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ABSTRACT 

Sustainable use of groundwater resource is crucial issues in recent years due to 

increasing use of groundwater. In the Yangpyeong riverside area, where 

anthropogenic activities such as operation of the groundwater heat pump system 

(GWHPs) and the water curtain cultivation (WCC) are concentrated, prediction of 

changes in the groundwater levels is necessary to suggest management plans for 

protecting the groundwater resource in quantitative aspects. As a means of the 

groundwater level forecasting, the ANN model was applied in this study. It was 

revealed that the surface water level, the WCC and the GWHPs operation showed 

higher correlation with the groundwater level fluctuation in the study area rather than 

the precipitation. Based on the abovementioned influence factors, network 

architecture was constructed in train and test period, and prediction of the 

groundwater level at 8 wells was performed. The forecasted groundwater levels 

showed good matches with the observed data with low RMSE values in range of 

0.03~0.06 m. Additionally, the contribution and the relative importance of each 

influence factor were computed to decompose the combined effects. Weights method 

and PaD method which are pre-existing method to quantify the input variables in the 

ANN model were applied at first to calculate the contribution or the relative 

importance. An extraction method which can compare spatial and temporal 

contributions of each influence factor was developed in this study, and verified the 

suitability on the spatial and temporal comparison. As a results, the surface water 

level accounted for dominant effect on the groundwater level fluctuation 

(64.09~83.30 %), the WCC showed low effect (16.04~26.76 %), and the GWHPs 

had a little or no effect (0.29~6.26 %). Especially, effect of the WCC was changed 

drastically depending on times, showing greater contribution than that of the surface 
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water level in a period of the WCC operation in the winter season. Evaluation of 

influence factors on the groundwater level by the ANN will help understanding 

driving forces to change the groundwater level especially for an aquifer system 

which have complex and nonlinear features. 

Key words: the groundwater level forecasting, artificial neural network model, 

influence factors, contribution, relative importance 
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1 INTRODUCTION 

1.1 Research background 

Groundwater, which is stored in soil pore or fractures of rock beneath the land 

surface is one of the important natural resources. The quantity of groundwater could 

be increased by areal recharge from precipitation or losing stream and decreased by 

evapotranspiration or discharge to surface water naturally. However, since 

groundwater use has been increased for various purposes like agriculture, industry 

or drinking water in recent years, the issue related to sustainability on the 

groundwater use also has been raised (Alley et al., 1997; Gleeson et al., 2012). 

Excessive groundwater pumping can cause depletion of groundwater resources, and 

it leads to several environmental problems such as seawater intrusion, ecosystem 

change, and land subsidence (Foster and Chilton, 2003; Konikow and Kendy, 2005). 

Therefore, it is important to manage the groundwater sustainably and to plan 

thoroughly before the groundwater development. For effective management, 

prediction of the groundwater level which has a role of fundamental indicator to 

estimate the quantity of groundwater has been practiced (Daliakopoulos et al., 2005; 

Nayak et al., 2006; Wong et al., 2007; Yang et al., 2009). 

For these reasons, many studies have tried to predict the groundwater level. Based 

on factors influence the groundwater, time series models such as autoregressive (AR) 

model, moving average (MA) model and autoregressive moving average (ARMA) 

model have been applied to groundwater level forecasting (Eriksson, 1970; Yi et al., 

2004). These models are kinds of linear model, which considers linear regression or 

linear relationship between influence factors and the groundwater level. However, 

groundwater systems have complex features and nonlinearity so the groundwater 
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forecasting using time series models is questionable especially in complex 

environments (Yang et al., 2007). Numerical model such as MODFLOW, FEFLOW, 

and HydroGeoSphere is another tool to estimate the groundwater level (Brunner and 

Simmons, 2011; Trefry and Muffels, 2007; Wang et al., 2008). Because it is based 

on mathematical equation representing mechanism of groundwater flow, fluctuation 

of the groundwater level by some exogenous factors like precipitation or pumping 

can be calculated if all necessary hydraulic variables for governing equations are 

given. At last, an Artificial Neural Network (ANN) model, which was developed by 

a desire to imitate the functioning of human brain have been applied mostly to 

forecast the groundwater level in recent years (ASCE, 2000a; ASCE, 2000b; 

Daliakopoulos et al., 2005; Yoon et al., 2011). The ANN is one of empirical models, 

and it can solve the complex problems and consider nonlinearity. Empirical model 

has advantage that it can be used without detail hydraulic properties which are 

essential for the numerical model. 

As a study for the ANN model, Daliakopoulos et al. (2005) compared seven 

combinations of ANN architectures and training algorithms to derive the optimum 

network for best prediction efficiency and accuracy to forecast the groundwater level. 

Yoon et al. (2016) applied a weight error function approach to improve stability and 

accuracy of ANN models for a long term groundwater level prediction. They 

predicted groundwater level fluctuating in response to the natural factors such as 

rainfall, surface water level or tidal effect in coastal area. But only a few studies 

(Mohanty et al., 2010) have performed groundwater level forecasting fluctuating by 

human activities like pumping and irrigation. 

The study site is located at riverside area in Yangpyeong, and it was revealed that 

several factors such as the water curtain cultivation (WCC) and operation of the 
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groundwater heat pump system (GWHPs) affect the groundwater level in previous 

studies (Moon et al., 2012; Nam and Ooka, 2010; Park et al., 2015). Because the 

groundwater level fluctuates complexly by these factors, the groundwater level 

forecasting is essential for efficient management of the groundwater level in 

Yangpyeong area. Considering features of site in this study such as interaction with 

surface water, WCC and operation of the GWHPs, prediction of the groundwater 

level would be challenging. 

Because the ANN model estimates the output from input variables, studies for 

understanding how much each variable affect the output have been conducted. There 

are several methods like weights method, PaD method, profile method, and 

perturbation method which obtain the contribution of input variables using functions 

of ANN (Dimopoulos et al., 1999; Gevrey et al., 2003; Olden and Jackson, 2002). 

Although evaluation of input variables using these methods is not performed actively 

in a field of hydrogeology, it would be significant work to evaluate diversifying 

influence factors of the groundwater level in the future. 
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1.2 Objectives and scope 

In this research, time series of the groundwater level data in the Yangpyeong study 

area were applied as a main subject for three primary purposes. They are 1) 

understanding influence factors for the groundwater level change, 2) groundwater 

level forecasting using ANN models, and 3) evaluating the relative importance of 

influence factors.  

First step, search for influence factors which affect the groundwater level 

performed as foundation for constructing the ANN model to predict the groundwater 

level. This is fundamental and significant work because determined factors would be 

applied to the ANN model as input variables. Time series analyses like cross 

correlation and spectral analysis were conducted to investigate the relationship 

between possible candidates for influence factor and the groundwater level. 

Second step, constructing the ANN models has an objective to find an optimal 

network for accurate groundwater level forecasting. The ANN model was 

constructed once, and then parameters configuring the ANN model and input 

structures were determined for the optimal ANN model. 

Last step, the contribution and the relative importance for each influence factors 

that were used as input data in ANN model will be calculated. The purpose of this 

work is to understand which factor contributes to the groundwater level change more 

and to manage groundwater efficiently. Also, if the contribution is calculated exactly, 

it is possible to understand how effects of influence factors distribute spatially and 

how they change over time. 
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This study suggests an effective ANN model for prediction of groundwater level 

at the study site in Yangpyeong riverside area. It will be helpful to manage and 

develop groundwater sustainably. 
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2 STUDY AREA 

2.1 Site description 

The study site is located at the Han River Environmental Research Center 

(HRERC) in a riverside area of the alluvial river island, Yangsu-ri, Yangpyeong-gun, 

South Korea. The river island is situated at a junction of two rivers of the North Han 

river and the South Han river (Fig. 2-1). The Chungpyeong dam and the Paldang 

dam is located from the study site upstream and downstream, for purposes of flood 

prevention, water supply and power generation. Therefore, a water level of the Han 

river is controlled by opening/closing event of a gate of the Paldang dam. 

The weather observation data (air temperature and precipitation) of Yangpyeong-

gun for 10 years (2007~2016) are represented in (Fig. 2-2) (Korea Meteorological 

Administration, 2017). The mean air temperature and the mean precipitation of each 

month are plotted by dashed line and bar, respectively. The highest temperature was 

recorded on August with 24.02℃ and the lowest temperature was observed on 

January with -3.37℃. The precipitation in a wet season (June-August) was about 

880.19 mm showing very high percentage (61.78%) of the total annual precipitation 

in comparison to the precipitation in a dry season (December-February) of 66.15 mm 

(4.64%). 

