creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Geometry of moduli spaces of
rational curves on Fano varieties

(e trot Al A2l ?ij;)“ =2 Hadto] 33t

2018 8¢



2 A &8t

SECRIL WATCeAL LIMNVERSTY



Geometry of moduli spaces of
rational curves on Fano varieties
(ohie tieeek] ARl ﬁf‘ﬂ%{—)ﬁ%ﬂ REgto] F7He]

7 5}8}

20184 6

o d F (<)
oA ()
a s (D)
7 < (2)

(<)




2 A &8t

SECRIL WATCeAL LIMNVERSTY



Geometry of moduli spaces of
rational curves on Fano varieties

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by
Sanghyeon Lee

Dissertation Director : Professor Young-Hoon Kiem

Department of Mathematical Science
Seoul National University

August 2018



2 A &8t

SECRIL WATCeAL LIMNVERSTY



(© 2018 Sanghyeon Lee

All rights reserved.



2 A &8t

SECRIL WATCeAL LIMNVERSTY



Abstract

Geometry of moduli spaces of
rational curves on Fano varieties

Sanghyeon Lee

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we consider two families of Fano varieties as main objects.
One is the moduli space N of rank 2 stable vector bundles over a smooth
projective curve X over C with a fixed determinant line bundle Ox(—x) for
a fixed point x € X, and the others are hyperplane sections of the Grass-
mannian Gr(2,5). We study the moduli spaces of smooth rational curves
and their various compactifications as well as their geometric structures. For
the Fano variety A, we mainly consider the compactifications of the moduli
space of degree 3 smooth rational curves as a stable map space and discuss
topological types of stable maps contained in the boundary of the compact-
ified space. For hyperplane sections of a Grassmannian Gr(2,5), we discuss
rationality of moduli space of smooth rational curves of degree < 3, and then
we consider compactifications of the moduli space of smooth conics by the
Hilbert scheme. We further discuss smoothness of these compactified spaces
using birational models of the compactified spaces.

Key words: Moduli space, Rational curves, Fano varieties, Hilbert scheme,

Stable map space, Grassmannian, Moduli space of vector bundles
Student Number: 2011-20273
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Chapter1
Introduction

In this thesis, we deal with two families of Fano varieties as main objects.
One is the moduli space N of rank 2 stable vector bundles over a smooth
projective curve X, of genus g(X) > 4, with fixed determinant line bundle
Ox(—x) for a fixed point x € X, and the others are hyperplane sections of
the Grassmannian Gr(2,5). We denote Y™ the intersection of the image of
Gr(2,5) under the Pliicker embedding into P’ with 6 — m general hyper-
planes in P’. Then Y™ is a smooth Fano variety with dimension m. These
Fano varieties have been studied for a long time. The moduli space N was
first constructed by Seshadri [92], in the 1960s, and its properties have been
studied in numerous works including [29, 79, 88, 7, 81]. The study of the
hyperplane sections of the Grassmannian Gr(2,5) dates back to the 1890s.
For instance, Castelnuovo studied Y* on his work [11]. From a more general
viewpoint, Piontkowski and Van de Ven studied the automorphisms group of
hyperplane sections of Gr(2,n) and its orbits in [85], and also Cheltsov and
Shramov studied the Fano threefold Y? from the birational geometry view-
point [14]. We summarize these results in Chapter 2, Section 2.6.

In this thesis, we study moduli space of smooth rational curves in these
Fano varieties and their various compactifications. We consider the moduli

space of degree d smooth rational curves on a smooth projective variety
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V with a fixed polarization Oy (1), as an open subscheme of the degree d
map space Homgy(P', V), which is defined in [61] as an open subscheme of
a Hilbert scheme of curves in P' x V. From now on, we denote the mod-
uli space of degree d smooth rational curves on the projective variety V by
Ra(V).

The study of rational curves and moduli space of rational curves in Fano
varieties has led to useful results in many cases. First, there has been a close
connection between constructions of holomorphic symplectic manifolds and
moduli spaces of rational curves in Fano varieties. Beauville and Donagi in
[3] considered the Fano variety of lines in a cubic 4-fold X C P°, denoted
by Fi(X). The authors showed that F;(X) is a holomorphic symplectic man-
ifold. The holomorphic 2-form is constructed as follows. Consider a univer-
sal family of lines F over F;(X) x X. Choose a generater o of (3,1)-forms
H3'(X) = C. Then, using the projections py,p> from F;(X) x X to F;(X) and
X respectively, they obtained a holomorphic 2-form w := (p1).(p2)*«.

lliev and Manivel in [50] considered the Hilbert scheme of conics in a
Fano 4-fold Z := Gr(2,5) N HN Q, where H is a general hyperplane in
the Pliicker embedding space P?, and Q is a general quadric hypersurface.
The authors denoted the Hilbert scheme of conics in Z by Fq(Z), which is
a smooth 5-fold. From the space Fq(Z) the authors constructed a holomor-
phic symplectic 4-fold, denoted by VX Moreover, the authors showed that
\7% coincide with the an EPW sextic, which is a double cover of a sextic

hypersurface in P°, constructed by O’Grady [83].

Lehn, Lehn, Sorger and van Straten [67] considered the Hilbert scheme
of twisted cubics in a cubic 4-fold Y C P°. The authors denoted this space
by Mj3(Y). Then the authors showed that Mj3(Y) is a smooth 8-dimensional
variety and there is a contraction M3(Y) — Z where Z is a holomorphic
symplectic 8-fold.

On the other hand, in [24], Clemens and Griffith considered the Fano va-
riety of lines in a smooth cubic threefold V C P*, denoted by S. Using its
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Albanese variety Alb(S), the authors proved that the smooth cubic threefold
V is not rational. The authors used the result of Gherardelli [37] that the
Albanese variety Alb(S) and the intermediate Jacobian J(V) of V are isoge-
nous. In fact, the authors considered a more general setting. When V is a
smooth algebraic threefold and S is a smooth parameter space of a family

of algebraic curves in V, then there exists a map called Abel-Jacobi map :
Alb(S) — J(V).

In addition, Takkagi and Zucconi in [95] proved the existence of a Scorza
quartic by studying the geometry of the Hilbert scheme of conics in the blow-
up space of a smooth Fano threefold Y3. Also, in [15, 86], the geometry of
rational curves and the moduli of rational curves in Fano varieties was used.

Moreover, of course, the study on the geometry of moduli spaces of ra-
tional curves on Fano varieties also helps virtual curve counts on Fano vari-
eties. Munoz [74] studied the quantum cohomology of the moduli space N
of rank 2 stable vector bundles on the smooth projective curve X over C
with genus g > 1 with fixed odd degree line bundle. For this, he studied
moduli space of genus 0, degree 1 stable map space My(N, 1) := Mqo(N, 1)
with target space .

1.1 Moduli spaces of smooth rational curves in

Fano varieties

The results presented in Chapter 3 are based on the results obtained joint
with Kiryong Chung and Jaehyun Hong in [19], the results of Castravet [12,
13] and the results of Kiem [54].

The moduli space Rq(N) of degree d smooth rational curves on N has
been studied for a long time. Brosius studied rank 2 vector bundles on a

ruled surface [9, 10]. Since a regular map P' — A corresponds to a rank 2
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bundle on the ruled surface P' x X, Castravet classified all irreducible compo-
nents of Rq(N') for all degree d based on the result of Brosius. Furthermore,
Castravet gave a geometric interpretation for the elements of each irreducible
components. Also, Kiem [54] independenty classified all maps P' — N for
degree d < 4 cases based on the Brosius result. On the other hand, Kilaru
[57] classified all maps P' — A for degree d = 1,2 cases independently from
Brosius and Castravet’s work.

To study the moduli space Rgq(Y™) for degree d < 3, we first classify
all smooth rational curves P! — Y™, with degree < 3. For this purpose,
we first classify all smooth rational curves P! — Gr(2,n) = G with degree
< 3. Using this classification, we define the following rational morphisms(cf.
Proposition 3.2.3) :

1. A vertex map C; : Ri(G) — P which maps each projective lines in

G to its vertex.

2. An envelope map ¢ : Ry(G) --» Gr(4,n) which maps each smooth

conic in G to its envelope.

3. A axis map (3 : R3(G)) --» Gr(2,n) which maps each twisted cubic

curve in G = Gr(2,5) to its axis.

This classification of smooth rational curves and construction of ratio-
nal morphisms were already studied in the literature. For the degree 1 case,
there is a corresponding result in Harris’ book [40, Excercise 6.9)].

For degree 2 case, the classification of conics in the Grassmannian Gr(2,n)
can be found in [48], [26] and [80]. Our classification may look different from
theirs but we can easily check that smooth conics obtained from a rational
normal scroll S(po, Co) of a point py and a smooth conic Cy in the projective
space P"! (See Proposition 3.2.3) correspond to o-conics in [48, 26], and
smooth conics obtained from a rational normal scroll S(£y,£;) of two lines

€ and ¢; in P™" correspond to T-conics and p-conics in [48, 26]. Moreover,
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the idea of assigning an envelope P> C P! for each conic in Gr(2,n) also
appeared in [48, 26].

For the degree 3 case, we could not find a former reference about the
classification of twisted cubics in Gr(2,n) and the axis map. But this con-
struction may be classical since its construction is very simple.

In addition, we exactly describe general fibers of these morphisms. These
rational morphisms (; restrict to the moduli space of rational curves R;(Y™)
in Y™ C Gr(2,5). Then we can also exactly describe the general fiber of
these restricted morphisms. Moreover, we show that these morphisms are
birationally equivalent to Grassmannian bundles. Using these properties, we
show that Ri(Y™) are rational varieties for 1 <i <3 and 1 < m < 6, which

is the main result of Chapter 3.

Main Theorem 1 (Theorem 3.3.1). Fach moduli space Rq(Y™) of degree
d smooth rational curves on Y™ is a rational variety for 2 < m < 6 and
1<d<3.

Next, we consider various compactifications of these moduli spaces in
Chapter 4 and 5.

1.2 Compactifications of the moduli spaces of

smooth rational curves in Y™

The results presented in Chapter 4 are based on the results obtained joint
with Chung and Hong in [19].

In this chapter, we consider compactifications of the moduli spaces R3(Yy,)
of smooth rational curves of degree d <3 in Y™ C Gr(2,5).

For m = 6 case, i.e. Y™ = Gr(2,5) = G, G is a homogeneous va-
riety. In this case, we can use a result of Chung, Hong, and Kiem [18],
which deals with the birational geometry of the Simpson compactifications

and the Hilbert compactifications of moduli spaces of smooth conics and
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moduli spaces of twisted cubics in homogeneous varieties. As a result, we
obtain Theorem 4.2.3 and 4.2.4. Furthermore, we will check that we can ap-
ply the methods in [18] for the homogeneous space Gr(2,2n)NH in Chapter
6.

On the other hand, we construct the following blow-up and blow-down

diagram :

Ha(Gr(2,10)) (L.1)

Gr(4,5),

where U is the tautological rank 4 bundle over the Grassmannian Gr(4,5),
H,(G) and H;(Gr(2,U/)) are Hilbert scheme compactification of R;(G) and
Ry(Gr(2,U)) respectively, (, is a rational map induced from the envelope
map R;(G) --» Gr(4,5). The blow-up morphisms @ and = were constructed
by Iliev-Manivel in [50].

The blow-up locus of the map = can be identified with a set consisting
of pairs (P, V4), where P is a 0,,-type plane or o3;-type plane in G, and V;,
corresponds to a linear space P> C P* = P(C°) enveloping the plane P. We
denote this blow-up locus by T(G).

The above diagram also plays a key role in studying the Hilbert scheme
of conics Hy(Y™) in Y™, for the m = 4,5 cases. For this purpose, we want
to ‘restrict’ the above diagram to the Y™ case. So we need to know how the
blow-up loci of = and ® change for the m = 4,5 cases. So we study the
spaces of lines and planes in Y™ in this chapter. For m =4, the result on
the spaces of lines and planes are due to Todd [97]. For m = 6, the result
on the space of lines and planes appeared in [26, Section 3.1].

If we let S(Y™) = {V, € Gr(2,N°U) |V, C Y™}, we should check that
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T(G) and S(Y™) cleanly intersect in Gr(3,A\*/). We first compute the in-
tersection locus in Chapter 4, Section 4.3.3. We check the clean intersection
in two ways (Chapter 4, Lemma 4.3.7 and Subsection 4.3.4). As a conclu-
sion, we succeed to restrict the above diagram 1.1 to Y™ cases, and obtain

the following main result of Chapter 4.

Main Theorem 2 (Theorem 4.3.9, 4.4.7, 4.5.2). The Hilbert scheme H,(Y™)
smooth conics in Y™ for m = 3,4,5 is a blow-down of g(Ym), which 1s a blow-

up of S(Y™) :=Gr(3,K) :

S(ym) (1.2)

S(ym) H,(Y™),

where Z is the blow-up along T(Y™) and @ is the blow-up along the locus
of conics lying on 03,-type planes. Furthermore, Hy(Y™) is an irreducible

smooth variety for m = 3,4,5.

We also note that blow-up and blow-down diagrams like (1.2) are usually
helpful for computing Poincare polynomials (cf. [18, Chapter 5]) and Chow
rings (cf. [22]).

1.3 Compactifications of the moduli spaces of

degree 3 smooth rational curves in N

The results presented in Chapter 5 are based on the results obtained joint
with Chung in [20].

Independently of the compactification story, the moduli space of stable
maps My(N, d) :== Mgo(N,d) in A has been studied for low degree cases.

For the d =1 case, Munoz [74] showed that My(N/, 1) is a fibration over
Pic®(X), with fiber Gr(2,g(X)). Since the virtual counts on the stable map
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space are related to quantum cohomology, the authors studied the quantum

cohomology of the space N.
For the d = 2 case, Kiem [54] showed that My(N,2) has two irreducible

components. One parametrizes Hecke curves and the other one parametrizes
the rational curves of extension type. Furthermore, the two irreducible com-
ponents intersect transversally and both components can be obtained by the
partial desingularizations of GIT(Geometric Invariant Theory) quotients of
projective varieties. Furthermore, the author also studied the Hilbert scheme
Hilbf\’}”] of conics in NV, which the author denotes it by H. The author re-
lated this Hilbert scheme H with the stable map space My(N,2) by a com-
position of a blow-up and a contraction. The author also showed that the

two irreducible components of H are smooth.

In this thesis, we deal with d = 3 case. A big difference arises as there
exists an irreducible component in My(N,3), whose general elements has
nodal domain curves, and whose dimension is much bigger than the expected
dimension. In fact, there are 4 irreducible components in My(N,3). Only
two of them comes from compactifying of the moduli space R3(N') of smooth
rational curves. We can easily observe that one of them is easily described.
So we concentrate on the other component in our thesis. We denote this
component by Ay. We study which topological types of nodal curves are
contained in the boundary of A;. We classify all stable maps in My(N,3)
in Lemma 5.3.1 into five types, and study which types of stable maps are

contained in the component A;.

In Section 5.3.1, we consider a conjectural morphism :
VPN

where P is a relative blow-up space, which is a fibration over Pic'(X), whose

fiber over a line bundle L € Pic'(X) is isomorphic to P, := BlyPExt' (L, L7 (—x)),

where the blow-up locus X is embedded in PExt'(L,L~'(—x)) by the com-
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plete linear system |[Kx ® L2(x)|. Then, the conjectural morphism Y will in-

duces a morphism between stable map spaces :
Mo (P, B) —— Mo (P, ) —— Mo (N, 3)

where the homology class 3 is the l.c.i pull-back 7t*[line], for the blow-up
morphism 7t : P — PExt'(L,L~'(—x)) where [line] is the homology class of
line in the projective space PExt'(L,L~'(—x)).

Then we can observe that the component A; is contained in the image of
the morphism j. Therefore, it is enough to classify topological types of nodal
curves in the boundary of Mo(ﬁ, ), under this conjectural picture. For a
non-trisecant line bundle L € Pic'(X) (see Definition 5.2.2), we proved that
W : PL — N is a closed embedding(see Proposition 5.2.4). Therefore the
induced morphism of stable maps MO(ﬁL, B) — My(N,3) is also a closed
embedding.

On the other hand, we also conjecture that there is a morphism p : Ay —
Pic' (X) which is compatible with the morphism j and the projection q:
Mo(f’, B) — Pic'(X). Then over the non-trisecant line bundle L € Pic'(X),
we expect that the fiber p~'(A;) isomorphic to an irreducible component of
the stable map space q7'(L) = Mo(f’L, B)(We also conjecture that the fiber
of the projection g over L is equal to Mo(f’L, B)). Based on this conjectural

picture, we focused on the stable map space Mo(f’L, ) in this thesis.

In this chapter, we classify all stable maps which are element of Mo(ﬁb B).

It is the main theorem of this chapter.

Main Theorem 3 (Theorem 5.3.2). The stable map space Mo(f’L, B) is a

union of two irreducible components By and B, which satisfies the following

1. By parametrizes projective lines in ]P’EH \ X. Moreover, By consists of
stable maps of types (1),(2),(3),(5) in Lemma 5.5.1.

2. B, parametrizes the union of a smooth conic in the exceptional divisor
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of P and a proper transformation of a projective line £ where £ is a
projective line which intersects the curve X with multiplicity 2 (so that
€ can be a tangent line of X), intersecting with the smooth conic at a
point. Moreover, B, consists of stable maps of types (4),(5) in Lemma
5.8.1.

In particular, closed points of the intersection By N B, correspond to type
(5) stable maps of Lemma 5.5.1.

We also note that the two irreducible components B; and B, have dimen-
sion 3g, which exactly coincide with the expected dimension of the moduli
space Mo(f’L, B). Here, we expect that the irreducible B; maps to the A;
via the morphism of stable map spaces Y.

The existence of the conjectural morphisms VPN N VAN Pic'(X)
is not proven yet. Moreover, the statement that the fiber q~'(L) is isomor-
phic to MO(IBL, B) is not clear yet. Also, over the trisecant line bundle L €
Pic'(X), we do not know the topological types of the stable maps which are
elements of MO(INDL, ). So, there are still many obstacles remains for figur-

ing out all topological types of all nodal curves in the boundary of My(P, ).

We conclude with the following questions.

Question. 1. Classify all stable maps in the component A; of the moduli
space My(N, 3).

2. Let U ¢ Pic'(X) be an open sublocus of non-trisecant line bundles.
Let us assume that there is a conjectural morphism p: Ay — Pic'(X).
Then, elements of Ay Xp;.1(x) U consists of stable maps of types
(1),(2),(3),(5) in Lemma 5.3.17

10



Chapter 2

Preliminaries

2.1 Moduli problems

Throughout this chapter, we fix k to be an algebraically closed field with

characteristic 0.

Moduli problem arises in many areas in algebraic geometry. First, we
consider a class of object we want to collect, i.e. algebraic curves, vector
bundles, closed subschemes in projective spaces, etc. Then, roughly speak-
ing, moduli problem is to find a family of these object over some parameter
space. Further, in many cases, we want to view objects up to isomorphisms.
For examples, degree d-hypersurfaces in P™ up to PGL(n + 1)-action, alge-
braic curves up to isomorphisms, etc. So we also consider equivalences be-
tween families.

In summary, a moduli problem consists of three components : (1) a pa-
rameter space scheme S, (2) a flat morphism ¢ : F — S such that each fiber
F; over any closed points s € S are objects what we want to collect, i.e.
algebraic curves of genus g, algebraic surfaces, etc. (3) an equivalence rela-
tions between families: For example, When ¢; : Fy — S and ¢, : F, — S

are two flat families of genus g curves on S, then equivalence relation is an

11
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isomorphism 1 : F; — F, such that o, = ¢;. Flatness condition is impor-
tant since it preserves many topological invariants of the fibers, i.e. degrees,
genus, Hilbert polynomials.

Sometimes, we want to consider a family with extra structures, there are

some examples :

Example 2.1.1 (Family of conics in P?). Let S = k™ and F = co(t1, ..., tm ) X3+
C1(t1y wony t)XF = Co(ty vuey tm)X3 + C3(t1y wony tn ) X0X7 + Ca(t1y wny tin ) X0X2+

c5(try eny tm)x(z), be a polynomial which is homogeneous in coordinate xo, X1, X2

with degree 2, such that cg,...,c5 does not commonly vanish in k™. Then

{F =0} c P? xk™ is a flat family over k™, with a natural projection 7t: {F =

0} — k™. In this case this flat family naturally has an additional structure,

an embedding to the ambient space P2 x k™. This kind of addition structure

leads to the definition of Hilbert scheme which will be introduced later.

Example 2.1.2. (Family of maps) Consider a flat family of nodal curves
¢ : C — S with genus g over a parameter space S. Furthermore, Consider
a map f : C — P". We define equivalence between this pairs (¢ : C —
S;f: C —= P and (¢’ : C" — S, : C' — P") if there is an isomorphism
F:C — C’ such that f = f’ o F. This kind of additional structure leads to

the definition of Stable map space which will be introduced later.

2.1.1 Moduli functors

In various kind of moduli problems, we define moduli functors as a cor-
respondence corresponding to a parameter space S to a set of equivalence

class of a flat family. i.e. it is a functor :

F: (Sch/k)°P Sets

S ————{equivalence class of flat families over S}

If there exists a classifying space of this functor, we call it a fine moduli

12
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space

Definition 2.1.1 (Representable functor, fine moduli space, universal fam-
ily). If there is a scheme X € Sch/k such that its Yoneda embedding hx(—) :=
Homgep i (—, X) is isomorphic to F, we call our moduli functor F representable
and we call X a find moduli space of our moduli problem. Furthermore, we
call the family on X corresponding to an element idx € Homge (X, X) a

universal family.

In many moduli problems, fine moduli space does not exist. Instead, we

have a weaker form of moduli space, called coarse moduli space.

Definition 2.1.2. For a moduli functor F, a coarse moduli space is a pair
of a scheme X € Sch/k and a natural transform u:F — hy, such that

(i) w(Spec(k)) : F(Spec(k)) — Hom(Spec(k), M) = {Set of closed points of M}
is bijective.

(ii) (M,u) is initial among this kind of pairs, i.e. if there are another pair
(M’;u'), u' : F — hy. Then there exists a unique natural transform

T : hym — hy, makes the following diagram commutes:

2.2 Hilbert schemes

2.2.1 Hilbert functor and Quot functor

The Hilbert scheme is the moduli space parametrizing subschemes in the
projective spaces P™ with some fixed Hilbert polynomial. A very simple ex-
ample about family of conics P?, which has Hilbert polynomial 2t + 1, was

already appeared in the previous section in example 2.1.1.

13
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More explicitly, moduli functor is given by the following. Fix Opn(1) a
very ample line bundle of P™. For a coherent sheaf £ on P" we define x(&) :=
> (=1)'hi(€). Furthermore, we define a Hilbert polynomial HP(E) of &€ to

i>0

be HP(E)(m) :=x(€ @ Opn(1)™). When we fix a Hilbert polynomial F, then

we define a Hilbert functor to be :

Hilbp, : (Sch/k)°P ets
pn : (Sch/k) S
S———{Z CcSxP" | Z—Sis flat, HP(Ozxs) =F Vs € S 1.

When we replace P™ by a general projective variety X over k and fix a very
ample line bundle L, and define a Hilbert characteristic of a coherent sheaf £
on X to be HP(E)(m) := x(€ ® L"), we have a definition of Hilbert functor
HilbLL which parametrizes closed subschemes in the projective variety X
with the Hilbert polynomial F.

Sometimes, it is more convenient to consider a slight generalization of
Hilbert functors, called Quot functor. Let X be a projective variety and L
be a very ample line bundle on X. Then For any coherent sheaf £ on X, we
define its Hilbert polynomial HP(E) to be HP(£)(m) := x(€ ® L™). We fix
a coherent sheaf 1V on X.

Then the Quot functor Quot@}x is a functor corresponding to each scheme
S € Sch/k to the set of isomorphism class of pairs (£,p) where £ is a co-
herent sheaf on X x S with Hilbert polynomial HP(£) = F, and p: V — &
is a surjection. We define an isomorphism between two pairs (£,p), (£',p’)

as an isomorphism q: & — &£’ of coherent sheaves such that q’of = q.

14
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that the Quot functor is isomorphic to the original Hilbert functor by a nat-
ural transformation. We sometimes abbreviate a Quot functor by Quot;, /X

if there was no confusion for the choice of very ample line bundle L.

2.2.2 Existence of Quot scheme and Hilbert scheme

Contents in this section mostly follow [31, Part 2, Chapter 5]. In this
section, we briefly explain the existence of a fine moduli space of a Quot
functor. For this purpose, we use following two theorems and one lemma
without proofs.

Let £ be a coherent sheaf on the projective space P". For an integer m,

The &£ is called m-regular if satisfies the following :
HY(P",E(m—1)) =0 for all i > 1.

Then we have the following theorem. According to Mumford, it is due to
Castelnuovo [72].

Theorem 2.2.1 (Castelnuovo-Mumford regularity). [31, Lemma 5.1] Let &
be a m-regular coherent sheaf on the projective space P". Then &£ satisfies

the following properties:

(i) The natural morphism H°(P™, Opn (1)) @, H°(PY, £(k)) —
HO(P™, E(k + 1)) is surjective for every k > m.

(i) HY(P™ E(r)) =0 for every i > 1 and k > m—1i. Or equivalently, we can
also say that If £ is m-regular, then £ is m’ regular for every m’ > m.

(iii) £(m’') is globally generated and H(P", E(m’)) =0 for every m’ > m.

The following lemma is a weaker form of the much powerful theorem of
Mumford.

15
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Lemma 2.2.2. [31, Theorem 5.3] Consider a following short exact sequence

of coherent sheaves :
0 F = O0p—E—0

with Hilbert polynomial HP(£) = F
Then there exists an integer my which only depends on m, n and the
polynomial F such that F and £ are my-regular.

Theorem 2.2.3 (Flattening stratification). [31, Theorem 5.13]

Let X be a noetherian scheme over k and £ be a coherent sheaf on X xP™.
Then there exists a finite set Z of Hilbert polynomials and for each F € Z,
and there exist a locally closed subschemes X¢ C X of X which satisfies the

followings :

(i) The set of closed points [X¢| of X is the set of all closed points x € X
such that over its fiber P} :=P" x {x}, Hilbert polynomial HP(Flpy) is
equal to F.

(i) Let X := ][ X¢. Consider a morphism t: X — X induced from the inclu-
sion morphisms tf : Xg < X by a universal property of the coproduct.
Then *(£) is flat over X. Furthermore, the morphism t has the fol-
lowing universal property: Consider an arbitrary morphism uw:Y — X.
Then w*€ is flat over Y if and only if the morphism u factors through
the morphism t: X = X.

(iii) Consider a total order on Z defined by the relation F < G if and only
if F(t) < G(t) for all t > 0. Then the closure of |Xg| is contained in
the union of all |Xg| for all polynomials G > F, i.e.

Xl | Xl

G>F

We call each X¢ a stratum of X corresponding to a Hilbert polynomial F

appeared in this theorem.

16
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Before explaining the existence of Hilbert schemes, we should explain one
simple and interesting moduli functor called Grassmannian functor, whose

fine moduli space is a Grassmannian variety.

Definition 2.2.1 (Grassmannian functor). For an integer m < n, the Grass-

mannian functor is the following moduli functor :

Grass(n, m) : (Sch/k)°P Sets
S {§ xk™ - E | E is a rank m bundle on S}

We note that Grass(n,m) is representable by a fine moduli space Gr(n —
m,n), a space of (n —m)-dimensional sub-vector spaces of k™. Now we are
ready to sketch the proof of the existence of the Quot scheme, which is the

slight generalization of the Hilbert scheme.

First, we construct a natural transform from Quot functor to Grassman-
nian functor. For a scheme S € Sch/k, consider a family p : Opits — € on
S which is an element of Quotggnm(S). Let F := ker(p). Then, by lemma
2.2.2, we can find an integer my Such that & and F; are all my regular for
all closed points s € S. Then HY(PT, F(k)) and H'(P,&(k)) are all 0 for
1> 0 and k > my. For the projection P™ x § — S, my-regularity guarantees
that 7s,.£(k) and 7s, F (k) are locally free sheaves and globally generated for
k > my.

For k > my, we have a short exact sequence of locally free sheaves :

0 — s, F(k) — S x (Sym*(k™)®™ — ms,.E(k) — 0

such that the Hilbert polynomial HP(7s,.£(k)) is equal to F(k). Now,

when we fix an integer k > my, from the surjection S x (Sym*(k™))®™ —

17
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s, (k) we obtain a natural transformation of functors :

Ti : Quotgﬂ?nm ————— Grass (("7")m, F(k))

[p: OZM g — E] — [S x (Sym*(kK™)®™ — 76,£(K)]

Roughly speaking, we can show injectiveness of this functor since 7s,.£ (k)
and 75, F (k) are generated by their global sections.

Next, we construct a coherent sheaf G over Gr((nﬂ‘zq)m—F(k), (“*Eq)m) X
P™. Then we can show that the Quot functor is representable by the strata
Gr((“ﬂ:_])m—F(k), (“’L‘E_])m)F corresponds to the Hilbert polynomial F. So
we denote it by Quotzﬂ?nm, a fine moduli space of the Quot functor. When
m =1, Quot functor is isomorphic to the Hilbert functor by a natural trans-
formation so we denote it by HilbL., a Hilbert scheme.

We introduce a general existence result for a Quot scheme by Grothendieck.
The original theorem covers the case when X is a projective scheme over a

noetherian scheme S but we omit here.

Theorem 2.2.4 (Grothendieck). [31, Theorem 5.14]
The Quot functor Quot}j, is representable by a projective scheme

Quotf}&x € Sch/k for any coherent sheaf G and a Hilbert polynomial F.

So, for the case when V = Oy, since Quot functor is isomorphic to the
Hilbert functor by natural transformation, we obtain that $ilbyl is repre-
sentable by a projective scheme for any projective variety X over k and any
Hilbert polynomial F. As a special case, we obtain the projectiveness of the
Hilbert scheme Hilbf.

2.2.3 Tangent-obstruction theories of Quot schemes

Contents in this section mostly follow [31, Part 3, Chapter 6]. In this

section we study tangent spaces of Hilbert schemes and smoothness condi-

18
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tion of Hilbert schemes on certain points. For this, we need some elementary
deformation theory. We start with defining a deformation functor.

Consider the category (Art/k) of local Artinian k-algebras, which have
residue field k.

Definition 2.2.2. A deformation functor D is a following covariant functor
D : (Art/k) % (Sets)

such that D(k) is a one point set. For an local Artinian ring (R, mg), we
can consider a canonical morphism D(k) = D(R/mg) — D(R), and therefore
we can consider a distinguished element in D(R), which is an image of D(k).
We denote this element by 0 € D(R).

Definition 2.2.3 (Small extension). A small extension is a following exact

sequence of R-modules :
0—->K—>R—-S—0

where @ : R — S is a surjective homomorphism of Artinian rings over k,
K = Kerg and K-mg =0 (mg is a maximal ideal of R). Therefore R acts

on K just as a scalar multiplication of its residue field R/mp = k.

The type of deformation functor we usually want is a deformation functor

with the following properties :
Definition 2.2.4. [31, Definition 6.1.21] We said that a deformation functor

D have a tangent-obstruction theory when there exist a k-vector space Ty,
called tangent space for D, and T,, called obstruction space for D, which

satisfies the following properties :

1. For any small extension 0 —- K — R — S — 0, there is a corresponding

exact sequence of sets
Ty ® K — D(R) = D(S) -2 T, @ K.
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We note that we can consider exact sequence of sets since D(R) and
D(S) contains distinguished elements 0 € D(R) and 0 € D(S).

2. When S =k, then the above sequence is left exact :

05T & K—D(R) =Dk 22T, K

3. The exact sequence of sets in (1) and (2) are functorial for small ex-

tensions. i.e. for a commutative diagram :

0——K—3R——5
Il b
K'—— R ——S

!/ /! !/ O

0

where horizontal rows are small extensions, g, h are morphisms in Art/k,
f is a morphism of k-vector spaces, we have a corresponding commu-

tative diagram of sets :

T @ K D(R) D(S) —2 T, @, K
(

lid@f lD(g) lD h) lid@f

T, @ K’ D(R') D(S/) —2 T, ®, K’

or when S = k, we have commutative diagram where each horizontal

rows are left exact :

0—— T @ K——=D(R)——D(S) —25T, @ K

lid®f lD(g) lD (h) lid@f

0—>T] ®k Kl—>D(R/) —)D(S/) —Ob>T2 ®k K/.

Now, consider the Quot functor Quot%x for a projective variety X over

k, very ample line bundle L on X, a coherent sheaf V on X and a Hilbert
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polynomial F. We want to restrict our Quot functor Quot@?x which repre-
sents the local neighborhood of the Quot scheme Quotf}&x around the point
@, which is a quotient sheaf Q@ = V/E such that Hilbert polynomial HP(Q) =

F,

F. So we define our deformation functor DgOtV} X+ Art/k — Sets to be,
for an Artinian local ring R, Dg}mf}} *(R) is a set is a quotient sheaf 0 =
Ve R)/g which is flat over R, and whose restriction to X x Spec(R/mg) is
the quotient sheaf Q.

Then this deformation functor admits a tangent-obstruction theory with
the tangent space Ty = Homp, (€, Q) and the obstruction space T, = EXt]OX (&, Q).
For the proof of this statement, we need some information about the exten-
sion about quotient sheaf. First, we consider a small extension 0 — K —
R — S — 0. Then we consider an extension of the following short exact

sequence along the small extension.
0-2E—-V®S—0—0. (2.1)
Its extension over SpecR is defined to be the following coherent sheaf Q'
0= 2VaR—Q —0 (2.2)

such that Q' is flat over S, £ =& @y S. Then we have the following propo-
sition on the extension of the above short exact sequence associated to flat

quotient sheaves.

