are no

loops.

As we can see in perceptron, the classification rule is depend on the

weights wi’s. Therefore, we need to choose weights which are well-fitted to

the training example. In the case of a single unit, since the relation between

weights and the output is simple, so we can find “good” weights by a simple

method called perceptron convergence procedure.

Remark 3.4.1 (Perceptron Convergence Procedure, [9]). Let a be a output

and t be a target. Suppose that the output is not same to target, so we should

adjust weight wj by 4wj for each j. Let’s assume t = 1 and a = −1, i.e.,

x1w1 + · · · + xdwd < 0 and we want it to be positive. If we replace wj by

wj+4wj, the term (4wj)xj is added. If xj > 0, by increasing the value wj,

we can make x1w1 + · · ·+ xdwd < 0 positive, and otherwise, by decreasing

the values wj, we can reach a goal.

As the above remark, we have a systematic way to find well-fitted

weights. However, in the case of layered neural networks, there are prob-
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lems. First, we no longer have a simple relationship between weights and

the output. Moreover, if we use discontinuous threshold function like sign

function, a small change in the weight induces drastic change of the out-

put. Since outputs of units are treated as inputs of the next layer’s neuron,

so effect of changing weights would be tremendous. Therefore, we need a

smooth threshold function.

Definition 3.4.3 ([9]). A bounded function with “S” shape which is differ-

entiable and increasing is called a “sigmoid function”. The function f(x) :=
1

1+exp(−x) is the one of examples of sigmoid function.

In the case of layered neural network, we also want to minimize the

difference between target and output. Consider the error over training ex-

amples as a function of weights in the network, and let W be a set of all

possible weights which is considered as a parameter space. For each w ∈W ,

we can compute (target− output)2, thus the set of all these values is called

“error surface”. Therefore, one goal in layered neural network can be rewrit-

ten by finding a choice of weights for which the error surface is as low as

possible. The concrete process of this is described in [10].

Example 3.4.2 ([11]). Consider a layered statistical model with weights

a, b, c and a activation function s(x) := x+ x2 as we can see in Figure 3.2.

Assume the output is normally distributed conditionally. In other words,

p(y|x,w) =
1√
2π

exp(−1

2
(y − as(bx)− cx)2).

Then the Kullback-Leibler distance K(a, b, c) can be computed as follows;

K(a, b, c) =
1

2

∫
(as(bx) + cx)2q(x)dx.

Then if we let Z = ab2X2 + (ab+ c)X, K is equal to 1
2E[Z2], which can be

deduced from V ar[Z] and E[Z]. First, E[Z] = ab2E[X2] + (ab+ c)E[X] =
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Figure 3.2: Layered neural network - example 3.4.2

ab2E[X2] = ab2(V ar[X]) = ab2 since X is supposed to be subject to stan-

dard normal distribution. On the other hand, V ar[Z] = V ar[ab2X2 + (ab+

c)X] = a2b4V ar[X2] + (ab + c)2V ar[X] + 2ab2(ab + c)Cov[X,X2]. Here,

note that Cov[X,X2] = E[X(X2 − 1)] = E[X3] = 0. So, the only thing to

need is the value of V ar[X2], which is equal to E[X4]−E[X2]2 = 3−1 = 2.

Therefore, K = 1
2E[Z2] = 1

2(V ar[Z] + a2b4) = 1
2(ab+ c)2 + 3

2a
2b4.

Hence K(a, b, c) = 0 if and only if ab = c = 0. The Fisher information

matrix is equal to zero at (0, 0, 0), so it is a strictly singular statistical

model.

Example 3.4.3 ([11]). There are many situations explained by a layered

neural network with one input unit X, one output unit Y , and the remain

units in the second layer are all hidden. Let’s consider the simplest one

which has two units in the second layer with weights (a, b, c, d) described as

in Figure 3.3.

Assume Y is subject to standard normal distribution and an activation
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Figure 3.3: Layered network with one input, two hidden units, and one

output - example 3.4.3

function σ(x) := exp(x)− 1. Then

p(x, y|a, b, c, d) =
1√
2π

exp(−1

2
(y − aσ(bx)− cσ(dx))2.

Hence,

K(a, b, c, d) =
1

2

∫
(aσ(bx) + cσ(dx))2q(x)dx.