GWHPs is installed at the HRERC to cool in summer and to heat in winter. The 

GWHPs refers to the open loop ground source heat pump system, using groundwater 

as a source of heat. Therefore, it was installed at a riverside area to supply the 

groundwater stably. To pump and inject the water for the GWHPs operation, three 

geothermal wells, one test well and 18 monitoring wells were installed for 
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monitoring the system. When the GWHPs is operated, groundwater is pumped from 

an abstraction well (YSG03) and injected into injection wells (YSG01, and YSP) 

with rate of 300 m3/day (Ministry of Land, Infrastructure and Transport, 2017). 

Because 9 wells were abandoned in June 2016, only 13 wells remain today and 

record the groundwater level continuously. 

Figure 2-3 shows the land uses around the study area. At the eastern area of the 

study site, most surface lands are used as agricultural lands which is composed of 

farmland dominantly and paddy occasionally. Among them, some of parts indicated 

as yellow box in Fig. 2-4a is the location of greenhouses performing the WCC, and 

Fig. 2-4b is the picture of one of them. In winter season, agricultural activities are 

held in the greenhouse and the WCC is practiced to protect crops from being frozen 

to death. WCC is a way to keep warm in the greenhouse with pumping lots of 

groundwater which has higher temperature than air and forming water curtain around 

the greenhouse. Although the WCC sites are not investigated in detail such as 

distances from the study area and pumped amounts of groundwater, impact of the 

WCC would be shown in the groundwater level in the study area. 
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Fig. 2-1. Location of the study area.
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Fig. 2-2. Climatic data in Yangpyeong for 10 years from 2007 to 2016. 
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Fig. 2-3. Land use map for agriculture.
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Fig. 2-4. (a) Location and (b) picture of the greenhouse performing the WCC.
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2.2 Hydro-geological characteristics 

In Yangsu-ri, which has an area of 8.27 km2, total amount of water resource is 

10,687×103 m3/year. Groundwater recharge rate and development available 

groundwater are 1,926×103 m3/year and 1,467×103 m3/year. There are 137 facilities 

for use of groundwater in Yangsu-ri, 127 facilities are for agriculture and 10 facilities 

are for living respectively (Ministry of Land, Infrastructure and Maritime Affairs, 

2008). 

According to geological logs obtained from installed geothermal and monitoring 

wells for GWHPs, subsurface of the study area is majorly composed of silty sand, 

gravel and gneiss from top to bottom. Four lines are shown in Fig. 2-5, and cross 

sections along each line are represented in Fig. 2-6~Fig. 2-9, respectively. Top silty 

sand layer exists at about 0 to 10 m distance from the surface. The gravel layer is 

under the silty sand layer with 5 to 6 m thickness. Bedrock which mainly consists of 

banded gneiss belongs to Precambrian gyeonggi gneiss complex exists below the 

silty sand/gravel layer with a depth of 16~17 m from the surface (Ministry of Land, 

Infrastructure and Maritime Affairs, 2008). 

According to cross sectional geologic maps across the study area, the alluvial layer 

with depth of 2 m to 16~18 m depth is divided into the silty sand layer and the gravel 

layer. Park et al. (2015) evaluated the hydraulic conductivity of the silty sand layer 

from laboratory and that of the gravel layer using a pumping test. The evaluated 

mean hydraulic conductivity of the silty sand is 3.962×10-5 m/s and the hydraulic 

conductivity of the gravel layer is 4.432×10-3 m/s which acts as a main aquifer in the 

study site (Park et al., 2015). An aquifer type of the study area corresponds to an 

unconfined aquifer, which distributed at the alluvial layer with depth to water of 
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about 2 m to 16~17 m. Because groundwater in this area is hydraulically connected 

to the Han river directly, water levels of the groundwater and the surface water have 

similar aspects to each other (Ministry of Land, Infrastructure and Transport, 2017). 

Table 2-1 and Table 2-2 show the basic statistical information of the surface water 

level and the groundwater level (measured at the lake Paldang and YSO12, 

respectively) for month from March 2014 to December 2015. In Fig. 2-10, maximum, 

mean, minimum values of the surface water level and the groundwater level are 

plotted on the same graph. The monthly mean groundwater level always was located 

at higher elevation than that of the surface water with difference in range of 

0.26~0.61 m, which means that the groundwater flows towards the surface water 

body, mostly. Difference between the surface water level and the groundwater level 

is larger in summer (about 0.5~0.6 m) than that in winter season (about 0.2~0.3 m) 

due to the WCC operation. 
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Fig. 2-5. Map of the study area with four lines (A-A’, B-B’, C-C’, D-D’). 
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Fig. 2-6. Geological cross section for line A-A’. 
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Fig. 2-7. Geological cross section for line B-B’. 
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Fig. 2-8. Geological cross section for line C-C’. 
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Fig. 2-9. Geological cross section for line D-D’. 
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Table 2-1 Statistical information of the surface water level. 

 

 

Time Minimum (m) Mean (m) Maximum (m) Std. (m)* 

14/03 25.00 25.13 25.21 0.04 

14/04 24.95 25.13 25.32 0.07 

14/05 25.03 25.19 25.35 0.06 

14/06 24.95 25.14 25.34 0.08 

14/07 24.78 25.09 25.31 0.12 

14/08 24.84 25.13 25.35 0.10 

14/09 24.74 25.14 25.35 0.14 

14/10 25.01 25.22 25.37 0.06 

14/11 24.98 25.19 25.36 0.09 

14/12 24.85 25.12 25.35 0.12 

15/01 24.88 25.05 25.19 0.06 

15/02 24.76 25.03 25.38 0.12 

15/03 24.93 25.24 25.37 0.10 

15/04 24.18 25.22 25.37 0.11 

15/05 24.94 25.13 25.37 0.08 

15/06 24.95 25.18 25.36 0.09 

15/07 24.85 25.15 25.39 0.10 

15/08 25.01 25.19 25.37 0.08 

15/09 25.09 25.24 25.37 0.06 

15/10 25.13 25.30 25.43 0.06 

15/11 25.13 25.31 25.44 0.06 

15/12 25.12 25.24 25.39 0.06 

Std.*: Standard deviation 
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Table 2-2 Statistical information of the groundwater level. 

Time Minimum (m) Mean (m) Maximum (m) Std. (m)* 

14/03 25.28 25.51 25.65 0.09 
14/04 25.47 25.62 25.79 0.06 
14/05 25.54 25.71 25.84 0.05 
14/06 25.49 25.72 25.92 0.09 
14/07 25.36 25.61 25.82 0.11 
14/08 25.42 25.68 25.87 0.08 
14/09 25.31 25.64 25.85 0.11 
14/10 25.45 25.69 25.83 0.06 
14/11 25.44 25.61 25.83 0.07 
14/12 25.11 25.40 25.74 0.15 
15/01 25.11 25.32 25.57 0.10 
15/02 25.04 25.34 25.76 0.14 
15/03 25.43 25.66 25.89 0.12 
15/04 25.32 25.72 25.87 0.11 
15/05 25.48 25.68 25.91 0.09 
15/06 25.46 25.76 25.94 0.11 
15/07 25.46 25.76 25.97 0.09 
15/08 25.51 25.74 25.92 0.08 
15/09 25.51 25.69 25.83 0.06 
15/10 25.64 25.78 25.89 0.05 
15/11 25.56 25.75 25.90 0.09 
15/12 25.32 25.51 25.78 0.09 

Std.* : Standard deviation 
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Fig. 2-10. Monthly maximum, mean, and minimum of the surface water level and the groundwater level from March 2014 to December 
2015. 
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3 METHODOLOGY 

3.1 Time series analysis 

3.1.1 Cross correlation analysis 

The cross-correlation is performed to analyze the relation of the groundwater level 

and various influence factors such as precipitation, evapotranspiration, surface water 

level and so on (Jeong et al., 2010; Padilla and Pulido-Bosch, 1995). Where time 

series of the influence factor is xn, and time series of the groundwater level is yn, 

cross-covariance can be expressed as follows. 