Proposition 2.2.5. [31, Theorem 6.4.5, Proposition 6.4.7]

For the short exact sequence 2.1, we can assign an obstruction class ob(e) €
EX‘C}QX(E , Q) ® K. Then, an extension of the short exact sequence 2.1 for
the small extension 0 - K — R — S — 0 in the form of 2.2 satisfies the
conditions stated above exists if and only if the obstruction class ob(e)=0.

Moreover, if an extension exists, the set of such extensions is a torsor under
HomOX (8) Q) ®k K
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Using this result, we get the following result which we want to prove from
the beginning of this subsection.
uo F,L
Proposition 2.2.6. [31, Theorem 6.4.9] The deformation functor D?Q} i
admits a generalized tangent-obstruction theory with its tangent space Ty =
Homp, (£, Q) and the obstruction space T, = Extbx(é', Q).

Proof. By Proposition 2.2.5, axiom (1) and (2) of tangent-obstruction theory,
Definition 2.2.4 is automatically satisfied. We can check axiom (3) by direct

diagram chasing so we omit here. O]

When V = Ox, we have Duota‘( X = JﬁilbfgL. In a similar manner as

. Q tF’L
we constructed the deformation functor D[Q?O VX for a closed subscheme

Z C X with Hilbert polynomial HP(Oz) = F, we can define a deformation
functor Dglby. Then as a result of Proposition 2.2.6, Dglb%L is a deforma-
tion functor which has a tangent-obstruction theory with the tangent space
Ty = Home, (Z7,O7z) and the obstruction space T, = Extlgx(lz, Ogz).

Then, using the results of pro-representable functors [31, Theorem 6.2.4,
Corollary 6.2.6], we have the following results on the local geometry of Hilbert

schemes.

Proposition 2.2.7. [42, Corollary 2.5] Let Z C X be a closed subscheme
of a projective variety X over k polarized by a very ample line bundle L,
with a Hilbert polynomial F, which is a closed point in a Hilbert scheme
Hilbg". Then the Zariski tangent space TizHilby" of Hilby" at the point [Z]

is isomorphic to the vector space Home, (Z7,Oz).

Proposition 2.2.8. [31, Corollary 6.4.11] For a closed subscheme Z C X in
a projective variety X over k polarized by a very ample line bundle L with a
Hilbert polynomial F, which is a closed point in a Hilbert scheme Hilbf(’L. Let
d; := dim(Home, (Zz,07))) and d, := dim(Ext}QX (Zz,0Oz)). Then we have
d; > dimgHilby" > d; — d;. Furthermore, if dimzHilby" = d; — dy, then
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the Hilbert scheme Hilb;’L is locally a complete intersection around the point
[Z]. In particular, if Extlgx (Zz,0z) = 0, then the Hilbert scheme Hilbg" is
smooth at the point [Z].

2.3 Geometric invariant theory

We use [82, 28] as main references of this section. In this section, we
study how to construct a quotient of a variety via a group action. Let X
be a variety and G be an algebraic group acting on X. The group action
G x X — X is algebraic.

We start by classifying the notion of quotients. There are three notions

of quotients: Categorical, good, and geometric.

Definition 2.3.1 (Categorical quotient). Let X is a variety equipped with a
G-action. Then consider a pair (Y,p) where Y is a variety and p: X — Y is
a G-invariant morphism. Then we call the pair (Y,p) a categorical quotient
if is satisfies the following universal property. If there is another G-invariant
morphism f : X — Z, then there exists a unique morphism f : Y — Z such
that f =pof.

X
[N
Pl o
Y—ﬂ+Z

el
We note that the categorical quotient (Y,p) is unique up to isomorphism by

universal property.

Definition 2.3.2 (Good quotient). Let X be a variety equipped with a G-
action. Then a pair (Y,p) of a variety Y and a G-invariant morphism p :

X — Y is called a good quotient of X if it satisfies the following properties :

1. The morphism p is surjective and affine.
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2. The image of a closed G-invariant subspace of X is again closed in Y,
and two closed disjoint G-invariant subspaces of X has disjoint images
inY.

3. For an affine open set U C Y, we have Ip~'(U),Ox)¢ = T'(U,Oy),
which is equivalent to say that the sections of the structure sheaf Oy
is the G-invariant sections of the structure sheaf Ox. In this case, we

emphasize that p~'(U) is also affine since the morphism p is affine.

The following proposition says that good quotient is a stronger condition

than categorical quotient, but it is not an orbit space in general.

Proposition 2.3.1. [82, Proposition 3.11] Let X be a variety equipped with
G-action and let a pair (Y,p : X — Y) be a good quotient. Then we have
the followings

1. The pair (Y,p) is a categorical quotient.

2. For x,y € X, p(x) = p(y) if and only if two orbit closures intersects,
ie. GxN Gy # @.

Therefore, even if two orbits Gx and Gy are disjoint, they may intersect
in their closures. So if we want to make quotient to an orbit space, we need
the condition that every orbit is closed. This condition leads to the definition

of the geometric quotient in the following.

Definition 2.3.3 (Geometric quotient). Let X be a variety equipped with
G-action and let a pair (Y,;p : X — Y) be a good quotient. Then we call

(Y,p) a geometric quotient if all G-orbits in X are closed.

In summary, a geometric quotient is a good quotient, and a good quotient
is a categorical quotient. We note that the notions of the good quotient and

the geometric quotient are local.
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Proposition 2.3.2. [82, Proposition 3.10] Let X be a variety equipped with
G-action. Consider a pair (Y,p) of variety Y and a G-invariant morphism
p:X—>Y.

Then the pair (Y,p) is a good(resp. geometric) quotient if and only if
There is an open cover {Ui}iez of Y such that G-invariant morphisms pl,-1y,) :

p (W) — U; are good(resp. geometric) quotients.

Next, we start from the case when X is affine variety.

2.3.1 Affine quotient

Let X be a affine variety X = SpecR. Since there is an algebraic action
on X by an algebraic group G, there is also an induced algebraic action on
the ring of functions R = I'(X, Ox) by the group G. Let RS be its invariant
subring.

From now on, we further assume that G is a reductive group. We will not
explain about the definition of linearly reductive groups. But we note that
general linear groups GL(n,k), special linear groups SL(n,k), projective lin-
ear groups PGL(n,k) are all reductive groups. There is a following famous
theorem of Nagata [75] for linear reductive groups. For state Nagata’s the-
orem, we first define the notion of rational group action by a group G on a

ring R.

Definition 2.3.4 (Rational actions). [73, Definition 1.2],[82, Definition on
p. 47) Let G be a affine linear algebraic algebraic group acting on a ring
R. Let S =T(G,Og) be the function ring of the group G. Then the group
action G x R — R induces a morphism of rings a: R — S ®, R (If we fix an
element r € R, then it induces a function G — R given by g — g - 1. Then
the function G — R induces an element of the ring S ®y R).

On the other hand, multiplication on the group G, G x G — G induces
a dual multiplication m : S — S ®, S and an identity map id : Speck — G
induces a dual identity map id:S — k.
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Next, we define the notion of dual actions for the class of morphism of
rings @ : R = S®R. This is a dual notion of the definition of group actions
on algebraic varieties. A morphism of rings @ : R — S ®, R is said to be a

dual action if and only if it satisfies the following axioms.

(1) (Associativity axiom)

S®k R

/‘W

S S @ S @R

S®k R

The above diagram commutes.

(2) (Identity axiom)
{d®idg

R—* - S®R R

We have the composition (1Ad ® idg) o @ is equal to the identity idg.

Then we call the group action is rational if the induced morphism of

groups a: R — S ® R is a dual action.

Remark 2.3.3. To extend the notion of rational action to the linear reduc-
tive group action of a group G which is not affine, it is enough to consider
a sheaf of rings Og instead of the function ring S =T'(G, Og). It need some

technical justification but we omit here.

Theorem 2.3.4 (Nagata). [75] Let G be a linearly reductive group and let
R be a finitely generated k-algebra where the group G rationally acts on it.

Then the invariant ring R is finitely generated.

Remark 2.3.5. In 1975, Haboush [39] proved that every reductive group is
linearly reductive. Therefore we can use above theorem in the assumption

that the group G is reductive.
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Let R be a finitely generated k-algebra equipped with a G-action. Then
the inclusion of rings R® <= R induces a morphism of affine schemes p : X =
SpecR — Y = SpecRE. Then it is natural to define a quotient of the affine
variety X = SpecR to be the pair (Y,p). The following proposition says that
it is the right way.

Proposition 2.3.6 (Affine quotients). [28, Theorem 6.1, p. 97| In the above
setting, the G-invariant morphism p : X — Y is a good quotient.

2.3.2 Projective quotients

Consider a projective variety X which is embedded in P™ as a closed em-
bedding v : X — P", equipped with an algebraic group action given by a
linearly reductive group G.

In this case, we further assume that the group action G extends to lifts
to the general linear action of the affine cone A™' of the projective space P™.
More explicitly, this means that there is a homomorphism G — GL(n + 1)
and the affine cone X C A™! of X is GL(n + 1)-invariant, and G-action on
X is induced from the GL(n + 1)-action on X. In this case, we say that the
group G acts on X linearly.

Since there is a GL(n + 1)-action on A™', we claim that there is also
a canonically induced action on the global section space I'(P™, Opn(1)). Let
(X0, ...y Xn) be coordinate functions of A™'. Then we can see Xg,...,X; as

generators of T'(P", Opn(1)). Consider a tautological family on P™ :
0— Opn(—1) = O =P x K" 5 9 =0

where Opn(—1) is a sub-line bundle of the trivial bundle P*xk™"! whose fiber
over a point [ty : t;:---:t,] is a 1-dimensional sub-vector space generated
by the vector (to,t1,...,t,) € k™', and Q is a tautological quotient bundle.

Next, consider an isomorphism k™! wg ©k@---®k. Finally, con-

n+1
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sider the following composition :
Opn(—1) & P x k™1 =5 P" x k¥ 2L Py k= Opn

where p; is a projection to the i-th summand. Then we observe that on
the fiber, the morphism acts exactly the same as the coordinate function
xi, and by definition, this is an element of the global section T'(P™, Opn(1)).
So we call element as x; € I'(P™, Opn(1)). So we constructed the correspon-
dence between coordinate functions Xg, ..., Xy of k™ and the global sections
X0y oeey Xnp1 Of T(P™, Opn(1)).

So we have the induced G-action on the space of sections I'(IP™, Opn(1)).
Therefore we also have the induced G-action on I'(X,L) where L := Opn(1)|x.
In a similar manner, we can define a G-action on the graded ring of sections

@ I'(X,L%). Then we can again consider its invariant ring, and consider its
a>0

proj, Proj(€ I'(X,L4)¢).

d>0

Unfortunately, in projective case, Proj(@ I'(X,L%)¢) is not a good quo-
d>0
tient or even a categorical quotient of the projective variety X in general. To

solve this problem. We should discard some bad locus of X for the G-action.

For this, we need a notion of stable and semi-stable points.

2.3.3 Stable and semi-stable points

Again we consider the projective variety X C P" where the reductive

group G acts linearly.

Definition 2.3.5. 1. A point x € X is called semi-stable if there exist

a nonconstant G-invariant homogeneous polynomial f € (€ I'(X,L4))¢
d>0
such that f(x) # 0. We write X** C X be a subset of semi-stable points.

2. A semi-stable point x € X is called stable if its G-orbit Gx is closed in

X and the dimension of Gx equals to the dimension of the group G.
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We write X* C X be a subset of stable points.

3. A semi-stable point x € X is called strictly semi-stable if it is not sta-
ble.

4. A point x € X is called unstable if x is not semi-stable.

We can easily observe that X** and X* are open subsets of X.

Proposition 2.3.7. [82, Theorem 3.14],]28, Proposition 8.1] Consider the
morphism ¢ : X — Y = Proj(@ I'(X,L%)) induced from the inclusion of

d>0
graded rings (@ N(X,19))® — @ T'(X,L4). Its restrictions to X and X
d>0 d>0

have the following properties.
1. dlxss : X** = Y is a good quotient.

2. There exist an open subset Y* C Y such that ¢7'(Y®) = X¥ and ¢lxs :

X* — Y* is a geometric quotient.

So, by the above proposition, if we discard bad locus for G-actions, which
means unstable locus, from X then we can construct good quotients in a

similar manner as in the case of affine quotients.

2.3.4 Linearization

In the previous subsection, we constructed the good quotient of the semi-
stable locus of the projective variety. In this section, we consider a more
general case.

Let X be a variety and G be a reductive group act on X. Consider a line
bundle L on the variety X. We first define a notion of linearization of the

group action with respect to the line bundle L.

Definition 2.3.6 (Linearization). Let L be a line bundle on the variety X.

Then a linearization of the group action with respect to the line bundle L
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is an action on the total space of the line bundle L, which is compatible
with the action on X, which is linear on the fiber. On the other word, for
each group element g € G and a point x € X, we correspond linear maps

Ly — Lgx on fibers of the line bundle.

If there is a linearization of the group action G with respect to the line
bundle L, then there is a group action on the section space I'(X,L%) for all
d > 0. Then we call each section s € I'(X,L%)¢ a homogeneous invariant
section.

Then in a similar manner as we defined semi-stable points and stable

points in the previous subsection, we can define semi-stable and stable points
Definition 2.3.7. We classify points in the variety X as follows.

1. A point x € X is called semi-stable if there exists a nonzero homoge-
neous invariant section s € I'(X,L4)¢ for some d > 1 such that s(x) # 0
and X; = {x € X|s(x) # 0} is affine. We write X*(L) as the set of semi-
stable points of X.

2. A semi-stable point x € X is called stable if dimGx = dimG and G-
action on X; is affine, and all G-orbits in X are closed. We write X*(L)

as the set of stable points of X.
3. A semi-stable point x is called strictly semi-stable if it is not stable.

4. A point x is called unstable if it is not semi-stable. We write X*(L) as
the set of stable points of X.

We easily observe that X**(L) and X*(L) are open G-invariant subsets of X.

Then, we can find a good quotient for semi-stable locus, and geometric
quotient for stable locus, which is exactly the same as the projective quo-
tient case. But in this case, Plroj(GBdZO I'(X,L%)%) is not the answer for the

quotient. It is a big difference.
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Proposition 2.3.8. [28, Theorem 8.1] Let X be a variety equipped with a
reductive group G-action. Let L be a line bundle on X and G has a lin-

earization respect to the line bundle L. Then we have the followings :

1. There exist a good quotient p : X**(L) — X** /, G, where X** /, G is a
quasi-projective variety. In this case, we call X** /, G a GIT quotient
of X by G.

2. There is an open subset X*/; G C X** /, G such that p~'(X*/, G) = X®
and plxs : X* = X* /; G is a geometric quotient.

The quotients p : X*(L) — X**(L) /, G and its restriction plxs : X* —
X* /. G satisfies the following properties.

Proposition 2.3.9. [82, Theorem 3.21]

1. For semistable points x;,x; € X**(L), p(x;) = p(xz) if and only if
the closure of two orbits meet on the semi-stable locus. ie. (G(x7) N
G(x2)) N X5(L) # 2.

2. A semi-stable point x is stable if and only if dimGx = dimG and the

orbit Gx is closed in the semi-stable locus X*¢(L).

2.3.5 Hilbert-Mumford criterion

In this subsection, we introduce practical way how to determine each
point is semi-stable or stable, or unstable.

First we define 1-parameter subgroups of the group G.

Definition 2.3.8 (1-parameter subgroups). A 1-parameter subgroup A is an

A
injective group homomorphism k* — G.

The following proposition is a small part of a much powerful theorem
of Borel on the diagonalizable groups, which says that every 1-parameter

subgroup actions on the affine space k™' can be diagonalized.
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Proposition 2.3.10. [5, Chapter III, §8 Proposition, 114p] Let A be a 1-
parameter subgroup. Since the induced action on k™' is algebraic, there is
a basis (vo,...,vn) of k™ where the T-parameter subgroup A acts diago-
nally. When we write Xg,...,Xn as a coordinate functions of k™' for the
basis (Vg,...Vn), A acts on the point (Xo,...,Xn) € K™ as t- (xgy...,%Xn) =
(tdoxgy ..., tdx,) such that dy < di < -+ < d,. We call this number
do, ..., d, weights of this 1-parameter group action.

Furthermore, this series of numbers dy, ..., d, are unique, i.e. invariant

up to the choice of a basis of k™',

The following criterion enables us to compute semistable and unstable

locus exactly in many examples.

Proposition 2.3.11 (Hilbert-Mumford criterion). [82, Proposition 4.8, The-
orem 4.9] For a point x € X, we define p(x,A) := —min(d; : x; # 0). Then

we have

1. The point x is semistable if and only if p(x,A) > 0 for all 1-parameter
subgroups A.

2. The point x is stable if and only if u(x,A) > 0 for all 1-parameter
subgroups A.

2.3.6 Examples

Example 2.3.12 (Projective space). It is well known that projective space
P" is a good quotient of a variety k™' \ {0} for an action of a group k*.
We explain about this good quotient k™' \ {0} — P™ here. A group element
t € k* act on (xg,...,%xn) € K™\ {0} as t- (xo,...,%Xn) = (txg,...,txn). So,

the problem is that there is no invariant functions. To solve this problem,

32



Chapter 2. Preliminaries

we embed k™' \ {0} in P! as follows:

kn—H \ {0}( IPmH

(X0y+ e ey Xng1) —— [Xo 1 -+ 1 X 2 1.
Then we extend a k*-action on P™' to be t-[xg: - - Xnp1) = [txo : -+ :
tXn : t 7 'xns1). Then invariant homogeneous polynomials are f(Xg, . . ., Xn)x4 .
where f(xo,...,Xn) is a homogeneous polynomial in Xg,...,X, with degree

d. Therefore, we observe that semi-stable points of this k*-action on P™*' is
exactly equal to k™ \ {0}.

Furthermore, there is a natural graded ring isomorphism from the graded

invariant ring €0 45 ,{f(xo, - - - yXn)x&, 4 If is degree d homogeneous.} to the graded
ring € y>o{f(xoy - - -, Xn)If is degree d homogeneous.}. Therefore we have a good
quotient :

k™ {0} — Proj(@{f(xo, ..., Xn)|f is degree d homogeneous.}) = P"
d>0

by Proposition 2.3.7.

On the other hand, let L := Opn+1(1). By definition, k*-action on P™*'
already has linearization with respect to the line bundle Opn+1(1). Therefore,

k* on k™' \ {0} has also linearization respect to the line bundle L. Then we
can write (k™' \{0}) /. k* =P".

Example 2.3.13 (Multiple projective lines). Let X = P! x --- x P! = (P")"

b
and G = SL(2,k). Each element ¢ d) € SL(2,k) acts on an element [u:
C

b
v] € P! as left multiplication (a d) <u> Consider the Segre embedding
c %
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as follows :
X — (]P)l)n( f ]P>2“—1
(X1 :yrly ooy X s Ynd ) —— [X0X2y oo oy X S X0y e ooy X 1Yn S - S Y1Y2y -+« Ynds

and a very ample line bundle f*Opn1(n) on X. Then there is a natural
linearization on f*Opan1(N).

Next, consider a l-parameter subgroup A of SL(2,k) given by :

A(t) = (tg tf)w> .

Then t-Xi,Xi, «+ « Xin_oYj1 Ui, - - - Yja = Y (M—20a) X4, X4, « + - Xin o Y51 Yja « - - Yja-
Therefore, for a point ([x7 : yil,..., [xn : Yynl) with a-indices where y; = 0,
homogeneous polynomial which has minimal weight for A-action has weight
w(n — 2a). Since y; = 0 is equivalent to say that [x; : yi = [1: 0], we can
also say that a multiple point x = ([x7 : yil,..., [Xn : yn)) has [1 : 0] with
multiplicity a then pu(x,A) = —w(n — 2a).

By the base change, we can take similar 1-parameter subgroup. So we
can observe that if a multiple point x = ([x7 : yil,..., [Xn : Yynl) has any point
p € P! with multiplicity a, we can find a 1-parameter subgroup A’ such that
w(x,A") = —=w(n — 2a). Therefore we have the following description of the
semi-stable and stable points in the multiple line (P')"™

In summary, we obtain the following criterion for semi-stable and stable

locus of multiple projective lines under the SL(2,k)-action.
Proposition 2.3.14. [82, Proposition 4.16]

1. A multiple point p = (p1y...,Pn) € (PN is semi-stable for SL(2,k)-
action if it all points p; € P! has multiplicity < 3.

2. A multiple point p = (p1,...,pn) € (P")" is semi-stable for SL(2,k)-
action if it all points p; € P' has multiplicity < 3.
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So we note that the integer n is odd, then semi-stable conditions and stable

conditions are equal so there are no strictly semi-stable points.

Example 2.3.15 (Gr(r,V ® W) with SL(V)-action). Here we make a key
observation which is crucially used in the construction of moduli space of
vector bundles on a curve in the next section.

Consider a vector space V, W with dimension n,m and the Grassman-
nian Gr(r,V ® W). Consider an SL(V)-action act on it. Consider a one-
parameter subgroup A of SL(V). Let dy < --- < d; be a series of numbers
obtained from the series appeared in Proposition 2.3.10 by removing dupli-
cated values. Then, by Proposition 2.3.10, we have a weight decomposition
V=V®---®V, such that for each vector v; € Vi, A act on v; as weight d;
ie. for t € k*, t-v; = tdv;.

For an r-dimensional subspace K € Gr(r,V@ W), we let K; :== (Vi@W)N
K and define u; := dimK;. Therefore, when we take a Pliicker embedding
Gr(r,Ve W) — IP’(/\YV ® W), we observe that t- A'K = t(&idw) . ATK 50
we deduce that u(K,A) =—(3_, diw).

Therefore, we have the following description of semi-stable and stable

points.

Proposition 2.3.16. [66, Proposition 6.6.1] Consider an r-dimensional sub-
vector space K C VW, an element of Gr(r,V®W). Then K is semi-stable
with respect to the SL(V)-action if and only if for any proper nonzero sub-
vector space V' C V, it satisfies the following equation :
dimK’ < dimK
dimV’ = dimV

(K== (V'@ W) NK).

Proof. We first prove inverse direction. We use Hilbert-Mumford criterion

For a 1-parameter subgroup A, we already calculated that (A, K) Z diw.
o1

Then by Abel’s summation formula, we have w(A,K) = der — > (dig —
i=0
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di) (%w) We note that when we define V{ := @;:0 Vi C V and K/ =

i
(V/ @ W)NK then we have ) u; = dimK/. Therefore we can write p(A,K) =
j=0

(1
deT — Z(di+1 — dl)dlmK{
i=0
Now, assume that we have g:ﬁf/i < qimk
V' C V. We apply this inequality to each dimK;{, then we have :

for any nonzero proper subspace

1 :
dimV/ T

{—1
A k) > der — ;(dm —d)r VAR (Z(di — diy)dimVY + dm) .

i=0

¢ ¢
=Y di(dimV{ —dimV{ ;) = Y didimV; =0
i=0 i=0
where the last equality comes from the fact that total weight of an action of
any l-parameter subgroup of an SL(V)-action must be zero. Therefore, by
Hilbert-Mumford, K € Gr(r, V®W) is a semi-stable point. Now, assume that
K is a semi-stable point and Vy C V be a nonzero proper sub-vector space of
V. of dimension nyg < n = dimV. Then by the basis extension theorem, we
can find a n—mngy-dimensional sub-vector space Vi C V such that V = V,&V,
and we can construct a 1-parameter subgroup A-action on V as follows. For

an element t € k*, t act on V by the matrix :

t_(n_nO)idvo 0
0 thoidy, |

Similarly we define Ky := (Vo ® W) N K. Then as we calculated above, we
have p(A, K) = —(n—mng)dimKy+no(dimK—dimKy) = ndimKy —nodimK > 0.

Thus we have :
dimK, < dimK

dimV’ — dimV
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2.4 Vector bundles and coherent sheaves on a

smooth projective curve

Contents in this section mostly follow [66, Part I, Chapter 1,2,5]. In this
section, we study various properties on coherent sheaves on a smooth pro-

jective curve C.

2.4.1 Basic properties

In this section, we introduces some basic properties on coherent sheaves
and vector bundles on the smooth projective curve C. We start by defining

a notion of rank of coherent sheaves.

Lemma 2.4.1. [66, Lemma 2.6.1] Let F be a coherent sheaf on the curve
C. Then there is an open dense subset U C C of C such that Fly, = OI".

Proof. By [43, II, Chapter 5, ex 5.8], there is an open dense subset U C C
such that a stalk F; has a maximal rank r for a point x € U. Then again
by [43, II, Chapter 5, ex 5.8, Fly is locally free. Therefore, we can choose
a smaller dense open subset V C U such that Fly = OF". n

Using this lemma, we can define a notion of rank of a coherent sheaf F

on a curve C
Definition 2.4.1 (Rank). We define a rank of F to be rank F :=r.

We can easily check that this number r is uniquely defined since the c
urve C is connected. So we do not check it here.

The following definition is, in fact, equivalent to famous ‘Riemann-Roch
theorem’” when F is a line bundle. So it uses the Riemann-Roch theorem in

the line bundle case to define a notion of degree of coherent sheaves.
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Definition 2.4.2 (Degree). [66, Chapter 2.6] Let F be a coherent sheaf on
C. Then we define a degree F to be:

degF :=x(F) —1-x(Oc)

where T = rank(F) and x(&) := Y_(—1)'h*(€) is the Euler characteristic for
the coherent sheaf £. '
Example 2.4.2. (a) For a coherent sheaf Oc¢(x; + -+ + x¢),

deg@cbq + - +Xz) ={

(b) For a subscheme Z C C, its structure sheaf Oz has degree equal to
length(Z).

We note that the degree of coherent sheaves is additive in short exact se-

quences

Lemma 2.4.3. [66, Chapter 2.6, p. 30] Consider a short exact of coherent
sheaves :
0=2E&E—-F—=-G—-0

Then we have degF = deg€ + degg.

Proof. From long exact sequences of cohomologies, we can show that Euler
characteristic x is additive in short exact sequence. Also, it is trivial that

rank of coherent sheaves is additive in short exact sequence. O

2.4.2 Grothendieck group

In this section, we define the Grothendieck group K(C) of coherent sheaves
and Grothendieck group Ky(C) of locally free sheaves. We compare these two
definitions and we prove the degree of determinant line bundle of a coherent
sheaf is equal to the degree of the original coherent sheaf using the structure

of Grothendieck groups.
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Definition 2.4.3 (Grothendieck group). Grothendieck group K(C)(resp. Ko(C))

of coherent sheaves on the curve C is defined by the following. Let M be a
free abelian group generated by coherent(resp. locally free) sheaves on the
curve C and let N be a subgroup of N generated by elements of the forms
F—F'—F" comes from all short exact sequences 0 - F' — F — F” — 0 of
coherent(resp. locally free) sheaves. Then we define the Grothendieck group
K(C)(resp. Ko(C)) to be K(C) := M/N.

To Compare K(C) and Ky(C) we want to find a two-term resolution 0 —
E; - Ey = F — 0 for any coherent sheaf F on C.

Since C is projective, by [43, Theorem I1.5.17], there is an integer n such
that F(n) is globally generated, i.e. there is a surjection Eg = OF™(—n) 5
F from a locally free sheaf Ey. Thus, it is enough to show that ker(p) is

locally free. To show this, we need the following lemma.

Lemma 2.4.4. [66, Lemma 2.3.3] Consider a commutative local ring (R, m)
and its residue field k = R/m. Let N be a finitely generated R-module. Then
N is a free R-module if and only if Tor¥(N,k) = 0.

Proof. First, assume that Torf(N,k) = 0 and choose a basis {V1, ..., vg} of the
vector space N ®grk = N/mN. Then we can find an element vy, ...,vq4 which
are lifts of elements V7,...,vq. Consider a surjective morphism R®! — N
sending each generators of i-th components to v;. Then we have the fol-

lowing short exact sequence :
0 — Ker = R¥* 5 N =0

By taking the functor (— ®k) to the above short exact sequence, we obtain

the following long exact sequence :
0 — Torf(N,k) — Ker ®g k — k¥ = N @p k

Since we choose (V7,...,Vq) to be basis, the last morphism in the above long
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exact sequence is injective. Furthermore since Tork(N, k) = 0, we have Ker®g
k = 0. By Nakayama’s lemma, we have Ker = 0. Therefore we have R®4 =

N. The opposite direction is trivial so we omit it here. O]

Now, using the above lemma, we show that ker(p) is locally free. Since
ker(p) is clearly a coherent sheaf, it is enough to show that its stalk ker(p),
is a free Ocx module for every point x € k. Consider the short exact se-
quence of stalks 0 — ker(p), — (Eo)x — Fx — 0. By applying the functor
(— ®0, k), we obtain the long exact sequence and using the result in the
lemma 2.4.4, we have Tor?c*x(}"x,k) = Tor?c*"(ker(p)x,k). But since C is a
smooth projective curve, Ocy is a principal ideal domain. Therefore maxi-
mal ideal is generated by a single element. Therefore, we have a free reso-
lution 0 — Ocx — Ocx — k — 0, and by taking a functor (Fx ®o., —),
we obtain a long exact sequence and using Lemma 2.4.4 again we conclude
that Tor?c’x(}"x,k) =0 for all i > 1. Thus we obtain Tor?c“(ker(p)x,k) =0
and therefore ker(p) is locally free.

In summary, for all coherent sheaf F on the smooth projective curve C,

we can find a two-term locally free resolution :
0—-E —-E—->F—0. (2.3)

Using this resolution, we can compare K(C) and Kyo(C). We define a mor-
phism ¢ : K(C) — Ko(C) to be ¢(F) := [Eo] — [E4]. First, we should check
well-definedness of this morphism. Assume that there is another locally free
resolution of 7, 0 — Ej — Ej — F — 0. Then we can construct the third
locally free resolution, 0 — Ker — Eg@®Ej — F — 0. We can check that Ker
is locally free in the same manner as we used above. It is enough to show
that [Eo] — [E4] = [Ep @ Eg] — [Ker]. Since [Ey & E§] = [Eo] + [Eg], it is equiv-
alent to show that [Ker] = [Ej] + [E;]. Consider the following commutative
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diagram :
00— E @ Efj=——=EdE;——0

|

0 E, Eo F 0

By the snake lemma, we obtain the short exact sequence 0 — Ej — Ker —
E; — 0. Therefore we have [Ker] = [E{I4[E;]. Therefore ¢ is well-defined. It
is easy to prove that ¢ is a homomorphism so we omit it. Let 1V : K(C) —
Ko(C) be a trivial homomorphism sending a locally free sheaf to itself. Then
it is clear that { and ¢ are inverse to each other. Therefore K(C) and Ky(C)

are isomorphic. In summary, we prove the following.

Proposition 2.4.5. [66, Proposition 2.6.6] Grothendieck groups K(C) and
Ko(C) are isomorphic to each other. More explicitly, ¢ : K(C) — Ky(C) and
P : Ko(C) — K(C) are inverse to each other.

Remark 2.4.6. There is a natural ring structure on Ky(X) given by a tensor
product of locally free sheaves since the tensor product of locally free sheaves
preserves short exact sequence. Therefore, we give a ring structure on K(X)

transferred from Ky(X) via isomorphisms ¢ and .

Definition 2.4.4 (Determinant line bundle). Let E be a locally free sheaf of
rank r on a smooth projective curve C. Then by taking a top wedge /\"E,

we obtain a line bundle and we call it a determinant line bundle detE of E.

We note that for a short exact sequence of locally free sheaves 0 — E —
F— G — 0 with rank E = rj,rank F = 1, rank G = 13, we can easily observe
that A™2F = A\"E ® /A G from linear algebra. Therefore, taking a determi-
nant is a functor Ky(C) — Pic(C). Therefore, composing with isomorphism
¢, we have a functor det : K(C) — Pic(C).

Lemma 2.4.7. [66, Corollary 2.6.8] For an effective divisor D on the curve
C, and a structure sheaf Op we have det(Op) = Oc(D). In particular, we
have deg(det(Op)) = deg(Op).
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Proof. This is clear from the following resolution of the structure sheaf Op

O%OC%OC(D)—)OD_)O
]

Next, we state the following structure theorem of the Grothendieck group
K(C).

Lemma 2.4.8. [66, Lemma 2.6.10] Let S(C) be a subgroup of K(C) gener-
ated by skyscraper sheaves O, for all point x € C. Then we have :

By the structure theorem of the Grothendieck group K(C) and Lemma
2.4.7, finally we obtain the following :

Proposition 2.4.9. [66, Corollary 2.6.7] For a coherent sheaf F on the curve
F, we have degF = deg(detF).

(sketch of the proof). By Lemma 2.4.8, for any coherent sheaf F its class
[F] equals to the sum of classes of skyscraper sheaves, i.e. [F] = ) [Op,].

Therefore, by Lemma 2.4.7 we have [detF] = ) [O(pi)]l. Therefore we have

1

deg(detF) = degF. ]

2.4.3 Semi-stability

In many moduli problems, we define a notion of stability or semi-stability
of isomorphism class of objects, we want to collect. There are many reasons
we define this notion. One of them is that almost all cases we cannot find
moduli space which parametrizes all objects. Many cases this problem solved
by defining suitable notion of semi-stability and collect only semi-stable ob-

jects.
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In this section we define stable and semi-stable vector bundles on the
curve C and study how it works in the category of vector bundles on the

curve C.

Definition 2.4.5 (slope). Let F be a coherent sheaf on the curve C. Then

we define a rational number called slope of F to be

degF
F) =
H(F) rank F
Definition 2.4.6 (Stable, Semi-stable bundles). Let E be a vector bundle(locally
free sheaf) on the curve C. Then we call E stable(resp. semi-stable) if every

nontrivial coherent subsheaf F C E satisfies the following condition
H(F) < (resp. <) u(E).