If we use the Taylor expansion,

aσ(bx) + cσ(dx) =

∞∑
k=1

xk

k!
(abk + cdk),

K(a, b, c, d) = 0 is equivalent to pk := abk + cdk is all zero for k. However,

we can check that pn ∈< p1, p2 > for all n. So, we should focus on a function

f(a, b, c, d) := (ab+ cd)2 + (ab2 + cd2)2.
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By recursive blow-ups, we can obtain the coordinate is given by

a = a,

b = b1d,

c = a(b1 − 1)b1c5d− ab1.

d = d.

On this coordinate,

f = d4a2b21(b1 − 1)2{c25 + (1 + c5d)2}.

Since g′(u) is ab1(b1 − 1)d2, the real log canonical threshold λ is 3
4 .

In particular, the case, when activation function is identity σ(x) = x,

is called the “reduced rank regression”, which is the main object of next

chapter.

3.5 Boltzmann Machines

Definition 3.5.1 (Boltzmann Machine, [5]). A “Boltzmann machine” is

a stochastic recurrent neural network with an associated energy. It con-

sists of not only visible variables but also hidden variables, which is a dif-

ference from Hopfield network. Each states have binary (0 or 1) values

and every nodes are connected with weight. Thus, a boltzmann machine is

parametrized by {U, V,W, b, c}, where U are visible-visible weights, V are

hidden-hidden weights, and W are visible-hidden weights. b and c mean

biases of visible and hidden units repectively.

Remark 3.5.1 (Restricted Boltzmann machine, [5]). In the above defini-

tion, if a Boltzmann machine is consdiered as a two-layered neural network

(i.e. there are no connections between visible-visible and hidden-hidden.),
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we call it “restricted Boltzmann machine” (in short, RBM). Therefore,

an RBM is a bi-partite graph of m visible and n hidden units, which is

parametrized by {wij , bj , ci|1 ≤ j ≤ m, 1 ≤ i ≤ n}. The associated energy

E(v, h) is defined as follows;

E(v, h) = −
n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑
i=1

cihi.

Then the joint distribution of visible and hidden units (v, h) is

P (v, h|wij , bj , ci) =
exp(−E(v, h))

Z
,

where Z is normalizing factor, i.e., Z =
∑

v∈{0,1}m
∑

h∈{0,1}n exp(−E(v, h)).

Figure 3.4: Structure of RBM

In the above definition, values of v and h are just 0 or 1, but we can

consider a case when both v and h are subject to Gaussian distribution.
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Definition 3.5.2 (Gaussian RBM, [3]). A “Gaussian RBM” is an RBM

with the associated energy is given by

E(v, h) =

m∑
j=1

(vj − bj)2

2σ2v
+

n∑
i=1

(hi − ci)2

2σ2h
−

m∑
j=1

n∑
i=1

(vj − bj)wij(hj − ci)
σvσh

.

Example 3.5.1. Consider a Gaussian RBM with mean vectors b, c, and

σv = σh = 1. In other words, the joint distribution of (v, h) is given by

P (v, h|wij) =
1

Z
exp(−

m∑
j=1

(vj − bj)2

2
−

n∑
i=1

(hi − ci)2

2

+

m∑
j=1

n∑
i=1

(vj − bj)wij(hi − ci)).

Therefore, for parameters {wij}, we can obtain

∂
∂wij

logP = 1
Z2 [− exp(−E)(vj − bj)(hi − ci)× Z − exp(−E)∂wijZ],

∂
∂bj

logP = 1
Z2 [exp(−E)(vj − bj)× Z − exp(−E)∂bjZ],

∂
∂ci

logP = 1
Z2 [exp(−E)(hi − ci)× Z − exp(−E)∂ciZ].

Since ∂wijZ has term (vj − bj)(hi − ci), ∂bjZ has term (vj − bj), and ∂ciZ

has term (hi − ci). Therefore, for (v = (vj), h = (hi)) = ((bj), (ci)), the

Fisher information matrix is zero, hence it is a strictly singular model.
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Chapter 4

The Reduced Rank

Regression

In this chapter, as I mentioned earlier, we will focus on the reduced rank

regression, whose activation function is trivial.