 
cxy(𝑡𝑡) =

1
𝑁𝑁
�(𝑥𝑥𝑛𝑛 − 𝑥̅𝑥)(𝑦𝑦𝑛𝑛+𝑡𝑡 − 𝑦𝑦�)
𝑁𝑁−𝑡𝑡

𝑛𝑛−1

 (Eq. 3.1) 

   

where t is the lag time, N is the number of samples in time series data, 𝑥̅𝑥 and 𝑦𝑦� are 

mean value of the xn and yn respectively. The cross-correlation function of xn and yn 

with time lag t is 

 
γxy(𝑡𝑡) =

𝑐𝑐𝑥𝑥𝑥𝑥(𝑡𝑡)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

 (Eq. 3.2) 

   

The cross-correlation represents the similarity of two time series, although it doesn’t 

mean that they should have relationship actually. When the relationship of two is 

universal, lag time t refers to the time at maximum cross-correlation coefficient and 

it means that the influence factor highly affects the other at the time t. 
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3.1.2 Spectral analysis 

Spectral analysis is a method for finding periodic characteristic from the time 

series data. By conducting Fourier transform, function in the time domain is 

converted to function in the frequency domain (Davis, 1973). In this study, Discrete 

Fourier Transform (DFT) is performed because the groundwater level time series 

data were obtained by sampling frequency of 0.5 minute. The function of DFT is as 

follows. 

 
Xk = �𝑥𝑥𝑛𝑛 ∙ 𝑒𝑒−2𝜋𝜋𝜋𝜋𝑘𝑘𝑛𝑛/𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

   (𝑘𝑘 = 0, 1,⋯ ,𝑁𝑁 − 1) (Eq. 3.3) 

   

where xn is the value of the signal at time n and Xk is the function in frequency domain. 

Because the value of Xk is composed of the real number and the image number, the 

absolute values of Xk which are called power spectrum is used for spectral analysis. 

Peaks in power spectrum represent the periodic characteristic of the time series data. 

Period of the time series data can be calculated as following equation. 

 Tn = 1/𝑓𝑓𝑛𝑛 (Eq. 3.4) 

   

where Tn is the period corresponding to the nth peak, and fn is the frequency of the 

nth peak. 
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3.2 Artificial Neural Network (ANN) 

In this study, the groundwater levels were predicted using an artificial neural 

network (ANN) model. The ANN is a mathematical structure patterned after the 

parallel processing of the human brain. In the present study, a feed forward network 

trained by a back propagation algorithm (Rumelhart et al., 1986) is employed to 

construct an ANN model. Descriptions for the mathematical aspects and detailed 

concepts of ANN are as follows (ASCE, 2000a; Daliakopoulos et al., 2005; Yoon et 

al., 2016; Yoon et al., 2015). 

3.2.1 Feed Forward Network 

In general, the feed forward network is composed of three layers: input layer, 

hidden layer, output layer. Each layer has a certain number of nodes and each node 

in a layer is connected to other nodes in the next layer with a specific value of weight 

and bias (Fig. 3-1). Fig. 3-2 represents a typical feed forward network with one 

hidden. Mathematical expressions of signal transmission in feed forward network 

are as follows. 

 
yh = 𝑓𝑓𝑦𝑦 ��𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑖𝑖 + 𝑏𝑏ℎ

𝑛𝑛𝑛𝑛

𝑖𝑖=1

� (Eq. 3.5) 

   

 
zo = 𝑓𝑓𝑧𝑧 ��𝑤𝑤ℎ𝑜𝑜𝑦𝑦ℎ + 𝑏𝑏𝑜𝑜

𝑛𝑛ℎ

ℎ=1

� 
(Eq. 3.6) 

   

where xi, yh, and zo represent the ith, hth and oth nodal value in input layer, hidden 

layer and output layer respectively, ni and nh denote the number of nodes in input 

layer and hidden layer respectively, wih and who represent the weight connecting ith 
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input node and hth hidden node, respectively. bh and bo are bias of hth hidden node 

and oth output node, respectively. fy is activation function in hidden layer, and fz is 

the activation function in output layer. In this study, log-sigmoid function was used 

as an activation function of hidden layer to reflect nonlinearity, and linear function 

was applied as an activation function of output layer. Equation of log-sigmoid 

function is expressed as Eq. 3.7. 

 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (Eq. 3.7) 
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Fig. 3-1. Schematic diagram of a node. 
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Fig. 3-2. Schematic diagram of the ANN model. 
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3.2.2 Back Propagation Algorithm 

When the weights of nodes are given initially, predicted value can be calculated 

in order from the input layer to the output layer. Training, also referred to as learning, 

is a process to find the optimal weights and bias that minimize error between 

observed value and predicted value that has form of following equation. 

 
𝐸𝐸𝑃𝑃 = �(𝑡𝑡𝑛𝑛 − 𝑧𝑧𝑛𝑛)2

𝑁𝑁

𝑛𝑛=1

 (Eq. 3.8) 

   

where EP is the error function of the Pth feed forward process and tn is the desired 

target value. The back propagation algorithm updates the weights and nodal bias by 

gradient descent method using learning rate and momentum. In the opposite 

direction to feed forward process, training process is practiced from output layer to 

input layer. At first, the incoming connection weights and the bias value of node in 

output layer are updated as follows. 

 
𝑤𝑤ℎ𝑜𝑜2 = 𝑤𝑤ℎ𝑜𝑜1 + 𝛼𝛼 ∙ �−

𝜕𝜕𝐸𝐸1

𝜕𝜕𝑤𝑤ℎ𝑜𝑜1
� (Eq. 3.9) 

   

 𝑤𝑤ℎ𝑜𝑜𝑃𝑃+1 − 𝑤𝑤ℎ𝑜𝑜𝑃𝑃                                

= 𝛽𝛽 ∙ (𝑤𝑤ℎ𝑜𝑜𝑃𝑃 − 𝑤𝑤ℎ𝑜𝑜𝑃𝑃−1) + (1 − 𝛽𝛽) ∙ 𝛼𝛼 ∙ �−
𝜕𝜕𝐸𝐸𝑃𝑃

𝜕𝜕𝑤𝑤ℎ𝑜𝑜𝑃𝑃
�   

(𝑃𝑃 ≥ 2) 

(Eq. 3.10) 

   

 
𝑏𝑏𝑜𝑜

2 = 𝑏𝑏𝑜𝑜
1 + 𝛼𝛼 ∙ �−

𝜕𝜕𝐸𝐸1

𝜕𝜕𝑏𝑏𝑜𝑜
1� (Eq. 3.11) 
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 𝑏𝑏𝑜𝑜
𝑃𝑃+1 − 𝑏𝑏𝑜𝑜

𝑃𝑃                             

= 𝛽𝛽 ∙ �𝑏𝑏𝑜𝑜
𝑃𝑃 − 𝑏𝑏𝑜𝑜

𝑃𝑃−1� + (1 − 𝛽𝛽) ∙ 𝛼𝛼 ∙ �−
𝜕𝜕𝐸𝐸𝑃𝑃

𝜕𝜕𝑏𝑏𝑜𝑜
𝑃𝑃� 

(𝑃𝑃 ≥ 2) 

(Eq. 3.12) 

   

where, 𝑤𝑤𝑃𝑃 is weight that is updated at Pth iteration, 𝛼𝛼 is the learning rate and 𝛽𝛽 

is the momentum. And then, the incoming connection weights and the bias value of 

nodes in hidden layer are updated as follows. 