Fortunately, since we are working on the smooth projective curve case,
we can make above definition more simple. For this, we need the following

lemma.

Lemma 2.4.10. [66, Chapter 5.3, p. 73] Let E be a vector bundle on the
curve C and F C E be a coherent subsheaf. Then there exists a vector
bundle F between F and E, F C F C E, i.e. F is a sub-vector bundle of E

and contains F as a subsheaf, satisfying :
w(F) < u(F).

Proof. Consider a quotient sheaf E/F. Then we can decompose it as a direct
sum of torsion free part and torsion part. Therefore we can write E/F =
Ea Tor, where E is the torsion free part and Tor is the torsion part.

Since every local ring Ocy at a point x € C are principal ideal domains
torsion free Ocy-modules are free modules [70, Excercise 11.10]. Therefore

the torsion free part Eis locally free. Then consider the projection p : E — E
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and let F := ker(p). Then F is clearly a sub-vector bundle of E containing
F. Furthermore, by construction, F/F is a torsion sheaf. Thus we obtain

rank F/F = 0. Therefore, since we have the following short exact sequence :
0O—=F—=2F=FF—=0

rank(F) = rank F and degF < degF. So we conclude that pw(F) < u(F). O

By the above lemma, we can make the equivalent definition of stable and

semi-stable bundles, which is more simple.

Definition 2.4.7 (Stable, Semi-stable bundles). Let E be a vector bundle(locally

free sheaf) on the curve C. Then we call E is stable(resp. semi-stable) if ev-

ery nontrivial vector bundle F C E satisfies the following condition condition

w(F) < (resp. <) u(E)

The next proposition says that semi-stability determines the ‘direction’
of morphisms in the category of semi-stable vector bundles on the curve C.
Morphisms always arise in the direction of increasing slopes of semi-stable

vector bundles.

Proposition 2.4.11. [66, Proposition 5.3.3] When there is a non-zero mor-
phism ¢ : E — F between semi-stable vector bundle E and F on the curve
C, we obtain w(E) < u(F).

Proof. First consider the image sheaf Im(¢) C F of the morphism ¢. Then,
applying Lemma 2.4.10 to Im(¢), we obtain the sub-vector bundle I C F
containing Im(¢) having the same rank with Im(¢). Since F is semi-stable,
we have p(I) < w(F). By definition, we have the following long exact se-
quence :

0 — ker(@) 2 E31— Tor — 0
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Where Tor is a torsion sheaf. We can observe that ker(¢) is a locally free
sheaf in the same manner as we showed the existence of a 2-term resolution
in the equation (2.3). Since E is semi-stable, we have p(ker(@)) < u(E)
and since Tor is torsion free, we obtain rank(Tor) = 0. Therefore, by direct
calculation, we have w(E) < u(I). Thus we showed p(E) < u(F). O

Furthermore, for morphisms between stable vector bundles, we obtain

more powerful result.

Proposition 2.4.12. [66, Proposition 5.3.3] Let ¢ : E — F be a nonzero
morphism between stable vector bundles E and F on the curve C where

w(E) = u(F). Then ¢ is an isomorphism.

Proof. Recall the proof of the previous lemma. If I # F, then since F is stable
we have pw(E) < u(I) < w(F), which contradicts to the fact that w(E) = u(F).

Therefore we have I = F. Next, recall the following long exact sequence :
0 — ker(¢p) = E—1— Tor —0

If ker(@) # 0, then p(ker(¢@)) < 0. If Tor # 0, then deg Tor > 0. Therefore
if ker(¢) # 0 or Tor # 0 then we have u(E) < p(I), which leads to a con-
tradiction. Thus we have ker(¢@) = Tor = 0 so we conclude that ¢ : E — F

is an isomorphism. O

Corollary 2.4.13. [66, Corollary 5.3.4] Let @ : E — E be a nonzero en-
domorphism of stable vector bundle E on the curve C. Then ¢ is a scalar

multiplication.

Proof. Consider an algebra of endomorphisms k[¢@] generated by the endo-
morphism @. By the above proposition, this algebra is a field. But since the
field k is algebraically closed, k(@] = k. Therefore @ must be equal to one

of the scalar multiplication. O]

The next lemma follows from the direct calculations.
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Lemma 2.4.14. [66, Proposition 5.3.6] Consider the following short exact
of vector bundles :
0—-E—=F—=G—=0

If two of three vector bundles have the same slope W, then the third one

have also same slope p.

Next, we introduce an important structure result about semi-stable vec-
tor bundles. A filtration called Jordan-Holder filtration suggest us a way to

analyze a semi-stable bundle via stable bundles with same slopes.

Definition 2.4.8 (Jordan-Holder filtration). Let E be a semi-stable vector
bundle on the curve C with a slope w. Then a Jordan-Holder filtration is

the following increasing filtration of sub-vector bundles with the same slope
w:
OCEyCEyC---CE,L=E

such that each successive quotient gr; := Ei/E;_; are stable vector bundles.
We call €D, gr; the associated grading of the Jordan-Holder filtration.

Proposition 2.4.15. [66, Proposition 5.3.7] For a semi-stable vector bundle
E on the curve C, every Jordan-Holder filtration of E has the same length

and the associated gradings €D, gr; are isomorphic as a vector bundle.
Proof. Consider two different Jordan-Hélder filtrations
OCEhCEHiC---CE,L=E

and
OCEjCEyC---CE, =E.
Then there exist an integer i such that Ey C E{ and Ey C E{_;. Since nonzero

morphisms between stable vector bundles are isomorphisms, we have Ey =
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E!//E{_,. Now we obtain two Jordan-Hdélder filtrations of E/E,
0OCE//EpC--- CEL/Eo=E/E
and

OCEé/(EoﬂEé) CE/(EoNEy) C--- C E{_]/(EoﬂE{_]) CEi/EoC ...
C E!/E, = E/Eo.

But using induction on the rank of E, we obtain that associated grading
of these two filtrations are isomorphic. Since associated grading of original
two filtrations are just obtained by the direct sum of Ey with this associated

gradings, we completed the proof by induction on the rank of E. O]

Definition 2.4.9 (S-equivalence class). For two semi-stable vector bundles
E and E’, we call E and E’ are S-equivalent if their associated gradings are

isomorphic.

Similar to Jordan-Holder filtration, we introduce a structure result about
vector bundles, called Harder-Narasimhan filtration. It suggests us a way to

analyze a vector bundle via semi-stable vector bundles.

Definition-Proposition 2.4.16 (Harder-Narasimhan filtration). [66, Propo-
sition 5.4.2] Let E be a vector bundle on the curve C. Then there exist a

unique increasing filtration called Harder-Narasimhan filtration
OCEyCEyC---CE,L=E
satisfies the following properties
1. the i-the grading gr; = E;/Ei_; is a semi-stable vector bundle

2. Slopes p(gr;) are strictly decreasing.
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2.5 Moduli space of vector bundles on a smooth

projective curves

2.5.1 Construction of Moduli spaces of vector bundles

Contents in this section mostly follow [66, Part I, Chapter 7]. In this
section we define the moduli space of isomorphism classes of vector bundles
on the smooth projective curve C with a fixed rank r and fixed degree d,
as a GIT quotient of a Hilbert scheme. We observe a quite surprising phe-
nomenon that the GIT stable and semi-stable conditions coincide with the
stable and semi-stable condition of vector bundles on the curve C, what we
defined in the previous section.

The construction of moduli space based on the following observation. Let
S(r,d) be an isomorphism class of semi-stable vector bundles on C with rank
r and degree d. Consider a vector bundle class [E] € S(r,d). Fix a point x €
C, and choose a large integer N > 2g—1—p(E). Then by Proposition 2.4.11,
we obtain Hom(F(Nx),wc) = 0, where wc is a dualizing sheaf of the curve
C. Therefore, by Serre duality, we have H'(C,E(Nx)) = 0. By Riemann-
Roch formula, we obtain H°(C, E(Nx)) = d+r(N-+1—g). Again by Riemann-
Roch, we can check that H°(C,E(Nx — 1)) = H°(C,E(Nx)) — 1. Therefore,
E(Nx) is generated by its global sections. Thus, If we fix a d+7(N+1—g)-

dimensional k-vector space W, we have a surjection of vector bundles :

W ® Oc(—Nx) — E

Therefore this surjection correspond to a closed point in QuotF%&%ﬁElﬁz) /c

The reason that we choose Hilbert polynomial as rt + d 4+ r(1 — g) is the
following. Consider a rank r and degree d vector bundle E, and for a fixed
point x € C, O¢(x) is an ample line bundle. Then For a sufficiently large
integer t >> 0, we have H*(F® Oc(x)!) = 1(u+T1+t—g) =rt+d+71(1—g)
by Riemann-Roch. Therefore we choose the Hilbert polynomial to be rt +
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d+r(1 —g). We usually write d + v(1 — g) := x. Therefore we have the
Hilbert polynomial rt + .

Tt+x
WR0Oc(—Nx)/C

by definition. We will obtain the moduli space of vector bundles on the curve

Now we have natural SL(W)-action on this Quot scheme Quot

C with rank 7, degree d as a good quotient of this Quot scheme for SL(W)-
action. For this goal. We should show that GIT semi-stable locus in the
Quot scheme coincides with the locus of points comes from semi-stable vec-

tor bundles. The following proposition helps us to compare these two loci.

Proposition 2.5.1. [66, Proposition 7.1.1, Proposition 7.1.3] We can choose
a sufficiently large integer N(r, d) satisfies the following:

1. For any N’ > N(r,d), and a coherent sheaf £ with rank r and degree
d and a fixed point x € C, &£ is locally free and semi-stable if and only

if all coherent subsheaves of £’ C £ with rank r’ satisfies :

h°(C,&'(N'x)) < %/hO(C,E(N’x)).

2. For any integer N’ > N(r,d) and a vector bundle E with rank r and
degree d, and for any nonzero subsheaf £ C E of rank r’ and a fixed
point x € C, w(F’) = u(F) if and only if

h°(C,E(N'x)) _ h°(C,E(N'x))

T/ T

Now we recall the construction of Quot scheme in Section 2.2.2. For suf-

ficiently large integer N’, there is an embedding of functors :

LN Quot@gxoc(wx)/c ————Grass (HRT(C, Oc((N"—N)x), N’ 4+ x)

p: W® Oc(—Nx) - E]—— [W® HO(C, Oc((N' — N)x) — HO(C,E(N’X))} .
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When we write Dyn/_n := H°(C, Oc((N’ — N)x), then we can rewrite

Grass W T(C,Oc((N"—=N)x),rN’+x) by Grass (W ® Dn/_n, TN’ +X).
Based on Proposition 2.3.16, we can show the following lemma, which

gives us the description about stable and semi-stable locus in the Tys-embedding

under SL(W)-action.

Lemma 2.5.2. [66, Lemma 7.2.2] For a point x = [W ® Oc(—Nx) — £] €
QuOtWéXOC(—Nx) e and a sufficiently large integer n >> 0, the following state-

ments are equivalent

1. The point x is semi-stable(resp. stable) under the functor T, and the
SL(W)-action.

2. For any nonzero proper sub-vector space W' C W, and its image sub-
coherent sheaf £’ C £, it satisfies the following equation :

HP(E') rt+x
> .
Ty = Tesp->) ey

where HP(E') is the Hilbert polynomial of the sub-coherent sheaf of
&'

(Sketch of the proof). Assume that the point x is semi-stable. Using [66,
Lemma 7.2.3] for boundedness, we can show that there is an integer N'(r, d)
such that H'(C,&€(n)) = H'(C,£’(n)) = 0 and the canonical morphism W'®
D..n — &£'(n) is surjective for any n > N'(r,d).

Then from Proposition 2.3.16, we can directly induce that :

h(C, &' (nx)) _ h°(C, E(nx))
dmW’ = dimW

for all n > N’(r,d). Therefore we obtain

HP(&) S rt+x
dimW’ — dimW'
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The inverse direction is straightforward. O]

We can induce another description about stable and SL(W)-semistable

locus.

Lemma 2.5.3. [66, Lemma 7.2.4] For a point x = [W ® Oc(—Nx) — &] €
Quot&,gxoc(_m) sc» there exist an integer N”(r,d) such that for every n >
N”(r,d), x is semi-stable with respect to the SL(W)-action if and only if &

is semi-stable coherent sheaf and the natural morphism :
W ® Dy — H%(C, E(nx))

is an isomorphism.

Furthermore, we can find 1-1 correspondence between sub-coherent sheaves
of semi-stable coherent sheaves with same slope and sub-vector spaces of sec-

tions.

Lemma 2.5.4. [66, Lemma 7.2.5] Consider a point x = [W ® O¢(—Nx) —
&l e Quota,gxo (_Ny)/c- We note that & is a semi-stable coherent sheaf by
Lemma 2.5.3. Let & C &€ be a coherent subsheaf with rank&’ > 0 and
w(&’) = u(&). Then &' is generated by a vector subspace W/ C W which

satisfies :
HP(&E') B HP(E)

dimW’  dimW'’
Explicitly, we have W’ = H°(C, £’(Nx)) for such W/ Cc W.

Finally, we define the projective space M(r,d) := <QUOt®gXOC(—Nx)/C> /
SL(W). Consider a point x = [W ® Oc(—Nx) — £] € (Quot{;/gxoc NX)/C>

Then by Lemma 2.5.3, 2.5.3, 2.5.4, We can show that £ is a semi-stable
vector bundle with rank r and degree d. Similarly, we can also show that if
X € (Quot;ngo (_Nx) /C> , € is a stable vector bundle with rank r and degree

d. Furthermore, we have the following theorem.
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Theorem 2.5.5. [66, Theorem 7.2.1] Consider a functor M(r,d) : Sch/k —
Sets which correspond a parameter scheme S to a set of isomorphism class
of vector bundle E on S x C such that each fiber E|, over x € C are semi-
stable bundle of degree d.

Then M(r,d) is a coarse moduli space of the functor M(r,d). A closed
point of M(r,d) correspond to an S-equivalence class of semi-stable bundles
of rank r and degree d. Furthermore, its stable locus
Ms(r,d) = (QUOtu—;XOC(—Nx)/C>S / SL(W) C M(r,d) parametrizes isomor-
phism classes of stable vector bundles.

We note that if two semi-stable bundle E and E’ with rank r and degree
d are S-equivalent, then we can check that closures of their SL(W)-orbit in

some embedding in Grassmannian has nonzero intersection. So by Proposi-
tion 2.3.9, E and E’ induce the same point in M(r,d).

2.5.2 Smoothness of M*(r, d)

Contents in this section mostly follow [66, Part I, Chapter 8|. In this

section, we show the smoothness of the stable locus

open

Ms(r,d) C MS(r, d).

Let us introduce the main result of this subsection

Proposition 2.5.6. [66, Theorem 8.3.2] If M*(r,d) is nonempty, then it is
a smooth (12(g — 1) + 1)-dimensional variety where g = g(C). Furthermore,
for a closed point [F] € M*(r,d), represented by a stable bundle F, we have
a natural identification for the tangent space of M*(r,d) at the point [F] as

follows
TrM®(r,d) = Ext' (F, F).

For a reader who is familiar with the deformation theory of the vector bun-

dle, the above result on tangent space looks clear. It seems that the result
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directly follows from the result on the extension of vector bundle [42, The-
orem 7.3|. But in fact, it is not so clear since M*(r,d) is not always a fine
moduli. In fact, M*(r,d) is a fine moduli space if and only if (r,d) =1 [82,
Theorem 5.12], [88].

So we prove the theorem from the GIT quotient construction of M*(r, d).

For a point [E] € M*(r,d), we can represent it as a point in the Quot scheme

Tt+x .
QuotW® Oc(-Nx)/C -

W® Oc(—NX) — E.

Let K be the kernel of the above surjection so we have the short exact se-
quence 0 - K =5 W ® Oc(—Nx) — E — 0. Then by taking the functor

Hom(—, E), we have the following long exact sequence :

0 — Hom(E,E) =k - Hom(W ® Oc(—Nx), E) = End(W) — Hom(E, K)
— Ext'(E,E) = W @, H'(E(Nx)) =0 (2.4)

Then by the result in section 2.2, Proposition 2.2.7 on the tangent space
of Quot schemes, we have T[E]Quota/gxo (CNw)/C = = Home, (K, E).

Since End(W)/k is isomorphic to the lie algebra of SL(W), which we use
in the GIT quotient construction M*(r,d) := (Quot@gxoc N /C> // SL(W),
we need to know the information about the stabilizer subgroup of GL(W)

at the point [E]. We state the following result :

Proposition 2.5.7. [66, Lemma 8.3.1] The stabilizer subgroup of GL(W)-
action on Quot%xoc(_w/c at the point W ® Oc(—Nx) —» E] is the auto-
morphism group Aute.(E,E) of the sheaf E.

Proof of Proposition 2.5.6. Let E is a stable bundle, then the stabilizer sub-
group is isomorphic to k*. Therefore, the stabilizer subgroup of SL(W)-subgroup
at the point [E] where E is a stable bundle, is Z;, which has endomorphism

group 0. Therefore, from the sequence (2.4) and the above argument, we

conclude that TgM*(r,d) = Ty Quoty, X, _xy,c/End(SL(W)) = Ext'(E, E).
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By using the local-to-global spectral sequence, we have dimExt'(E,E) =

H'(C,Hom(E,E)). Since endomorphism bundle Hom(E, E) has rank > and
degree 0, and since H*(Hom(E, E)) = Hom(E, E) =k, by Riemann-Roch for-
mula, we have dimExt'(E,E) =12(g — 1) 4+ 1. Therefore, M3(r, d) has same
tangent bundle dimension at every point. Therefore, by generic smoothness,
Ms(r,d) is smooth with dimension 1?(g—1) + 1. ]

2.5.3 Various properties

In this subsection, we introduce various geometric properties of the mod-
uli space M(r,d). In addition to the smoothness result of M*(r,d) in the
previous subsection, the following proposition figures out exactly what is the

singularity of the moduli space M(r,d).

Proposition 2.5.8. [79, Theorem 1] Except for n = 2, g = 2 case, singular

locus of M(r,d) is exactly the locus of strictly semi-stable bundles.

Fortunately, regardless of (r,d), we have the irreducibility of the moduli
space M(r,d).

Proposition 2.5.9. [66, Theorem 8.5.2] The moduli space M(r,d) is an ir-

reducible variety.

We often overlook that non-emptiness of M(r,d) is not a trivial fact. In
fact, moduli space M(r,d) is empty if the curve C is the projective line P',
r > 2 and if r does not divides d.

Proposition 2.5.10. [66, Theorem 8.6.1, Theorem 8.6.2],2, Theorem 7]

1. If the curve C has genus g(C) > 2, stable locus M*(r, d) is non-empty
for all (r,d).

2. If the curve C is elliptic, then M(r,d) is non-empty for all (r,d).
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As we commented above, stable locus M*(r,d) is a fine moduli space,

i.e. it carries universal family if and only if (r,d) =1.

Proposition 2.5.11. [82, Theorem 5.12],[88, Theorem 2| If the curve C has
genus g(C) > 2, then the open sublocus M*(r,d) is a fine moduli space if
and only if (r,d)=1

2.6 Examples of Fano varieties

In this section, we introduce past results on the geometry of Fano vari-

eties which will be the main objects of our paper.

2.6.1 Moduli space N of rank 2 stable vector bundle on

a curve with fixed determinant

Let C be a smooth projective curve with genus g > 4 over C and M(r, d)
be the moduli space of stable rank r and degree d vector bundles over C,
which we constructed in Section 2.5. Then there is a determinant map det :
Ko(C) — Pic(C) induces a morphism M(r,d) — Pic?(C) [66, Chapter 8.6]
from the moduli space of vector bundles to the Picard group of degree d line
bundles.

For a moduli functor My (r,d) : Sch/k — Sets which assigns a parameter
scheme S to a set of isomorphism class of vector bundle E on Sx C such that
its determinant /\"E is isomorphic to ;L ® myM where m;, 7, : S X C —= §,C
are projections and M is a line bundle on S. Seshadri [92] showed that there
exist a coarse moduli space M (r,d) of the moduli functor My (r,d) which
parametrizes S-equivalence class of semi-stable bundles with fixed determi-

nant L.

Proposition 2.6.1. [92, Theorem 8.1] A moduli functor M;(r,d) has a

coarse moduli space M (1, d) which is a normal projective variety parametriz-
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ing S-equivalence class of semi-stable rank r, degree d vector bundles which
has fixed determinant line bundle L € Pic?(C).

By construction in [92], we have M(r,d) Xp;.a(c) [L] = My(r,d). Since
M(r,d) is a fine moduli space i.e. carries a universal family for a pair (r,d) =
1, M(r,d) is also a fine moduli, which carries a universal family which is
a pull-back of a universal family on M(r, d).

Moreover, M(r,d) — Pic?(C) induces a map between tangent spaces
Ext'(E,E) = H'(C,Hom(E,E)) — H'(C,O¢) which is obtained from the
trace map Hom(E, E) 4 Oc. Since this map is surjective with constant
codimension, we conclude that the map M(r,d) — Pic?(C) is smooth [43,
Chapter III, Proposition 10.4], therefore we conclude that My (r, d) is smooth
with dimension *(g—1)+1—g=(*—=1)(g—1).

Furthermore, in [29], Drezet and Narasimhan found out the Picard group
of My(r,d) is isomorphic to Z, where its generator is a divisor called gen-

eralized theta divisor.

Proposition 2.6.2. [29, Theorem B] Let, the curve C has genus g(C) > 2.

Then we have the following.

1. We define the generalized theta divisor © to be the following Brill-
Noether type divisor :

©={EecNHC,E®L)#0}

for any degree g line bundle L, i.e. it does not depend on the choice

of the degree g line bundle L.

2. The Picard group of the moduli space My (1, d) is given by Pic(M(r,d)) =

7 = (©).

Moreover, for (r,d) = 1, Ramanan [88] figured out that canonical class
of the smooth variety My (r,d) is equal to —20, which says that M (r,d)

is a Fano variety.
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Proposition 2.6.3. [88, Theorem 1] The canonical class Ky, (r,q) is equal to
—20.

Since we know that My (r,d) is projective by Seshadri [92, Theorem 8.1],
it is natural to curious about the very ampleness about the divisor k®. We

have an answer for the case r =2 and d is odd by Brivio and Verra.

Proposition 2.6.4. [7, Theorem 1] For r = 2, d is odd, the curve C has
genus g(C) > 2, then the generalized theta divisor © is very ample.

For small (r,d), we have explicit information about My (r,d). The fol-

lowing results are due to Newstead and Narasiman-Ramanan.

Proposition 2.6.5. [79, Theorem 3, Remarks 1], [81, Theorem 1], [78] For

the v = 2 case, we have the following results:
1. If g(C) =2, M(2,0) = P3.

2. If g(C) =2, M(2,1) is a smooth complete intersection of two quadric

hypersurfaces in P°.

3. If g(C) =3 and C is not hyperelliptic, then M((2,0) is a coble quartic
[25] in P7, which is singular along the Kummer variety Kc € M(2,0).

On the other hand, we have a result on the rationality of the moduli
space M((r,d) by King and Schofield.

Proposition 2.6.6. [60, Theorem 1, Theorem 2] When g(C) > 2, we have
the following.

1. The moduli space My (r,d) and the product M(m,0) x PP=m?)g=1) are
birational when m = (r,d).

2. If (r,d) =1, then the moduli space My(r,d) is rational.
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Finally, we define a space N := Mo, (x)(2,—1), which is a moduli of rank
2 stable vector bundles on the smooth projective curve X with determinant
g(X) >4 over C with a fixed determinant line bundle Ox(—x), where x € X
is a fixed point. This space will be one of the main object of our story.

By the results we summarized above, N is a smooth projective Fano va-
riety with Picard group PicN = Z = (©), where © is a generalized theta
divisor, which is very ample. We also have Ky = —20. Moreover, N is a
fine moduli space and N is a rational variety.

As we finish this subsection, we strongly recommend the lecture note,
‘Vector Bundles on Algebraic Curves’ by P.E. Newstead which is good for
review the result from past to the present on the study of moduli space of

vector bundles on algebraic curves even though it is not published.

2.6.2 Hyperplane sections of the Grassmannian Gr(2,5)

Let G = Gr(2,5) and we denote by Y™ the intersection of the Grassman-
nian Gr(2,5) C PG = P° and 6 —m general hyperplanes. Then Y™ is a
smooth Fano variety of dimension m.

We note that for any choice of general 6 — m hyperplane sections, the
smooth Fano variety Y™ the intersection of Gr(2,5) with these 6—m hyper-
plane sections does not depend on the choice of 6—m hyperplanes up to the
projective equivalence given by PGL(C’)-action. For m = 3 case, the proof
is appeared in [91, Lemma 2.1] and [52, Chapter II, theorem 1.1].

Then, hyperplane sections of Grassmannian Gr(2,5) has many interesting
properties. One of them is about their automorphism groups. More gener-
ally, Piontkowski and Van de Ven [85] studied automorphism groups of hy-
perplane sections of Gr(2,mn). In particular, for Y3 = Gr(2,5)NH' nH? N H3
for general hyperplanes H', H?, H3 C P?, its geometry well explained in the
book of Cheltsov and Shramov, ‘Cremona Groups and the Icosahedron’ [14].

We introduce part of these results in this section.
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For hyperplane sections of Grassmannian Gr(2,mn), we have the following

results for their automorphism groups by Piontkowski and Van de Ven.
Proposition 2.6.7. [85, Proposition 2.1, Theorem 3.5, Theorem 6.6]

1. The automorphism group Aut(Gr(2,2n)NH) where H is a general hy-
perplane section of the Grassmannian under the Pliikker embedding is

Sp(2n,C)/Z,. Furthermore, its action on Gr(2,2n)NH is homogeneous.

2. When n > 3, the automorphism group Aut(Gr(2,2n)NH;NH;,) where
H;,H; are 2 general hyperplane sections of the Grassmannian under
the Pliiker embedding has SL(2,C)"/Z, as a normal subgroup. More-
over, its quotient group Aut(Gr(2,2n)NH;NH,)/ (SL(2,C)"/Z;) is iso-
morphic to the symmetric group S; for n = 3, isomorphic to Z, x Z,
for n =4, and trivial for n > 5.

Proposition 2.6.8. [85, Proposition 5.2, Theorem 6.6]

1. The automorphism group Aut(Gr(2,2n+1)NH) where H is a general
hyperplane section of the Grassmannian under the Pliicker embedding
is isomorphic to an extension of Sp(2n,C) x C*/Z, by C®, which is

also isomorphic to the group :

T € Sp(2n,C)
a€C /{1, =1}
beCr

Qg ... A

2. The automorphism group Aut(Gr(2,2n+1)NH;NH;) where Hy, H; are
a 2 general hyperplane sections of the Grassmannian under the Pliicker
embedding is isomorphic to an extension of PGL(2,C) by the semi-

direct product C*™ x C*. More precisely, the automorphism group is
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isomorphic to the subgroup of PGL(2n + 1,C), whose elements are of

cM,, 0 w0
N Mn+1 0 thr]

where ¢ € C*, N € M, ;1,(C) such that its entry satisfies ny = ny

the following form :

whenever i1 +j = k+ 1, and t,, are transformation induced from the
PGL(2,C)-action on the standard rational normal curve in P™', t, 4

is defined in the same manner.

For a general hyperplane section H of the Grassmannian Gr(2,2n + 1)
under the Pliicker embedding, H is defined by the linear equation Qy €
(A2C*1)V | which is a skew-symmetric 2-form. Since every skew-symmetric
2-form has even rank, Qp should have a kernel 0 # cy € C*™*'. Since we
choose general hyperplane H, rank Qp = 2n and ¢y is unique up to scaling.
So we call the unique point [cy] € P?™ the center of H.

The following proposition says that the center point plays a key role in
the geometry of Gr(2,2n+1)NH.

Proposition 2.6.9. [85, Proposition 5.3] The automorphism group
Aut(Gr(2,2n+1)NH) acts on Gr(2,2n+ 1) N H, which is a subspace of the
space of projective lines in P?™, with two orbits :

1. lines passing through the center point [cy].

2. lines which do not pass through the center point.

Moreover, if we consider two general hyperplane sections H;, H; in the
Grassmannian Gr(2,2n + 1), we can also consider P'-parameter [s : t] € P',
and for each [s : t] € P', we can assign a center point Cls:t] ‘= ClsH{—tH,]-
Since H;, H, are general hyperplane sections, sH; —tH; are has rank 2n so
ClsHy+tH,) 18 well-defined. So, we have an assignment from P' to the point in

P2, Moreover, it is known that it is a rational normal curve of degree m.
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Proposition 2.6.10. [85, Proposition 6.3] The map defined above :

c:P! pn
[s : t] —— [Con, —tn,) == [ker(sHy; — tHy)].

is equal to the standard rational normal curve of degree n up to a linear

coordinate change.

We call this rational normal curve the center curve. This center plays a
key role in the geometry of Gr(2,2n + 1) N H; N H,. This is clear by [85,

Remark 6.7]. The following proposition is also an example.

Proposition 2.6.11. [85, Proposition 6.8] The automorphism group
Aut(Gr(2,5) N Hy N H;y) acts Gr(2,5) N Hy N H,, which is a subspace of the

space projective lines in P*, with four orbits :
1. Projective tangent lines of the center conics in P*
2. Projective lines joining two distinct points on the center conics

3. Projective lines passing through the center conics and do not lie on the

plane which is spanned by the center conic

4. Projective lines do not intersect with the plane which is spanned by

the center conic.

When we consider three general hyperplane sections Hj, Hz, Hs in the
Grassmannian Gr(2,2n + 1), we can consider a P?-parameter [s : t : u] €
P? and for each [s : t : u] € P?, we can assign a center point Cls:tu] =
VisH; +tHy+uHs]- 30, we have an assignment from P? to the point in P?". More-
over, for n = 2 case, is known that it is a degree 2 embedding with its image

isomorphic to the Veronese surface.
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Proposition 2.6.12. [85, Proposition 7.2] The map defined above :

P2 P

[s:t:ul——[Comty4tr,+uns) := [ker(sH; + tH; + uHs3)].

is a degree 2 embedding, and its image c(P?) is a Veronese surface.

We can view Gr(2,5) as the space of projective lines in the projective
space P*. For a closed subvariety Z C PN, we can define the trisecant variety
Tri(Z) to be the following :

Tri(Z) :={{ € Gr(2,N+ 1) | #(ZN ) > 3} € Gr(2,N + 1)

where #(Z N {) is the scheme-theoretic intersection number of Z and the
projective line £. Then, we have the following description of the smooth Fano
threefold Y? = Gr(2,5) N H; N H, N H; due to Castelnuovo.

Proposition 2.6.13. [85, Corollary 7.4],[11] The smooth Fano threefold Y?
is the trisecant variety Tri(c(P?)) of the Veronese surface c(P?) C P*.

As before, the image of the center map c, the Veronese surface c(P?)
plays a key role in the geometry of Y3 as follows. We introduce the following

result on the automorphism group of Y3.

Proposition 2.6.14. [85, Theorem 7.5] The automorphism group of the smooth
Fano threefold Y3 is isomorphic to the projective linear group PGL(2,C).

Then we can describe the orbit of this automorphism group action in Y3

via the geometry of the Veronese surface.

Proposition 2.6.15. [85, Proposition 7.6] The automorphism group Aut(Y?),
which is isomorphic to PGL(2,C) acts on Y, which is a subspace of the

space of projective lines in P* with three orbits :
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1. Projective lines intersect with the Veronese surface c(P?) at 3 distinct

points.

2. Projective lines tangent to the Veronese surface c(P?) at one point and

intersect to it at another point.

3. Projective lines intersect with the Veronese surface c(P?) at only one

point with multiplicity 3.

Moreover, we have another geometric interpretation about this three
PSL(2, C)-orbits.

Proposition 2.6.16. [71, Lemma 1.5], [51, Remark 3.4.6 and p.61], [91,
Proposition 2.13] The smooth Fano threefold Y? has three Aut(Y?)-orbits :

1. Degree 6 rational normal sextic curve C C Y3 C P°. This orbit matches
to the orbit 3 in Proposition 2.6.15.

2. S\ C where S is some general quadric surface containing C in the
linear system Ops(2) in the Pliicker embedding Gr(2,5) c P°. This
orbit matches to the orbit 2 in Proposition 2.6.15.

3. Y3\ S is a single orbit, isomorphic to PSL(2,C)/Ss. This orbit matches
to the orbit 1 in Proposition 2.6.15.

On the other hand, Cheltsov and Shramov [14] concentrated on the icosa-
hedral group As embedded in the automorphism group Aut(Y?) = PSL(S,C).
They found the following important result in the viewpoint of the birational

geometry.

Proposition 2.6.17. [14, Theorem 1.4.1] The smooth Fano threefold Y? is
As-birationally rigid, and the group of As-invariant birational selfmaps on
Y3, Bir?(Y?) is isomorphic to the group Ss x Z,.
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Furthermore, using the As-action on Y, Cheltsov and Shramov revealed
many interesting geometric structures in the smooth Fano threefold Y3. For
example, they classified invariant cubic hypersurfaces and invariant low de-
gree curves under As-actions in [14, Chapter 12, Chapter 13]. However, the
research in this direction is somewhat distant from the subject of our paper,

so we will stop here, despite interest of their study.
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Moduli spaces of smooth rational

curves in Fano varieties

The results presented in this chapter are based on the results obtained
joint with Kiryong Chung and Jaehyun Hong in [19], the results of Castravet
[12, 13] and the results of Kiem [54]. In this chapter, we study moduli space
of degree d smooth rational curves Rq(V) where V is a Fano variety N or
Y™ we studied in Subsection 2.6. Here, Ryq(V) is defined to be an open sub-
scheme of the degree d map space Homgq(P', V), where Homg4(P', V) is con-
structed as an open subscheme in the Hilbert scheme of the graph space in
P x V [61, Chapter I, Theorem 1.10]. Before we study the moduli space of
rational curves in the smooth Fano variety N, we note that by the result
on local geometry of Hilbert schemes in Chapter 2, Proposition 2.2.8, all ir-
reducible components of Rgq(N') should have the dimension greater or equal
than 2d + 3g(X) — 3.