Definition 4.0.1 (The reduced rank regression, [11]). Let M be the number

of inputs and N be that of outputs. Assume there exist H hidden variables,

and r means the rank of the true distribution. The reduced rank regression

is described by a conditional probability density function as follows;

p(y|x,w) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
|y − xAB|2

)
,

where x ∈ RM , y ∈ RN , A is a M ×H matrix, B is a H ×N matrix, and

σ is a constant. Hence, the parameter set W = {(A,B)|A ∈ MM,H , B ∈
MH,N}.

Remark 4.0.1. In the above definition, if we let the true distribution

q(x, y|w) is given by (A0, B0), then the Kullback-Leibler distance is described
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as;

K(w) =
1

2
||AB −A0B0||2,

where || || is the matrix norm.

4.1 The case when M=N=H and r=0

Example 4.1.1 (M=N=H=2 and r=0 case, [11]). Let A =

(
a b

c d

)
and

B =

(
e f

g h

)
. Since r = 0,

2K(w) =

∥∥∥∥∥
(
a b

c d

)(
e f

g h

)∥∥∥∥∥
2

= (ae+ bg)2 + (af + bh)2 + (ce+ dg)2 + (cf + dh)2.

For the coordinate given by

a = a, b = ab′, c = ac′, d = ad′,

e′ = e+ b′g, f ′ = f + b′h, d′′ = d′ − b′c′,

we can deduce that

2K(w) = a2(e′2 + f ′2 + (c′e′ + d′′g)2 + (c′f ′ + d′′h)2).

Since this is equivalent to a2(e′2 +f ′2 +d′′2g2 +d′′2h2), we can take blow-up

at the center < e′, f ′, d′′ >. In other words, for the coordinate

e′ = e′

f ′ = e′f̃

d′′ = e′d̃,
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2K(w) = a2e′2(1 + f̃2 + d̃2g2 + d̃2h2).

Since g′(u) = a3e′2, the real log canonical threshold is λ = 3
2 .

Example 4.1.2 (M=N=H=3 and r=0 case). Let A =

a b c

d e f

g h i

 and

B =

 j k l

m n o

p q r

. By the same argument of the previous example, we can

obtain

2K(w) = (aj + bm+ cp)2 + (ak + bn+ cq)2 + (al + bo+ cr)2

+ (dj + em+ fp)2 + (dk + en+ fq)2 + (dl + eo+ fr)2

+ (gj + hm+ ip)2 + (gk + hn+ iq)2 + (gl + ho+ ir)2.

Then by using blow-up and isomorphism,

a = a, b = ab′, c = ac′, · · · , i = ai′,

j′ = j + b′m+ c′p, k′ = k + b′n+ c′q, l′ = l + b′o+ c′r,

we can rewrite 2K(w) as follows;

2K(w) = a2[(j + b′m+ c′p)2 + (k + b′n+ c′q)2 + (l + b′o+ c′r)2]

+ a2[(d′j + e′m+ f ′p)2 + (d′k + e′n+ f ′q)2 + (d′l + e′o+ f ′r)2]

+ a2[(g′j + h′m+ i′p)2 + (g′k + h′n+ i′q)2 + (g′l + h′o+ i′r)2]

= a2[j′2 + k′2 + l′2]

+ a2[(d′j + e′m+ f ′p)2 + (d′k + e′n+ f ′q)2 + (d′l + e′o+ f ′r)2]

+ a2[(g′j + h′m+ i′p)2 + (g′k + h′n+ i′q)2 + (g′l + h′o+ i′r)2].
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Now, under isomorphism

e′′ = e′ − b′d′, f ′′ = f ′ − c′d′, h′′ = h′ − b′g′, i′′ = i′ − c′g′,

2K(w) = a2[j′2 + k′2 + l′2]

+ a2[(d′j′ + e′′m+ f ′′p)2 + (d′k′ + e′′n+ f ′′q)2 + (d′l′ + e′′o+ f ′′r)2]

+ a2[(g′j′ + h′′m+ i′′p)2 + (g′k′ + h′′n+ i′′q)2 + (g′l′ + h′′o+ i′′r)2].

This is equivalent to

2K1(w) = a2[j′2 + k′2 + l′2]

+ a2[(e′′m+ f ′′p)2 + (e′′n+ f ′′q)2 + (e′′o+ f ′′r)2]

+ a2[(h′′m+ i′′p)2 + (h′′n+ i′′q)2 + (h′′o+ i′′r)2].