 
𝑤𝑤𝑖𝑖ℎ2 = 𝑤𝑤𝑖𝑖ℎ1 + 𝛼𝛼 ∙ �−

𝜕𝜕𝐸𝐸1

𝜕𝜕𝑤𝑤𝑖𝑖ℎ1
� (Eq. 3.13) 

   

 𝑤𝑤𝑖𝑖ℎ𝑃𝑃+1 − 𝑤𝑤𝑖𝑖ℎ𝑃𝑃                             

= 𝛽𝛽 ∙ (𝑤𝑤𝑖𝑖ℎ𝑃𝑃 − 𝑤𝑤𝑖𝑖ℎ𝑃𝑃−1) + (1 − 𝛽𝛽) ∙ 𝛼𝛼 ∙ �−
𝜕𝜕𝐸𝐸𝑃𝑃

𝜕𝜕𝑤𝑤𝑖𝑖ℎ𝑃𝑃
� 

(𝑃𝑃 ≥ 2) 

(Eq. 3.14) 

   

 
𝑏𝑏ℎ

2 = 𝑏𝑏ℎ
1 + 𝛼𝛼 ∙ �−

𝜕𝜕𝐸𝐸1

𝜕𝜕𝑏𝑏ℎ
1� (Eq. 3.15) 

   

 𝑏𝑏ℎ
𝑃𝑃+1 − 𝑏𝑏ℎ

𝑃𝑃                             

= 𝛽𝛽 ∙ �𝑏𝑏ℎ
𝑃𝑃 − 𝑏𝑏ℎ

𝑃𝑃−1�+ (1 − 𝛽𝛽) ∙ 𝛼𝛼 ∙ �−
𝜕𝜕𝐸𝐸𝑃𝑃

𝜕𝜕𝑏𝑏ℎ
𝑃𝑃� 

(𝑃𝑃 ≥ 2) 

(Eq. 3.16) 

   

  



30 

 

3.3 Methods to study the contribution of variables in ANN 

models 

Most processes occurring in hydrogeology are intensively complicated and very 

nonlinear. This is also one of reason why ANN models were appropriate to be used 

to predict the fluctuation of the groundwater level in this study. As much of studies 

applying the ANN models have been conducted in various fields as well as 

hydrogeology, several methods were also developed to quantify variables and to 

understand the relationship between inputs and the output (Dimopoulos et al., 1999; 

Gevrey et al., 2003; Goh, 1995; Olden and Jackson, 2002; Sung, 1998; Yao et al., 

1998). Two methods (weights method and PaD method) were applied in this study, 

but they were not proper to spatial comparison and temporal comparison. To 

overcome these limitation, extraction method to compute the contribution and the 

relative importance was developed. 

3.3.1 ‘Weights’ method 

Weights connect each and every node in architecture of the ANN. Through 

learning process, weights that would work best for the prediction are determined. 

Using these determined connection weights, a weights method calculates the relative 

importance for each of input factor, suggesting the importance of the input factor on 

the output behavior as a percentage (Gevrey et al., 2003; Goh, 1995; Olden and 

Jackson, 2002). The weights method computes relative importance through 

following procedure. 

(1) Calculate contribution of each input node to the output (Bih) via each hidden 

node by multiplying the input-hidden connection weight (wih) by the hidden-
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output connection weight (who): 

 Bih = 𝑤𝑤𝑖𝑖ℎ × 𝑤𝑤ℎ𝑜𝑜 (Eq. 3.17) 

   

(2) At a hidden node, relative contribution (Rih) is absolute contribution of each 

input node divided by sum of absolute contribution of every input node. 

 
Rih =

|𝐵𝐵𝑖𝑖ℎ|
∑ |𝐵𝐵𝑖𝑖ℎ|𝑖𝑖

 (Eq. 3.18) 

   

(3) Add up the total relative contributions (Rih) of each input node (Ui). 

 Ui = �𝑅𝑅𝑖𝑖ℎ
ℎ

 (Eq. 3.19) 

   

(4) Calculate relative importance of each input factor (RIi). 

 RIi =
𝑈𝑈𝑖𝑖
∑ 𝑉𝑉𝑖𝑖𝑖𝑖

× 100 (%) (Eq. 3.20) 

   

3.3.2 ‘PaD’ method 

Although the ANN architecture is complicated, calculation process from input 

variables to output can be expressed by a formulation. A PaD method computes the 

contribution and relative importance by calculating the partial derivatives of ANN 

output with respect to the input (Dimopoulos et al., 1999; Gevrey et al., 2003). The 

partial derivatives of the output zon with respect to input xin (n = 1,…,N and N the 

total number of observations) are: 

 
din = 𝐷𝐷𝑛𝑛�𝑤𝑤ℎ𝑜𝑜𝐼𝐼ℎ𝑛𝑛(1− 𝐼𝐼ℎ𝑛𝑛)𝑤𝑤𝑖𝑖ℎ

𝑛𝑛ℎ

ℎ=1

 (Eq. 3.21) 
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where, Dn is the derivative of the output node with respect to its input, Ihn is the value 

of the hth hidden node for nth observation. 

For each input variable, SSD (Sum of the Square partial Derivatives) denote the 

contribution of it. 

 
SSDi = �(𝑑𝑑𝑖𝑖𝑖𝑖)2

𝑁𝑁

𝑛𝑛=1

 (Eq. 3.22) 
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3.3.3 ‘Extraction’ method 

Extraction method is devised in this study to decompose each influence of input 

variables in the ANN model. Principle of the extraction method is to compare output 

derived from controlled data set which contains only one effect of influence factor 

with corresponding input data. 

As a first step, three controlled input data sets were prepared to compute the 

contribution of each of three influence factors. Each data set is composed of data for 

three influence factors, but only one data remains intact and the others are fixed to a 

specific value according to data type. This step is to produce input data set which 

represents only one influence factor by eliminating effects of the other factors. Every 

influence data can be classified into two types, type A and B. Data type A has no base 

value, varying continuously like water level, temperature, and atmospheric pressure. 

Type B has specific value whenever an event occurs, and has base value if not. 

Factors such as precipitation rate and pumping rate would belong to type B. Data for 

type A should be fixed to average value of training data, and data for type B is fixed 

to its base value in process of eliminating the effect. Among three influence factors 

in this study, surface water level is classed as type A, while WCC and GWHPs are 

type B. As a result of this process, Fig.4-17a to c show input data sets which have 

only effect of surface water level, WCC, and GWHPs, respectively. 

Next step is to obtain the output by applying these input data sets to ANN model 

constructed in section 4.2 for prediction. Three outputs obtained from prediction 

model refer to pattern of the groundwater level fluctuation formed by each influence 

factor.  
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Before calculating the contribution, each input data should be normalized using 

the minimum and maximum values of each data, so that the variables range between 

0 and 1 in order to make it possible to compare different unit or property of input 

factors. And then, terms for ‘strength’ and ‘frequency’ are calculated separately. 

Mathematical equations of them differ slightly according to data type. Strength term 

can be expressed as given below. 

 
Si =

∑ �𝑧𝑧𝑜𝑜(𝑛𝑛+1) − 𝑧𝑧𝑜𝑜𝑜𝑜�𝑁𝑁−1
𝑛𝑛=1

∑ �𝑥𝑥𝑖𝑖(𝑛𝑛+1) − 𝑥𝑥𝑖𝑖𝑖𝑖�𝑁𝑁−1
𝑛𝑛=1

    (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴) (Eq. 3.23) 

   

 
Si =

∑ �𝑧𝑧𝑜𝑜𝑜𝑜 − 𝑧𝑧𝑜𝑜(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)�𝑁𝑁
𝑛𝑛=1

∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)�𝑁𝑁
𝑛𝑛=1

    (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵) 
(Eq. 3.24) 

   

where, z and x are output value and normalized input value, respectively and z(base) 

or x(base) is the base value when there is no event of corresponding factor. And 

mathematical expressions of frequency term are given 

 Qi = 1 −
𝑛𝑛0𝑖𝑖
𝑁𝑁 − 1

    (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴) (Eq. 3.25) 

   

 Qi = 1 −
𝑛𝑛0𝑖𝑖
𝑁𝑁

    (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵) (Eq. 3.26) 

   

where, n0i is the number that the value of |xi(n+1)-xin| in type A or (xin-xi(base)) in type B 

is zero.  

The contribution of an influence factor can be computed by the product of strength 

term and frequency term. 

 Ci = 𝑆𝑆𝑖𝑖 × 𝑄𝑄𝑖𝑖 (Eq. 3.27) 
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Relative importance is obtained from proportion of the contribution among total 

contribution of every influence factor. 