65



Chapter 3. Moduli spaces of smooth rational curves in Fano varieties

3.1 Modulispace R3(N) of smooth rational curves

in N

Contents in this section based on the results of Castravet [12, 13] and
the results of Kiem [54]. In the work [13], Castravet classified all irreducible
components of the moduli space Rq(N') which parametrizes degree d smooth
rational curves P! — N. Castravet’s work based on the classification of the
rank 2 vector bundles on the ruled surface by Brosius [9], [10]. But there
is a slight difference that Castravet considered a moduli space N of stable
rank 2 bundles on a smooth projective curve X with fixed determinant line N
bundle of degree 1. But we can easily compensate this difference by taking
dual. We first introduce Castravet’s result and we can obtain the result in
our setting by taking dual.

Before we introduce the result of Castravet, we introduce an important

notion called elementary modification.

Definition-Proposition 3.1.1. [54] Consider a rank 2 vector bundle E on
the curve X and let fix a point p € X. Then we define E'» to be the kernel

of the surjective map v, in the following short exact sequence :
0— E» —E 5k, — 0. (3.1)

Then we can easily see that E'? is again a vector bundle such that det(E'r) =
det(E)(—p). We call EY» an elementary modification of the vector bundle E
at the point p.

We have Hom(E, k,) = Hom(E[,, k,) = k* and Ker(v,) = Ker(A-v,)) for all
A € k*. So we may choose v, in the equivalence class under k*, [v,] € (k?\
{0))/k* = P'. If we choose E to be a rank 2 stable bundle with determinant
O(p —x), then we can observe that there is an induced map P' — N. It is
well known that this is a degree two smooth conic by Narasiman-Ramanan
[77] this is called Hecke curve.
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In the work of Kiem [54], he introduced a generalized notion of the Hecke
curve, the generalized Hecke curve. We explain it in a slightly different way.
First, consider a degree D effective divisor on X and consider a short exact
sequence :

0—E® —E 2 0p — 0.

Then we can also show that EYP is a vector bundle with determinant det(E'P)
det(E)(—D). We call EP an elementary transform of the vector bundle E at
the divisor D.

Then, consider a projectivized extension group PExt'(F,Op), where F
is a rank 2 stable vector bundle such that its determinant line bundle is
O(—D —x). An elements of this space is an equivalence class of the follow-

ing extension sequence :
0—-0Op—>F —=F=0.

We can check that F’ becomes a rank 2 vector bundle with determinant
O(—x). In fact, we can observe that (F')V can be obtained by an elementary
transform of FV at the exceptional divisor D.

Since vector bundles F’ appeared in the extension space can be unstable,
we consider stable locus P(Ext'(F,Op))*. Next, consider the middle term of
the universal extension sequence [47, Example 2.1.12] on the projectivized
extension group P := P(Ext'(F, Op))

0—=pi0Op = F = piFp;0p(1) =0

on X x P where p;,p, are projections to X and P, is a rank 2 vector bundle

on X x P. Then, its restriction Flxxps induces a morphism
P(Ext' (F, Op))* 25 .
since AV is a fine moduli space. The degree of this curve will be turned out
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to be 2degD since the Hgp has degree 2degD.
Now we introduce the following result of Castravet, which classifies irre-

ducible components of the moduli space of degree d smooth rational curves
R4(N7) in the moduli space of rank 2 vector bundles MNj.

Proposition 3.1.2 (Castravet). [13, Theorem 1.5, Lemma 4.10, Lemma 4.12]
For all pair of integers (a,b) in the following :

d—a

2a—d

{avliaza>an >0 >0} Ul(2,0)

There exist irreducible subvarieties R(a,b) of Rq(N7) whose elements are ra-
tional curves f:P' — A obtained by the completion of the following ratio-
nal map f’:P' --» N; obtained by the composition :

£ P s P(Exth, (L' @ N,L))° =5 A,

where L € Pic °(X) is a degree —b line bundle, ¥; is a morphism induced by
extension which has degree 2b+ 1, taking a class of rank 2 vector bundle in
the middle term of an extension as its value and (Ext}QX(L*1 ®N,L))* means
a stable part in the extension group. Here, if r = (d —a) —b(2a—d) =0,
then f’ is a regular map with degree 2a — d = ﬁ.

If d = 2k is even, there is an irreducible subvariety R C Rg4(P',A})

whose element is a rational curve obtained by the following composition :

HI
f: P 2B PRt ((E, Op))* 25 A,

where the first arrow is a degree 1 regular map, D is a degree k divisor

on the curve X, E is a rank 2 stable vector bundle with the determinant

line bundle L(—D) and H{J)E is a morphism induced by the extension, which

exactly coincide with the dual notion of the elementary modification.

Furthermore, we have the followings :
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1. For odd d, closures R(a,b) C R4(N;) such that dimR(a,b) > 2d+3g—3

are all irreducible components of Ryq(N7).

2. For even d, R(a,b) satisfies the same dimension condition and Rg are

all irreducible components of Rq(MN7).

We note that since the map Hip : Ext'((E,Op))* — N; has degree 2k =
2degD, we conclude that the map Hgp we defined at the beginning has also
degree 2degD as we announced since it is the dual notion of Hgp.

As we previously announced, by taking dual, we obtain the result in our
setting, the information on irreducible components of Rq(N). On the other
hand, for d <4 case, there is an independent result of Kiem [54, Proposition
3.6, Proposition 3.9] on the classification of the smooth rational curves P' —

N. We summarize it to the following.

Proposition 3.1.3. [54, Proposition 3.6, Proposition 3.9], [13, Theorem 1.5,
Lemma 4.10, Lemma 4.12] We denote N the moduli space of rank 2 sta-
ble vector bundles on the curve X whose determinant are fixed line bundle
O(—x). For d <4, we have the following results on Rq(N)

1. For d = 1, Ry(N) is irreducible, which parametrizes degree 1 rational

curves obtained from the following composition :
£ P L8 PR (L1 (—x)) 2 A
where L € Pic®(X) is a degree 0 line bundle.

2. For d =2, Ry(N) has two irreducible component R,(0) and Ryg. Here,
R;(0) parametrizes degree 2 rational curves obtained from the following

composition :
£ P Y8 PExt! (L, L7 (—x)) 25 A
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where L € Pic®(X) is a degree 0 line bundle, and R, ¢ parametrizes

degree 2 rational curves which is a form of Hecke curves

3. For d = 3, R3(N) has two irreducible component R3(0) and R3(1).
Here, R3(0) parametrizes degree 3 rational curves obtained from the

following composition :

£ P 28 PExt! (L, L7 (—x)) 25 N

where L € Pic®(X) is a degree 0 line bundle, and R3(1) parametrizes

degree 3 rational curves obtained from the following composition :

£ P2 prExt (L LT (—x)))° <5 A

where L € Pic'(X) is a degree 1 L line bundle.

4. For d =4, R4(N) has two irreducible component Rq(0) and Rye. Here,
R4(0) parametrizes degree 4 rational curves obtained from the following

composition :

£ 2B PRt (L, LT (X)) 25 A

where L € Pic°(X) is a degree 0 line bundle, and R4 e parametrizes
rational curves which is a form of generalized Hecke curves of degree
4.

Here, ¥ are morphisms induced from the middle terms of the universal ex-
tension sequence [47, Exmaple 2.1.12] of the projectivized extension groups
PExt'(L,L~'(—1)), which takes isomorphism class of a rank 2 vector bun-
dle in the middle term of the extension as a value. It has degree deg¥; =
2degL + 1. Moreover, when L € Pic®(X), W is a closed embedding.
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3.2 Rational curves in Gr(2,n)

Contents in this section based on the results obtained joint with Chung
and Hong [19]. In this section, we describe all degree < 3 rational curves in
the Grassmannian Gr(2,m) explicitly. We can consider the space Gr(2,n)(n >
4) as the moduli space of lines in P and keep in mind the following Pliicker
embedding :

G := Cr(2,n) — P(AXCY) = P(3)-1,

For fixed vector subspaces V; C V, C C*, we define o, ., ={[L] € G|dim(LN
Vi) > i} by the Schubert variety where ¢; := n+1i—dim(V;) — 2, i =
1,2.

To describe rational curves in the Grassmannian Gr(2,n), we need to

consider the Schubert varieties in Gr(2,m) in the following.

Definition 3.2.1. Consider a point { € Gr(2,n), which correspond to a pro-
jective line in P™', and choose a flag p € P' c P> ¢ P* ¢ P*'. Then we

define the following Schubert varieties :
o 0,40 =1{L|LNP? £} (dimn, degn(n — 3)/2)
o 0,30 ={LILNP" £} (dimn —1,degn — 2)
® Opana=1{C P3) (dim 4, deg 2)
® Opsna={LNP" #£0,LCP} (dim3,deg2)
o o0 =1Ulpel} (dimn —2,deg1)
® 0303 ={l[LCP} (dim 2,deg 1)
® 0n2na={llpelcP? (dim 2,deg 1)

e 0non3={llpelcCP? (dim 1,deg 1).
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Remark 3.2.1. We note that family of Schubert varieties 0214 and on_3n-3

are all planes in Gr(2,mn).

Remark 3.2.2. For a point p, a line {, a plane P, a 3-dimensional linear
space P* C P™'| we sometimes use a notation oy;(p), 0v(£), 01;(P), o1;(P?),
0y (p,P*) which denotes a Schubert variety correspond to a flag containing

p, £, P, P3,{p} C P* at each cases.

We can find the degrees and dimensions of the Schubert varieties from
[38, Page 196] and [34, Example 14.7.11]. When n =5 case, these varieties
are free generators of the homology group H.(Gr(2,5),7Z).

Next, we write S(Cp, Cq) to denote the rational normal scroll induced

from two smooth rational curves Cy and Cy (The curve Cy can be a point).

Proposition 3.2.3. Consider a degree d smooth rational curve C : P! —
Gr(2,n) in the Grassmannian Gr(2,n) where the degree is defined via the
Pliicker embedding.

1. If d = 1, then the image of C is equal to the the Schubert variety
On—2n-3(Po, P), which is a family of projective lines contained in a fixed

plane P C P! containing the fixed point poy € P.

2. If d =2, then the image of C is either the family of projective lines in
the ruling of the rational normal scroll S({y,¢;) of two projective lines
€y and £y, or the family of projective lines in the ruling of the rational

normal scroll S(pg, Co) for a fixed point py and a smooth conic Cy in
P,

3. If d =3, then the image of C is either the family of projective lines in
the ruling of S({, Cy) for a projective line £ and a smooth conic Cy, or
the family of projective lines in the ruling of the rational normal scroll

S(po, C1) for a fixed point py and a twisted cubic C; in P™.
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Proof. Let £ be a projective line in P™'. Then hyperplanes in P! which
contains the line ¢ forms a sublocus in the dual projective space (P™')*
which is isomorphic to P2, Thus, the sublocus of hyperplanes in P™' which
contains one of a projective line in the family correspond to the curve C with
dimension < n — 2. Therefore we can choose a point [A] € (P™')* of the
complement of this sublocus. Thus A C P™' intersects each projective line
in the family correspond to C transversely by construction ([43, Chapter I,
Theorem 7.1]). We denote C « F &Pt the family of projective lines cor-
respond to C, where 7: F — C is a P'-bundle and ¢ is the morphism such
that it is the natural embedding when restricted on each fiber of 7. As a

result, we obtain a following fiber diagram :

f1(A)—— A

|

F—2 pn

C

Since each fibers 71 (x) intersect with the hyperplane A transversely, lo-
cally we can describe the bijection ¢p~'(A) — F — C by the following :

{(z1,z2) |lza = g(z1)} C C* = Cy  (z1,22) — 21

When we let Cy := ¢~ "(A), then it is the image of a section sy : C — F.
Consider a normal bundle N¢ s of Cy in F. Then we can observe that F
has the projective bundle structure F = P(Oc @ N) where N = siN¢,r.
Let s;: C = PN — P(Oc & N) = F be the canonical section. Let Ly = (¢ o
$0)*Opn1(1) and Ly = (bos1)*Opn-1(1) so the induced morphism ¢osy: C —

P! becomes (ag: aj:---:an_) where a; € H°(C,Ly) and ¢pos;: C — P!
becomes (bg : by : -+ : by) where by € H(C,L;). In summary, projective
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lines in the family F can be described by two-dimensional vector subspaces

of C™ the row space of the following matrix :

Qo a; a as --- Qap—

by by by by - bng
where a; € H°(C,Ly) and b; € H°(C,L;) are sections of the line bundles L,
and ;. Thus we can write Pliicker coordinates of C C Gr(2,n) C P21 as

aib; — ajb; € H°(C,Ly®L;). Hence, we observe that the degree of the curve
C is equal to :

degC =dp+ d;y, where dg =degly and d; = degL,;.

We recall the fact that C = P' since C is a smooth rational curve. If
d = 1, without loss of generality, it should be Ly = Op and Ly = Opi(1).
Therefore, If we let po = (ao: aj;:---:a,1) and P be the projective plane
spanned by three vectors po, (bo(0) :---:by_1(0)) and (bo(1) :---:by_1(1)),
we prove the case (1)

Next, consider the case d = 2. If dy = 0 and d; = 2, we may write
Po=(ap:ay:--:anq) and Cy = {(bo(t) : --- : by_s(t)) [t € P'} and C
is the family of projective lines in the ruling of the rational normal scroll
S(po, Co). If dg =1 and dy =1, the images €y := foso(C) and €; :=fos;(C)
are both projective lines and therefore C parametrizes lines passing through
a pair of points, one of them moving in the line £, and the other one moving
in the line ¢;.

We can also show the d = 3 case in a similar manner so we omit here. [

Remark 3.2.4. We can also prove Proposition 3.2.3 through Grothendieck’s
theorem that every vector bundle over the projective line P' can be decom-
pose to a direct sum of line bundles.

For a degree d curve C : P! LN Gr(2,n), consider the pull-back of the
rank 2 tautological bundle U & O&™. Then we have a splitting of a vector
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bundle :
U = Opi (—dy) D Opi (—d3)

where d; + d, = 2d.

Moreover, let us write the induced morphism ¢*U = Opi (—d; )POpi (—d;) &

Og" as the following n x 2 matrix :

QG ap a -+ Qn
by by by -+ bn
where a; € HO(P', Op1(d;)) and b; € HO(P', Opi(d,)).
Then the sections ag, aj,...,a, 7 defines a degree d; rational curve C;
and the sections by, by,..., b, 1 defines a degree d, curve C,.

For a point x € P', the image f(x) € Gr(2,n) is the row space of the

matrix :

ao(x) ai(x) ax(x) -+ an-1(x)
bo(x) bi(x) ba(x) -+ baa(x))’

which correspond to the projective line in P™' joining two points [ag(x) :
aj(x) -+ ap_1(x)] and [bo(x) : by(x) : -+ : by_1(x)]. Therefore the curve
the curve C is a family of lines in the ruling of the rational normal scroll
S(Cyq, Cy). Especially, for d =1 case, family of lines in the ruling S(po,{) of
the point py and a line {, is equivalent to the family of lines in P which pass
through the point py € P where P is the plane spanned by poy and the line
L.

We note that even distribution types are general types among the split-
ting types. This says which types are general types in d = 2 and d = 3
case. In d = 2 case, the curve C which is a family of lines in the ruling
of rational normal scroll S(£, ;) for two lines {o,¢; C P, is the general
type. In d = 3 case, the curve C which is a family of lines in the ruling of
rational normal scroll S({, Cy) for a line £ and a smooth conic Cy in P™' is

the general type.
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By the Part 1 of Proposition 3.2.3, we can prove the following result
on the planes in the Grassmannian Gr(2,m), which we already mentioned in
Remark 3.2.1. When n =5 case, the result in the following corollary already
appeared in [26], and we think that this result may be classical since it is

very simple. But we provide the proof for readers convenience.

Corollary 3.2.5. [26, Section 3.1] Every plane in the Grassmannian Gr(2,n)

arises in one of the following forms :

1. A family of projective lines in a fixed plane P € P!, This family of
lines is equal to the Schubert variety on_3n—3(P) C Gr(2,n).

2. A family of lines in a fixed three-dimensional space P* € P™', pass-
ing through a fixed point p € P*. This family of lines is equal to the
Schubert variety 0—n72,n74(p,P3 ) C Gr(2,n)(See Remark 3.2.2 about the
definition of this Schubert variety).

Proof. Let A be a plane in Gr(2,n). Consider two different lines £y, ¢ C A.
Then by Proposition 3.2.3, the line {, is a set of lines contained in a plane
Py C P! which pass through a fixed point py € Py and the line & is a set
of lines in P™ ' in a projective plane P; C P which pass through a fixed
point p; € P;. Let x := €y, N{; be the intersection point of two lines.

If po = p1 = p, then we can observe that the planes Py, and P; inter-
sects along the line which corresponds to the point x € Gr(2,n). There-
fore, Py and P; spans the three-dimensional space P° C P"'. Therefore,

we can observe that the lines {, and {; contained in the Schubert variety

On_2n-4(p,P?), which is a plane in Gr(2,n). Therefore we have A = 0,2, 4(p,P?).

If po # p1, then we can observe that x is a line joining two points py and
P1, so we can write x = pop1. Therefore, planes Py and P; intersects along
the line popy. If Py # Py, then we can choose two lines poa € {, for a point
a € Py and p1b € ¢ for a point b € Py, such that poa Np;b = @. Then
by Proposition 3.2.3, Pod,pib € Gr(2,n) cannot lic on a line in Gr(2,n).
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Therefore we have Py = P; = P. Then the lines ¢, and ¢; contained in the
Schubert variety oy_3n-3(P), which is a plane in Gr(2,n). Therefore we have
A= o-n—S,n—3(P)' -

Also, as a result of Proposition 3.2.3, we have the following geometric

descriptions for smooth rational curves in the Grassmannian Gr(2,n).

Proposition 3.2.6. (1) (|40, Exercise 6.9]) The variety R;(Gr(2,n)) of pro-
jective lines in G = Gr(2,n) is isomorphic to the flag variety Gr(1,3,n),
which parametrizes flags Vi C V3 C C* of C™ where dimV; = 1.

(2) For a smooth conic curve C C Gr(2,n) C ]P’(Tzl)*l, there exists a three
dimensional sub-linear space P3 C P(3)" which contains every projective
lines in P! parametrized by the curve C.

(3) For a twisted cubic curve C C Gr(2,n) C ]P’(g)_], there exist a pro-
jective line £ C P™' which intersects all projective lines parametrized by C

transversally in P!

Proof. By Proposition 3.2.3 (1), each projective line in Gr(2,n) corresponds
to the family of projective lines in a plane P C P™ ' which contains a fixed
point p € P2. On the contrary, such family of projective lines in P™' deter-
mines a projective line in Gr(2,n).

By Proposition 3.2.3 (2), a conic C in the Grassmannian Gr(2,n) is the
family of lines in the ruling of a rational normal scroll S({y,¢;) for projec-
tive lines €y, £; in P™' or a rational normal scroll S(poy, Co) for a point po
and a smooth conic Cy in P™!. Hence, if we choose a P3(may not unique)
containing py and Cy in the former case or P? containing {y and ¢; in the
latter case, then all lines of the family parametrized by the curve C should
be contained in the linear space P3.

By Proposition 3.2.3 (3), a twisted cubic C in the Grassmannian Gr(2,n)
is the family of lines in the ruling of a rational normal scroll S({, Cy) for
a projective lines { and a smooth conic Cy in P™' or a rational normal

scroll S(po, Cy) for a single point py and a twisted cubic C; in P*'. If we
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choose the projective line £ in the former case or any projective line { passing
through the point po in the latter case, it is clear that every line of the
family parametrized by C should intersect with the line {. [

The above Proposition leads to the following definition.

Definition 3.2.2. (1) We call the point p in Proposition 3.2.3 (1), the vertex
of the projective line in Gr(2,m).

(2) We call the three-dimensional linear subspace P* in Proposition 3.2.6
(2), an envelope of the conic C C Gr(2,n).

(3) We call the line € in Proposition 3.2.6 (3), an azis of the twisted
cubic C C Gr(2,n).

Corollary 3.2.7. (cf. [40, Exercise 6.9] and [16]) We denote R4(Gr(2,n))
the moduli of degree d smooth rational curves in Gr(2,n) where d < 3,

n > 4. Then we have the followings :

1. We have a regular map (; : R;(Gr(2,n)) — P! = Gr(1,n) that sends
each projective lines in G to its vertex. Then, each fiber of {; over
V; € Gr(1,n) is isomorphic to Gr(2,C"/V;).

2. We have a rational map (, : Ry(Gr(2,n)) --» Gr(4,n) that sends
each smooth conic in Gr(2,n) to its envelopes. A fiber of the ratio-
nal map (; over a point V4 € Gr(4,n) is isomorphic to the moduli

space Ry(Gr(2,Vy)) of smooth conics in the Grassmannian Gr(2, V) =
Gr(2,4).

3. We have a rational map (3 : R3(Gr(2,n)) --» Gr(2,n) that sends each
twisted cubic in G to its axis. A fiber of the map (3 over a point
¢ € Gr(2,n) is the moduli space R3(on_30(£)) of twisted cubic curves
in the Schubert variety on_30(¢) in Remark 3.2.2.

Proof. (1) By Proposition 3.2.6 (1), the map {; is, in fact, the forgetful map
R (Gr(2,n)) = Gr(1,3,n) — Gr(1,n) which is given by (V;,V3) — V;. The
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choice of the vector space V3 which contains V; is clearly parametrized by
Gr(2,C"/Vy).

(2) General smooth conic C is a family of lines of the ruling of a ra-
tional normal scroll S(fy, ;) of two lines £, ¢ in the projective space P™!
by Proposition 3.2.3. Then since C is general, lines {, and, ¢; span a three-
dimensional linear subspace P* = P(V,;) € P™'. Thus, the smooth conic C
should be contained in the Grassmannian Gr(2,Vy), which is a space of lines
in P4, a fiber of the map (; over V4 € Gr(4,n) is isomorphic to Ry(Gr(2, V4)).

(3) General twisted cubic curve C is determined by (¢, Cy) in the nota-
tion of the part (3) of the Proposition 3.2.3. The locus of projective lines
intersecting £ is the Schubert variety on_30(£). Thus the curve C should be
contained in the Schubert variety on_30(f) and therefore a fiber of the map
(3 over £ € Gr(2,m) is isomorphic to R3(on_30(£)). O

3.3 Modulispace R3(Y™) of smooth rational curves

in Y™

Every scheme in this section is defined over C and the Grassmannian

Gr(f,n) means the moduli space of {-dimensional subspaces of the vector
space C™.
We write {eg, €7, -+ ,en_1} as the standard basis of the n-dimensional vector
space C" unless we mention it otherwise. We denote pj,i,..i, the projective
coordinates of the Pliicker embedding Gr({,n) — P(A'C"), which is called
Pliicker coordinates.

Before we start to study the birational models of moduli space of rational
curves in linear sections of Grassmannians, we need to clarify their birational
types. In this section, we prove rationality results of the moduli spaces in
the following.

From now on, we adopt the following notations. We let G := Gr(2,5)
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and Y™ be the intersection of the Grassmannian Gr(2,5) C p(3)-! = po
with 6 — m general hyperplanes in P°. For example, Y® = Gr(2,5) = G,
Y> =Gr(2,5)NH and Y* = Gr(2,5NH; NH,), where H, H;, H, are general
hyperplanes in P5. Then Y™ are smooth Fano varieties. We first introduce
the main result of this Chapter.

Theorem 3.3.1. The moduli space Rq(Y™) of degree d smooth rational curves

in Y™ are all rational varieties for 1 < d <3 and 2<m <6.

We note that if m = 0, then Y° is a five point set since the degree of
G in P’ is 5. If m =1, then Y' is a degree 5 smooth elliptic curve so that

there exist no rational curve in Y.

Lemma 3.3.2. 1. The moduli of lines R;(Y?) is a variety of 10 disjoint

reduced points.
2. The moduli of conics Ry(Y?) is the disjoint union of five P' —{0, 1, co}.

3. The moduli of cubics R3(Y?) is isomorphic to the disjoint union of four
P2 —P' and P? — {4 projective lines}.

4. There does not exist any planes in Y2.

Proof. We can observe that Y? is a degree 5 del Pezzo surface and therefore
it is isomorphic to the blow-up of P? at 4 general points. Hence, it is obvious
that there is no plain contained in YZ.

By adjunction, we can observe that a projective line in Y? is equivalent
to a rational curve in Y? which has self-intersection number —1. Since Y? is
isomorphic to the blow-up of P? at 4 general points, there are 4 exceptional
curves and strict transformations of 6 projective lines in P? joining 2 out of
the 4 blow-up points. Thus, there are exactly 10 projective lines in the del
Pezzo surface YZ.

Again by adjunction, we can observe that a smooth conic in Y? is equiv-

alent to a rational curve which has self-intersection number 0. They are
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strict transformations of projective lines passing through one of the 4 blow-
up points or conics which pass through every blow-up point, minus projec-
tive lines passing through 2 out of the 4 blow-up points and the three sin-
gular conics passing through the 4 points.

Again by adjunction, we can observe that a twisted cubic curve in Y? is
equivalent to a rational curve which has self-intersection number 1. They are
strict transformations of projective lines in P* which does not pass through
any of the blow-up center points, or conics which pass through 3 out of the
4 blow-up points. The first family parametrized by P? minus four projective
lines and the second family is parametrized by disjoint union of four P? \
P'. O

Proposition 3.3.3. ([30, 36, 48, 91]) For d = 1,2,3, the Hilbert schemes
Hq(Y?) with Hilbert polynomials dt+ 1 in the Fano variety Y are equal to
the following :

Hi(Y)=P?, H(Y) =P and H;(Y?) = Gr(2,5). (3.2)

In particular, moduli of smooth rational curves R4(Y?) for d < 3 are

rational.

We will re-prove the same result on the moduli space of lines and the

moduli space of conics in Y3 in Section 4.5 through our own method.

Remark 3.3.4. The isomorphisms in (3.2) are defined by the composition
map (qotl where t: Rq(Y?) C R4(G) is the inclusion and the map (4 defined
in Corollary 3.2.7. We will geometrically describe the generic fibers of the
map Cqot for d =2,3 (cf. [1, §1] and [91, Remark 2.47]) in the remainder
of this section. Since the Schubert variety oy1(P?) = Gr(2,4) has degree two
(Definition 3.2.1) in the Pliicker embedding, the intersection oy 1(P*) N H;y N

H, N H3 is generically a conic in Y3.
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In a similar way, we can show that a Schubert variety o,0(P') is con-
tained in some P° C P? and 0,0(P') is determined by three quadric equa-
tions using an explicit coordinate computation.

Hence the intersection 024(P') of hyperplanes Hy "H, NH;3 with P° C P?
is generically a twisted cubic, and this is the generic fiber of the map (301t
(cf. [49, Proposition 4.5]).

Corollary 3.3.5. Rg(Y™) are all irreducible for d < 3 and m > 3.

Proof. We recall that the spaces Y™ does not depend on the generic choice

of the hyperplane sections H;. We define
J={(C,H) € Rg(Y™) x Gr(13 —m,10)|C C H}

as the incidence variety of pairs of a curve C and a linear subspace H C P’
with codimension m—3. We observe that the second projection map p; : J —
Gr(13 — m,10) is dominant. Also, since the Grassmannian Gr(13 — m,10)
is irreducible and the generic fiber p;'(H) = R4(Y?) is irreducible for the
general linear subspace H (Proposition 3.3.3), the incidence variety J is irre-
ducible. Next, we observe that the first projection p; : J — Rq(Y™) is domi-
nant since each degree d < 3 smooth rational curve in Y™ C Gr(2,5) C PY is
contained in some three dimensional linear subspace P? and also contained
in some linear subspace H C P? of codimension m—3. Since dominant image

of the irreducible space is irreducible, we prove the claim. O

Combined with irreducibility result (Corollary 3.3.5), we prove the ratio-
nality of moduli spaces Rq(Y™) for 1 < d <3 and 4 < m < 6 in the follow-

ing lemmas.

Lemma 3.3.6. (cf. [59, Theorem 3] and [63, Theorem 4.9]) Recall that G =
Gr(2,5). Then we have the following :

1. Ry(G) = F(1,3,5) is isomorphic to a Gr(2,4)-bundle on the projective
space P*:
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2. Ry(G) is birational to a Grassmannian Gr(3,6)-bundle on the Grass-
mannian Gr(4,5) = P*;

3. R3(G) is birational to a Grassmannian Gr(4,7)-bundle on the Grass-

mannian Gr(2,5);

4. The Fano variety of projective planes in G is isomorphic to the disjoint
union F(1,4,5) U Gr(3,5).

Proof. By Proposition 3.2.3, a line in G is determined by a pair of a vertex
point p € P* and a projective plane P which contains the point p. So we
proved the Part 1.

By Corollary 3.2.7 (2), there is the rational map (envelope) (; : Ry(G) --»
Gr(4,5) = P* where its fiber over V4 € Gr(4,5) is Ry(Gr(2,Vs)). Via the
Pliicker embedding, we have an identification Gr(2,V4) C P° with the quadric
hypersurface in P°. Therefore a general plane P C P> determines a smooth
conic Gr(2,V,) NP. Conversely, a smooth conic in Gr(2,Vs) spans the plain
P C P°. Thus, (;'(V4) is birational to Gr(3,A?V,), which is a moduli space
of planes in the Pliicker embedding P° = P(A?V;). Then, if we consider
U — Gr(4,5), the tautological rank 4 vector bundle, a fiber of the relative
Grassmannian bundle Gr(3, A?U) over V; € Gr(4,n) equals to Gr(3,/A\2V,).
Therefore, R,(G) is birational to this Grassmannian bundle, so we proved
Part 2.

By Corollary 3.2.7 (3), there is the rational map (axis) (3 : R3(G) --»
Gr(2,5) where its fiber over £ € Gr(2,5) is R3(02,0(£)). Let £ = P(V;) for a
2-dimensional subspace V> C C°, consider a kernel of the morphism K; =
ker(A*C> — A?(C°/V3)). Then we can check that the Schubert variety 2(£)
is a 4-dimensional space contained in P® = P(Ky) C P? and 0,0(€) is de-
termined by three(hence linearly dependent) Pliicker quadric equations. As
we explained in Remark 3.3.4, a general linear subspace P? in P® intersects
with the Schubert variety o0,0({) along with a twisted cubic curve. There-
fore, C?(B) is birational to Gr(4,Kp).
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We denote Q the universal quotient bundle of the Grassmannian Gr(2,5).
We define 7 to be the kernel of the natural surjection /\2(’)%9?(2’5) —- A2Q.
Then a fiber of the relative Grassmannian bundle Gr(4,K;) over £ € Gr(2,5)
over { = P(L) € Gr(2,5) is Gr(4,Ky). Therefore R3(G) is birational to this
Grassmannian bundle, so we proved the Part 3.

By Corollary 3.2.5, a plane in the Grassmannian Gr(2,5) is either the
family of projective lines in P*> C P* which pass through a fixed point p € P3
or the family of lines in a projective plane P = P C P*. The former type of
planes are parametrized by the flag variety F(1,4,5) and the latter type of
planes are parametrized by Gr(3,5). H

Lemma 3.3.7. 1. Ry(Y?®) is birational to a Grassmannian Gr(2,3) = P*-
bundle on the projective space P*;

2. Ry(Y?) is birational to a Grassmannian Gr(3,5)-bundle on the Grass-
mannian Gr(4,5) = P*;

3. R3(Y?) is birational to a Grassmannian Gr(4,6)-bundle on the Grass-

mannian Gr(2,5).

Proof. Recall that Y° = Gr(2,5) N H; C P’ where H; is a general hyper-
plane. Then the inclusion Y°> C G = Gr(2,5) naturally induces the inclusion

between moduli of smooth rational curves :
14 : Rd(YS) — Rd(G)

For a point p = P(V;) € P*, consider the Schubert variety o30(p) ={{ €
Gr(2,5) = G|p € €} = P?® which is embedded in the projective space P’ as
a linear subspace. Then, for a general point p, the Schubert variety o3,(p)
intersects the hyperplane H; cleanly along a projective plane P2. Thus, a
general fiber of the rational map (;o1; : Ry(Y?) — P* is isomorphic to Ry(H;N
o30(p)) = Gr(2,3) = P2
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A general fiber of the rational map (01, : Ry(Y?) --» Gr(4,5) = P* is iso-
morphic to R,(077MHy) for the restricted hyperplane H; of 077 = Gr(2,4) C
P°. Since the Schubert variety oy, is isomorphic to a quadric hypersurface in
the projective space P°, the fiber is birational to Gr(3,5) which parametrizes
projective planes in H; NP>, Let I be the tautological rank 4 vector bundle
on the Grassmannian Gr(4,5) and we define Ks := ker{\°U — N\2O® — O}
as the kernel of the above composition morphism where the second arrow
in the sequence is induced from the linear equation of the hyperplane H;.
Then general points of the relative Grassmannian bundle Gr(3,/s) on the
Grassmannian Gr(4,5) determine conics in Y°.