Therefore, by taking blow-up at the center < j′, k′, l′, e′′, f ′′, h′′, i′′ > as

follows;

j′ = j′, k′ = k̃j′, l′ = l̃j′, e′′ = ẽj′, · · · , i′′ = ĩj′,

2K1(w) = a2j′
2
[1 + k̃2 + l̃2

+ (ẽm+ f̃p)2 + (ẽn+ f̃ q)2 + (ẽo+ f̃ r)2

+ (h̃m+ ĩp)2 + (h̃n+ ĩq)2 + (h̃o+ ĩr)2].

Since g′(u) = a8j′6, the real log canonical threshold λ is 7
2 .

Example 4.1.3 (M=N=H=n and r=0 case). For A = (aij) and B =

(bij) (1 ≤ i, j ≤ n), we can generalize the value of the real log canonical

threshold by the argument used in above examples. By using blow-up and

isomorphism,

a11 = a11, aij = a11a
′
ij ((i, j) 6= (1, 1)),
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b′1k = b1k +
n∑
l=2

a′1lblk,

a′′ik = a′ik − a′1ka′i1 (2 ≤ i, k ≤ n),

we can deduce 2K(w) is equivalent to K1(w) expressed as follows;

2K1(w) = a211[
n∑
i=1

b′21i

+
n∑
i=1

(
n∑
j=2

a′′2jbji)
2

+
n∑
i=1

(
n∑
j=2

a′′3jbji)
2

+ · · ·

+

n∑
i=1

(

n∑
j=2

a′′njbji)
2].

Then by taking blow-up at the center < b1i
′, a2j

′′, · · · , anj ′′; 1 ≤ i ≤ n, 2 ≤
j ≤ n >, on one coordinate,

2K1(w) = a211b
′
11

2
[1 + F [b̃1i, ã2i, · · · , ãni]],

where F [b̃1i, ã2i, · · · , ãni] is a nonnegative polynomial with b̃1i, ã2i, · · · , ãni (2 ≤
i ≤ n). Since the number of elements in {b1i′, a2j ′′, · · · , anj ′′; 1 ≤ i ≤ n, 2 ≤
j ≤ n} is n+(n−1)2, g′(u) = b′11

n+(n−1)2−1 = b′11
n(n−1). Therefore, for the

case when M = N = H = n with rank zero, the real log canonical threshold

λ is n(n−1)+1
2 .

Therefore, we can completely compute Kullback-Leibler distance, its

resolution of singularities, and the real log canonical threshold for the case

when the number of inputs, outputs, and hidden variables are same and

rank of true distribution r = 0. Then, let’s consider the case of r = 1.
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4.2 Other cases

Example 4.2.1 (M=H=N=2 and r=1 case). For the case r 6= 0, the

Kullback-Leibler distance is no longer expressed as 1
2 ||AB||

2. Let A and

B be as described in the example 4.1.1, and since A0B0 for true parameter

(A0, B0) is 2× 2 matrix with rank 1, let

A0B0 =

(
i ki

j kj

)
Thus, K(w) is computed as follows;

2K(w) =

∥∥∥∥∥
(
a b

c d

)(
e f

g h

)
−

(
i ki

j kj

)∥∥∥∥∥
2

= (ae+ bg − i)2 + (af + bh− ki)2 + (ce+ dg − j)2 + (cf + dh− kj)2.

Thus, by taking blow-up and isomorphism

a = a, b = ab′, c = ac′, d = ad′, i = ai′, j = aj′,

e′ = e+ b′g − i′, f ′ = f + b′h− ki′, d′′ = d′ − b′c′, j′′ = j′ − c′i′,

it follows that

2K(w) = a2[(e+ b′g − i′)2 + (f + b′h− ki′)2 + (c′e+ d′g − j′)2 + (c′f + d′h− kj′)2]

= a2[e′2 + f ′2 + (c′e′ + d′′g − j′′)2 + (c′f ′ + d′′h− kj′′)2],

which is equivalent to

2K1(w) = a2[e′2 + f ′2 + (d′′g − j′′)2 + (d′′h− kj′′)2].

By taking blow-up at the center < e′, f ′, d′′, j′′ >, then for the coordinate

e′ = e′, f ′ = f̃ e′, d′′ = d̃e′, j′′ = j̃e′,
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2K1(w) = a2e′2[1 + F (f̃ , d̃, j̃)],

where F is a nonnegative polynomial on f̃ , d̃, j̃. Since g′(u) = a5e′3, the real

log canonical threshold λ is 4
2 = 2.