 
RIi =

|𝐶𝐶𝑖𝑖|
∑ |𝐶𝐶𝑖𝑖|𝑖𝑖

× 100 (%) (Eq. 3.28) 
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4 RESULTS AND DISCUSSION 

4.1 Influence factors for the groundwater level fluctuation 

4.1.1 Surface water level 

Figure 4-1 shows the surface water level measured at Paldang dam and the 

groundwater level of YSN01 in 2015. Cross-correlation analyses between the surface 

water level and the groundwater level measured at every wells except YSG01, 

YSG02, and YSG03 were performed (Table 4-1). Fig. 4-2 shows the result of cross-

correlation of YSN01, a blue line is the cross-correlation between the water level of 

lake Paldang and the groundwater level measured in 2015. A red dashed line shows 

the cross-correlation between the water level of lake Paldang and the groundwater 

level measured from May 2015 to July 2015 when WCC and the GWHPs were not 

operated. The reason why two periods are distinguished respectively is to verify 

impacts of the WCC and the GWHPs on the groundwater level. Maximum cross-

correlation coefficients between the surface water level and the groundwater level 

are in range of 0.6053~0.8746 at time lag of 0 hour for whole period, and 

0.6834~0.9693 at time lag of 0 day when the WCC and the GWHPs were not 

operated. Though the surface water level and the groundwater level shows very high 

correlation for whole period, coefficient of period when the WCC and the GWHPs 

are not operated is much higher than coefficient of whole period. It means that the 

groundwater level in the study area is dominantly controlled by the surface water 

level especially at periods when the WCC and the GWHPs are not operated. 

However, such basic pattern that the groundwater level follows the surface water 

level is disturbed when the WCC and the GWHPs are operated. Therefore, the 

surface water level has to be selected as input variable for prediction of the 
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groundwater level preferentially, and the WCC and the GWHPs should be considered 

additionally. 
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Fig. 4-1. The groundwater level (YSN01) and the surface water level (Paldang dam) in 2015.
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Table 4-1 Time lags and maximum cross-correlation coefficients between the 
surface water level and the groundwater level for whole period and no WCC, 
GWHPs period. 

 Whole period No WCC, GWHPs period 

 Time lag 
(hours) Coefficient Time lag 

(hours) Coefficient 

YSO01 

0 

0.6684 

0 

0.8616 

YSO02 0.8490 0.9643 

YSO03 0.8746 0.9574 

YSO04 0.8400 0.9460 

YSO05 0.8270 0.9551 

YSO06 0.8077 0.9648 

YSO07 0.7888 0.9438 

YSO08 0.6735 0.8047 

YSO09 0.6248 0.8058 

YSO10 0.7001 0.8963 

YSO11 0.6774 0.8247 

YSO12 0.7090 0.9175 

YSN01 0.7586 0.9206 

YSN02 0.7720 0.9287 

YSN03 0.8283 0.9491 

YSN04 0.8183 0.9693 

YSN05 0.6348 0.7625 

YSN06 0.6620 0.8111 

YSP 0.6053 0.6834 
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Fig. 4-2. Cross-correlation between the surface water level (Paldang dam) and 
the groundwater level (YSN01) for whole period and no WCC, GWHPs 

period. 
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4.1.2 Water Curtain Cultivation 

In the eastern side of the study area, the WCC is practiced from sunset to sunrise 

in winter season (from middle of November to middle of March) to keep warm in 

the greenhouse through pumping of large amounts of groundwater. Therefore, effect 

of the WCC causes the diurnal fluctuation of the groundwater level as shown in Fig. 

4-3. Diurnal fluctuation of the groundwater level occurred showing decrease of the 

groundwater level after pumping at sundown. After sunrise, pumping of the 

groundwater is stopped and the groundwater level is recovered. 

To verify the variability of the groundwater level changes due to the WCC, 

spectral analysis was performed with data of May 2014 when the WCC was not 

practiced and December 2014 when the WCC was practiced. For every wells except 

geothermal wells and test well, power of spectrums corresponding to 24 hours which 

refer to the cycle of WCC are shown in Table 4-2. Fig. 4-4 represents the result of 

spectral analysis for YSN01 representatively, red line is power spectrum of data 

measured in May 2014 and blue line is for December 2014. Power spectrum of 

December 2014 recorded much higher peak at 24 hours than data of May 2014 for 

every wells. These results imply that the WCC has a significant effect on the 

groundwater level with the diurnal cycle. 

Because the WCC causes a decline of the groundwater level, the daily mean 

groundwater level in winter is lower than the other season as mentioned in 2.2. As 

shown in Fig. 2-10, the daily mean groundwater level in winter season (WCC period) 

decrease drastically and the gap between the groundwater level and the surface water 

level is narrowing because the surface water level is not affected by the WCC. 
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As a result, the WCC makes the groundwater level to fluctuate considerably with 

diurnal cycle, and causes different pattern of the groundwater level from the surface 

water level. Therefore, it is sufficiently entitled to be one of input factor in ANN 

model in addition to the surface water level. 
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Fig. 4-3. The groundwater level time series data at YSN01 showing the effect of the water curtain cultivation: (a) from November 2014 
to March 2015, and (b) in December 2014. 
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Table 4-2 Power spectrum of cycle of 24 hours for May 2014 and December 2014. 

 May 2014 December 2014 

YSO01 0.0056 0.0584 

YSO02 0.0059 0.0284 

YSO03 0.0056 0.0296 

YSO04 0.0057 0.0321 

YSO05 0.0055 0.0346 

YSO06 0.0053 0.0335 

YSO07 0.0052 0.0409 

YSO08 0.0056 0.0580 

YSO09 0.0057 0.0557 

YSO10 0.0057 0.0510 

YSO11 0.0053 0.0579 

YSO12 0.0053 0.0436 

YSN01 0.0055 0.0477 

YSN02 0.0055 0.0467 

YSN03 0.0056 0.0307 

YSN04 0.0055 0.0308 

YSN05 0.0050 0.0580 

YSN06 0.0056 0.0579 
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Fig. 4-4. Result of spectral analysis and peaks at cycle of 24 hours for the 
groundwater level at YSN01. 
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4.1.3 Groundwater Heat Pump system (GWHPs) 

The operation of the GWHPs makes drastic change of the groundwater level in a 

few minutes and it leads to the increase of the average daily groundwater levels at 

the wells (YSN01, YSN02, YSN03, YSN04, YSO01, YSO02, YSO03, YSO04, 

YSO05, YSO06, YSO07, and YSG02 wells) around the pumping well (YSG03) and 

the decrease of it (YSN05, YSN06, YSO08, YSO09, YSO10, YSO11, YSO12) 

around the injection wells (YSG01, YSP). Fig 4-5 shows the groundwater level 

fluctuation response to the operation of GWHPs from April 5 to 15 in 2015 when the 

GWHPs was operated actively. A blue line is the groundwater level measured at the 

YSN01 beside the injection well and a red line represents the groundwater level 

measured at the YSO08 beside the pumping well. Unlike the WCC, whether the 

groundwater level is increased or decreased by the GWHPs is decided according to 

the distance from the pumping/injection wells, so it is necessary to identify the 

influence range for each rise and drop of the groundwater level. 

Figure 4-6 illustrates changes of the groundwater level for each wells according 

to the distance from the pumping/injection well affected by the operation of GWHPs. 

Magnitudes of changes in the groundwater level diminish as the distance from the 

pumping/injection wells increases, following the logarithmic function. The 

groundwater level changes recorded the greatest increase (+0.1773 m) at YSO01 and 

the largest drop (-0.2587 m) at YSN05. Result shows that the magnitude of changes 

in the groundwater level around the abstraction well are bigger than the groundwater 

level around the injection wells in all distance from pumping/injection well. It is 

because that there are two injection wells, so pumped water is injected with splitting 

into YSG01 and YSP, while the water is pumped from only one pumping well, even 

though total amounts of pumped water and reinjected water are definitely same. 
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From the results, the absolute maximum change of the groundwater level due to 

the GWHPs is 0.2587 m, and the magnitude of fluctuation is dependent on the well 

location. Because the groundwater level fluctuation by the GWHPs is not negligible 

and varies spatially, GWHPs should be used as an input variable.
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Fig. 4-5. The groundwater level in response to the operation of the groundwater heat pump system from April 5 to April 15 in 2015. 
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Fig. 4-6. Change in the groundwater level by the groundwater heat pump system according to the distance from pumping/injection well. 
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4.1.4 Precipitation 

Rainfall is one of well-known influence factors that affect the groundwater level 

especially in an alluvial aquifer (Jan et al., 2007). Fig. 4-7 represents the groundwater 

level of YSN01 and the precipitation observed from March 8 in 2014 to December 

31 in 2014. 