The general fiber of the rational map (3013 : R3(Y°) --» Gr(2,5) is iso-
morphic to R3(020(P")NH;) for the restricted hyperplane Hy of P°. Through
the proof of Lemma 3.3.6, we know that a general linear subspace P3 in
H; NP® determines a twisted cubic 0,0(P') NP? and therefore the general
fiber is isomorphic to Gr(4,6). Thus, when we recall K7 the rank 7 bun-
dle defined in Part (3) of Lemma 3.3.6, then we define s as the kernel of
the following composition morphism K; — /\2(925(2’5) — Oar(25) Where the
second arrow is induced by the linear equation of the hyperplane H;. Thus
the relative Grassmannian bundle Gr(4,K¢) over the Grassmannian Gr(2,5)

becomes the birational model for the moduli space of cubics R3(Y#). O
Lemma 3.3.8. 1. Ry(Y*) is birational to the projective space P*;

2. Ry(Y*) is birational to a Grassmannian Gr(3,4) = P3-bundle on the
Grassmannian Gr(4,5) = P*;

3. R3(Y*) is birational to a Grassmannian Gr(4,5) = P*bundle on the

Grassmannian Gr(2,5).

Proof. The proof proceeds in the same manner as the proof for Lemma 3.3.7.
If we replace H; with H; N H, and replace Y> with Y* where H; and H, are

general hyperplanes, then the rest of proof proceeds in the same manner. [J
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Combining Corollary 3.3.5 and the above lemmas, we finally obtain the
proof of Theorem 3.3.1 since the Grassmannian varieties Gr({,n) are clearly

rational.
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Chapter 4

Compactifications of the moduli

spaces of smooth rational curves

inY™

4.1 Various compactifications

The results presented in this chapter are based on the results obtained
joint with Chung and Hong in [19]. Let us start this chapter by introducing
some typical compactifications of moduli space of smooth rational curves in
the case of G = Gr(2,5).

(1) Hilbert compactification: Since G = Gr(2,5) C P’ is a projective
variety, Grothendieck’s existence theorem 2.2.4 guarantees us the existence
of the Hilbert scheme Hilb*'(G) of closed subschemes of the Grassmannian
G which have the Hilbert polynomial HP(t) = dt+1. We denote the closure
of Ra(G) in Hilb®™'(G) by Ha(G) and we call it the Hilbert compactification
of Rq(G).

Before we introduce the Kontsevich compactification, we briefly introduce

the definition of the stable map space.
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Definition 4.1.1 (Stable map space). [35] Let X be a smooth projective
vareity over C, and € H;(X) be a homology class. Then, we call a pro-
jective genus g, n-pointed connected reduced nodal curve (C,p1,pz2y.--,Pn)
where pi,...,pn are all distinct quasi-stable curve. Then we call a morphism
f: C — X a stable map with homology class 3 if automorphism group of f
preserving marked points pi,...,p, is finite and f,[C] = 3.

Then we consider a family of maps. For a scheme S, a family of quasi-

stable n-pointed genus g stable maps consist of the following data :
- Flat family of nodal curves w:C — S.
- Disjoint n-sections pi1,...,pn:S — C.
- Family morphism F:C — X

which satisfies for each closed point s € S, the fiber (Cs,pi(s)y...,pPn(s))
and Fg : Cs — X is a stable map with homology class 3. We define an iso-
morphisms between families, as an isomorphisms between families of curves,
which commutes with family morphisms and sections.

Then there exists a fine moduli space of this moduli problem, as a proper
Deligne-Mumford stack, we denote it by Mg,n(x, [3). If the Picard group of X
is generated by the very ample line bundle on X, we use notation Mg,n(x, d),
where d means the homology class correspond to d times of the Poincare

dual of the very ample divisor.

From now on, we use notation Mo (X, B) = Mo(X, B).

(2) Kontsevich compactification: We denote the closure of Rq(G) in the
stable map space My(G,d) by M4(G) and we call it the Kontsevich com-
pactification of Rq(G).

(3) Simpson compactification: An arbitrary coherent sheaf £ over the
Grassmannian G is called pure if for any nonzero subsheaf £ C &£ of &,

its support Supp(€’) and Supp(€) have same dimension.
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An arbitrary pure sheaf £ is said to be semi-stable(resp. stable) if

Hr (&)

T for t >0

< (resp. <)

for any nontrivial subsheaf £, and the leading coefficient (&) of the Hilbert
polynomial HP(E)(t) = x(E®Og(t)). By replacing the subsheaves £’ by quo-
tient sheaves £’ and inverting the inequality, we have the equivalent defini-

tion of the (semi-)stability.

Next, under this stability condition, we can define a projective moduli
space Sim"(G) of semi-stable sheaves on G which have Hilbert polynomial
P, called Simpson moduli space [65, 47, 94]. There is a natural embedding
R4(G) — Sim¥*1(G) which assigns a smooth rational curve C on G to its
structure sheaf Oc. We note that O¢ is a stable pure sheaf. We denote the
closure of R4(G) in the Simpson moduli space Sim%*'(G) by Simg4(G) and
call it the Simpson compactification of Rq(G).

In the remaining sections, we deal with various compactifications of mod-
uli of smooth rational curves Rq(Y™). We mainly study Hilbert compactifi-

cations Hg(Y™) and their birational models in this Chapter.

4.2 Fano 6-fold G = Gr(2,5) =G

Throughout this section, we fix notation G = Gr(2,5) = Y® and we con-

sider various compactification of moduli spaces of smooth rational curves

Ra(G) of degree 1< d <3 in G.

We first note that R;(G) = F(1,3,5) is already compact and therefore
H;(G) = M;(G) = P1(G) = Ry(G) = Gr(1,3,5). So we have nothing to do
with for compactification of R;(G).
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4.2.1 Hilbert scheme of conics H,(G) in G = Gr(2,5)

We start by discussing the birational geometry of the Hilbert scheme
H,(G) via the envelope map, which we defined in Corollary 3.2.7 (2) :

(21 Ry(G) - P* = Gr(4,5).

Therefore there is also a rational map (; : Ho(G) — Gr(4,5). So it is natural
to blow up the base locus of the rational map (;, to complete it as a regular
map. Then we should know what is the base locus of the map ;.

First, we can easily observe that the base locus of the rational map (; :
Ry(G) --» P* = Gr(4,5) consists of the following types of conics : (1) A
conic which is the family of lines in the ruling of a rational normal scroll
S(€, &) of two projective lines £y, &; C P™' such that £, and {; lies in a same
projective plane P. (2) A conic which is the family of lines in the ruling of
a rational normal scroll S(py, Co) for a fixed point py and a smooth conic
Co C P!, such that the point py lies in the plane P spanned by the conic
Co.

We can easily observe that both cases happen if and only if a smooth
conic lies in a 03;-plane, which correspond to the projective plane P C
P!, Therefore, we can guess that the base locus of the extended map
C; : Hy(G) --» Gr(4,5) is the locus of conics in the o;,-planes. We de-
note this locus as I3,.

On the other hand, consider the relative Grassmannian Gr(2,4) on the
Grassmannian Gr(4,5) where U is the tautological bundle over Gr(4,5). Then
it is known by [61, Theorem 1.4], that we have a relative Hilbert scheme of

conics

G Hy(Gr(2,U)) — Gr(4,5)

with the natural projection map Zz- In this viewpoint, it is natural to guess
that Blr,,Hz(G) is isomorphic to Gr(2,U), and it is true by the following

theorem of Iliev and Manivel.

90



Chapter 4. Compactifications for Rq(Y™)

Proposition 4.2.1. [50, Section 3.1, p. 9] Under the above definitions and

notations, there is a natural birational morphism
@ : Hy(Gr(2,U)) — H;y(G)

which is a smooth blow-up along the sub-locus I3, consists of conics lying

on the 0;,-planes.

Proof. The exceptional divisor of the blow-up is the P°-bundle on the flag
variety F(3,4,5). By its construction, the flag variety F(3,4,5) is canonically
isomorphic to the Gr(1,2) = P'-bundle on the Grassmannian Gr(3,5) where
Gr(1,2) parametrizes linear subspace P? in P* containing a fixed projective
plane P? C P*. Next, to show that @ is the smooth blow-up, we compute
the normal space of the blow-up locus I, in H,(G) at arbitrary conic C.
From the following canonical exact sequence of normal bundles 0 — N¢/p2 —
Nc/g — Npzjgle — 0 and the the structure sequence 0 — Npz,g(—2) —

Np2,6 — Np2/glc — 0, we compute the normal space as follows

Nr,, a6),c = H (Np26(—2)).

By diagram chasing, we can check that Np2,g = Q ® OH?ZZ for a o,,-type
plane P? C G, where Q is the universal quotient bundle restricted on P?. So
we conclude that the later space H'(Np2/5(—2)) is isomorphic to HO(OI?ZZ)V.
Furthermore, this space has a 1-1 correspondence with the choice of linear

subspace P3 in P* which contains the fixed projective plane P2. O]

In Iliev-Manivel [50], the authors also explained blow-down of H,(Gr(2,U))

which contracts conics lies in 03;-type planes. We state it as follows.

Proposition 4.2.2. [50, Section 3.1, p. 9] We denote S(G) = Gr(3, \*U)

the relative Grassmannian of the wedge product tautological bundle U over
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the Grassmannian Gr(4,5). Then there is a blow-up morphism
=: Hy(Gr(2,U)) — S(G)

along the smooth blow-up center T(G), which equal to the relative Orthogo-

nal Grassmannian OG (3, A2U) over the Grassmannian Gr(4,5) C Gr(3, N\U).

Here, orthogonal means orthogonal via the canonical symmetric 2-form on

NU.

Proof. Since blow-up morphisms satisfify the base change property, it is enough

to show the claim up to fiber. Then the fiberwise construction has been stud-
ied in [16, Lemma 3.9]. It should be noted that T(G) can be identified with
the disjoint union of two flag varieties, i.e. T(G) = F(1,4,5) UF(3,4,5) ([46,
Proposition 4.16]). O

Combining Proposition 4.2.1 and 4.2.2, we have the blow-up and blow-

down diagram in the following

2(Gr(2,U)) (4.1)

S(Gr(2,5)) & H,(Gr(2,5))

where U is the tautological rank 4 vector bundle over Gr(4,5). This diagram
(4.1) plays a key role when we show smoothness of H,(Y*), Hy(Y?) later.
Furthermore, it turned out that there is a similar blow-up blow-down di-
agram Kontsevich compactification M;(G) of Ry(G) [16]. Since this contents
does not appear again in the remaining parts of this thesis, we only explain
the results briefly. We denote M;(Gr(2,U/)) the moduli space of relative sta-
ble maps with genus zero and degree two. Let M,(Gr(2,U)) — M, (Gr(2,5))
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be the map induced by the natural inclusion U — OgS . Furthermore we
denote by N(Gr(2,5)) the moduli space of relative Kronecker quiver repre-
sentations N(U;2,2), whose fibers are isomorphic to N(4;2,2) (for the def-
inition of the moduli space of Kronecker quiver representations, see [21]).
Then there is a map obtained by divisorial contraction M;(Gr(2,U)) —
N(Gr(2,5)), which contracts the locus of stable maps such that their im-

ages are planar ([21]). In summary, we have the following diagram :

M,(Gr(2,U))

— ] T

N(Gr(2,5)) M;(Gr(2,5))

_
_
_
_
_
_
_
&

Gr(4,5).

Let U — OGGBS be the tautological rank 2 subbundle over the Grassmannian
G = Gr(2,5) and let (9?5 — UV its dual bundle. For a general smooth conic
P' = C < Gr(2,5), the restriction of the bundle UY on C splits in the form
of Wlc = Opi(1) @ Opi(1). Therefore, the dual map OF° — UY restricted
to C as (9;,‘?15 — Op1(1) @ Opi(1). Hence general conics are parametrized by

an open subset of the following GIT quotient :
P(H°(P',O(1)) ® C* ® C°)//SL,(C) x SL,(C)

where the first SL,(C) acts on H°(P', O(1)) in the canonical way and the sec-
ond SL,(C) acts on C? by canonical matrix multiplication. This GIT quo-
tient is in fact isomorphic to the moduli of quiver representations N(5;2,2)
correspond to the quiver which has two vertices equipped with 2-dimensional
vector spaces on each of them and five edges between the two vertices. The
geometry of the stable map space M;(Gr(2,5)) in the viewpoint of the min-

imal model program was studied in [23].
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On the other hand, since the Grassmannian G is a homogeneous variety,

there is the following results of Chung, Hong, and Kiem [18].
Proposition 4.2.3. [18, Theorem 3.7]

2. The blow-up of the Kontsevich compactification M;(G) along the sub-
locus of stable maps whose image is a projective line in the Pliicker
embedding G < P? and the smooth blow-up of the Simpson compacti-
fication Sim,(G) along the sub-locus of semi-stable pure sheaves whose
support is a projective line in the Pliicker embedding G < P?. In sum-

mary, we have a blow-up and blow-down diagram :

M,(G)

N

M,(G) Sim; (G)

4.2.2 Hilbert scheme of twisted cubics H3(G) in G = Gr(2,5)

Because the Grassmannian Gr(k,n) can be represented by a quotient of a

Matrix group My k+n(C) by a parabolic subgroup of block upper triangular

Mk x
0 M,

where My is a kxk-matrix and M,, is an nxn-matrix. So the Grassmannian

matrices of the form :

Gr(k,n) is a homogeneous variety. Therefore we again use the results of [18]
on G = Gr(2,5).

Proposition 4.2.4. [18, §4]

1. The Hilbert compactification H3(G) is obtained by the smooth blow-
up of the Simpson compactification Sim3;(G) along the sublocus A(G)

consists of planar stable pure sheaves.
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2. Sim3(G) is obtained from the Kontsevich compactification M3(G) by
three times weighted blow-ups which is followed by three times weighted
blow-downs. More precisely, the blow-up centers are I}, T?, T and the
blow-down is taken along the loci T, T3, TJ. Here, l"ij is the proper
transformation of I7_, if T)_, is neither the blow-up/-down center nor
the image/preimage of Fij_1. Furthermore, T} is the locus consists of
stable maps such that their images are projective lines in G C P?. T?
is the locus consists of stable maps such that their images are unions
of two projective lines. T3 is the sublocus of I7, and it is a fiber bun-
dle via the morphism I’y C I} — Tj. Its fiber over a stable map f € I}

which has projective line L C G as its image is isomorphic to
PHom; (C?, Ext§ (O, O1(—1))) = P' x PExt( (O, OL(—1))

where Hom; is the locus of rank 1 linear maps.

M3
VRN
M, My
e s
M, Ms H3(G)
i rd l/\(G)

4.3 Fano 5-fold Y

In this section, we denote by Y = Y° the intersection Y = Y*> = Gr(2,5)N
H where H is a general hyperplane in P’. As we commented in Chapter 2,
Section 2.6.2, the Fano 5-fold Y° does not depend on the choice of H up to
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projective equivalence given by PGL(C®)-action. So we may assume that

H = {p1, — po3 =0}

where pj; are Pliicker coordinates, for explicit calculation.

We want to restrict the key birational model (4.1) for the Hilbert com-
pactification H,(Y?) € H,(G). For this, we first need to know how the blow-
up and blow-down locus of the map = and @ in (4.1) changes. Since these
loci are induced from the loci of Fano variety of 0,,-planes and Fano variety

of 03;-planes, we first study Fano variety of projective planes in Y.

4.3.1 Fano varieties of lines and planes in Y°

In this section, we precisely describe the Fano variety of projective lines
F1(Y) in Y and the Fano variety of projective planes F,(Y) in Y. The next

two propositions summarize the contents of this subsection.

Proposition 4.3.1. F;(Y) = H;(Y) = $;(Y) = M,(Y) is isomorphic to the
blow-up of Gr(3,5) along the smooth quadric threefold .

Proof. Each projective line in G can be uniquely written by {£ € G|p € £ C
P} C G for a point p € P* and a projective plane P C P* which contains a
point p. Then we have the following forgetful map :

Y :FK(Y) — K(G) =Gre(1,3,5) — Gr(3,5), (p,P)—P.

Consider a projective plane P € Gr(3,5) which is represented by the row

span of the following matrix :

1 0 0 a3 a4
01 0 b; by,
0 0 1 C3 C4
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and we consider projective lines in P which is represented by the row span

of the following matrix :

(4.2)

1 0 o a3+ xc; a4+ xcy
01 ﬁ b3+BC3 b4+ﬁC4 '

Then the equation pj; = po3 induces the equation o« + bz + Bcz = 0 so it
determines a unique line L in Y. Furthermore, we can easily check that pro-
jective lines which have types different from (4.2) cannot satisfy the equa-

tion P12 = Po3. Thus we conclude that p~'(P) is a unique point L.

Consider a projective plane P € Gr(3,5) which is represented by the row

span of the following matrix :

1 0 a; a3 0
01 b, by 0], (4.3)
00 C C3 1

and we consider projective lines in P which are represented by the row span

of the following matrix :

1 0 ay+ac; az+oc, o
0 1 by+pc; b3+pPcs; P '

Then the equation pi; = po3 induces the equation a;+bsz+ xc; +Pcz =0 so
it determines a unique line in Y unless ¢; = ¢3 = a; + b3 = 0. Furthermore,
we can easily check that projective lines which has types different from (4.3)
cannot satisfy the equation p;; = pes. Thus we conclude that p~'(P) is a
single point unless ¢; = c3 = a; + b3 = 0. When ¢; =c3 = a; +b; =0,
we have Pp~"(P) = PV = P? is the set of all projective lines contained in the

plane P.

By applying the same process to all other affine charts, we can observe
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that if we consider the following smooth quadric threefold
I =Cr(2,Wy)NnHCH=P!

where Wy = (eo, €1, €z, €3) is the vector subspace of C°> and Gr(2,W,) C
Gr(3,5) is the linear embedding, which assigns a 2-dimensional subspace A
to A + (es), and H = zero(p2 — po3) is the hyperplane in P(A?W,) = P,
which is the restriction of the hyperplane H, then {~'(P) is a single point
if P ¢ £ and 1 ~'(P) is the set of all lines represented by pairs (p,P),p € P
if P € . By local chart computation, we can directly check that 1 is the
blow-up along the smooth quadric threefold X. For example, consider the
local chart (ay, by, ¢y, asz, bz, c3, A, 1) of the flag variety F(1,3,5) represented

following matrix :

1T A a;+Aby+ e, az+Absz+pue; o
0 1 b, b; 0
00 Co C3 1

where its first row corresponds to the one-dimensional subspace V; and the
row span of all three rows corresponds to the three-dimensional subspace
V3. Then projective lines in the projective plane PV; which pass through
the point PV; are represented by the following matrix :

1T A a;+Aby+uc; az+Abs+uc; p
0 o« aby+Bc abz + B3 B/’

The equation pj2; = po3 induces the equations a; + bz = —pc; and c3 = Acy,
which determines a family of lines in lines in Y, parametrized by A and p.
Clearly, this is the blow-up map (cz, A, i) — (c2,c3,az + bz) along the locus

¥ = zero(cy, ¢3,a; + b3) in this local coordinates. O

Lemma 4.3.2. The moduli space of lines F;(Y) is smooth.
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Proof. As it is appeared in Proposition 4.3.1, the reduced induced scheme
F1(Y)ieqa is the smooth blow-up of the irreducible variety so it is again irre-
ducible. So it is enough to show that F;(Y) is a reduced scheme. We note
that any line L in Y is locally a complete intersection. Consider any line
L C Y. Then, from the following natural exact sequence of normal bundles
0 — Ny — Ny = Nygle = O1(1) — 0, we compute the expected di-
mension of Fi(Y) as h°(Nry) —h'(Niy) = 6. But the moduli space Fi(Y)
has dimension 6 at the closed point L by Proposition 4.3.1. Therefore, we
obtain that F;(Y) is locally a complete intersection from [61, Theorem 2.15].
Hence we obtain that F;(Y) is a Cohen-Macaulay scheme. Furthermore we
can use the following fact that any Cohen-Macaulay and generically reduced
scheme is reduced ([69, page 49-51]). Therefore, it is enough to show that
h'(Ngy) =0 for a certain projective line L in Y, which is represented by the

row span of the following matrix :

10000
0st0O0)

We can check this by direct calculation. It implies that F;(Y) is smooth at
the point L and therefore smooth at the open set containing the point L,
therefore generically smooth, hence reduced. In summary, we proved that
the Fano variety of lines F1(Y) = F1(Y);eq = blsGr(3,5) is smooth. O

Proposition 4.3.3. ([50, Section 4.4]) We can write the Fano variety of
projective planes F,(Y) as a disjoint union F3'(Y) U F3%(Y), where F3'(Y)
parametrizes 03;-type planes in Y and F2?(Y) parametrizes 0;,-type planes
in Y. The first component F3'(Y) is isomorphic to the blow-up of the projec-
tive space P* at the point yo and F3?(Y) is isomorphic to the smooth quadric
threefold X.

Proof. First, we can observe that the sub-locus F3%(Y) of 02,-planes in Gr(3,5)

is equal to the quadric threefold £ from the proof of Lemma 4.3.2.
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On the other hand, consider the morphism ¥ : F3'(Y) — P* assigning the
vertex. Let y=1[1:a;:a;:as: a4l apoint in P* and a projective line £ € G

passing through the point y is represented by the following matrix :

1 a a a3 a4

0 by by by by/’
Then the equation pi;; — po3 induces a linear equation b3 = a;b, — a,by,
and therefore, defines a unique three-dimensional linear space A =P3 C P*.
3,1
2

Then the pair (y,/A) determines a unique plane in F3', which is the inverse

image ' (—y) of y.

By calculating over all affine charts, one can check that {~'(y) is a single
point if y #[0:0:0:0:1] =:yo and P~ (yo) is the set of planes represented
by pairs (y,zero(ys)),y € zero(ys) = P°.

We can directly check that 1 is the blow-up of the projective space P* at

the point yo by explicit local chart computation. For example, let us consider

the following local chart :
{([ao Qi apiaszc: 1], [Co :C1:CricC3: C4])’(l()C() + aic; + axCy +azcz + ¢4 = O}

of F(1,4,5) C Gr(1,5) x Cr(4,5) = P* x (P*)*,

On the other hand, for a o3;-plane in Y represented by a pair (y,A)
where A is defined by a linear equation coxo+- - -+c4x4 = 0, the equation py,—
Po3 = 0 induces the equation a;c; —a,c; —apcs + azco = 0. In summary, the

equation for F3'(Y) in this local chart is equivalent to the matrix equation :

a; —a; a;r —Qp 0 ay —a; air —Qp
rank =rank =1.
Co C1 Co C3 Cq Co C1 (%) C3
This clearly implies that F3'(Y) = bl,C*. By the same argument as in the

proof of Lemma 4.3.2, we can show that the moduli space F,(Y) of projective
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planes is reduced and thus we complete the proof. O

4.3.2 Hilbert scheme of conics H,(Y?) in Y°

By using the geometry of projective lines and planes in Y°, we construct
birational morphisms connecting H,(Y®) and its projective models in a sim-
ilar manner as in the diagram (4.1). The technically important point in our
argument is the description of blow-up space under clean intersection condi-
tion. [18, Definition-Proposition 3.4].

We denote U < O the tautological sub-bundle on the Grassmannian
Gr(4,5). We define

K = ker{\N'U — N O — O} (4.4)

the bundle K as the kernel of the composition of the above sequence where
the second map in the above sequence is induced from the equation pi2—po3
(cf. [62, Proposition B.6.1]). We can check that K is locally free by direct
rank computation of the composition map. We define S(Y) := Gr(3,K) and
then we have S(Y) C S(G) = Gr(3,A\?U) by definition.

Next, we recall that T(G) = OG(3,U/) C S(G) in Proposition 4.2.2, is
isomorphic to the disjoint union F(1,4,5)F(3,4,5) of the two flag varieties.
Then we define T>'(G) := F(1,4,5) and T>*(G) := F(3,4,5). We observe that

the space S(G) can be written by the following incidence variety :
S(G) ={(U,Vy) U C A*V4} C Gr(3,\*C°) x Gr(4,C).

Then we have the natural embedding T>'(G) U T#?(G) — S(G) constructed

in the following way.

(1) For a pair (V;,Vs) € T>'(G) (V; is a 1-dimensional vector space rep-
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resenting a vertex point of o3;-plane),
(V1, Va) = (W, V)

where W = ker(A\?Vy — A*(Vy/Vi))(= Vi AV,) is the 3-dimensional

vector space. In this case, (Vi,V4) determines a 03;-type plane.

(2) For a pair (V3,Vy) € T*(G),
(Vs, Vi) = (A2V3, Va).

In this case, V3 determines a 0;,-type plane.

Above embedding T(G) — S(G) induces an isomorphism F(1,4,5)LIF(3,4,5)

= T(G)>' UT?(G) — OG(3,U4) = T(G). From now on, we identify the
blow-up locus T(G) with T(G)>' U T»%(G) via this isomorphism. We define
the intersection T(Y):=S(Y)NT(G) in S(G).

Proposition 4.3.4. When we define T>'(Y) := T>'(G)NT(Y) and T2?(Y) :=
T>2(G)NT(Y), then T(Y) is the disjoint union of irreducible connected com-
ponents T>'(Y) U T22(Y) such that

1. T3(Y) = F¥'(Y) and

2. T22(Y) is isomorphic to a fiber bundle on the smooth quadric threefold
Y (= F>*(Y)) with fibers isomorphic to P'.

Proof. The first part just comes from the definition. The second part ob-

tained by some direct calculation via the following composition map
T22(Y) <5 F(3,4,5) - Gr(3,5).

We can show that the image (p o )(T?>*(Y)) = L which is, in fact, equal
to the smooth quadric threefold Gr(2, V?) NH appeared in Proposition 4.3.3
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by some direct calculation. Here we let V§ = span(eo, e, e, e3) and H =
zero(p12 — Pos) is the restriction of H in P(A?VY). We can prove this by
direct computation for each affine chart. For example, consider an element
(V3,V4) € F(3,4,5) and P(V3) € Gr(3,5) be the plane represented by the

row span of the following matrix :

10 a; a3 0
01 b, b3 0
00 C C3 1

Then, by direct calculation, we can check that (A?V3,V,) € Kly, if and only
if it satisfies ¢c; = ¢3 = a; + b3 = 0. We can do the same computation in

other affine charts, so we have the conclusion. O

Remark 4.3.5. Part 2 of the above proposition can also be explained in this
way. Elements of T#?(Y) are pairs (V3, V) € F(3,4,5) such that the o,,-
plane determined by V; is contained in Y. Therefore, T#?(Y) is fibered over
Y, whose fiber over V3 € L is Gr(1,C%/V3). Therefore, it is a P'-fibration

over X.

On the other hand, we can check that the natural projection from the
intersection part T(Y) C T(G) = F(1,4,5) U F(3,4,5) — Gr(4,5) is a fiber
bundle on the image of the projection. We will focus on this fiber bundle
structure in subsection 4.3.3. Here we introduce the following result we will

use 1now.

Proposition 4.3.6 (Proposition 4.3.11). The intersection part T(Y) = S(Y)N
T(G) is isomorphic to a P' LI P'-bundle over Gr(3,4) which is linearly em-
bedded in the Grassmannian Gr(4,5).

Lemma 4.3.7. We have :
Trovy,p = Tsv)p N Tre)p
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for all P € T(Y).

Proof. Consider the following exact sequences of tangent bundles :

0——Trv)p Trie)p Nr(v)/7(6),p —0 (4.5)
[ I
0——Tsw)p Ts(e),p Nsv)/s(G),p — 0.

To prove the lemma, it is enough to show that the horizontal map f natu-
rally induced from the diagram (4.5) is an isomorphism. First, we assume
that P € T>'(Y). Then, by direct computation, we can observe that there is

a following commutative diagram :

Nriy)ri6),p —— HO(Or(1)) (4.6)

I |

Nsv)/s(6),p — Hom(V3, C).

where the plane P is written by P = (V;,V4) € T3(Y) = BI(Y), V; =
ker(A*Vy — A?2(V4/V1)), and H := P(V3) is the projective plane in P* =
PV. The first horizontal isomorphism in the diagram (4.6) induced from the

normal bundle sequence
0 — Ngy — Ng/c = Nysgla = On(1) — 0,

and the fact that h'(Ng,) =0 by Proposition 4.3.3. The second horizontal

isomorphism in the diagram obtained from the following correspondence :

Nsv)/si6)p = Nars)/arze,p = Hom(Vs, A*V,/V3) /Hom(Vs, Kly, /V3)
= HOIIl(V3, (C)

which is induced by the equation (4.4). In summary, we obtain the proof of
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the lemma. ]

Remark 4.3.8. We can check the above lemma 4.3.7 in a different way.
By [68, Lemma 5.1] and since T(G), S(Y) and T(Y) are smooth, which will
be checked later, the clean intersection is equivalent to the scheme-theoretic
intersection, Ity = Isyy)+ Irg). We compute the locus T(Y) in the following
section 4.3.3, and scheme-theoretic intersection in the following sections 4.3.4
by direct local chart computation, which accompanies lots of linear algebra

and brute force. So we obtain a new proof of Lemma 4.3.7.

By Lemma 4.3.7 and Fujiki-Nakano criterion [76, Main Theorem], [32],

we obtain the following main theorem of this Chapter.

Theorem 4.3.9. Recall the space H,(Y), Hilbert scheme of conics in Y = Y°.
Then H,(Y) is a blow-down of §(Y), which is a blow-up of S(Y) := Gr(3,K)

S(Y)
AN,
S(Y) Ha(Y),

where = is the blow-up along T(Y) and ® is the blow-up along the locus

(4.7)

of conics contained in o,,-type planes. Furthermore, H,(Y) is irreducible,

smooth variety and has dimension 10.

Proof. By Lemma 4.3.7, the blow-up space g(Y) is isomorphic to the strict
transform of S(Y) along the blow-up = : Hy(Gr(2,U/)) — S(Gr(2,5)) defined
in Proposition 4.2.2 ([68, Lemma 5.1]). Moreover, we can easily show that
the restriction of the normal bundle of the exceptional divisor H,(Gr(2,U/))
onto the exceptional divisor of g(Y) is O(—1) (cf. [18, Proposition 3.6]). So,
we can apply Fujiki-Nakano criterion([76, Main Theorem]), that we conclude
that the space obtained by blow-down is smooth. Thus we can conclude that
the Hilbert scheme H,(Y) is smooth if we can show that H(Y) is reduced
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and irreducible. Moreover, we can directly check that H,(Y) is irreducible
from the diagram (4.7). Also, we can show that H;(Y) is reduced in the
same manner as we used in the proof of Lemma 4.3.2. Hence we complete
the proof. O

4.3.3 Duality between T>'(Y™) and T>?(Y™) for m = 4,5,6

It is well-known that T(G) is equal to OG(3,6) = P3 LU P3*-bundle over
Gr(4,5) as we already mentioned in Proposition 4.2.2 and [16, Lemma 3.9],
and each P3 are set of 0;,-planes and 03,1-planes with an envelope informa-
tion. Furthermore, we can check that T(Y*) = P' U P' where each P' are
set of 0;5-planes and 03 -planes with an envelope information, and T(Y?) is
P' U P'-bundle over Gr(4,5) where each P' are set of 02,-planes and 03 -
planes, by direct local chart computations.

So, it is natural to think about there exist some kind of duality between
0,,-planes and o3 planes. In fact, there is a representation-theoretic duality
between 07, and 03 ;-planes in Gr(2,4) C P° from S. Hosono and H. Takagi’s

paper.

Proposition 4.3.10. [46, (4.5)] Let W be a 4-dimensional vector space.
Then planes in Gr(2,4) C P5 are elements of Gr(3,/\?W) = Gr(3,6) C
P(A(AW)) = P(S?W ® det(W) @ SPW* ®@ det(W)#®?).

Then the set of 0;,-type planes is identified with P(W*) and embeds to
P(S?W*) as a Veronese embedding, and the set of 03,1-type planes is identi-
fied with P(W) and embeds to P(S*W) as a Veronese embedding.

The above proposition express the duality between T>'(G) and T>%(G).
We can express it more simply. Over a rank 4 subspace Vy € Gr(4,5) of
C>, the fiber T>'(G) = F(1,4,5) is identified by the pairs (Vi, V4), where V;
is a 1-dimensional subspace of Vj, so that the fiber is isomorphic to P(Vy).
On the other hand, the fiber T#?(G) = F(3,4,5) is identified by the pairs
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(V3, V), where V3 is a 3-dimensional subspace of V4, hence the fiber is iso-
morphic to P(Vy)*. Therefore, there is a duality between a projective space
and its dual projective space.

In this section, we explain dualities in T(Y?) and T(Y*). In fact, all dual-

ities in this section arise in a similar manner as above, i.e. a duality between

a projective space and its dual projective space. We fix a basis {ey, e1, €;, €3, €4}

of C°.

Proposition 4.3.11 (Duality of T>'(Y) and T>?(Y?)). T(Y°) is a P! U P'-
bundle over Gr(3,4) linearly embedded in Gr(4,5), where the linear embed-
ding is given by the 1-1 correspondence between 3-dimensional subspaces
in C°/(e4) and 4-dimensional subspaces in C°> containing (e4). Consider the
rank 4 skew-symmetric 2 form Q := pj; — poz on C°, where py are Pliicker
coordinates on A?C>. Then, for a 4-dimensional subspace V4 € Gr(3,4) C
Gr(4,5) of C° in the sublocus, the restriction Qly, becomes a rank 2 singular
2-form Qly, on V4. Then the fiber of T>'(Y®) C F(1,4,5) over V4 canonically
identified with P(kerQly,) = P' C P(C°) and the fiber of T>*(Y®) C F(3,4,5)
over Vj canonically identified with P((C°/kerQly,)*) = P' C P((V4)*).

Proof. Consider an arbitrary 4-dimensional vector space V4 €C Gr(4,5). We
can observe that rank Qly, > 2 Since we have rank Q = 4 and rank Q <
rank Qly, +2. If rank Q|y, = 4, then there cannot exist a vector v € C° such
that v is orthogonal to V4 with respect to the 2-form Q). Hence there does
not exist any o03j-plane contained in the fiber of T(Y®) on V4. Moreover,
there cannot exist a 3-dimensional subspace V3 C V4 of V4 such that Qly, =
0 since we have rank Qly, < rank Q|y,+2. Therefore, there is no o3;-plane in
the fiber of T(Y?) over V4. In summary, the fiber of T(Y?) over V; is empty
whenever rank Qly, = 4.