Example 4.2.2. (M=H=N=n and r=1 case) For true parameter (A0, B0),

let

A0B0 = (c, k1c, · · · , kn−1c),

where c = (c1, c2, · · · , cn)t. Then it becomes

2K(w) = [(
n∑
i=1

a1ibi1 − c1)2 + (
n∑
i=1

a1ibi2 − k1c1)2 + · · ·+ (
n∑
i=1

a1ibin − kn−1c1)2]

+ [(
n∑
i=1

a2ibi1 − c2)2 + (
n∑
i=1

a2ibi2 − k1c2)2 + · · ·+ (
n∑
i=1

a2ibin − kn−1c2)2]

+ · · ·

+ [(
n∑
i=1

anibi1 − cn)2 + (
n∑
i=1

anibi2 − k1cn)2 + · · ·+ (
n∑
i=1

anibin − kn−1cn)2].

By taking blow-up and isomorphism,

a11 = a11, aij = a11a
′
ij ((i, j) 6= (1, 1)),

b′1k = b1k +

n∑
l=2

a′1lblk − c′k,

a′′ik = a′ik − a′1ka′i1 (2 ≤ i, k ≤ n), c′′k = c′k − a′k1c′1 (2 ≤ k ≤ n),
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we can deduce 2K(w) is equivalent to K1(w) expressed as follows;

2K1(w) =

n∑
i=1

b′21i

+

n∑
i=1

(

n∑
j=2

a′′2jbji − ki−1c′′2)2

+
n∑
i=1

(
n∑
j=2

a′′3jbji − ki−1c′′3)2

+ · · ·

+
n∑
i=1

(
n∑
j=2

a′′njbji − ki−1c′′n)2,

where k0 is 1. Then by taking blow-up at the center < b′1i, a
′′
2j , · · · , a′′nj , c′′k; 1 ≤

i ≤ n, 2 ≤ j ≤ n, 2 ≤ k ≤ n >, on one coordinate,

2K1(w) = a211b
′2
11[1 + F [b̃1i, ã2i, · · · , ãni, c̃i]],

where F [b̃1i, ã2i, · · · , ãni, c̃i] is a nonnegative polynomial with b̃1i, ã2i, · · · , ãni, c̃i (2 ≤
i ≤ n). Since the number of elements in {b1i′, a2j ′′, · · · , anj ′′, c′′j |1 ≤ i ≤
n, 2 ≤ j ≤ n} is n+ (n− 1)2 + (n− 1) = n2, the real log canonical threshold

λ is n2

2 .

We can also consider a extreme case.

Example 4.2.3 (M=m, N=n, H=1, r=0). In this case matrices A and B

become vectors, so we can write A = (a1, · · · , am)T and B = (b1, · · · , bn).
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Thus, we can compute the Kullback-Leilbler distance as follows;

2K(w) =

∥∥∥∥∥∥∥∥∥∥


a1

a2
...

am


(
b1 b2 · · · bn

)
∥∥∥∥∥∥∥∥∥∥

2

=
∑

1≤i≤m,1≤j≤n
(aibj)

2.

Thus, by taking blow-up

a1 = a1, a2 = a1a
′
2, · · · , am = a1a

′
m,

It can be rewritten as

2K(w) = a1
2(
∑

1≤j≤n
bj

2)[1 +
∑

2≤i≤m
a′i

2
].

By taking blow-up

b1 = b1, b′2 = b1b
′
2, · · · , bn = b1b

′
n,

2K(w) = a21b1
2[1 +

∑
2≤i≤m

a′i
2
][1 +

∑
2≤j≤n

b′j
2
].

Since g′(u) = a1
m−1b1

n−1, the real log canonical threshold λ is min{m,n}
2 .
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Determinantal Variety

In this chapter, we will discuss an object of algebraic geometry, deter-

minantal variety. Some definitions refer to [7].

Definition 5.0.1. (Generic Determinantal Variety, [7]) Let M be the pro-

jective space Pmn−1 which is associated to the vector space of m×n matrices.

For a positive integer k, Mk ⊂ M is defined by the subset of matrices of

rank at most k. This is called a “generic determinantal variety”.

Remark 5.0.1. By the definition, a generic determinantal variety is the

common zero locus of all (k + 1)× (k + 1) minor determinants.