To evaluate the relationship between the precipitation and the groundwater level, 

cross-correlation was performed for the time series data measured at every wells 

except YSG01, YSG02, and YSG03. Data measured in 2014 when the GWHPs was 

not operated were applied at first, and then cross-correlation with data of wet season 

(July, August) in 2014 was additionally performed to evaluate the change of 

correlation in wet season. The results of cross-correlation are shown at Table 4-3, 

and Fig. 4-8 represents the result for YSN01 representatively. For all wells, 

maximum cross-correlation coefficients are in range of 0.1188~0.1646 with a time 

lag of 5 days in the whole season, and in range of 0.1415~0.2381 with time lag of 4 

days in only for the wet season. It could seem that the groundwater level would rise 

after 4~5 days of the rainfall event and response of the groundwater level to rainfall 

in the wet season is slightly larger and faster than that in whole season. Because an 

upper part of the aquifer is composed of alluvial silty sand layer and the groundwater 

exists about 2 m below the surface, a short lag time and a high coefficient are 

expected for the relation between the precipitation and the groundwater level of the 

study area. However, the results of the cross-correlation in this study presented the 

long time lag and the low coefficient in the wet season as well as in the whole season. 

Based on the weak relation between the precipitation and groundwater level above, 

the groundwater level in the study area is unlikely to be affected by precipitation 

event directly. 
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Despite a permeable geological condition for infiltrating of rainfall, the reason for 

the week correlations between the precipitation and the groundwater level can be 

found at the characteristic of lake Paldang. Water level of lake Paldang is controlled 

by opening and closing events of the Paldang dam, in which stored water in lake 

Paldang is discharged to prevent flood whenever it rains. For this reason, the 

groundwater level doesn’t rise by the precipitation event and it rather decreases at 

heavy rain period as shown in Fig. 4-8. Fig. 4-8 represents negative cross-correlation 

(-0.13~-0.05) between the precipitation and the groundwater level for wet season at 

time lag of 0~2 days. Fig. 4-9 represents the precipitation and discharge rate of lake 

Paldang, demonstrating that the precipitation leads to the opening of the Paldang 

dam and hardly affects the groundwater level. 
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Fig. 4-7. The groundwater level (YSN01) and the precipitation from March 8 to December 31 in 2014. 
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Table 4-3 Time lags and maximum cross-correlation coefficients between the 
precipitation and the groundwater level for whole season and wet season. 

 Whole season (2014) Wet season (2014) 

 Time lag 
(days) Coefficient Time lag 

(days) Coefficient 

YSO01 

5 

0.1525 

4 

0.2042 

YSO02 0.1188 0.1415 

YSO03 0.1487 0.1795 

YSO04 0.1595 0.1849 

YSO05 0.1573 0.2039 

YSO06 0.1535 0.2037 

YSO07 0.1608 0.2076 

YSO08 0.1501 0.2229 

YSO09 0.1646 0.2157 

YSO10 0.1592 0.2089 

YSO11 0.1533 0.2197 

YSO12 0.1572 0.2070 

YSN01 0.1530 0.2104 

YSN02 0.1611 0.2073 

YSN03 0.1468 0.1988 

YSN04 0.1562 0.2082 

YSN05 0.1608 0.2381 

YSN06 0.1593 0.2231 

YSP 0.1508 0.2123 
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Fig. 4-8. Cross-correlation between the precipitation and the groundwater 
level at YSN01 for whole season and wet season. 
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Fig. 4-9. The precipitation and the discharge rate at the Paldang dam. 
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4.2 Groundwater level forecasting using ANN models 

4.2.1 Network and data set 

Prior to performing the ANN model, information about network and data set are 

represented in Table 4-4. Time interval of every input and target data is 1 hour, and 

train period is from February 1 in 2016 to June 30 in 2016. From October 1 in 2016 

to January 15 in 2017 is determined for a test period and from January 16 in 2017 to 

April 30 in 2017 is for a predict period. The groundwater levels of 8 wells (YSN01, 

YSN03, YSO01, YSO03, YSO07, YSO08, YSO11, and YSO12) which have 

sufficient groundwater level data among existing wells are used for the target data. 

To predict the groundwater level change in the study area, the ANN model with feed 

forward neural network and back propagation algorithm for training was applied. 

There are five values for each of three parameters (number of hidden nodes, learning 

rate, momentum), so total 125 combinations of parameters were applied for 

determining one combination of parameters leading optimal prediction. From results 

of 4.1, data related to the surface water level, WCC, and the GWHPs were chosen as 

the input data set for the ANN model. Figure 4-10 illustrates the input data of them, 

water level data measured at the Paldang dam was used as input data representing 

the surface water level. Data for the WCC was set as 1 during pumping groundwater 

and 0 at no pumping period, assuming pumping rate is constant for every events of 

the WCC. Data for the GWHPs was obtained from recorded history of the operating 

time by a heat pump. 
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Table 4-4 Data sets and network sets of the ANN model. 

Data set 

Training 
Number 3624 

Period 2016. 2. 1 ~ 2016. 6. 30 

Testing 
Number 2568 

Period 2016. 10. 1 ~ 2017. 1. 15 

Predicting 
Number 2520 

Period 2017. 1. 16 ~ 2017. 4. 30 

Network set 

Network structure Feed Forward Network 

Training algorithm Back Propagation Algorithm 

Number of hidden nodes 4, 5, 6, 7, 8 

Learning rate 0.001, 0.003, 0.005, 0.007, 0.009 

Momentum 0.1, 0.3, 0.5, 0.7, 0.9 
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Fig. 4-10. Input data set and the train, test, and predict period for ANN model. 
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4.2.2 Exploration of model parameters 

In the train period, weights and biases in network are all obtained by training 

algorism for 125 combinations of model parameter. Among these 125 combinations 

of the parameter, an optimal combination can be determined to make the prediction 

more accurate. Therefore, exploration of the model parameters for finding the best 

one was performed in a test period by trial and error method. By comparing RMSE 

values of estimation using data in the test period, one combination of model 

parameter which has the lowest RMSE is selected to be applied for a predict period. 

Exploration of model parameters was conducted for every wells separately.  

Figure 4-11 illustrates distribution of the RMSE values according to model 

parameters, for the case of YSN01 representatively, and Table 4-5 represents the 

results of parameter exploration for all wells. In Fig. 4-11, RMSE tends to be lower 

as learning rate and momentum are smaller, while the number of hidden nodes does 

not regard RMSE value. However, Table 4-5 shows all different determined model 

parameters depending on the well, meaning RMSE can show various patterns 

according to the well or location. A combination of model parameter which is 

selected as a result of exploration for each well would be used for the prediction of 

the groundwater level in predict period. 
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Fig. 4-11. Distribution of RMSE values for 125 combination of three model parameters. 
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Table 4-5 Results of exploration of model parameters for each well to perform the optimal prediction of the groundwater level. 

Parameter YSN01 YSN03 YSO01 YSO03 YSO07 YSO08 YSO11 YSO12 

NH 7 7 6 4 6 7 7 4 

LR 0.001 0.003 0.001 0.003 0.001 0.009 0.007 0.003 

MM 0.3 0.1 0.5 0.1 0.5 0.5 0.5 0.9 

NH: Number of Hidden nodes 
LR: Learning Rate 
MM: Momentum 
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4.2.3 Prediction of the groundwater level 

After constructing the optimal ANN model through the train and test periods, 

prediction of the groundwater level at the selected 8 wells was performed using data 

in the predict period. Fig. 4-12 represents results of the groundwater level forecasting 

for the 8 wells. Black dot denotes the observed groundwater level, and a red line 

refers to the estimated value by the ANN model. Although all of 8 wells used same 

input data set as shown in Fig. 4-10, they led to all different prediction results. It is 

because that weights and biases from train period, and network architecture from test 

period were determined differently for each well. 

Prediction errors of the 8 wells are represented in Table 4-6. The groundwater 

levels at 8 wells were predicted with ME (Mean Error) in range of -0.0250~0.0057, 

with RMSE (Root Mean Square Error) between 0.0331 and 0.0562, with MAPE 

(Mean Absolute Percentage Error) in range of 0.1070~0.1956, CORR (Correlation 

coefficient) of 0.9053~0.9221, and NSE (Nash-Sutcliffe Efficiency) of 

0.7585~0.7138. Wells around the pumping well and the injection well (YSN01, 

YSO01, YSO08, YSO11) tend to show rather poor prediction comparing other wells. 