Next, consider the case when rank Qf, = 2. Assume that V NkerQ =
VN (es) = (0). Then, since Q = pi2 — po3 descent to the rank 4 skew-

symmetric 2-form Q on quotient space V/{es). Since V4N (0) = 0, we can
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easily observe that the natural isomorphism ¢ : V4 5 V/(es) preserves skew-
symmetric two forms, i.e. $*Q = Qly,. Therefore rank Q|y, = 4, which is
a contradiction. Thus we have (es) C C°. Conversely if (es) C C°> = kerQ),
then we have rankQ = 2. Therefore rank Qly, = 2 if and only if V, €
Gr(3,4) c Gr(4,5), where Gr(3,4) C Gr(4,5) is a linear embedding given
by the 1-1 correspondence between 3-dimensional subspaces in C°/(e;) and
4-dimensional subspaces in C> containing es.

Moreover, the fiber of T>'(Y?) C F(1,4,5) over V4 € Gr(3,4) C Gr(4,5)
is represented by pairs (p, Vy) such that Q(p,Vy) = 0. Therefore, the fiber
is canonically identified with P(kerQ) = P' C P(C>).

The fiber of T>?(Y®) C F(3,4,5) over V; is represented by pairs (V3, Vj)
such that V3 C Vi, Qly, = 0. Assume that V3 N kerQly, = 1. Then there
is a natural isomorphism ¢ : V3/(V3 N kerQly,) S Vy/ kerQly,. Then, when
we denote by Q the induced 2-form on V;/ kerQly,, and Q' be the induced
2-form on V3/(V; NkerQly,), we can observe that ¢*Q = Q’. But we have
rank Q' = 0 since rank Qly, = 0 and rank Q = 2 since rank Qly, = 2, which
leads to the contradiction. Therefore, we have kerQ|y, C V3. Conversely, if
kerQly, C Vs, then it is clear that rank Q,, = 0. Therefore, the fiber is
canonically identifed with P((V/kerQly,)*) = P'  P((C>)*).

]

Proposition 4.3.12 (Duality in T>'(Y*) and T?>?(Y%)). T(Y*) is a double
cover over P! = Gr(1,2) c Gr(4,5), with 2 connected components, where
Gr(1,2) € Gr(4,5) is a linear embedding given by 1-1 correspondence be-
tween 1-dimensional subspaces in C°/(ey, e, €4) and 4-dimensional subspaces
in C° containing (eo, €1, e4). Let Q :=p12 —Po3, and Q, := p13 —pxu be the
skew-symmetric 2-forms on C>.

Then, the fiber of T(Y*) over V4 € Gr(1,2) is a 2 point set, one point
is the fiber of T>'(Y*) C F(1,4,5) over V, defined by a pair (kerQly, N
kerQsly,, V4), and the other point is a fiber of T»*(Y*) C F(3,4,5) over V,
defined by a pair (kerQ;ly, + kerQsly,, Va).
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Proof. From the proof of the previous proposition, we can obtain that rank Q;
and rank Q, > 2, and the fiber of T(Y*) over Vj is empty if rank Qily, or
rank v, is 4. Therefore, it enough to consider the case that rank Q;ly, =
rank Q;ly, = 2.

Assume that kerQly, = kerQjly,. Since (eq) C kerQqly, and (ey) C
kerQ;ly,, we have kerQ;ly, = kerQ,ly, = (eo,es). Then, for an element
ae; +be,+ce; € Vi, we have ¢ = b =0 from the relation Q4ly, = Qyly, =0
which contradicts to the fact that V4 is a 4-dimensional vector space. There-
fore ker(]y, and kerQ,|y, cannot be equal.

Next, consider the case when kerQ;|y, NkerQ;ly, = (v), i.e. 1-dimensional
vector space generated by v € C°. If we write v = agey + - - + ases, then
from the condition that Q(v,ey) = Q,(v,e4) = 0, we have b, = by = 0.
Therefore we conclude that (eo,eq, es) C V4. Conversely, if (eg, e, eq) C Vi,
then we can observe that kerQily, C (eo,er,es), kerQzly, C (eo,er,es) in
the same manner. Therefore we have kerQ|y, NkerQ;ly, is a 1-dimensional
vector space. Hence, the locus where ker(|y, N kerQ;ly, is 1-dimensional
is the image of the linear embedding Gr(1,2) C Gr(4,5), given by the 1-
1 correspondence between 1-dimensional subspaces in C°/{eo, €1, e;) and 4-
dimensional subspaces in C> containing (eo, €1, €4).

Furthermore, when we consider a 4-dimensional subspace V4 € Gr(1,2) C
Gr(4,5) of C°, the fiber T>'(Y*) C F(1,4,5) over V, is represented by a
pair (kerQly, NkerQsly,, V4), and the fiber T#?(Y*) C F(3,4,5) over Vj is
represented by a pair (kerQ;ly, + kerQsly,, Va).

It is obvious that the fiber of T(Y*) is empty over the 4-dimensional sub-
space Vy of C> where kerQ;ly, NkerQ,ly, = (0). O

We conclude this subsection with the following result about the Fano va-
riety of planes in the hyperplane section of the Grassmannian Gr(2,2n)NH.
We can show this in a similar manner we proved Proposition 4.3.11. This re-
sult will be used when we discuss the birational geometry of Hyq(Gr(2,2n)N
H) in Chapter 6 using the result of Chung, Hong, and Kiem [18].
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Proposition 4.3.13 (Fano variety of planes in Gr(2,2n) N H). Fano variety
of planes F,(Gr(2,2n) N H) is smooth.

Proof. Similar to the Gr(2,5) case, 0;,-planes in Gr(2,2n) are parametrized
by the Flag variety F(3,4,2n) and o3;-planes in Gr(2,2n) are parametrized
by the Flag variety F(1,4,2n). Then F,(Gr(2,2n)NH)) is a the sublocus of
F(3,4,2n) UF(1,4,2n), we denote it by TZ*UTY'. We want to determine a
sublocus Zy C Gr(4,2n) where T3* U T3 supported on.

Then, when we fix a (2n — 1)-vector space Von_; C C?™, then by the
proof of Proposition 4.3.11, we can easily observe that for any 4-dimensional
vector space V4 C Vi1, V4 € Zy if and only if Zy contains the kernel of
the skew-symmetric form Qply,, ,. Since H is a general hyperplane section,
H has rank 2n, so Qulv,, , has rank 2n —2 and the kernel ker Oy, is
1-dimensional. So when we consider a Grassmannian Gr(2n —1,2n) and a
rank (2n—1)-tautological bundle U/, we can have the following fiber diagram

Gr(3,U /ker Quy,, )m Gr(4,U4) = F(4,2n —1,2n)

L |

yATS Gr(4,C?")

where the upper horizontal arrow is a linear embedding, hence its image
is smooth in Gr(4,U). Since tautological bundle ¢/ has local trivialization,
p is a fibration. Therefore Zy is also smooth. Furthermore, by the proof
of Proposition 4.3.11, we can observe that T3? U T is a P' U P'-bundle
over Zy, hence it is smooth. Moreover, in a similar manner to the proof of
Proposition 4.3.4, T;' is isomorphic to the Fano variety of o3;-type planes
F1(Gr(2,2n)) NH and T3? is a locally trivial P'-fibration over the Fano va-
riety of 02,-type planes F#*(Gr(2,2n)NH). Therefore F>'(Gr(2,2n))NH and
F>?(Gr(2,2n) N H) are both smooth. H
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4.3.4 Scheme-theoretic intersection of S(Y) and T(G)

In this subsection, we compute the scheme-theoretic intersection of S(Y)
and T(G), ie. Irvsi) = Isiy)sie) + Ite)sc). By presenting the defining
equation of T(Y), the smoothness of T(Y) is proved. By Proposition 4.2.2[16,
Lemma 3.9], we know that T(G) is an OG(3,6) = P3LIP*-bundle over Gr(4,5),
03,1-planes and 0, -planes corresponds to each disjoint P?. Denote them by
T(G)z, and T(G)s;. Since they are disjoint, we can consider them inde-
pendently, i.e. it is enough to show that Ir(y),,s) = Isiv)se) + I1(6).,.506)s
Irovis,st6) = Isvsie) + Ire)sq,s06) where T(Y)z, :=T(G)z2 N S(Y),

T(Y)31 :=T(G)31 NS(Y).
We first state the Cauchy-Binet formula here, which is useful for further

calculations :

Proposition 4.3.14 (Cauchy-Binet). [53, Example 2.15] Let A be a n xm
matrix and B be a m x n matrix where n < m. Then we have the following

formula for the determinant of the matrix AB :

det(AB) = Z detA[n}‘s : detBsy[n]
se(V)
where [m] = 1,2,...,m is a set and (h:]) is a set of n combinations of ele-
ments in [m].

For n = 2,m = 3 case, we can check the following corollary by direct

calculation :

Corollary 4.3.15. [8, Example 4.9] Let A be a 2 x 3 matrix and B be a
3 x 2 matrix. Let [Aly, [A]l; be a row vector of A and [B]°, [B]' be a column

vector of B. Then we have :
detAB = ([Alo x [Aly) - ([BI® x [B]")
where /x’ is a cross product defined in C3.
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We check Iry),, s6) = Isv)sie) + Ir(6)..,5(6) for affine local charts. Con-
sider a chart for S(G). Since S(G) is Gr(3, 6)-bundle over Gr(4,5), we should
consider chart for A € Gr(4,5) and F € Gr(3,6) = Gr(3,/\?A). There are 5
standard charts for A € Gr(4,5) :

1000 a 100 a O 10 a 00
A:O100b,/\:010b0’/\:01b00)
001 0 ¢ 001 ¢ O 00 c 10
00 01 d 0 0 0 d 1 0 0d 01
1T a 000 al 000
A:0b100and/\:b0100
Oc 010 c 0010
0 do 01 d 00 01
But in the first chart :
100 0 a
A:O100b
0010 ¢
00 01 4d

the equation of Y? : P12 — Po3 has no solution. Furthermore, Since the sym-
metry interchanging the index 1,2 and 0,3 does not change the equation

P12 — Pos, it is enough to consider the following two chart of Gr(4,5) :

10 a 0O 100 a O
A= 01 b 0O and A — 01 0Db o0
00 c 10 001 cO
0 0 d O 0 00 d 1

Let us start with the first chart :
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10 a 0O
A:O1b00
00 c 1O
0 0doOT

Let o1y ..., q23 be a coordinate of a fiber of A?U over this chart, where U
is a tautological rank 4 bundle over Gr(4,5). Then we have p1; — po3 =
—aqo; — qoz2 + cqi2 + dqi3. By Proposition 4.3.11, T>?(Y) is a fibration over
Gr(3,4) linearly embedded in Gr(4,5), whose images are A € Gr(4,5) such
that es € A. Therefore, we have equation d =0 in Iyy),,.

Next, 0,,-plane corresponds to P2-plane in PA = P3 C P* must one be

of the following form(i.e. it correspond to the row space of the matrix R-A)

1 0 0 «o 1 0 o« O 1 « 00 a1 0 0
R=1010 BJlor|0 1 B OJor|O0O A 1T Ofjor|pB O 1 O
001 vy 00 v 1 0O v 01 vy 0 0 1

Therefore, the intersection of S(Y) and T(G) arises only in the following
three charts for fibers F € Gr(3, A’A) :

01 02 03 12 13 23 01 02 03 12 13 23
1 0 e 0 f g 1T e 0 f 0 g
F= O 1 h O i1 j |,F= O h 1T 1 0 j |,
0 0 k 1T 1 m 0O k 0 1 1 m
01 02 03 12 13 23 01 02 03 12 13 23
e 1 0 f g O e f g 1 0 0
F= h 0 1T i j 0 Jand F= h i 3 0 1 0
k 0 0 1 m 1 k L m 0 0 1
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where the upper indices are indices of Pliicker coordinates. Let us start with
the first chart :

10 e 0 f g
F=101T f 0 i j |,
00 gl lm

In this case, we can easily observe that a 0,;-plane contained in this

chart must correspond to the row space of a matrix of the form :

1 0 0 «
RA=]01T 0 B|-A
001 vy

For a matrix M, we let I\/l]1 be a matrix obtained from M by deleting
i-th row and j-th column. From the equation pi;; —pos = 0, and since d =
0 for o,,-planes in T(Y),,, using corollary 4.3.15, we can observe that the
equation for T(Y),, in this chart is ([R*); x [RY;) - ([A3]' x [A3]* — [AF]°
A1) = ([R*; x [R4]j) -(¢y,1,—a) = 0 for all 0 < i < j < 2. Then, since
([R*o x [R*,) = (0,—1,0), we have no solution. Therefore, the intersection
of T(G) and S(Y) does not happens in this chart.

Next, we consider the second chart :

—. Q0

-
Il

o o =

Qa -~ ©®

o = O

— o —h

- © o

then we can easily observe that a 0,;-plane contained in this chart must

correspond to the row space of a matrix of the form :

10 « 0
RA=]01 8 0]-A
00 v 1
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In the same manner we can show that ([R*]; x [R4]j) (A3 < [AZ1P—TA3]° x
[/\ZP) = ([R*]; x [R4]j) (e, 1,—a) =0 for all 0 <i<j<2is the equation for
T(Y),; in this chart under the condition d = 0. By direct calculations, we
have y =0,xc + 3 + a =0.

We observe that this 0, ,-plane which correspond to the row space of the

matrix RA correspond to the following matrix form in the chart of F :

— 0
x

o o —
o <2 ™
o —- O
— o o

0
Y B

In summary, we obtain the full description of the equation of T(Y),, in the

chart :
IT(Y)z‘z = <9)i) k>f +j) € —m, h, 1, d, —fc+ e+ (l>.

On the other hand, from the equation —aqo; —qo2+cqi2+dqi3, we have
Isy) = (—a—e+cf,—h+ci,—k+cl+d).
And clearly the equation for T(G),; is given by :

IT(G)Z,z = <9’i> k»f+j) e — m,h— l>

Therefore, we can check the following clean intersection by direct calcu-
lation :

Ir(e),, + Istv) = iy,

Next, we consider the third chart :

e 1 0 f g O

F=lh 01 i j O

k001 m 1
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Then we can easily observe that a 0,,-plane contained in this chart must

correspond to the row space of a matrix of the form :

1 « 00
RA=]0 B 1 0f-A
O v 01

Then in the same manner, we can calculate Iry),,, Isy) and Iyg),, by

2,29
direct calculation :

IT(Y)Z,z = <g)ia k,f—j,e—m, h, 1, d, fc—1— 6Cl>
Isyy = (—ae+cf+dg—1,—ah +ci+ dj,—ak + dl + dm)
Ire),, = (9, Lk, f—j,e—m,h+1)

Therefore we can check the clean intersection Ir(y),, = Isxy) + It(c),, by

direct calculation.

At last, we consider the fourth chart :

€
F=|[n
k

— e —h
o o =
©c = o
— o ©

g9
j
m

Then we can easily observe that a 0,,-plane contained in this chart must

correspond to the row space of a matrix of the form :

x 10
RA=1|pf 0 1
vy 0 0

- o o
>

Then in the same manner, we can calculate Iry),,, Isiy) and Iyg),, by

2,29
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direct calculation :

IT(Y)z,z = <g,i,k,f—j,e—}—m’h,[, d,c—f— ae)
Isy)y=(—ae+c—f,—ah+d—1i,—ak—1)
IT(G)Z,Z = <9>i> k>f_j)e+m,h— l>

Therefore we can check the clean intersection Iy(y),, = Isy) + Irg),, by

direct calculation.

In summary, we checked the clean intersection Is(y)+Iyg),, for the chart

10 a00

P L € Gr(4,5).
00 c 10
00doO 1

and all charts for F € Gr(3, A?A).

We can also check the clean intersection for the second chart :

1 00 a O
A:O1Ob0
001 c¢c O
0 00 d 1

But the computation proceeds exactly in the same manner as the case of

first chart so we do not write it down here.

Next, we can also check clean intersection at T(Y)s;. We should check

Irvisa,s6) = Istvyse) + Irie)sa,s06)-

We first consider an open chart for S(G). Same as in the case of T(Y),,,
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it is enough to consider 2 chart for A :

1 0 a 00 1 00 a O
A:O1b00and/\:010b0
0 0 c 1O 0O 01 ¢ O
0 0 d 01 0 0 0 d 1
Let us start with the first chart :
1T 0 a 00
A O 1 b 00
0O 0 c 1O
0 0d o1

Let qo1, ..., q23 be a coordinate of a fiber of AU over this chart. Then we
have p1; — po3s = —aqo — qoz2 + ¢q12 + dq3.

Next, by Proposition 4.3.11, T>'(Y) is a fibration over Gr(3,4) linearly
embedded in Gr(4,5), whose images are A € Gr(4,5) such that e; € A.
Therefore, we have equation d = 0 in Iy(y),,. Furthermore, by Proposition
4.3.11, a pair (x,A) € T>'(G) over A contained in T>'(Y) if and only if the
vertex x must be contained in the projectivized kernel of the 2-form (—apy+
cpiz2 + dpiz — Poz), which is equal to P' = P((c,1,—a,0),(0,0,0,1)).

Therefore, we should consider two types of the vertex x :
x = (c,1,—a,s) and x = (sc,s,—sa, 1)

where s € k.
Let us start with the first vertex type :

x=(c,1,—a,s).
Then, the corresponding o03;-plane is spanned by (c,1,—a,s) /A (1,0,0,0),
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(¢, 1,—a,s) AN (0,0,1,0), (c,T,—a,s) A (0,0,0,1). So we can rewrite it by a

following 3 x 6-matrix :

Thus, intersection of S(Y) and T(G)s; only occurs in the following chart of

g
F= j

o o =
o = O
— O O

e
h
k

— e A

m
Therefore, we have Iyy),, = (f+j,e—m,e+a,h—1c—h,g,i,k d).
On the other hand, o3;-plane contained in this chart of F is defined by

the vertex of the form :
X = (OC, 1) B)Y)

which correspond to the following 3 x 6-matrix :

1T v 00 0
0O x 01T 0 —y
00 « 01 p

Thus, we have Ir),, = (f+j,e —m,h—1,g,1,k).
Furthermore, from the equation —aqo; — qo2 +cqi2 + dq;3, we obtain the
equation for S(Y), i.e. Isyy = (—a —e,c —h,d — k). Finally, we can check

the clean intersection IT(Y)SJ = IT(G)3,1 + Is(y) by direct calculation.

Next, we consider the second vertex type :
x = (sc,s,—sa, 1)
Then, the corresponding o3;-plane is spanned by (sc,s,—sa, 1) /A (1,0,0,0),
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(scys,—sa, 1)/\(0,1,0,0), (sc,s,—sa, 1)A\(0,0,1,0). So we can rewrite it by
a following 3 X 6-matrix :

s —sa 1 0O 00
—-s¢c 0 O —sa 1 0
0 —sc 0 —s 0 1

Thus, intersection of S(Y) and T(G);; only occurs in the following chart of

e f1 g 00
F=|lh i0 j 10
k10moO 1

Therefore, we have Iy, = (f—j,h—1e+m,g,i,k f+ea,l—cm,d).

On the other hand, 03;-plane contained in this chart of F is defined by

the vertex of the form :
X = (“» B)Y) ”

which correspond to the following 3 x 6-matrix :

B v 1 0 00
—x 0 0 v 10
0O —ax 0 —B 0 1

Thus, we have Ir),, = (f —j,h — 1, e+ m,g,i,k). Furthermore, from the
equation —aqo; — qo2 + ¢qi2 + dqi3, we obtain the equation for S(Y), i.e.
Isyy = (—ae—f+eg,—ah—i+cj+d,—ak—1+cm). Finally, we can check

the clean intersection Ity , = Irg);, + Isv) by direct calculation.
In summary, we checked the clean intersection Isiy) + It(g);, = Lrv);, for
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the chart
1 0 a 00
A~ 01 b 00
0 0 c 1O
0 0d o1

We can also check the clean intersection for the second chart :

100 a0
A:O10b0
001 cO
0 00 d T

But the it proceeds exactly in the same manner as the case of first chart so
we do not write it down here.

In summary, we checked the clean intersection of S(Y) and T(G) in S(G)
by direct calculation.

Proposition 4.3.16. For Fano 5-fold Y := Y°> = Gr(2,5)NH, S(Y) and T(G)

cleanly intersect in S(G), i.e. we have :

Irvy = Ine) + Isiy).

4.4 Fano 4-fold Y*

In this section, we denote by Y = Y* the smooth Fano 4-fold defined by
the intersection of the image of the Grassmannian Gr(2,5) under the Pliicker
embedding into P(/A?C%) = PY with two general hyperplanes H;, H,. We de-
note py; the Pliicker coordinates. For explicit computations, we may assume
that :

Hi ={p1i2—pos =0}, H, ={piz—pau=0L

We use the same strategy as the case of Fano 5-fold Y° to show the
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smoothness of Hilbert compactification H,(Y*#). So we should first study Fano
variety of projecctive planes in the Fano 4-fold Y = Y*.

The results on projective planes and lines in the Fano 4-fold Y are due to
Todd [97]. We also introduce elementary proofs for the convenience of the
reader. On the other hand, our result on the Hilbert scheme of conics seems

to be new.

4.4.1 Fano varieties of lines and planes in Y*

First, we introduce the results for the Fano variety of projective lines and
planes in the Fano 4-fold Y. The results introduced in this section are due
to Todd [97].

Lemma 4.4.1. [97] There is a unique 03;-plane in the Fano 4-fold Y. In
other words, there is a unique projective plane TT C P* such that every line

¢ C TI, which are considered as elements of Gr(2,5), is contained in Y.

Proof. Consider the following affine open chart

1 0 a a3 ag

0 1 by bz by
of the Grassmannian Gr(2,5). In this chart we have p;;—po3 = —a;—b; and
Pi3—pu = —az—azbs+asb,. Therefore, finding the plane TT is equivalent to
finding pair of linearly independent linear equations in variables xg,--- , X4
such that both (1,0, ay, az, as) and (0,1, by, bz, by) satisfy the two equations.
By direct calculation, we can check that the unique pair of linear equations
satisfying the above condition is (x, = 0,x3 = 0). By doing same chart
calculations for other affine open charts, we conclude that {x, =x3 = 0} Cc P*

determines the unique o0;,-plane TT. O

Remark 4.4.2. The plane TT C P* in Lemma 4.4.1 plays a crucial role in
the structure of the Fano 4-fold Y* ([87, Section 3], [27, Section 3] and [33]).
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We recall that a o3;-plane is a set of projective lines in a 3-dimensional
linear space P> C P* which pass through a fixed point p. We call p the

vertex of the o3;-plane.

Lemma 4.4.3. [97] There is a 1-dimensional family of o03;-planes in the
Fano 4-fold Y whose vertices lies on a smooth conic Cy in the plane TT C P*.

Other o3 ;-planes in Y does not exist.

Proof. Consider a 03;-plane with a vertex (1, aj, a,as, as). Then a point in

the plane is represented by the following matrix :

1 a; a a3 aau
0 by by by by/
We have p1; —po3 = a1b, — axby — bz and p13 — pu = a1bz — azb; — aybs +

asb,, and these two equations are linear in (by, by, bz, bs). These two linear

equations in (by, b,, b3, by) are linearly dependent if and only if

mnk(a2 —a O)z].

—az 44 a4 —@

This condition hold if and only if a; = a3 = 0 and a% + a4 = 0. The first
equation implies that vertices of 03;-planes in Y contained in the plane TT =
{xo =x3 =0} C P* in Lemma 4.4.1 and the second equation says that the
vertices of 035-planes in Y lies on the smooth conic Cy := {X% +x*o =0} in

IT. Through the similar computations for all other local charts, we complete
the proof. O

Corollary 4.4.4. The Fano variety of projective planes in the Fano 4-fold
Y is isomorphic to the smooth conic Cy LI{IT}.

Proposition 4.4.5. [97] Let H;(Y) = F;(Y) be the Hilbert scheme(or the
Fano variety) of lines in the Fano 4-fold Y = Y*. Then the Hilbert scheme
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H;(Y) is isomorphic to the blow-up space of P* at the smooth conic Cy C TT
which is defined in Lemma 4.4.3.

Proof. We recall that an arbitrary line L in the Grassmannian G = Gr(2,5)
is a set of lines in P* contained in a projective plane P C P* which pass
through a fixed point p € P. The point p is said to be the vertex of the line

L. Assigning each line L to its vertex p gives the following morphism :
P Hy(Y) € Hi(G) = Gr(1,3,5) — Gr(1,5) =P*.

By the proof of Lemma 4.4.3, for a point p ¢ Coy, the Schubert variety
03,1(p) with Y along a line. If p € Cy, the Schubert variety o3;(p) intersects
with Y along the o3;-plane in Y. Thus we conclude that P~ (p) is a single
point for a point p ¢ Co and P ~'(p) is a projective plane P? for a point
p € C,.

By local chart computation similar as in the proof of Proposition 4.3.1,
we can to show that the map 1 is the blow-up map along the smooth conic
Co. Also, using the same argument as in Lemma 4.3.2, we can check that
the Hilbert scheme(or the Fano variety) H;(Y) is reduced. So we complete
the proof. n

Proposition 4.4.6. We denote Cy C H;(Y) the dual conic which is the set
of projective tangent lines of Cy in the plane TT C P*.

Let . € Hy(Y) be an arbitrary projective line in the Fano 4-fold Y. Then
the normal bundle Ny y of L in Y is isomorphic to OF* @ Op(1) if L ¢ Cy
and Ny y is isomorphic to Op(—1) @ OL(1)®? if L € Cy.

Proof. Consider a line L the dual projective space TTV C Y with a vertex
p = (1,a1,az,a3,a4). Then the point in the Schubert variety o3;(p) is rep-

resented by the following matrix :

1 a; a; as au
0 x1 X2 X3 X4
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Since x; = x3 = 0 is the equation for TI, a;, as, b,, bz are coordinates of the
fiber of the normal bundle Npv gl.. Since az, a3 has homogeneous degree 0
and x;,x3 has homogeneous degree 1, we have Npv gl = OP* @ Oy(1)%2.

Moreover, the two equations pi; —posz and pi3 —pa give us homomorphisms

O @ OL(1)%2 = O(1)%?,

(az, azyx2,%3) = (a1by — azx) — X3, A1X3 — A3X7 — QX4 + A4X2).

If ay+a? # 0, then we can observe that the kernel of this homomorphism is
OE‘?Z. If as+ a} =0, then the kernel is Op(—1) @ OL(1). The equation as +
a? = 0 is exactly same to the equation for the smooth conic Cy. Because the
normal bundle Ny pv is isomorphic to O (1), the normal bundle sequence
0 — Npmv — Ny = Npv vl — 0 splits, i.e. Ny = Op(1) @ Npv yl. We

can do same computations for other open charts. So we obtain the proof. [J

4.4.2 Hilbert scheme of conics H,(Y*) in Y*

In this section, we construct birational morphisms which connects H,(Y*)
and its projective models in a similar manner as in the diagram (4.1). The

next theorem is an analogue of Theorem 4.3.9 in the case of Fano 4-fold Y.

Theorem 4.4.7. We denote H;(Y) the Hilbert scheme of conics in the Fano
4-fold Y = Y*. Let U be the tautological sub-bundle on the Grassmannian
Gr(4,5). We define

K = ker{\N*U — N0 — 0%%)

as the kernel of the composition of the above sequence where the second
arrow in the above diagram is induced from the equations p;; — po3 and
P13 — P2a- Then H,(Y) is a blow-down of g(Y), which is a blow-up of the
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relative Grassmannian bundle S(Y) := Gr(3,K) :

S(Y)
AN
S(Y) H,(Y).

where = is the blow-up along T(Y) := T(G) N S(Y) and ® is the blow-up

along the locus consists of conics contained in 0;,-type planes. Furthermore,

(4.8)

H,(Y) is a smooth, irreducible variety with dimension 7.

Proof. We can fill in the proof in a similar manner as in Proposition 4.3.9

so we omit here. O

4.4.3 Scheme-theoretic intersection of S(Y) and T(G)

We show scheme-theoretic intersection of S(Y) and T(G) here, so we can
show clean intersection by [68, Lemma 5.1], so we have another proof of the

clean intersection in the case of Fano 4-fold Y*.

First we consider charts for S(G). Since S(G) is Gr(3,6)-bundle over
Gr(4,5), we should consider chart for A € Gr(4,5) and F € Gr(3,6) =
Gr(3, A2A).

There are 5 standard charts for A € Gr(4,5) :

1000 a 1 00 a0 10 a 00
A 01T 00®Db A= 01T 0 b 0 A 01T b 00O ’
001TO0c 001 cO 00 c 1O
0001d 0 00 d 1 0 0d o1
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1 a 000 alOO0O
A~ 0O b 10O and A — b 0100
0O c010 c 0010
0 d o 01 d 00 01

By Proposition 4.3.12 we know that T(Y) is the double cover over the
linear embedding P! = Gr(1,C*/(ey, e1,e4)) C Gr(4,5). Therefore, The in-

tersection between T(G) and S(Y) only occurs in the following two charts :

1 0a 00 1 00 aoO
A 01T b 00O and A — 01T 0b 0
00 c 1O 001 cO
0 0d o1 0 00 d 1

and a = b = d = 0 contained in the equations of T(Y) in both cases, i.e.
a,b,d € Iyy). Since T(Y) = T(Y)22][T(Y)s1, we can consider each part
independently. We consider the clean intersection at T(Y)s; first.

First, consider the first chart :

10 a 0O
AZO]bOO
00 c 10O
0 0 d 01

Let qo1y..., 23 be a coordinate of a fiber of A?U over this chart. Then we
have p1; — po3 = —ador — qo2 + ¢qi2 + dqgi3 and p13 — pu = —aqos + g2 —
bqiz — cqas.

Each o03;-plane in T(Y);; which correspond to the vertex x € PA C C°
such that (—qo2 +cqi2)(x,y) =0, (q12 —cq23)(x,y) = O(here, we consider qj;
as a skew-symmetric two form) for all y € A, because we have a=b=d =0
in T(Y)3;. Then, by direct calculation, we can check that the sigma o3 ;-

plane correspond to the vertex x contained in T(Y)3; if and only if it satisfies
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the equations :

0O —ay; —y» O
( ayo O ey dys|
Xo X1 X2 Xg) Yo ey 0 0 =0
0 —dy; O 0

0 0 0 —ay;

0 0 vy —bys

0 —yr 0 —cys
ayp by; cyz 0

and (xo X1 X2 X3> = 0.

for all y = (Yo,Y1,Y2,Y3) € A. Thus, we conclude that x = [—c*: —c: 0 :
1] € PA. Then, the corresponding o3;-plane is spanned by (—c?,—c,0,1) A
(1,0,0,0), (—c?, —¢,0,1) A (0,1,0,0), (—c?,—¢,0,1) A (0,0,1,0). So we can
rewrite it by a following 3 X 6-matrix :

—c 0 1.0 00
¢ 00010
0 ¢2 0 c 01

Thus, intersection of S(Y) and T(G);; only occurs in the following chart of
F:

e f
F=1]1h 1
k1

o o =
— O O

g
j
m

4 o =2 o

In this chart, we can compute the ideal of T(Y)3; :

T(Y)3,1 - (a,b,d,g,i,k,f,j,e+m,h—l,h—cz,e+c>

On the other hand, o03;-plane contained in this chart of F is defined by
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the vertex of the form :
X = (0(, B)V) ])

which correspond to the following 3 x 6-matrix :

By 1 0 00
%« 0 0 vy 10
0 —ox 0 —B 0 1

Thus, we have Ir),, = (f —j,e + myh—1,g,1,k).
On the other hand, from the equations —aqo — qo2 + cqi2 + dqi3 and
—adoes3 + qi12 — bqi3 — cqa3, we obtain ideal for S(Y) :

Isyy = (—ae—f+cg,—ah—1i+c¢j+d,—ak—1+cm,—a+g,j —b,m—c)

in the first

Thus, we can check the clean intersection Iyy),, = Isxy) + Ir(g)s

chart of A by direct calculation.

Next, consider the second chart :

100 a O
AZO]ObO
001 cO
000 d 1

Let qo1y-.--y 23 be a coordinate of a fiber of /AU over this chart. Then
we have p12 —pos = —bqo1 —cqo2 —dqoez + 12 and p13 —Ppas = —ader +cqr2 +
dqgi3 — qas.

Then, in the same manner as in the first chart case, we can show that
031-plane in T(Y)3; correspond to the vertex x =[1:¢:0:—c?] € PA. The
corresponding 03 ;-plane is spanned by (—c?, —c, 0, 1)A(0,1,0,0), (—c?, —c, 0, 1)A
(0,0,1,0), (—c?, —¢,0,1) A (0,0,0,1). So we can rewrite it by a following
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3 X 6-matrix :

1000 ¢t 0
01 0c 0 ¢
0O 01T 0 ¢ O

Thus, the intersection of S(Y) and T(G);; only occurs in the following chart
of F € Gr(3,\?A) :

g
F— j

oS o =
o = O

0
0
1

& 0

f
i
1l m

In this chart, we can compute the ideal of T(Y)s; :

T(Y)3,1 = <Cl,b, d)9>i»k7evm)h_laf_j>h_c>f_cz>

On the other hand, o03;-plane contained in this chart of F is defined by

the vertex of the form :

X = (],OC,B,'Y)

which correspond to the following 3 x 6-matrix :

100 —B —y 0
010 a« 0 —y
001 0 o B

Thus, we have Itg),, = (9,1}, k,f—j,h—1,e+m).