Example 5.0.1. Let A be a m× n matrix. Then we can deduce that A is

of at most rank 1 if and only if there exist two vectors v = (v1, · · · , vm)

and w = (w1, · · · , wn) such that A = vtw. Therefore, the M1 is just Segre

variety, the image of the Segre map σ : Pm−1 × Pn−1 → Pmn−1.

Then we have following propositions described in [4], [7].

Proposition 5.0.1 ([7]). Mk is an irreducible algebraic subvariety of M

of codimension (m− k)(n− k).
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Proof. Let M̃k be defined by

M̃k = M̃k(m,n) = {(A,Λ) ∈M ×G(n− k, n)|AΛ = 0}.

Then we can consider M̃k as an algebraic vector bundle over G(n − k, n)

of rank mk − 1 by projection to G(n − k, n). Thus, M̃k is connected and

has dimension dim(G(n − k, n)) + (mk − 1) = k(m + n − k) − 1. For the

projection π : M ×G(n− k, n)→M , π maps M̃k onto Mk, hence Mk is an

irreducible algebraic subvariety of codimension (m− k)(n− k).

Proposition 5.0.2 ([7]). The singular locus of Mk is equal to Mk−1.

Proof. For a point A ∈Ml −Ml−1, i.e., a matrix of rank exactly l, we can

choose bases for Km and Kn so that A can be represented as follows;

1 0 0 · · · · · · · · · 0

0 1 0 · · · · · · · · · 0
...

. . .
...

0 · · · · · · 1 0 · · · 0

0 · · · · · · 0 0 · · · 0
...

. . .
...

0 · · · · · · · · · · · · · · · 0


Then in affine neighborhood U in A given by {X11 6= 0}, for the coordinates
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{xij := Xij/X11}, we can write an element of U as follows;

1 x1,2 x1,3 · · · · · · · · · x1,m

x2,1 1 + x2,2 x2,3 · · · · · · · · · x2,m
...

. . .
...

xl,1 · · · · · · 1 + xl,l xl,l+1 · · · xl,m

xl+1,1 · · · · · · xl+1,l xl+1,l+1 · · · xl+1,m

...
. . .

...

xn,1 · · · · · · · · · · · · · · · xn,m


,

For l = k, we should identify the linear terms of the (k+1)× (k+1) minors

of this matrix. The only such minors with nonzero differential at origin A

are those involving the first k rows and columns, so their linear terms are

exactly the coordinates xi,j with i, j > k. But the number of such xi,j is

(m−k)(n−k), we can deduce that Mk is smooth at a point of Mk−Mk−1,

so Sing(Mk) ⊂Mk−1.

On the other hand, for l < k, there is no (k+ 1)× (k+ 1) minor which has

any linear terms. Since (k + 1) × (k + 1) minors generate the ideal of Mk,

projective tangent space to Mk at A ∈ Mk−1 is all of M . Therefore, Mk−1

is exactly the singular locus of Mk.

Remark 5.0.2 (Tangent space to determinantal variety, [7]). For a smooth

point A ∈ Mk −Mk−1, the tangent space to Mk at A can be described as

follows;

TA(Mk) = P{ϕ ∈ Hom(Kn,Km)|ϕ(Ker(A)) ⊂ Im(A)}.

Proof. In terms of the coordinates {xi,j}, the tangent space to Mk at A can

be identified as the space of matrices whose lower right (m− k)× (n− k)
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submatrix is zero. Note that the bases {ei}, {fj} for Kn and Km satisfy

that the kernel of A is spanned by {ek+1, · · · , en} and the image of A is

spanned by {f1, · · · , fk}. Thus, we have proved that the projective tangent

space to Mk at A corresponds the linear maps ϕ : Kn → Km mapping the

kernel of A into the image of A.

Remark 5.0.3 (Tangent cone to determinantal variety, [7]). Similarly, we

can also describe the tangent cones to the determinantal varieties. Let A be

a point of Ml −Ml−1. As in the proposition 5.0.2, an element of U , affine

neighborhood in A can be expressed as

1 x1,2 x1,3 · · · · · · · · · x1,m

x2,1 1 + x2,2 x2,3 · · · · · · · · · x2,m
...