Moreover, these wells are closer to WCC site than the other wells. These imply that 

the stronger effects of the WCC and the GWHPs could cause the prediction error to 

be increased. It is because that the input data for WCC during operating period was 

set as constant value 1 with assuming consistency of pumping rate. Another reason 

is that the GHWPs is operated in minutes, and the groundwater level changes so 

quickly to estimate remarkably accurate level. Despite these bad conditions, results 

showed acceptable prediction of the groundwater level compared to other studies for 

groundwater level forecasting using artificial neural network (Mohanty et al., 2010; 

Taormina et al., 2012; Yoon et al., 2011)
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Fig. 4-12. Results of the prediction of the groundwater level at (a) YSN01, (b) YSN03, (c) YSO01, (d) YSO03, (e) YSO07, (f) YSO08, (g) 
YSO11, (h) YSO12. 
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Table 4-6 Prediction errors for each well. 

Error 
Index* YSN01 YSN03 YSO01 YSO03 YSO07 YSO08 YSO11 YSO12 

ME (m) -0.0168 -0.0048 -0.0121 -0.0189 0.0057 -0.0208 -0.0250 -0.0169 

RMSE (m) 0.0475 0.0331 0.0517 0.0378 0.0391 0.0562 0.0504 0.0420 

MAPE (%) 0.1629 0.1070 0.1739 0.1285 0.1237 0.1956 0.1632 0.1338 

CORR 0.9105 0.9083 0.9053 0.9181 0.9086 0.9165 0.9221 0.9151 

NSE 0.7872 0.8105 0.8039 0.7585 0.8138 0.7955 0.7872 0.7913 

ME: Mean Error 
RMSE: Root Mean Square Error 
MAPE: Mean Absolute Percentage Error 
CORR: Correlation coefficient 
NSE: Nash-Sutcliffe Efficiency 
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4.3 Computing contribution of influence factors 

Contribution can be interpreted in various ways according to the purpose of use 

or types of data. Therefore, it was necessary to establish a meaning of the 

contribution for application in this study. Contribution refers to how much a factor 

affects the target in general, but for time series data, it should also contain the 

meaning of frequency, i.e. how often a factor affects the target. If obtained 

contributions satisfy the concept mentioned above, they will be able to be compared 

spatially and temporally, and this will help understanding features of the 

groundwater level and influence factors in the study area. Decomposition of 

influence factors causing the groundwater level fluctuation complexly can make easy 

to know the effects of influence factors and to manage them. Previous studies have 

developed several methods to compute the contribution or relative importance of 

input data in ANN model already, among them, following two methods were 

applicable for calculation of contribution with this study data (Dimopoulos et al., 

1999; Gevrey et al., 2003; Goh, 1995; Olden and Jackson, 2002). 

4.3.1 Results of weights method 

Figure 4-13 illustrates results of weights method for every wells. Results of eight 

wells shows different relative importance to each other, but insignificant differences 

between three influence factors in almost wells are generated. In other word, there 

are minor differences between relative importances of three influence factors, so 

features of them are not noticeable. Furthermore, they reveal significant defect in 

spatial comparison. In comparison between YSO01 and YSO07, the WCC’s relative 

importance of YSO07 is much greater than that of YSO01 even though YSO07 is 

farther from the WCC site than YSO01. Also, the GWHPs’ relative importance of 
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YSO08 is slightly lower than that of YSO12 though YSO08 is much closer to the 

pumping well. Results of weights method did not satisfy the suitability for spatial 

comparison which is one of crucial point in computing the contribution. This 

limitation of weights method may come from computational procedure. The relative 

importance is obtained using weights connecting nodes, however, they are just 

calculated by multiplication and addition. Because there are several components 

which make the process of signal in the ANN more complicated such as activation 

functions and biases, sophisticated computing method should be devised considering 

these points. For these reasons, weights method is not suitable for evaluation of 

influence factors. 
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Fig. 4-13. Relative importance obtained by weights method. 
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4.3.2 Results of PaD method 

The output of PaD method is Sum of Square partial Derivatives (SSD) which 

refers to the contribution of each input factor at every well, the results of PaD method 

are shown in Fig. 4-14. Comparing with weights method, there is standardized 

pattern which represent the characteristic of the study site. Effect of surface water 

level is the highest in every wells, and it seems that values of SSD vary according to 

well location. Especially, YSN03 and YSO03 which are located closely to the river 

have much higher contribution of the surface water level than that of the other wells. 

Also, wells around pumping well or injection well (YSN01, YSO01, YSO08, YSO11) 

have some effect of GWHPs while SSD values of the other wells are too low. In 

these respects, PaD method is more reliable to compare spatially than weights 

method. 

However, PaD method also has a limitation in temporal comparison. Fig. 4-15 

represents input data only for the prediction period, showing big difference in WCC 

data around middle of March. Because the WCC is not operated after the middle of 

March, there is only zero in input data for WCC in that period. To verify that this 

difference is reflected in results of PaD method, SSDs for February and April were 

obtained separately expecting that there is no value of SSD for the WCC in April. 

Fig. 4-16 illustrates SSD values for the WCC in February and April, but they are 

very similar to each other. Evaluation of influence factors based on time series data 

should be possible to compare temporally, because input variables can vary in time. 

Therefore, PaD method is not suitable for time-periodic evaluation of influence 

factors. 
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Fig. 4-14. Sum of square partial derivatives obtained by PaD method.
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Fig. 4-15. Input data set for predict period. 
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Fig. 4-16. Comparison of sum of square partial derivatives for WCC on February and April in 2017. 
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4.3.3 Results of extraction method 

Evaluation of influence factor using weights method and PaD method was not 

suitable for spatial or temporal comparison. In order to make up for defects of these 

two methods, new approach calculating the contribution and the relative importance 

of input variable was developed and applied in this study. 

Figure 4-18 and Fig. 4-19 represent the contribution and the relative importance 

computed by extraction method, respectively. What is unique about the contribution 

is that it shows negative value on some occasion. The negative value of contribution 

denotes that the influence factor has negative correlation with the output. For 

example, contribution of WCC in all wells should be negative because operation of 

WCC cause decrease of the groundwater level by pumping water. On the other hand, 

contribution of surface water level is always positive because correlation between 

the surface water level and the groundwater level is close to 1. 

All the contribution and the relative importance describe the surface water level 

as the most dominant influential factor, meaning the groundwater level fluctuation 

has a higher correlation with surface water level than the other factors. The effect of 

WCC is rather low in every wells, the GWHPs have little or no contribution. 

To compare them spatially, contribution and relative importance were plotted on 

the map with 3-D bar and pie chart (Figure 4-20a and b). They show reasonable 

evaluation of influence factors when considering the relative orientation and distance 

of human activities. Consulting the spatial comparison of the contribution and the 

relative importance, 8 wells were classified into three groups according to feature of 

them (Table 4-7). Wells which are on the west side, beside the Han river belong to 

group A (YSN03, YSO03, YSO07, YSO12). They have very high effect of surface 
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water level, low WCC, and little or no GWHPs influence. Well number YSO08 and 

YSO11 are group B, showing rather higher effect of WCC than group A due to closer 

distance from WCC site. And they have some negative contribution of GWHPs 

because there is pumping well (YSG03) around them. Group C (YSN01, YSO01) is 

somewhat similar to group B but has difference in that their contributions of GHWPs 

are positive. It is because wells in group C are around the injection well (YSG01, 

YSP). 

After then, the contribution and the relative importance for three months (February, 

March, and April) were calculated to verify its ability of temporal comparison. Fig. 

4-21 illustrates the contribution in order of month, and Fig. 4-22 shows the relative 

importance. As referred in section 4.3.2 and Fig. 4-15, WCC is practiced daily during 

winter season, and stopped after the middle of March. This feature is revealed well 

at both of Fig. 4-21 and Fig. 4-22, implying the suitability of extraction method to 

temporal comparison. Especially, contribution of WCC in February is higher than 

that of surface water level except for three wells (YSN03, YSO03, YSO07). In 

March, figures show decreased contribution and relative importance of WCC 

compared to those of February because the WCC is completely stopped on March 

16. The crucial point is that there is no contribution of the WCC for every well in 

April when the WCC wasn’t operated. Unlike PaD method, newly developed method 

can perform periodically adjusted evaluation successfully, making it possible to 

compare the contribution temporally. 