On the other hand, from the equations —bqo — cqo2 — dqo3 + g1z and
—aqor + ¢qi2 + dqi3 — 23, we obtain ideal for S(Y) :

Isyy=(—b+e,—c+h,—d+k,—a+ce+df —g,ch+di—j,ck+dl—m)

So, we can check the clean intersection Iyy),; = Isxy) + It(g);, in the second

chart of A by direct calculation. In summary, we checked clean intersection
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at T(Y)z,z

Next, we check clean intersection at T(Y),,. Let us start with the first
chart for A :

10 a 00
A:O1b00
00 c 10
00 d 0T

Next, 07,-plane corresponds to P2-plane in PA = P> C P* must one be of

the following form(i.e. it correspond to the row space of the matrix R-A) :

1 0 0 « 1 0 a« O 1 « 0 0 o« 1 0 0
R=1010 BJlor|0 1 B OJor|O0O B 1T Ofjor|pB O 1T O
001 vy 00 v 1 0O v 01 vy 0 0 1

Therefore, intersection of S(Y) and T(G),, arises only in the following
four charts of F:

01 02 03 12 13 23 01 02 03 12 13 23
1 0 e 0 f g 1 e 0 f 0 g
F= O 1 h 0 1 j |,F= O h 1T 1 0 j |,
O 0 k 1T 1 m 0O k 0 1L 1T m
01 02 03 12 13 23 01 02 03 12 13 23
e 1 0 f g O e f g 1 0 0
F= h 0 1 i j O Jand F= h i j§3 0 1 0
k 0 0 1 m 1 k L m 0 0 1

where the upper indices are indices of Pliicker coordinates. Let us start with
the first chart :

-
Il

o o =

o = O

Qe -H 0o

—_ o O

— e =

g
|
m
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In this case, we can easily observe that o0;,-plane contained in the inter-

section of T(Y),, and this chart must correspond to the row space of the

matrix :
1 0 0 «
RA=]101T 0 B[ A
001 vy

We observe that this 0;,-plane which correspond to the row space of the

matrix RA correspond to the following matrix form in the chart of F :

10pB 0 —x O
O1T v 0 0 —«
0001 v —p

But, in this case, the equations —aqei — qo2 + cqi2 + dqi3 and —aqes; +
gi12 — bqgi3 — cqz; does not have solutions since we have a =b =d =0 on
T(Y)22. Therefore, we can show that intersection of S(Y) and T(G),, does
not happens in the chart for F :

—. 0O

-
|

o o =

o = O

& 5o

— O O

— e =k

In the similar manner, we can also show that no intersection of S(Y) and

T(G),,, does not happens in the chart for F :

€
F=|[n
3

— e A
c o =

g
j
m

o = O
— O O

Therefore, it is enough to consider only two chart for F. Let us start with
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the following chart for F :

F=

o o =

e
h
k

o = O
— e =
- O O

g
)
m
In this case, we can easily observe that a 0,,-plane contained in this

chart must correspond to the row space of a matrix of the form :

1
RA= |0
0

o - O

< ™ R

—_ O O
>

Then, by the equation —adqos —q02+Cq12+dq13 and —aq03+q12—bq13—
cqz3, we can observe that this o,,-plane contained in T(Y),, if and only if

it satisfies the following matrix equations :

— a[R]° x [R]' + ¢[R]" x [R]*> + d[R]" x [R]®> = [R]° x [R]*> =0 and
R]' x [R]*>— a[R]® x [R]>* = b[R]" x [R]> —¢[R]? x [R]* =0

Since we already have a = b = d = 0 satisfied in T(Y),,, by Proposition

4.3.12, the above equations reduce to :

c[R]' x [RI? = [R° x [R]? =0 and
R]' x [RI?—c[RZ x [R?=0

Therefore, we have :

C(_Y>O> o) — (0)0)]) =0
(_‘Y)O) (X) _C“)O)O) =0

Thus, there is no solution for these equations. So intersection of T(G),, and
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S(Y) does not occur in this chart of F.
So, in summary, we checked the clean intersection Iy(y),, = Isyy) + Itc),,
in the first chart of A and all chart of F. We can also check the clean in-

tersection in the second chart for A :

100 aoO
A201Ob0
001 c¢cO
0 00 d1

in the same manner, as we used in the case of the first chart of A. But since
all process is parallel, we do not write it down here. In summary, we obtain

the following result.

Proposition 4.4.8. For Fano 4-fold Y := Y* = Gr(2,5) N H; N H,, S(Y) and
T(G) cleanly intersect in S(G), i.e.

Ity = Ine) + Ispn).

4.5 Fano threefold Y3

We can also apply arguments in previous sections on the case of Fano
threefold Y3. Applying similar methods as in the previous sections, we re-
prove well-known results on the moduli space of projective lines and conics.

For concrete local chart computations, we let

Hi ={pi2—ps =0}, H,={pi3—p2u=0}, H;={pu—pu=05.

Proposition 4.5.1. [30, Lemma 3.3] The Hilbert scheme of lines F;(Y) in
the Fano 3-fold Y is isomorphic to P2.

Proof. Consider the projection Fi(Y) C Gr(1,3,5) — Gr(1,5). Then this

map assigns each line to its vertex. Then for a vertex p=[ap:a;:az:a;3:
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a4], a line in the Gr(2,5) whose vertex is p lies in the Fano 3-fold Y if and
only if

0 a —aq

The rank condition determines the ideal of the image of the projection map
Im(F;(Y)) in Gr(1,5) = P*, which is is given by

2.2 2 3 2 2 2,2
<a1 aaz+apaz—asas+aszdy, a,—aja;—aazay, a1 a5;+apaaz—ag azay, apa;+ajas,

2 2 2 2 3 2
arja; + apayaz + apazas, apasa; + agaz + ajas + apdy, ay — aydz + apQg a4>.

It is well-known that the zero set of the above ideal is isomorphic to P2,
which is a projection of the Veronese surface ([84, Theorem 1.1]). We note

that Im(F;(Y)) = P? contains the smooth conic Cy appeared in Proposition
4.4.5. Thus F] (Y) = Blcolm(F1 (Y)) = Pz. O]

The following theorem is an analogue of Theorem 4.3.9 in the case of
Fano threefold Y3.

Theorem 4.5.2. [30, Lemma 3.3] The Hilbert scheme H;(Y) of conics in the
Fano 3-fold Y is isomorphic to the Grassmannian Gr(4,5) = P*.

Proof. In a similar manner as in the proof of Lemma 4.4.1, we can easily

check that there is no plain contained in Y. Moreover, we define
K := ker{\N2U c N*O® — 03}

as the kernel of the above composition map where U is the tautological bun-
dle on Gr(4,5) and the second arrow is induced from the three linear equa-

tions (p12 —Po3 = O,p13 — P2 = O,pm —Po2 = O) of the Fano 3-fold Y. Then
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we can easily show that the rank of K is 3 by direct calculation so that

KC is a vector bundle. Hence we obtain isomorphisms H;(Y),.q = S(Y) =

Gr(4,5). In a same manner as in the proof of Lemma 4.3.2, we can also
prove H(Y),eqa = Hy(Y). O]
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Chapter 5

Compactifications of the moduli
spaces of degree 3 smooth

rational curves in N

The results presented in this chapter are based on the results obtained
joint with Chung in [20].

We studied that there are two irreducible component R3(0) and R3(1)
of R3(NV) in Chapter 3, Proposition 3.1.3. In this chapter, we study their
Kontsevich compactification. For the definition of the stable map space and

Kontsevich compactification, see Chapter 4, Section 4.1.

But since R3(0) is a fiber bundle over Pic°(X), whose fiber over a line
bundle L € Pic®(X) is an open subscheme of the degree 3 map space
Hom;(P', PExt' (L, L' (—x))), Kontsevich compactification of this space is al-
ready well-known by Kiem-Moon [56]. So we concentrate on the Kontsevich
compactification of the component R3(1) here. Let My(N,d) be the stable
map space of genus zero, degree d stable maps with no marked points. Here,
the degree of the map is defined via the very ample divisor @ on N. We

denote R3(1) € My(N,3) by A;:=R3(1).
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5.1 Notations

In this chapter, let us fix some notations as follows.
- X: a smooth projective curve with genus g > 4 over C.
- x: a fixed point of X.

- N : Moduli space of rank 2 stable vector bundles on the smooth pro-

jective curve X with a fixed determinant line bundle Ox(—x).

- Vi = Ext'(L,L~"(—x)) where d is a dimension of the vector space,

(V3)s is the sublocus of Ext'(L,L~'(—x)) parametrizing extensions which

have stable rank 2 vector bundles in their middle terms. Therefore, by
Riemann-Roch formula, Ext'(L,L~"(—x)) = VP ifLe Pic’(X) and
Ext'(L,L7'(—x)) = V" if L € Pic'(X).

- P9 = PV¢ for a line bundle L € Pic®(X) and (P{*)s == P(VIH)s,
where (Vﬁ”z)S is the sublocus of Ext'(L,L~'(—x)) parametrizing exten-

sions which have stable rank 2 vector bundles in their middle terms.

We sometimes abbreviate IP’SLH by P91 if there is no confusion on the
choice of the line bundle L. Also, we sometimes abbreviate IP%H by (re-
spectively, (}P’EH)S) by P91 (respectively, (P9+")%) if there is confusion
on the choice of the line bundle L € Pic'(X). Moreover, also sometimes
abbreviate stable locus of PV := (PV?™?)s by (P9+')%, when there is

no confusion on the choice of the line bundle L € Pic'(X).

5.2 Review of the resolution of unstable locus

To understand the compactification A; of the component R3(1), whose

clements are lines, i.e. degree one map f : P! — (IP’EH)S, we should under-
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stand what happens that these lines get close to the unstable locus, (]P’EH)“S,
because boundary elements of A; arise in this kind of limits. So what we
should do first is to determine the unstable locus (IP’EH)”S. In fact, Castravet
already studied about this unstable locus in [13, Section 2.2], [12, Section
2.1]. The following result directly follows from the simple observation of the

proof of [13, Lemma 2.1].

Proposition 5.2.1. [13, Proof of Lemma 2.1] For a degree 1 line bundle L €
Pic'(X), the unstable locus P(Ext' (L, L' (—x)))* = (]P’EH)“S is isomorphic to

the image of the following morphism, induced by the complete linear system

i=|%(x) ® Kx| : X — P§"!
where Ky is a canonical line bundle of the curve X.

We note that 1%(x) ® Ky is very ample, therefore i is a closed embedding,
so we can identify the unstable locus with the smooth projective curve X. In
the upcoming contents, we will reinterpret the unstable locus using elemen-
tary modification we introduced in Chapter 3, Definition 3.1.1, which will

give us some geometric intuition about the rational map Wy : P — A,

5.2.1 Some remarks about the rational map V¥ : IP’E+1 ——»

N

Let us recall the definition of the elementary modification in Chapter 3.

Recall the sequence 3.1, which gives the elementary modification
0—E» —E-C, — 0.

Then let us assume that E = & & &’ decomposes to line bundles & and &’
on the curve X. If [v,] € C* =P\ {[1:0],[0: 1]}, we can easily check the
elementary modifications EY» are isomorphic to each other. Thus, we can

introduce the following definition.
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Definition 5.2.1. We define the rank 2 vector bundle on the curve X as

follows :

(&P =&
for any v, € C* = P\ {[1:0],[0 : 1]}. This vector bundle is well-defined

since elementary modifications (& &’)'r are all isomorphic to each other for
different choice of v, € C* = P'\{[1:0],[0: 1]}

Furthermore, when L € Pic'(X), we can easily observe that there is a

short exact sequence :
0oL (—x)=(LaL ' (p—x))P =L =0

and (L® L7 '(p —x))P is a non-split vector bundle.
From the above definition, it is natural to consider a morphism from the
curve X to a PExt'(L,L~'(—x)). But it is unclear what this morphism ex-

actly is. The following lemma gives an answer to this question.

Lemma 5.2.2. (cf. [96, (3.4)] and [4, Section 3]) Consider
f:X = P9 =PExt' (L, L (—x)), p— (LeL'(p—x))°

the map defined as the elementary modification. Then the map f coincide

with the map induced from the following complete linear system :
i=L%(x) ® Kyl : X — PJ*!
where Ky is the canonical line bundle of X.

Proof. We first note that it was shown in [96, (3.4)] that the map i coincide
with the map g: X — PH'(A™") = My (A = L?(x)) where M, is the moduli
space parametrizing pairs of stable bundles on the curve X and their sections.
Here, the map g is given by g: X = PW — PH'(L"%(—x)) where W is a line
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bundle on the curve X and g(p) = PH°(L7?(—x)l,) € PH'(L™?(—x)) (See
the last paragraph in [96, 329p]). In fact, we get this map by taking the

projectivization of the map p in the short exact sequence in the following

0 — Ext'(L|,, L' (—x)) & Ext"(L, L7 (—x)) % Ext'(L(—p), L' (—x)) — 0.
(5.1)
Here, we get (5.1) by applying the functor Hom(—, L~'(—x)) to the following
exact sequence :

0—=L(=p)—=L—=1, —=0.

Since we have Ext](L!p,L’l(—x)) = C, it is enough to check y(f(p)) =
L(—p) @ L' (—x) to prove g(p) = f(p). Therefore, what we have to show

is the following :
yEP) =L (L (p—x)P &L L(—p) = L(—p) ® L' (—x). (5.2)

We can easily observe that the left hand side fit to the following pull-back

diagram :

0——L"(—x) —— (Le L' (p—x))” @& L(~p) — L(—p) ——0

| | [

0—— L '"(—x)——=(LaeL ' (p—x))P 0.

Using the above pull-back diagram, we can show the isomorphism (5.2) as

follows. Since isomorphism is a local property, it is enough to show locally.
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Consider any open set U C X, then we have :

(Lol '(p—x))P @ L(—p))(U)
={((s1,52),83)(s1,82) € (LB L' (p—x))P(U),s3 € L(—p)(U), 57 = s3}

(
={(s1y82) € (L L7 (p —x))P(W)ls1 € L(—p)}
= {(s1,82) € L(W @ L' (p —x)(W))]asi(p) + bsa(p) = 0,51 (p) = 0}
={(s1ys2) e LW B L™ (P x))(Wls1(p) = s2(p) = 0}
= {(s1,52) € (L(=p) @ L7 (=) (W)}.

Here, we can observe that the third isomorphism obtained directly follows
from the definition of the elementary modification, and the fourth isomor-
phism follows since we should choose v, = [a : b] € C* such that ab #0. O

Remark 5.2.3. deg(f(X)) =2g+1.

Proposition 5.2.4. ([96, 4]) For a line bundle L € Pic'(X), consider
VP s

the rational map induced from the middle term of the universal extension
sequence of the projectivized extension group PExt'(L,L~'(—x)). Then we

have following properties for the map Wy :

(1) The base locus of the rational map W is identified with the curve X
(Lemma 5.2.2). By taking the blow-up of P¢"" along the base locus X,

we obtain a regular morphism
{P]_ : le]P)€+] (Z: f’]_) — N.

which is an extension of VY.

(2) The fiber of the exceptional divisor E over a point p € X of the blow-

up morphism 7t is isomorphic to P97", exactly coincides with the degree
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0 extension type space Pg:p). Therefore, each fiber of the exceptional

divisor linearly embedded into A via the map ‘T’L.

(3) If the map W is injective and HO(L*(x)) = 0 for some L € Pic'(X),
then the morphism Y, is a closed embedding for the line bundle L.

Py

I

v
PO L.

Proof. We follow the notations in [96]. So if we let A = L[?(x) we have the
short exact sequence 0 — Ox — E — [%(x) — 0. Furthermore, we have
IN’L = M; where the space M; parametrizes pairs (s, E) such that the bundle
E is stable and s C H°(E) is a section of E. ([96]). Part (1) follows from
Lemma 5.2.2 and [96, (2.1)]. Part (2) obtained from part (2) of [4, Theorem
1]. In part (3), injectiveness of the map ¥ follows from [96, (3.20)] since we
have H°(E) = C. We note that the map W, is in fact equals to the forgetful
map (s,E) — E where s C H°(E). Therefore, the induced tangential map
T(PVL* : T[(S,E)]f)L — TigN identified with the last morphism in the following
exact sequence ([96, (2.1)]) :

0 — Ext°(E,E) — H°(E) — T[(s,E)]f)L Ty TN

Since we have Ext°(E,E) = C and H°(E) = C, we deduce that the extended
map ¥ is an embedding. O

We note that the conditions in the item (3) of the above proposition are
satisfied for the the line bundle L which satisfies the property defined in the
following. (cf. Lemma 5.2.11).

Definition 5.2.2. We call a line bundle L non-trisecant if H°(L*(x)) = 0,

otherwise, we call L trisecant.
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Furthermore, we can interpret non-tresecant condition in a geometric way

using the following corollary.

Corollary 5.2.5. ([45, Lemma 5.1]) Let L € Pic'(X) be a line bundle. Then

we have the followings :

(a) For the curve X C P¥*" (embedded in P¢* by the linear system |[2(x)®

Kx|), there exist a line in ]P’IQ_H which is trisecant to X if and only if :
L?(x) = Ox(p + q + 1)( equivalently, H°(L*(x)) # 0) (5.3)

for some points p, q,r on the curve X. Then there exist a trisecant line
¢ which intersect with the curve X on the points p,q,r. If p = g, then
(¢ is tangent to X at the point p. Also, if p = q =, then { is tangent
to X at the point p and it intersect with X on p with multiplicity 3.

(b) Let us assume that the curve X is not trigonal and also not hyperel-
liptic. Then the points p, q,r on the curve X which satisfies the equa-
tion (5.3) are uniquely defined. Therefore there is unique trisecant line

passing through the points p, q, .

Proof. Part (a) : Assume that there is a trisecant line £ and let £ N X =
{p, q, r}(intersection points p, q,r need not to be distinct). So we can write
¢ =7Ppqr. Since the line { is trisecant, in the similar manner as in the Propo-
sition 5.2.7, we can observe that the line { is identified with the projectivized

kernel of the morphism &; in the following diagram :

Ext®(L, L' (—x)) = Ext®(L(—p — q — ), L' (—x)) = Ext (Llysq 1y L' (%))
— Ext'(L, L' (—=x)) & Ext'(L(—p — q — 1), L' (—x)) — 0.

Since the first term of the diagram is zero, the dimension of the kernel of 6,

is 2(since Pqr is the line £), and the dimension of Ext' (Llpsqiry L1(—x)) is 3,

we deduce that the dimension of Ext®(L(—p—q—1),L"(—x)) = H)(L2(—x)®
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Ox(p+q+7)) is equal to 1. Thus we obtain L~2(—x) ® Ox(p+q+71) = Ox.
Therefore we obtain that 1?(x) = Ox(p +q + 7).
Conversely, consider a line bundle L which satisfies the equation (5.3).

Then, we take the functor Hom(L,—) in the following short exact sequence

0—=L'"(—x)—=L'(p+q+r—x) =L ' (p+q+1—x)piqir — O,
so we have the following long exact sequence.

Ext’(L, L (p+q+7—x)) = Ext®(L, L7 (p + g + 7 — X)lpsqer) — Ext! (L, L7 (—x))

2 Ext' (LL ' (p+ q+7—x)) = Ext'(L,L (p+ q 41— X)|paqer) = 0.
(5.4)

Since the final term of the above sequence is clearly zero, we obtain
dim(Ext'(L,L7"(—x))) = g+2 and dimExt' (L, L~ (p+q+r—x)) = dimExt' (L, L)
=g by (5.3). Therefore we have dimkerd, = 2. Furthermore, since the map
0, is in fact equal to the composition of the map 6; and a natural isomor-
phism Ext'(L(—p —q —71),L7'(—x)) = Ext'(L,LL'(p + q + 1 — X)), we con-
clude that kerd, = kerd;. Thus, the vector space kerd, is the affine cone 1 of
the sub-linear space { = pqr C P9, which is turned out to be a line. By
definition, we have XN =p+q+ .

Part (b) : Assume that there exist three points s,t,u(such that s 4+t -+
U#p+q+T1) on the curve X which satisfies L?(x) = Ox(s +t+u). Then
we have Ox(p+q+71—s—t—u) = Ox. But this says that the curve X is
hyperelliptic or trigonal. O

Remark 5.2.6. We note that the non-trisecant condition H°(L?(x)) = 0 is
general for degree 1 line bundles L € Pic'(X) by Riemann-Roch theorem,
since our curve X satisfies g(X) > 4. In my joint work paper [20], we as-
sumed that g(X) > 3, but if g(X) = 3, then for degree 1 line bundle L,
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HO(L2(x)) # 0. So If g(X) = 3, non-trisecant condition is not general con-
dition. So we changed the genus condition to be g(X) > 4. This part was
advised by Atanas Iliev.

5.2.2 Geometry of lines in P9*" meeting X

In this section, we make a more precise description of the line pq =
(f(p),f(q)) which pass through the points p,q in the curve X embedded
in P9+ = ]P’VfJ+2 for a line bundle L € Pic'(X) via the map f. Since this
kind of lines appear as a component of a boundary curve of A;, this precise
description helps us to understand the structure of the boundary of A;.

If two points p and q coincides, then pp denotes the projective line tan-
gent to X at the point f(p) in the projective space IP’EH. For a point t € X
on the curve X, we have the image f(t) (see Lemma 5.2.2) which fits into

the exact sequences as follows :
0L (=) =ft)=(LoL ' (t—x)'—=L—0.

Proposition 5.2.7. Let M:=L@® L '(p+ q—x). Then the punctured line
Pq \{p, q} is parametrized by rank 2 vector bundles obtained by double ele-
mentary modifications, (M"?)Ve(= (M"4)"?) which fit into the following short

exact sequence:
0— (M) — M 2 ¢ e cy — 0.

Here v, € C* C P(H(M[,)¥) =P' and v, € C* C P(H(M],)") =P".

Proof. By diagram chasing, we can check that the vector bundle obtained by
the double elementary modification exactly coincide with the kernel of the
morphism v, @ vq.

First we describe the pq C ]P’g“ in an algebraic way. Applying the func-
tor Hom(—,L7'(x)) to the exact sequence 0 — L(—p—q) = L — L|,4q — 0,
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we have the following long exact sequence :

0 = Ext®(L(—p — q), L™ (=x)) — Ext (L g, L' (—x)) 2 Ext! (L, L7 (—x))

5 Bxt! (L(—p — q), L7 (%)) = Bxt! (L, L (p + g —x)) = 0

where @ is the natural isomorphism tensoring the line bundle O(p + q) and
the first identity holds because of degree reasons.

So we claim that the image of PExt' (L|,+q, L~'(—x)) in PExt' (L, L™ (—x))
IP)EH is equal to the line pq. To prove this, we first show that the line
IP’Ext](LIPJrq,L_](—X)) C P9*1 is parametrized by bundles comes from dou-
ble elementary modifications. Let E € Ext' (Llpsq, L7'(=x)). Then the image
i(E) of the bundle E fits into the exact sequence in the following

0oL " (—x) = 1i(E) =L —=0.

We have @(§(i(E))) = L' (p+q—x) @ L, which means that we can construct
the push-out diagram as follows

00— 17'(—x) i(E) “ 0 (5.5)

| I

0O— L' p+q—x)— L' (p+q—x) L ——L—0.
Then we obtain the following exact sequence using some diagram chasing
0—=i(E) S L' (p+q—x) L Cprg — 0 (5.6)

where p; o a is a surjection and the map p; : L& L' (p+q—x) — L is
the natural projection to the first summand. Furthermore, it is trivial that
pi1oa is a surjection if and only if vy, vq # [1:0] .

On the contrary, consider a rank 2 vector bundle E fits into the short

exact sequence (5.6) where the map pjoa is surjective. Then we can observe
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that the vector bundle E fits into the commutative diagram (5.5) using the
snake lemma.

As a result, extensions arises as a form of (5.6) where v, # [1 : 0] and
vq # [1:0] are elements of Ext! (Llp1qy L' (—x)). Next, we can check that the
vector bundle correspond to f(p) (resp. f(q)) which is obtained by elemen-
tary modification fits into the diagram of (5.6) where v, € C* and vq = [0: 1]
(resp. vq € C* and v, = [0 : 1]). Hence, when p # q, then we have f(p) #
f(q) and f(p) and f(q) lie on the linear space IP’Ext](L|p+q,L’1(—x)) C ]P’IQ_H
which coincide with the line pq by definition.

We can observe that the extension group Ext](lep,L_1(—x)) is equal to

limit of the family of extension groups Ext' (Llp+q, L7'(—x)) when p approaches

to q. So we obtain the same conclusion for the case of p = q. O

Next, we specify which vector bundles are contained in the following in-

tersections of the projectivized extension groups :
1. PVINPVY for (,n € Pic’(X).
2. P(VI2)*NPVY for ¢ € Pic'(X) and n € Pic®(X).
3. P(VI)s nP(Ve2)® for ¢ m € Pic'(X).

It should be noted that these intersections arise in the moduli space of vector
bundle N. Case (1) is already covered in [77, 6.19]. PV{ and PVY cleanly
intersect at a point or their intersection locus is empty. Thus we concentrate
on the case (2) and (3).

Proposition 5.2.8. For line bundles ¢ € Pic'(X) and 1 € Pic®(X), vector
bundles in IP(VCQH)S NPVY C N arise in one of the following forms :

i) If C®n = O(p+ q—x), for some points p,q € X, then the image of
P(VY)* NPVY and the image of pq \ {p, q} are exactly the same in N.

ii) Otherwise, we have P(Vg“)s NPVI =0
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Proof. Consider a bundle E in the intersection ]P’(VCQH)SOIP’V]%’. Then we have

the following diagram :

0= (—x)SE2C—0

0—=n"(—x) S ESn—0.

If d o a=0, then we can see that d factors through E LA (. But in this
case, since deg () = 1 > deg(n) = 0 we have d = 0 and it leads to the
contradiction. Hence the map doa is injective. Furthermore, since the degree
of the map 1 is 0 and the degree of {~'(—x) is —2, we obtain Coker(doa)) =
Cp+q for p,q € X. Hence we have {7'(—x) =n(—p —q). Next, consider the

diagram in the following

0 0 (5.7)
0—— ¢ '(—x) n L Cpyqg——0
| d S
0— (' (—x) ———E——"——¢ 0
c boc
N (%) =—=n""(—x)

Then, one can observe that Coker(d o a) is isomorphic to Coker(boc), and

this observation leads to the following diagram :

a

0— ¢ '(—x) LEENy4 0

C

|
0—((~p—q)=E-%

¢ 'p+4q—x)—0.
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From the above diagram, we can construct the morphism in the following
b@d:E=C® T (p+q—x).

Then, we also construct the following commutative diagram :

0 Cpiqg—2Cpiqg@Cprg——Cprg—0 (5.8)
sobT sEBrT hT
0 E—24 e (p+q—x) C; 0

where the map g is defined to be g(z,w) := z—w. Because the map go(s®r)
is surjective, the map h is also surjective. We can observe that the degree
of the coherent sheaf Cz is 2 and supported at {p, q}, so we deduce that h
is an isomorphism.

As a result, the vector bundle E fit into the following short exact se-

quence :

0—EX e (p+q—x) 228 Cpiqg — 0, (5.9)

where vy € C* for some t € {p,q}. We note that the the class of v, and v,
should not be [1:0] € P! or [0: 1] € P' since the morphism b and d are both
surjective. Conversely, if a vector bundle E satisfy the conditions mentioned
above, then it is easy to show that E is contained in IP’(VCQJ”Z)S N PVY when
n = '(p+q—x). Hence, we have the conclusion from Proposition 5.2.7. [

Proposition 5.2.9. Let M:=L®L '(p+q+1—x). Then the scraped lin-
ear space pqr \ {pq U qrUpr} is parametrized by rank 2 vector bundles ob-
tained by triple elementary modifications, ((MY?)Va)Vr(= ((MY )V )Ve = ... =

((MYr)¥a)¥r) which fit into a short exact sequence of the following form
Vp \Vq |V (vp@vqDvr)
0 — (M) — M 25 ¢ 6 C @ €, — 0.
Here, v, € C* C P(H'(M|,)") = P', vy € C* C P(H°(M|q)") = P' and
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v, € C* ¢ P(HO(M],)Y) = P'.

Proof. First, we can check that vector bundles obtained by the triple ele-
mentary modifications exactly correspond to vector bundles which are ker-

nels of the morphisms v, @ vq @ v, by diagram chasing.

First, we describe the pqr C ]P’?_H in an algebraic way. By applying the
functor Hom(—,L~'(x)) to the exact sequence 0 — L(—p—q—71) — L —

Llp+q+r — 0, we have the following long exact sequence :

Ext®(L(—p — g — 1), L7 (=x)) = Ext! (Llyrqer, L (%)) 5 Ext'(L, L7 ()
(5.10)

3y Bt (L(—p — q — 1), L' (=x)) = Ext' (I, LT (p+ q + T —x)) — 0
(5.11)

where @ is induced by twisting the line bundle O(p + q + 1) and we can

check the first identity using degree reasons. So we claim the following
PExt' (Llpsqiry L' (—%)) = AT

To prove this claim, we first show that the line PExt1(L|p+q+T,L*1(—X)) C
P9+ is represented by bundles comes from triple elementary modifications.
Let E € EXt](Up+q+r,L_](—X)). Then the image i(E) of the bundle E fits

into the following exact sequence:
0—-L"(—x) = i(E)=L—0.
Because @(G(i(E))) =L ' (p+q+71—x%) L, we can consider the push-out
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diagram as follows

0— 1" (—x) + 1(E) H 0

| l

O—L'p+q+17—%x)— LT (p+q+r—x)L—L—0.
(5.12)
By diagram chasing, one can check that there is an exact sequence in the

following
0= 1(E) S L' p+q+r—x) L "8 Cprqr — 0 (5.13)

where the composition pj o a is surjective for the projection p; : L& L~ (p+
q+1—x) — L into the first factor. Furthermore, it is obvious that the
composition p; o a is a surjection if and only if v, # [1:0], vq # [1:0] and

v, £ [1:0].

On the contrary, we assume that the rank 2 vector bundle E fits into the
short exact sequence (5.13) such that the map pj o a is a surjection. Then
we can easily show that the vector bundle E fits into the push-out diagram

(5.12) using the snake lemma.

As a result, extensions appeared as a form of (5.13) where v, # [1: 0],
vqg # [1:0] and v, # [T : 0] are the elements of Ext](l_lp+q+r,f__](—x)).
Next, we can easily check that bundles correspond to pq (resp. qr, pr)
obtained by elementary modification fits into the diagram of (5.13) where
v, =[0:1] and v,,vqg € P'\ [1:0] (resp. v, =[0:1] and vq,v, € P'\ [1:0],
vq = [0: 1] and vp,v, € P'\ [1: 0]). Hence, when p,q,r are all distinct,
three points f(p), f(q), f(r) are also distinct and they lie on the linear space
PExt1(L|p+q+r,L*1(—x)). If f(p),f(q),f(r) are colinear, then the line bundle
L is trisecant by Corollary 5.2.5. Therefore, we have dimExt’(L(—p — q —
t),L7(—x)) = 1 in the sequence (5.10). Therefore by dimension counting,
we conclude that P(Ext' (Ll q4r, L' (—%))/Ext®(L(—p—q—7),L7'(—x))) has
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dimension 1, i.e. a projective line. If f(p),f(q),f(r) is not colinear, than
dimExt®(L(—p — q — 7),L7'(—x)) = 0 by 5.2.5 and therefore we conclude
that PExt' (Llp+q, L7'(—x)) is a projective plane, and therefore f(p), f(q), f(r)
spans the projective plane. So, in both cases, f(p),f(q), f(r) spans the lin-
ear space PEXH(LIPH,L’](—X)) so we can write it by pqr. In summary,
The bundles obtained by triple elementary modifications parametrizes the
scraped linear space pqr \ {pq U qr U pr}.

Since the extension groups Ext1(L|2p+q,L*1(—x)), Extl(l_|3p,]_*1(—x)) are
equal to the limits of the extension groups Ext](LlerqH, L~'(—x)) by taking
P — g, and ¢ — 1, we obtain the same conclusion for the case of p = q.
Here, ppq is the linear space spanned by the projective tangent line of the
curve X at p and the point v, and ppp is the osculating plane of the curve
X at the point p. O
Proposition 5.2.10. Let ¢ € Pic'(X) and 1 € Pic'(X), [¢] # l]. Then bun-
dles in the intersection P(VE’H)SH]P’(VT?“)S C N arise as one of the following
types :

i) If CZon = O(p+q+r—x), for some points p, g, r € X, then the image
of P(Vg“)sﬁP(Vﬂg“)s and the image of pqr\{pquUqrupr} are exactly
the same in A/. Here, pqr is the linear space in ]P(Vé”z) spanned by
points p,q,T.

ii) Otherwise, we have P(Vg“)s NP(VIP)s =@

Proof. The proof proceeds in the similar manner as 5.2.8. Consider a bun-
dle E in the intersection P(Vé”z)s NP(VI)s. Then we have the following

diagram :

0—n"(—x) > ESn—0.

If d o a=0, then we can see that d factors through E = (. But in this
case, since deg ({) = 1 = deg(n) = 1, we have ¢ = n and it leads to the
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contradiction. Hence the map d o a is injective. By degree reason, we have
Coker(d o a) = C,yq4r for points p,q,v € X. Hence we have ('(—x) =
N(—p —q—7). In the same manner, we can show that cob is also injective.

Next, consider the following commutative diagram :

0 0 (5.14)
0—¢'(—x) N Cpyqir —— 0
| d s
0— (M (—x) 4 E—¢ e 0
b cob
17 () =1 (x)

From the above diagram, we can observe that Coker(d o a) is isomorphic to

Coker(c o b), and this fact leads to the following diagram :

a

c C 0

0—— (%)

|
0—(—p—q—1)2E-SC (p+qg+T—x)—0.