. . .
...

xl,1 · · · · · · 1 + xl,l xl,l+1 · · · xl,m

xl+1,1 · · · · · · xl+1,l xl+1,l+1 · · · xl+1,m

...
. . .

...

xn,1 · · · · · · · · · · · · · · · xn,m


,

for coordinates {xij := Xij/X11}. We should find the leading terms of the

(k+1)×(k+1) minors. They must be the terms in the expansions of minors

involving the diagonal entries from the first l× l block. Therefore, they are

exactly (k + 1− l)× (k + 1− l) minors of the lower right (m− l)× (n− l)
submatrix. It implies that the tangent cone to Mk at A is contained in the

space of matrices whose lower right (m− l)× (n− l) block has rank ≤ k− l.
However, this locus is irreducible and has dimension ((m− l)−(k− l))((n−
l)− (k − l)) = (m− k)(n− k), so the above inclusion becomes equality.

As in the previous remark, note that the bases {ei} and {fj} for Kn and

Km satisfy that Ker(A) is spanned by {el+1, · · · , en} and Im(A) is span
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of {f1, · · · , fl}. Hence, the lower right (m − l) × (n − l) submatrix of B

represents the composition;

B′ : Ker(A) ↪→ Km →︸︷︷︸
B

Kn → Kn/Im(A).

Therefore,

TA(Mk) = {B ∈ Hom(Km,Kn)|rank(B′ : Ker(A)→ Coker(A)) ≤ k − l}.

In chapter 4, we computed the real log canonical threshold λ for some

cases in the reduced rank regression. Among them, we obtained a result

λ = min{m,n}
2 in the case of M = m, N = n, H = 1, and r = 0. In that case,

2K(w) = ‖AB‖2 and AB is product of two vectors. Since a matrix with

rank ≤ 1 if and only if it can be expressed as a product of two vectors, this

case can be regarded as an example of determinantal variety, introduced

in the beginning of this chapter. Precisely, it corresponds to M1. From

aforementioned facts, we have known

{0} = M0 ⊂M1 ⊂M2 ⊂ · · · ,

Mk−1 is the singular locus Mk.

Therefore, we can compute λ by using the resolution of singularities de-

scribed in Proposition 5.0.1.

Remark 5.0.4 (M=m≥ 2 ,N=2). Consider a space of m × 2 matrices of

rank at most 1. Then M̃k becomes

M̃k = {(X,Λ) ∈M ×G(1, 2);XΛ = 0}.
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We can let

X =


x1 x2

x3 x4
...

...

x2m−1 x2m

 , Λ = (y1, y2)
T ,

with relations x2i−1y1 + x2iy2 = 0 for all i = 1, 2, · · · ,m. On {y1 = 1}, it

becomes x2i−1 = −x2iy2.

Therefore, X becomes

X =


−x2y2 x2

−x4y2 x4
...

...

−x2my2 x2m

 .

On the other hand, in chapter 4,

AB =


a1b1 a1b2

a2b1 a2b2
...

...

amb1 amb2

 ,

and we took blow-up b1 = b2b
′
1 and b2 = b2, so it becomes

AB =


a1b2b

′
1 a1b2

a2b2b
′
1 a2b2

...
...

amb2b
′
1 amb2

 ,

which is of form similar to X.

Therefore, it would be possible that problems in the reduced rank theorem

can be solved by using geometric facts in determinantal variety.
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Example 5.0.2 (M=N=3, H=2, and r=0 case). At first, we will compute

the real log canonical threshold in this case by using blow-up used in chapter

4. Note that a 3 × 3 matrix is of rank at most 2 if and only if it can

be represented by a product of 3 × 2 matrix and 2 × 3 matrix. Hence for

A =

a11 a12

a21 a22

a31 a32

 and B =

(
b11 b12 b13

b21 b22 b23

)
, let’s make 2K(w) have normal

crossing singularities.

2K(w) =

∥∥∥∥∥∥∥
a11 a12

a21 a22

a31 a32

(b11 b12 b13

b21 b22 b23

)∥∥∥∥∥∥∥
2

=
3∑
i=1

(a11b1i + a12b2i)
2

+

3∑
i=1

(a21b1i + a22b2i)
2

+

3∑
i=1

(a31b1i + a32b2i)
2

By taking blow-up and isomorphism;

a11 = a11, aij = a11a
′
ij ((i, j) 6= (1, 1)),

b′1i = b1i + a′12b2i,

a′′22 = a′22 − a′21a′12, a′′32 = a′32 − a′31a′12,

we can deduce that

2K(w) = a211[b
′2
11 + b′212 + b′213 +

3∑
i=1

(a′21b
′
1i + a′′22b2i)

2 +
3∑
i=1

(a′31b
′
1i + a′′32b2i)

2].
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This is equivalent to

2K1(w) = a211[b
′2
11 + b′212 + b′213 + (b221 + b222 + b223)(a

′′2
22 + a′′232)].