The groundwater level fluctuation is due to several complex factors having each 

different feature. Therefore, it is difficult to catch the effect of them separately with 

only observed data. The process of prediction and evaluation of influence factors 

using the ANN model made it possible to decompose the combined effects of all 
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factors. Evaluation of influence factors will help understanding formation of the 

groundwater level and managing it efficiently. Also, it could be fundamental 

reference for other studies about interaction between the surface water and the 

groundwater, impact of the operation of GWHPs or WCC, and so on. 
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Fig. 4-17. Controlled input data sets which have only effects of (a) surface 
water level, (b) WCC, and (c) GWHPs. 
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Fig. 4-18. Contribution obtained by extraction method. 
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Fig. 4-19. Relative importance obtained by extraction method. 
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Fig. 4-20. (a) 3-D bars of the contribution, and (b) pie charts of the relative importance plotted on the map.
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Table 4-7 Classification of wells according to features of the contribution and the relative importance. 

Groups Well number Feature 

Group 1 YSN03, YSO03, YSO07, YSO12 
Very high effect of surface water level 

Rather low effect of WCC 
Little or no effect of GWHPs 

Group 2 YSO08, YSO11 
High effect of surface water level 

Slightly higher effect of WCC than group A 
Small effect of GWHPs (negative) 

Group 3 YSN01, YSO01 
High effect of surface water level 

Slightly higher effect of WCC than group A 
Small effect of GWHPs (positive) 
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Fig. 4-21. Temporal comparison of the contribution: (a) February, (b) March, and (c) April. 
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Fig. 4-22. Temporal comparison of the relative importance: (a) February, (b) March, and (c) April.
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4.3.4 Comparison of three methods 

Results of computing the contribution using three methods (weights method, PaD 

method, extraction method) were directly compared to know which is most pertinent 

method for evaluation of input variables. Fig. 4-23a and b show contributions of the 

GWHPs resulted from three methods in order of distance from the injection well and 

the pumping well, respectively. Relative importance calculated by weights method 

was independent of distance from the injection/pumping well. SSD computed by 

PaD method intends to decrease along with the distance from the injection/pumping 

well. However, there is exceptional well (YSN01) which showed higher contribution 

than that of YSO01 although YSN01 is farther from the injection well than YSO01. 

On the other hand, contribution from extraction method was always inversely 

proportional to the distance from the injection/pumping well with no exception. Fig. 

4-24 represents contributions of the WCC on February and April, 2017. Weights 

method showed same result between two months because weights method calculates 

the relative importance using weights determined in train period. Contribution 

obtained by PaD method had similar value between February and April, showing 

higher contribution on April in some wells (YSO07, YSO08, YSO11) though there 

was no WCC on April, 2017. Therefore, weights method and PaD method are 

unsuitable for evaluating the influence factors reflecting the time-periodic 

characteristics. The extraction method, however, calculated contribution represents 

appropriate difference between two months as mentioned in section 4.3.3. Overall, 

the extraction method is superior to the other two methods for evaluating the 

influence factors based on time series data.
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Fig. 4-23. Contribution or relative importance of the GWHPs obtained by three methods (a) for wells around the injection well; (b) for 
wells around the pumping well. 
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Fig. 4-24. Contribution or relative importance of the WCC on February and April in 2017 obtained by three methods. 
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5 CONCLUSION 

In this study, prediction of the groundwater level and evaluation of influence 

factors on the fluctuation of the groundwater level in the riverside area were 

performed by using the artificial neural network (ANN) model. Various human 

activities such as surface water levels controlled by the dam operation, water curtain 

cultivation (WCC) and the groundwater heat pump system (GWHPs) around the 

study area have affected the groundwater level complexly in the study area, three 

influence factors (surface water level, WCC, GWHPs) were selected to be applied 

as input variables for artificial neural network models. Weights, biases, and three 

model parameters (number of hidden nodes, learning rate, momentum) which are 

components of architecture of an ANN model were determined in train period and 

test period for each well. Based on these determined components, the groundwater 

level forecasting was successfully performed in prediction stage with RMSE in a 

range of 0.03~0.06 m. Prediction of the groundwater level at several wells which are 

close to pumping/injection well for GWHPs and WCC site shows relatively higher 

error than the others, implying that these two variables are complicated to predict the 

groundwater level more accurately. Nevertheless, errors of predictions indicated that 

the results are reliable compared to previous studies of the ANN model. 

To understand a contribution of influence factors affecting temporal changes of 

the groundwater level, weights method and PaD method were applied in this study. 

Both methods calculated the contribution or relative importance of each influence 

factors based on ANN models with its own limitations (i.e. weights method shows 

defect in a spatial comparison, PaD method is not suitable for a temporal 

comparison). To evaluate the contribution and the relative importance of influence 
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factors which are proper to spatial and temporal comparison, a concept of 

contribution was newly defined for data based on time series. The keywords of 

defined contribution in this study are ‘strength’ and ‘frequency’, meaning how much 

and often the input factors affect the groundwater level. By controlling the input data 

set, a response of the groundwater level to each input variable was obtained and used 

to calculate the contribution. The results denoted that effect of surface water level is 

the most dominant factor, effect of the GWHPs is the lowest one, and the magnitude 

of impacts are slightly different according to their features. These results also seem 

to be able to compare with other researches on this area studying the interaction 

between the surface water and the groundwater, or impact of surface water on the 

groundwater level using various analytical methods. 
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국문 초록 

최근들어 지하수의 이용이 지속적으로 증가함에 따라서 지속가능한 

지하수자원의 이용은 중요한 이슈로 떠오르고 있다. 특히 본 연구지역인 

양평 강변지역은 지하수를 이용한 지열 냉난방 시스템의 운영, 

수막재배와 같은 인위적인 활동이 집중되어 있어 지하수위 변화 예측이 

수자원 관리 및 보호를 위해 필수적이다. 본 연구에서는 지하수위 

예측을 위한 방법으로 인공신경망 기법을 적용하였다. 먼저, 예측을 

위해 지하수위의 영향요인에 대한 분석 결과 강 수위와 수막재배, 

그리고 지열 냉난방 시스템의 운영이 지하수위 변동과 높은 상관관계를 

보였고, 반면에 강수는 낮은 상관관계를 보였다. 위에서 언급한 세가지 

영향요인을 입력자료로 활용하여 학습기간과 시험기간을 통해 

연결강도와 편중값, 인공신경망 모델의 파라미터들을 결정하는 등, 

인공신경망의 구조를 결정하였고, 이를 적용하여 8 개 관정에서의 

지하수위 예측을 실시하였다. 지하수위 예측결과, 관측기록과 비교하여 

RMSE 가 0.03 m 에서 0.06 m 사이의 낮은 값을 보였다. 추가적으로 

지하수위 변동으로부터 영향요인들의 영향력을 각각 파악하기 위하여 각 

영향요인의 기여도 및 상대적 중요도를 계산하였다. 먼저 인공신경망 

모델에서 입력자료들을 정량화하는 기존방법인 weights method 와 PaD 

method 를 이용하여 기여도 또는 상대적 중요도를 계산했다. 하지만 두 

방법들은 각각 공간적인 비교와 시기별 비교에서 한계를 드러내었고 

이를 극복하기 위하여 본 연구에서는 extraction method 를 개발하였고 

공간, 시간적 비교가 가능함을 확인하였다. 결과적으로 지표수가 

지하수위의 변화에 가장 우세한 영향 (64.09~83.30 %)을 미쳤고 

수막재배가 다음으로 높은 영향 (16.04~26.76 %)을 보였으며 지열 

냉난방 시스템은 매우 적은 영향 (0.29~6.26 %)을 나타냈다. 특히 

수막재배의 영향은 시기에 따라서 매우 급격하게 변화하는데 겨울철 
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수막재배가 내내 일어나는 기간에 대해서는 오히려 지표수보다 더 높은 

기여도를 나타내었다. 인공신경망 기법을 이용한 지하수위의 영향요인 

평가는 매우 복잡하고 비선형적인 특징을 갖고 있는 대수층에서의 

지하수위 변동에 대한 원동력을 이해하는데 큰 도움을 줄 것이다. 

주요어 : 지하수위 예측, 인공신경망 모델, 영향요인, 기여도, 상대적 

중요도 
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