Thus, we can construct the following map

b@d:E=C® T (p+qg+r—x).
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Then, we can also construct the following commutative diagram :

A 9

0—— Cpyqir —2—Cpiqir ® Cpiqir ——Cpiger——0  (5.15)
socT s@rT hT
0 E—2 e (p+q+T—x) C; 0

where the map g is defined to be g(z,w) := z—w. Because the map go(s®r)
is a surjection, the map h is also a surjection. We have the degree of the
coherent sheaf C3 is 3 and supported at {p, q,7}, so we deduce that h is an

isomorphism.

As a result, the vector bundle E fit into the following short exact se-

quence :

cdd VpBvqDvr

Corgr—0, (5.16)

0 E (o' p+q+T—x%)
where vy € C* for each t € {p,q,r}. We note that the classes of v,,v, and
v, should not be in {[1:0],[0: 1]} C P' since the morphism c and d are both
surjective. Conversely, if a vector bundle E satisfy the conditions mentioned
above, then it is easy to show that E is contained in P(Vg“)s N I[”(Vng“)S
when n = ('(p + g+ 1 —x). Hence, we obtain the proof from Proposition
5.2.9. O]

For classifying stable maps in the space INDL, we will use the following
result in Corollary 5.2.12, which computes the degree of the map given by

. f y .. .
the composition P! — (]P’gﬂ)S —5 N from some geometric information.

Lemma 5.2.11. For elements « # 3 € (IP’VEH)S, we have V() = Y1 (B)
if and only if the points o, p € PVZ™ = P¢™ lie in a trisecant line of the

1
curve X C IP’EJr )
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Proof. Let us assume that Wi () =W (), then we have :

[ 0—= LT (—x)2—=E—==L 0]

B:[0—L " (—x)25E—45L 0].

If the composition d o a = 0, then the map a should factors through the
map L~ (—x) 2 E. Therefore the map a should be a scalar multiplication
on L7'(—x), so we have a = Ab for some A € C*. Again since do a = 0,
d factored by the quotient map d and the descent map from L to L, which
should be an isomorphism. Thus d is a scalar multiplication on L, so we
obtain d = A’c for some A’ € C*. This means the extension classes o and
3 are equal, which is a contradiction. Therefore the composition d o a is
not zero. Thus the map d o a is an injection, which says that the coherent
sheaf Coker(d o a) is equal to the skyscraper sheaf C, 4.+ for three points
P,q,T € X. Then we observe that L~'(—x) is isomorphic to L(—p — q — 1),
which means that [?(x) = Ox(p + q + 7). In a similar manner, we can also
check that cob # 0. Then, there exist a trisecant line £ of X in IP’EH which
intersects with the curve X on the points p,q,r by Corollary 5.2.5. Next,
consider the map c & d : E — L & L. Using the same argument used to
construct the diagram (5.15), we obtain Coker(c @ d) = C,,q4r. Then, look

at the commutative diagram in the following

doa L

0—L"(—x)

-

0 E L g L— Cpyqr—0.

Cpiqir —— 0
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Using the snake lemma, we obtain the commutative diagram in the following

0— L (—x)*—F—° 51
ldoa 1C®d H
0 L LeL L 0.

Since L = L™ '(p 4+ q + 1 —x), we can check that o and B are elements of
the projectivized kernel of the map &; in (5.4). Thus by Corollary 5.2.5, we

have o and (3 are contained in the trisecant line £ of the curve X C IP’E+].

Next, we check the necessary condition. To show this, it is enough to
check that a trisecant line £ of the curve X contracts to a point when we
take its image in the moduli space N. Consider any trisecant line £ of X
such that { intersect with X at the points p,q,r. Then we have { = pq.

There is a long exact sequence

0 = Ext’(L7'(p+ g —x),L) = Ext®(L(p + g — x), Llp1q) =

Ext' (L' (p +q —x), L(—p — q)) —= Ext' (L' (p + g —x), L)
— Ext' (L7 (p+q—x%),Llpsq) =0, (5.17)

which is obtained by applying the functor Hom(L™'(p + q — x),—) to the
exact sequence 0 = L(—=p —q) = L — L|,4q — 0.

We can consider equivalence classes of elements of kerds; as a subset of
9-1 — 9
IEDL*‘(]DJrq—X) o PVL*‘(

sequence :

pax)’ which are represented by the following short exact

0—=L(-p—q)—=E—=L"(p+q—x)— 0.

In a similar manner as in the proof of Proposition 5.2.7, we can show that

the vector bundle E fits into the following short exact sequence :

0—EXL Lol (p+q—x)"HCpiqg—0 (5.18)
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where the map d is surjective. Hence by Proposition 5.2.7, the extension
classes represented by the above short exact sequence corresponds to points
in the punctured line pq \{p, q}. On the contrary, we can show that a rank
2 vector bundle E which fits into the short exact sequence (5.18) where the
map d is surjective corresponds to the equivalence classes of the kernel of
the map 03 by some diagram chasing. Hence we conclude that the image of
P4 \{p,q} in NV is a single point if and only if dimkerd; < 1.
Thus, by the equation (5.17), we have :

ker8; = Ext’(L™" (p+q—x), Llp+q)/Ext® (L7 (p+q—x), L) = C?/H*(L*(x)(—p—q)).

However, since L?(x)(—p — q) = Ox(r), the claim holds. O

Corollary 5.2.12. If the projective line £ C ]P’IQ_H intersects the curve X C
]P’EH with multiplicity m. Then t: £\ (£ N X) — N is a degree 3 —m map
for m=0,1,2,3.

Proof. m =0 : This case is trivial because the degree of the map Wy is 3.

m=1: It is clear that degt € {0,1,2}. If degt = 0, then the image of
£\ (£nX) by the map t is a single point in the moduli space /. Hence by the
Lemma 5.2.11, € is a line trisecant to the curve X, which is a contradiction.
If deg t = 1, then by [17], ¢ should factors through the space PY, ' = PV,
for a line bundle M € Pic®(X). Therefore, by Corollary 5.2.8, we obtain that
the line £ intersect X two times, which is a contradiction. Hence we conclude
that deg 1 = 2.

m = 2: We may assume that { intersect with X at p, q and we can write
¢ =Ppq. Because the line £ is not trisecant, we have H(L?(x)(—p —q)) =0

by Proposition 5.2.5. Hence by the proof of Lemma 5.2.11, we can observe
1

H(p+g—x)’
deg L =1 since we already know that Wi -1, is a linear embedding.

that the map v: £ — N factors through the space ]P’Ig_f Thus we have

m =3 : We assume that { intersect with X on p,q,r. By Lemma 5.2.11,
the image of £ by the map t is a single point in N. Hence the degree of the
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map Lt is 0. m

Remark 5.2.13. Recall the case of m = 1 in Corollary 5.2.12. Since the
degree of the map t is 2, the closure € := ((€\ (€N X)) is a smooth conic in
the moduli space N. By [54, Proposition 3.6], { becomes a Hecke curve or a
smooth conic in IP’%;] for a line bundle M € Pic°(X). In the latter case, the
line { intersects with X at a point 7, and ¢\ v C (PVZ*)s NPVY, for a line
bundle M € Pic®(X), which contradicts to the part i) of Proposition 5.2.8.

Therefore the line £ is a Hecke conic of the moduli space .

5.3 Stable maps in the moduli space N/

5.3.1 Conjectural picture

In Chapter 3, Proposition 3.1.3, we reviewed about the classification of
irreducible components of R3(N) studied by Castravet in [13, 54]. In this
section, we study the compactification A; of the component R3(1) of R3(N)
as we announced at the beginning of the chapter. By 5.2.4, we know that
the rational map WY : ]PﬁH --»> N extends to the regular map (PVL : f’L — N,
which is an embedding when L is a non-trisecant. Since we can find a limit
of a family of lines P! — (IP’QL’H)S which getting close to the unstable locus
in Pp = BIKPI™.

Next, consider a relativization of the space l~’L. Consider a universal line
bundle £ on Pic'(X) x X. Let p;,p, are projections from Pic'(X) x X to
Pic'(X) and X. We define projective bundle PExt' (£, £71(—({x}xPic'(X)))) :=
(1)« (L2 ({x} x Pic'(X)). Then in a similar manner, we can show that the un-
stable locus of PExt' (£, £7'(—({x} x Pic' (X)))) is isomorphic to X x Pic' (X)
embedded in PExt'(£, £ (—({x} x Pic' (X)))) via the complete linear system
1£2 @ (p2)*Kxl.

Then, similar to the Proposition 5.2.4, we conjecture that there is an
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extended morphism :

Blyypict o PExt! (£, L7 (—(x x Pic' (X)))) := P — . (5.19)

In summary, we have a conjectural diagram :

PL —— Blypiot o PExt! (£, £L77(—(x x Pic'(X)))) := P —— N

| \

(L)< Pic'(X)

Thus we have the following morphisms of stable maps :
My (P1, B) —— Mo(P, B) —— M(N, 3)

where {3 is the homology class which is an l.c.i pull back of homology class
of line blow-up morphism 7t: P; — P9t

Our first goal is to figure out which types of nodal curves are contained
in the boundary of Ay. Since coarse moduli spaces of the stable map spaces
are projective, j is proper. Therefore the image of j contains the component
A; since the image of j contains lines in ]P’IQ_H \ X for arbitrary L € Pic'(X)

and the image of j is closed.

Therefore, it is enough to study which types of nodal curves are con-
tained in Mo(ﬁ, ). We also conjecture that for the projection ¢ : Mo(lg, B)—
Pic'(X), its fiber over a line bundle L € Pic'(X) is equal to MO(IN)L, B). So it
is enough to study which types of nodal curves are contained in the bound-
ary of Mo(ﬁL, B) for each L € Pic' (X), under this conjectural picture. There-
fore the study of stable map spaces MO(ISL, B) and the study of the irre-
ducible component A; is closely related.

Furthermore, for any smooth rational map f : P! degl P(Ext'(L,L~"(—x)))®

AN € Rs(1), we assign a line bundle L € Pic'(X). Then by Proposition
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5.2.10, any line or conic, or twisted cubic cannot be contained in the inter-
section of two different PEH (since intersections only arises on stable part),
so we can observe that this line bundle L is unique for each rational map
f. Therefore, we can conjecture that there is a morphism R3(1) — Pic' (X).
Moreover, by observing nodal curves in Mo(f’L, [3), where the homology class
B = m*[line] € Hz(f’L) is the l.c.i pull-back of the homology class of a pro-
jective line in IPEH, we can guess further that there may be a morphism :

p: /A — Pic'(X). (5.20)

On the other hand, for a non-trisecant line bundle L € Pic'(X), we recall
that the extended morphism Y, : P, — N is a closed embedding by Propo-
sition 5.2.4. therefore the induced morphism of stable maps Mo(f’L, B) —
My(N,3) is a closed embedding. We also conjecture that the conjecture

morphism p compatible with the morphisms j and q.

Then we can expect that the fiber of the morphism p over the non-
trisecant line bundle L, p~'(L) is isomorphic to the irreducible component
of Mo(f’L, ), which is a closure of the locus of lines in (IP)EH)S =P \ E,

where E is the exceptional divisor of f’L.

Therefore, based on this conjectural picture, we focus on the study of
the stable map space MO(IASL, ) in this thesis, for a non-trisecant degree
1 line bundle L. Furthermore, if we let U C Pic'(X) be the open subset
of non-trisecant degree 1 line bundles, then we expect that Ay Xprx U
is isomorphic to an irreducible component of My(P, ) Xpie1(x) U which is
expected to has a fiber bundle structure over U with fiber isomorphic to

Mo(f’L, B). From now on, we fix L to be a degree 1 non-trisecant line bundle.
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5.3.2 Stable maps in the blow-up space P

In this subsection, we work on the following moduli space
Mo(Pr, B) (C Mo(N,3))

of genus zero stable maps of degree 3, which is embedded in My(N,3). We
start from the topological classification of genus zero stable maps in P; with

homology class f3.

Lemma 5.3.1. Stable maps correspond to the closed points in the stable

map space My(P, 3) are classified by one of the following types. Recall that
w: P > P9 is the blow-up morphism.

1. Projective lines in IP’%H\X. Stable maps of this type form 2g-dimensional
open sublocus in Mo(f’b B).

2. Union of the strict transformation of a projective line in P¢™" that in-
tersects X on a point p and a projective line in the exceptional fiber of
the point p, ' (p) = IP’E(__]p). Stable maps of this type form (2g — 1)-

dimensional locally closed sublocus in MO(INDL, B).

3. Union of the strict transformation of a line in IP’%H that intersects X
on two distinct points p, g, a line in in the exceptional fiber 7w '(p) =
Pg:p), and a projective line in another exceptional fiber 7 '(q) = IP’SL’:p).
Stable maps of this type form (2g—2)-dimensional locally closed sublo-
cus in Mo(f’L, B).

4. Union of the strict transformation of a projective line in IP’EH that in-
tersects X on two distinct points p,q and a stable map of degree two
in the exceptional fiber 71 (p) = IP’E(__lp). Stable maps of this type form

2g-dimensional locally closed sublocus in Mo(f’L, B).
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5. Union of the strict transformation of a projective line in ]P’g“ which is
tangent to the curve X on a point p and a stable map of degree two
in the exceptional fiber w7 '(p) = Pg(__]p). Stable maps of this type form
(2g — 1)-dimensional closed sublocus in MO(ISL, B).

Proof. We already know that H,(P.) = Z & Z such that (1,0) correspond
to the homology class of the l.c.i.(locally complete intersection morphism)
pull-back 7t*[line] and (0, 1) correspond to the homology class of a projective
line in the exceptional fiber 7t-'(p). Hence the homology class of the strict
transform € of a line ¢ C P9t that intersects the curve X with multiplicity
m is (1,—m). Then we can classify stable maps in the blow-up space IN’L
using the equivalent conditions of the non-trisecant property of the curve
X appeared in Corollary 5.2.5. The dimension counting is not difficult. For
instance, we calculate the dimension of the sublocus of type (4) stable maps.
We can observe that the locus of type (4) stable maps is a fibration over
the base space X x X\ A. Let F be the fiber space of the fibration. Then F
parametrizes stable maps of degree two in the projective space P9~! which
pass through a fixed point. Then the space F is irreducible by [59] and [43,
Chapter III, Corollary 9.6]. Thus, the dimension of locus of type (4) of stable
maps is equal to 2 +dimZ =2+ (2g — 2) = 2g. O

Next, we can consider the stable map space Mo(f’L, B) locally as a zero
locus of a regular section of a vector bundle on a smooth space by the proof
of [55, Corollary 4.6]. Therefore, we can observe that all irreducible com-
ponents of the space Mo(f’b B) have the dimension greater or equal than
fﬁ:ﬂ*mne} ci(Tg,) + dimP; — 3 = 2g. Now we introduce the main result of
this Chapter.

Theorem 5.3.2. The stable map space Mo(f’L, B) has two irreducible com-
ponents B; and B, such that:

1. By parametrizes projective lines in ]P’g“ \ X. Moreover, the union of

subloci of types (1)-(3) and (5) stable maps is equal to the closure By.
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2. B, parametrizes the union of a smooth conic in the exceptional divi-
sor of P; and strict transformation of a projective line { intersect on
a point for a projective line £ which intersects the curve X with multi-
plicity 2 (Thus € can be a tangent line of X). Moreover, the union of
subloci of stable maps of types (4) and (5) is equal to the closure Bs,.

In particular, the intersection By N B, is equal to the sublocus of the type

(5) stable maps of Lemma 5.3.1.

We note that component B; is expected to be equal to p~'(L) where p
is the conjectural morphism (5.20). For the proof of this theorem, we start

by the computing the obstruction spaces of the type (4) stable maps.

Lemma 5.3.3. Consider a projective line { C P; where 7t(£) intersects with
X at two distinct point p, q. Then we have the following formula for the the

normal bundle N, 5 = of the projective line ¢ in P
Nys, = Of=1)F92 & O(—1) & Oy(1) or O(—1)%1972 & OF*.

Proof. Consider a line €, in P9*" which cleanly intersecting the curve X at
two distinct points p, q. We denote £ be the proper transform of the projec-
tive line £y for the blow-up morphism 7t : P, = BIxP9*! — P91, From the
proof of [58, Lemma 1], we observe that the normal bundle N, g fits into

the short sequence in the following
0 — 7Ny, par1 @ O(—E)|y — Ny, — C,oCq—0.

where the map N, 5 — C, @ Cq is locally constructed by the following(cf.
(34, Appendix B.6.10] way.

Consider Ty, ..., Tg41 a local coordinate of P91 around the point p so such
that locally we have I pe+1 = (T1, T3,y Tg1), Ipect = (T2, T3y ooy Tgi).
Thus, we have a local coordinate ti,t;,x3,...,Xg41 Of 13L around the point
p which is the lift of p in € such that moT; = t;,mo T, = th,mo T} =
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tyox for 3 <1< g+ 1. Hence we obtain 7y pe+1 = 7 (ty, t3, .00y tgi1) =
(t1,t2x3y ..oy taxgy1). Therefore, locally we conclude that (t;) is the defining
ideal of the exceptional divisor E of P;. Thus we observe that there is the

following exact sequence :
0— Ie/f)L . IE/ISL — T[*Igo/PgH — W*IKO/PQH/IE/ISL . IE/f)L — 0.

By taking pull-back of above sequence on the projective line £, we have the

following short exact sequence

* 0
0= Ip /125 ®Op (—E) = 7 (Iiypos1 /I jpgir) —2 €, — 0

where the map 5p is given by the differentiation of the tangent vector % in

the tangent space Tpf’L. By taking dual of this sequence, we obtain a map

Ny, — Cp. In a similar manner, we can also define a map N 5 — Cq.
Since we have Ny por1 = O (1)99 and O(—E)|; = Of(—2), we complete

the proof. O

Similar to the cases of other Fano varieties, normal bundle of the projec-
tive lines in the blow-up space can be classified in a geometric method as

follows.

Corollary 5.3.4. If two projective tangent lines T,X and TqX are coplanar
(respectively, skew lines), then N, = Oy (=% @ Oy(1) (respectively,
Nys, = O—1)202 & OF)

Proof. We easily obtain the conclusions by computations using local coordi-

nates in a similar manner as in the proof of Lemma 5.3.3. O]

Next, consider a smooth conic Q contained in the exceptional divisor E.

Then the conic Q should be contained in some exceptional fiber P9~ of the

165



Chapter 5. Compactification for R3(N)

projective bundle E = P(Ny pg+1) — X, we can observe that :
Nose = Ng/po1 @ Npg1/elg = (0q(2) @ Og(1)91977) @ Oq

because H'(Oq(i)) = 0 for i = 1,2. Hence we have the following normal

bundle sequence :

0= Nge = Ng g, — N g lg = Oq(=1) =0, (5.21)
which implies the following isomorphism

Ng/p, = (0g(2) ® Og(1)*97%) & Oq & Og(—1). (5.22)

Proposition 5.3.5. Let [C] € B, be a stable map of the form C = ¢ U
Q, which is the union of a projective line { in P, and a smooth conic Q

in the exceptional divisor, cleanly intersecting on a point z. Then we have

1 _
H'(N¢ s, ) =0.
Proof. By construction, C is a nodal curve. Hence, the conormal sheaf of C
Voo
c/PL
exact sequences in the following

in the blow-up space N Ies, / IZC /B, is locally free. Then, from two

e 0 — NZ/ﬁL — 0Op lc = Qc — 0 and

© 0= O—1) = Oc = Oq — 0,

we obtain the following commutative diagram :

EXt] (Qc, Oc) E— EXt] (QIBL’ Oc) E— EXt] (Ng/fag Oc) —0

| § |

Ext' (Qc, OQ) —— Bxt! (QﬁL) OQ) Ext! (NZ/INDL’

OQ) — 0.
Since the curve C = UQ has the unique nodal point z, we have Ext'(Q¢, Oc) =
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C. Moreover, Ext*(Qc, O¢(—1)) = 0 implies the surjectiveness of the first
vertical map. By Lemma 5.3.6, we check the second vertical map H' (Tf,L!C) =
Ext' (_O_lgL, O¢) — Ext! (O_lgL, Oq) = H' (Tf,LlQ) = C is an isomorphism. There-
fore the claim is true whenever H' (N /I;LIQ) = 0. Next, consider the follow-
ing structure sequence :
\% \Y 0
O—>NC/13L]Q — NQ/TDL -C,—0

where the map 0, is given by the differentiation of the tangent vector T,{.
We can show this by the following local computation. We can choose lo-
cal coordinates Xi,...,Xg41 of P, around the point z where locally we have
IQ/f’L = <X2)X3)'"’X9+1>)I€/f>L = (X1,X3y ...y Xg41). Then, we obtain IC/f’L =

(X1X2, X3y ..y Xg11). Hence, we have the following short exact sequence :
0— IC/f’L — IQ/1~3L — IQ/f’L/IC/f’L —0
By taking pull-back to the smooth conic Q, we obtain the sequence :

2
0— IC/TDL/IC/f’L'Q - IQ/f’L/IQ/f’L -G =0

2
Q/PL
tion of the tangent vector T,{ since it kills the local coordinates X1, X3y ..., Xg+1-
Then we can show that the composition map Og(1) = Ng/lngQ C Né/f% 5
Cp(see (5.21).) is not zero since the projective line £ transversally inter-
V ~
C/15L|Q -
Oq(s) @ Né/E for some point s € Q. Because H'(Og(—s)) = H'(Nge) =0,

we completes the proof. O

Here, we can observe the map IQ /By /1 — C, is given by the differentia-

~

sects the exceptional divisor E. Therefore we easily show that N

Lemma 5.3.6. (cf. [54, Lemma 6.4]) Consider the following long exact se-

quence :
HO(TPL|)®H(TP|q) % HO(T,PL) — H'(TPy|c) — H'(TPL)®H' (TP|g) — 0.
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which comes from the structure sequence 0 — Oc — Oy @ Oq — C, —

~

0. Then the first map « is surjective and therefore we have H' (Tf’LIC) =
H'(TP|g) = C.

Proof. Since the line £ and the exceptional divisor E transversally intersect
on the point p, we have Tpf’L = T,0 ® T,E. From HO(TPy|,) = HO(TO) @
HO(Ne/f,L), we observe that the map :

HO(TPy|) — HO(T,0) (5.23)

is surjective because of the positive degree part HO(TE) = H°(O;(2)).
On the other hand, we obtain HO(TP|q) = HO(TPY"|q) @ H®(Npy-1 5. o)
from Q C P9" C E. Then we can easily check that the projection to the

first summand

HO(TPY'|g) — HO(T,P9)

is a surjection. Moreover, with some calculation, we can easily show that
N]Pg,]/f,L]Q = Oq®0Oq(—1) where Npg-1 glg = Oq and hence the positive de-
gree part HO(NPQ—VﬁL’Q) = H%(Npo-1/¢lq) maps to HO(N]pgq/E)p) = C. There-

fore we check the following map

HY(TPilg) = HY(TP* '|q) & H'(Npy 1 5. lo)
— HY(T,P9") @ H(Npo-1,e,) = HY(T,E) (5.24)

is surjective. Moreover, By (5.23) and (5.24), we check the map « is sur-
jective. The last isomorphisms obtained from the equation (5.22) and the
Lemma 5.3.3. O

Finally, we are ready to prove Theorem 5.3.2, our main theorem.

Proof of Theorem 5.3.2. We can easily observe that the locus By is isomor-

phic to an open subset in the Grassmannian Gr(2, g+ 2) that parametrizes
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projective lines in P9*" which do not intersect the curve X. So we have B; is
irreducible. Moreover, we already know that B, is irreducible by the proof
of Lemma 5.3.1. By Lemma 5.3.1, By and B, both have the expected di-
mension 2g. Furthermore, there does not exist other irreducible component
whose dimension is greater or equal than 2g ([55, Proof of corollary 4.6]).
So we conclude that B; and B, are all irreducible components of the stable
map space Mo(f’L, B). Since the loci of type (1), (2) and (3) stable maps
are not included in B,, they must be contained in the component B;. More-
over, the loci of type (4) and (5) stable maps should be in component B,
by definition.

Since every irreducible component in the stable map space MO(ISL, B) has
expected dimension 2g, we conclude that MO(INDL, B) is locally a complete
intersection through the proof of [55, Corollary 4.6]. When the point p ap-
proaches to the point ¢, a type (3) stable map degenerates to a union of
the strict transformation of a projective line in P97 that is tangent to the
curve X and a singular conic in the exceptional fiber ' (p) = P97, which is
a type (4) stable map. Therefore we have By N B, # @. Furthermore, since
there exists only two irreducible components B; and B,, we can show that
their intersection B;NB; is pure dimensional with dimension 2g—1 by using
Hartshorne’s connectedness theorem([41, Theorem 3.4]).

Through the proof of Proposition 5.3.5, we can check that a type (4) sta-
ble map (4) which has smooth conic component has no obstruction. Thus
it corresponds to a smooth closed point in the moduli space. Therefore it is
not possible to be an element of the intersection B; N B,. Also, the sublo-
cus consists of type (4) stable maps which have singular conic component
is (2g — 2)-dimensional, and the sublocus consists of type (5) stable maps
is (2g — 1)-dimensional and clearly irreducible. In summary, we obtain the

conclusion that the intersection By NB, consists of type (5) stable maps. [
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Chapter 6

Further questions and research

6.1 Hilbert space of conics for hyperplane sec-
tions of Grassmannians Gr(2,n) for general

n

By the result of Piontkowski and Van de Ven, Chapter 2, Proposition
2.6.7, we know that the automorphism group of the hyperplane section
Gr(2,2n) N H is Sp(2n,C)/Z; and it acts on Gr(2,2n) N H homogeneously.
Using this group action, we want to use the result of Chung, Hong and Kiem
[18]. But we cannot sure Gr(2,2n)NH is a homogeneous variety. Instead, we
can check that Gr(2,2n) N H satisfies the condition (1) — (4) in [18, Lemma
2.1], which is necessary to use the machinery in the paper. We state the

conditions as follows :
Lemma 6.1.1. [18, Lemma 2.1] Let X be a projective homogeneous variety,
fix a projective embedding ¢ : X — P*, and define Ox(1) == ¢$*Opx(1). Then
we have the following.

1. H'(P', f*Tx) = 0 for every morphism P' — X
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2. Let us define the moduli space of lines with one marked point Mg (X, 1)
to be :

Mo1(X, 1) :=={(f: P' = X,p € P") | deg f*Ox(1) = 1}.

Then the evaluation morphism ev: My (X, 1) — X at the marked point

P is smooth.
3. The Fano variety of planes F;(X) in X is smooth.
4. The defining ideal Ix of X C P¥ is generated by quadric polynomials.

Since Gr(2,2n)NH is a homogeneous variety. Therefore it automatically
satisfies the condition (1) and (2) of [18, Lemma 1.4]. We checked that
Gr(2,2n) N H satisfies the condition (3), the smoothness of the Fano va-
riety of planes, in Chapter 4, Proposition 4.3.13. Moreover, the condition
(4), that the defining ideal of the variety X in the projective embedding
X C P* is generated by quadratic equations, is automatically satisfied since
Gr(2,2n)NH is a hyperplane section of the Grassmannian. The defining ideal
of the Grassmannian in the Pliicker embedding is generated by quadratic
equations [93, Chapter I, Section 4, Example 1]. Therefore, we can use [18,
Theorem 3.7, Theorem 4.11 and Theorem 4.16], to study the birational ge-
ometry of Hilbert scheme of conics Hy(Gr(2,2n) NH) and Hilbert scheme of
twisted cubics H3(Gr(2,2n) NH) on the hyperplane section Gr(2,2n) N H.

For other cases, Gr(2,2n)NH;NH;, Gr(2,2n+1)NH, Gr(2,2n+1)NH;N
H;, there are lots of geometric structure including automorphism groups and
their orbits classified by Piontkowski and Van de Ven, which we introduced
in Chapter 2. In the case of Gr(2,2n + 1) N H, Gr(2,2n + 1) N Hy; N Hy,
geometry comes from center point and center curves looks interesting. So we
expect that these geometric structures may help us to study Hilbert scheme
of conics on these spaces.

On the other hand, for the case of Gr(2,6) "H and Gr(2,6) N H; N Hy,
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we can directly use our key blow-up blow-down diagram in Chapter 5, (4.7)
again :

S(Y)

X
D]

S(Y) Ha(Y),

since we can compute blow-up and blow-down locus a by direct local chart
computation in Gr(2,6)NH and Gr(2,6) "H; N H; in the same manner. We
expect that we can show the smoothness of Hilbert schemes H,(Gr(2,6)NH)
and H,(Gr(2,6) N H; N Hy).

6.2 Conjectural picture in Chapter 5

The conjectural picture in Chapter 5 is not verified yet. But we are quite

sure about the existence of the conjectural morphisms in Chapter 5, (5.19)

BlXXPiC](X)PEXt1(£) L7(—(x x Pic'(X)))) =P i> N,
and (5.20) :
p: Ay — Pic'(X).

But we still have no idea how to construct it explicitly.

Moreover, for a projection
q: Mo(P, B) — Pic'(X),

it is not clear that the fiber of q over L € Pic' (L), q~'(L) is isomorphic to
Mo(f’L, ) since there can be a limit of a family of lines in (IF’SL’H)S, varying
the line bundle L € Pic'(X).

Then, consider a component Eem of Mo(ﬁL, B) the closure of the locus of

lines in (IP’%H)S where L runs over all elements in Pic'(X). Let U C Pic' (X),
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which is a locus of non-trisecant line bundles. Then we cannot be sure that
elements of By Xpict(x) U consists of stable maps of types (1),(2),(3),(5)
in Chapter 5, Lemma 5.3.1.

So completing this conjectural picture is a task we should do afterwards.

6.3 Classify all topological types of stable maps
in /\1

Although we classified all topological types of stable maps in Mo(f’L, B)
in Chapter 5, it is still unclear these are all topological types of stable maps
in /Ay. One reason is that the conjectural picture is not completed yet, and
the other reason is that we only studied non-trisecant line bundle cases.

Let us assume that we succeed to complete the conjectural picture in
Chapter 5, Section 5.3.1, then we conclude that elements of Ay Xpi1x) U,
which is the surjective image of Erel,] Xpic1(x) U consists of stable maps of
types (1),(2),(3),(5) in Chapter 5, Lemma 5.3.1. Then we should study
topological types of stable maps in Ay Xp;.1 () Pic'(X) \ U, which is covered
by the image of Mo(f’L, B) where a line bundle L runs over L € Pic'(X)\ U,
which is the locus of trisecant line bundles. Therefore we should study topo-
logical types of stable maps in the moduli space Mo(f’L, B) for a trisecant
line bundle L to complete the classification of stable maps in the component
A1 C My(N, 3).

6.4 Hilbert compactifications for R3(N)

In this thesis, we only considered the Kontsevich compactification of a
moduli of smooth rational curves R3(A) in N. In [54], the authors con-
sidered Kontsevich compactification My(N,2) and Hilbert compactification
H,(N) of the degree 2 smooth rational curves R,(N) and related them by
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blow-ups and contractions. So we want to consider the Hilbert compactifi-
cation of the component R3(1) either, and find a birational relation with the

Kontsevich compactification Aj.

6.5 (Generalization to Moduli space of vector bun-

dles with even determinants

Although we only considered Moduli space N of rank 2 stable vector
bundles with odd determinant on the smooth projective curve X over C with
genus g > 4, by the results in Chapter 2, Subsection 2.6.1, it is also mean-
ingful to consider the even determinant case, let us denote this moduli space
by M. Drezet-Narasimhan [29] showed that it has a Picard group isomor-
phic to Z, generated by generalized Theta divisor @. Furthermore, Brivio-
Verra [6] showed that © is very ample if g(X) > 3 and X is not hyperelliptic.
So we can define a degree of a rational curve via the projective embedding
given by the very ample divisor ©. So it is reasonable to consider a Hilbert
scheme of lines, smooth conics and twisted cubics in this space N,. Unfortu-
nately, this space is singular on the locus of strictly semi-stable bundles, we
cannot consider stable map space on MN,, but the existence of the singular
locus may lead to an interesting phenomenon, and it will be interesting to
observe relations with these Hilbert schemes with the Hilbert schemes in N,

the moduli space bundles with odd determinant.

6.6 (eneralization to the moduli space of sym-

plectic vector bundles

Furthermore, there are various examples of moduli space of vector bun-
dles with additional structures, for examples, moduli space of symplectic vec-
tor bundles. We state the definition.
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Definition 6.6.1 (Moduli space of symplectic vector bundles). A rank 2n
symplectic vector bundle E on a variety V is defined by the following data :

(i) A local trivialization on an open cover {Ui}ier of V, Ely, = Wi x k™

(ii) A transition morphism @y : Ui N U x k™ — U; N Uy x k™™ on each
intersection U; N'U; such that its restriction to each fiber k™ is an ele-
ment of Sp, (k). Furthermore, transition morphisms satisfies the cocy-

cle condition @jx o @y = @ix.

We denote a moduli of semi-stable rank 2n symplectic vector bundles on
a curve X as Mx(Sp, (k)).

Moduli space Mx(Sp, (k)) is deeply studied by the thesis of Hitching
[44]. By the result of Ramanathan [89], [90, Theorem 5.9], moduli space of
semi-stable principal G-bundle on a smooth projective connected curve over
C with genus > 2, for a reductive group G is normal projective, Cohen-
Macaulay scheme. Then we can check that Mx(Sp,, (k)) is isomorphic to the
moduli space semi-stable principal Sp, (k)-bundle. Then by the result of [64],
Picard groups of moduli spaces of semi-stable principal G-bundles, for a sim-
ply connected algebraic group G is isomorphic to an infinite cyclic group Z.

For the case of G = Sp, (k), by [64], Mx(Sp,(k)) is generated by deter-
minant bundle L on Mx(Sp,(k)). But it is not certain to determine the in-
teger m, that L™ becomes a very ample line bundle. So what we should to
first is to fix a polarization of the projective variety Mx(Sp,,(k)), then we
can study Hilbert scheme of rational curves of various degrees in this moduli

space.
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