Therefore, by taking blow-up at the center < b′11, b
′
12, b

′
13, a

′′
22, a

′′
23 >, on one

coordinate,

2K1(w) = a211b
′2
11[1 + F [ ˜b′12,

˜b′13, ã
′′
22, ã

′′
32]],

where F [ ˜b′12,
˜b′13, ã

′′
22, ã

′′
32] is a nonnegative polynomial with ˜b′12,

˜b′13, ã
′′
22, ã

′′
32.

Therefore, the real log canonical threshold is λ is 5
2 .

Now, let’s compute the same case by using the resolution of singularities

described in [4]. Let X be a 3× 3 matrix is of rank at most 2. Then

X =

x1 x2 x3

x4 x5 x6

x7 x8 x9

 , det(X) = 0.

By using same notation in the beginning of this chapter,

M̃2 = {(X,Λ) ∈M ×G(1, 3)|XΛ = 0}.

Since G(1, 3) ∼= P2, we can rewrite by

M̃2 = {


x1 x2 x3

x4 x5 x6

x7 x8 x9

 ,

ab
c


}

with ax1 + bx2 + cx3 = 0, ax4 + bx5 + cx6 = 0, ax7 + bx8 + cx9 = 0.

On {a = 1}, it becomes

x1 = −bx2 − cx3, x4 = −bx5 − cx6, x7 = −bx8 − cx9.
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Therefore,

2K(w) = x1
2 + x2

2 + · · ·+ x9
2

= (bx2 + cx3)
2 + x2

2 + x3
2

+ (bx5 + cx6)
2 + x5

2 + x6
2

+ (bx8 + cx9)
2 + x8

2 + x9
2.

By taking blow-up, then on {x2x6 − x3x5 = 1}, we may assume x5x9 −
x6x8 = 0. It’s because that if x5x9 − x6x8 = k(6= 0), we can take isomor-

phism as follows ;

1. x′8 = x8
k + x2,

2. x′9 = x9
k + x3.

Since

x5x
′
9 − x6x′8 = x5(

x9
k

+ x3)− x6(
x8
k

+ x2)

=
(x5x9 − x6x8)

k
− (x2x6 − x3x5)

= 1− 1 = 0,

if we replace x8 by x′8, and x9 by x′9, it becomes x5x9−x6x8 = 0. Therefore,

by taking blow-up at center < x2, x3, x5, x6, x8, x9 >, on one chart,

2K(w) = x5
2[(bx2

′ + cx3
′)2 + x′2

2
+ x′3

2

+ (b+ cx′6)
2 + 1 + x′6

2

+ (bx′8 + cx′9)
2 + x′8

2
+ x′9

2
]

= x5
2[(bx2

′ + cx3
′)2 + x′2

2
+ x′3

2

+ (b+ cx′6)
2 + 1 + x′6

2

+ (bx′8 + cx′6x
′
8)

2 + x′8
2

+ x′6
2
x′8

2
].
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Thus, we can obtain the same result λ = 5
2 , so it would be possible to

compute λ for general case by using the resolution of singularities of deter-

minantal variety.
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국 문 초 록

이 논문에서는 특이 학습이론의 목표와 그 방법들을 소개한다. 특이점 문

제를 해소하기 위해 대수기하에서 쓰이는 특이점 해결방법을 제시한다. 특이

학습이론의몇가지예시들을살펴보고계산을통해특이점을해소하는과정을

제시한다. 특히, reduced rank regression 모델에 대해서는 어떤 블로우업을

통해 특이점을 해소하는지 자세한 과정을 제시한다. 끝으로 determinantal

variety에 대해 간략히 소개한 뒤, 그것과 reduced rank regression 모델의 연

결가능성을 확인한다.

주요어휘 : 통계적 학습이론, 특이점 해결

학번 : 2014-22355
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