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Abstract

Geometry of moduli spaces of
rational curves on Fano varieties

Sanghyeon Lee

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this thesis, we consider two families of Fano varieties as main objects.

One is the moduli space N of rank 2 stable vector bundles over a smooth

projective curve X over C with a fixed determinant line bundle OX(−x) for

a fixed point x ∈ X, and the others are hyperplane sections of the Grass-

mannian Gr(2, 5). We study the moduli spaces of smooth rational curves

and their various compactifications as well as their geometric structures. For

the Fano variety N , we mainly consider the compactifications of the moduli

space of degree 3 smooth rational curves as a stable map space and discuss

topological types of stable maps contained in the boundary of the compact-

ified space. For hyperplane sections of a Grassmannian Gr(2, 5), we discuss

rationality of moduli space of smooth rational curves of degree ≤ 3, and then

we consider compactifications of the moduli space of smooth conics by the

Hilbert scheme. We further discuss smoothness of these compactified spaces

using birational models of the compactified spaces.

Key words: Moduli space, Rational curves, Fano varieties, Hilbert scheme,

Stable map space, Grassmannian, Moduli space of vector bundles
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Chapter 1

Introduction

In this thesis, we deal with two families of Fano varieties as main objects.

One is the moduli space N of rank 2 stable vector bundles over a smooth

projective curve X, of genus g(X) ≥ 4, with fixed determinant line bundle

OX(−x) for a fixed point x ∈ X, and the others are hyperplane sections of

the Grassmannian Gr(2, 5). We denote Ym the intersection of the image of

Gr(2, 5) under the Plücker embedding into P9 with 6 − m general hyper-

planes in P9. Then Ym is a smooth Fano variety with dimension m. These

Fano varieties have been studied for a long time. The moduli space N was

first constructed by Seshadri [92], in the 1960s, and its properties have been

studied in numerous works including [29, 79, 88, 7, 81]. The study of the

hyperplane sections of the Grassmannian Gr(2, 5) dates back to the 1890s.

For instance, Castelnuovo studied Y3 on his work [11]. From a more general

viewpoint, Piontkowski and Van de Ven studied the automorphisms group of

hyperplane sections of Gr(2, n) and its orbits in [85], and also Cheltsov and

Shramov studied the Fano threefold Y3 from the birational geometry view-

point [14]. We summarize these results in Chapter 2, Section 2.6.

In this thesis, we study moduli space of smooth rational curves in these

Fano varieties and their various compactifications. We consider the moduli

space of degree d smooth rational curves on a smooth projective variety

1



Chapter 1. Introduction

V with a fixed polarization OV(1), as an open subscheme of the degree d

map space Homd(P1, V), which is defined in [61] as an open subscheme of

a Hilbert scheme of curves in P1 × V . From now on, we denote the mod-

uli space of degree d smooth rational curves on the projective variety V by

Rd(V).

The study of rational curves and moduli space of rational curves in Fano

varieties has led to useful results in many cases. First, there has been a close

connection between constructions of holomorphic symplectic manifolds and

moduli spaces of rational curves in Fano varieties. Beauville and Donagi in

[3] considered the Fano variety of lines in a cubic 4-fold X ⊂ P5, denoted

by F1(X). The authors showed that F1(X) is a holomorphic symplectic man-

ifold. The holomorphic 2-form is constructed as follows. Consider a univer-

sal family of lines F over F1(X) × X. Choose a generater α of (3, 1)-forms

H3,1(X) ∼= C. Then, using the projections p1, p2 from F1(X)×X to F1(X) and

X respectively, they obtained a holomorphic 2-form w := (p1)∗(p2)
∗α.

Iliev and Manivel in [50] considered the Hilbert scheme of conics in a

Fano 4-fold Z := Gr(2, 5) ∩ H ∩ Q, where H is a general hyperplane in

the Plücker embedding space P9, and Q is a general quadric hypersurface.

The authors denoted the Hilbert scheme of conics in Z by Fg(Z), which is

a smooth 5-fold. From the space Fg(Z) the authors constructed a holomor-

phic symplectic 4-fold, denoted by Ỹ∨
Z . Moreover, the authors showed that

Ỹ∨
Z coincide with the an EPW sextic, which is a double cover of a sextic

hypersurface in P5, constructed by O’Grady [83].

Lehn, Lehn, Sorger and van Straten [67] considered the Hilbert scheme

of twisted cubics in a cubic 4-fold Y ⊂ P5. The authors denoted this space

by M3(Y). Then the authors showed that M3(Y) is a smooth 8-dimensional

variety and there is a contraction M3(Y) → Z where Z is a holomorphic

symplectic 8-fold.

On the other hand, in [24], Clemens and Griffith considered the Fano va-

riety of lines in a smooth cubic threefold V ⊂ P4, denoted by S. Using its

2



Chapter 1. Introduction

Albanese variety Alb(S), the authors proved that the smooth cubic threefold

V is not rational. The authors used the result of Gherardelli [37] that the

Albanese variety Alb(S) and the intermediate Jacobian J(V) of V are isoge-

nous. In fact, the authors considered a more general setting. When V is a

smooth algebraic threefold and S is a smooth parameter space of a family

of algebraic curves in V , then there exists a map called Abel-Jacobi map :

Alb(S)→ J(V).

In addition, Takkagi and Zucconi in [95] proved the existence of a Scorza

quartic by studying the geometry of the Hilbert scheme of conics in the blow-

up space of a smooth Fano threefold Y3. Also, in [15, 86], the geometry of

rational curves and the moduli of rational curves in Fano varieties was used.

Moreover, of course, the study on the geometry of moduli spaces of ra-

tional curves on Fano varieties also helps virtual curve counts on Fano vari-

eties. Munoz [74] studied the quantum cohomology of the moduli space N
of rank 2 stable vector bundles on the smooth projective curve X over C
with genus g ≥ 1 with fixed odd degree line bundle. For this, he studied

moduli space of genus 0, degree 1 stable map space M0(N , 1) :=M0,0(N , 1)
with target space N .

1.1 Moduli spaces of smooth rational curves in

Fano varieties

The results presented in Chapter 3 are based on the results obtained joint

with Kiryong Chung and Jaehyun Hong in [19], the results of Castravet [12,

13] and the results of Kiem [54].

The moduli space Rd(N ) of degree d smooth rational curves on N has

been studied for a long time. Brosius studied rank 2 vector bundles on a

ruled surface [9, 10]. Since a regular map P1 → N corresponds to a rank 2

3



Chapter 1. Introduction

bundle on the ruled surface P1×X, Castravet classified all irreducible compo-

nents of Rd(N ) for all degree d based on the result of Brosius. Furthermore,

Castravet gave a geometric interpretation for the elements of each irreducible

components. Also, Kiem [54] independenty classified all maps P1 → N for

degree d ≤ 4 cases based on the Brosius result. On the other hand, Kilaru

[57] classified all maps P1 → N for degree d = 1, 2 cases independently from

Brosius and Castravet’s work.

To study the moduli space Rd(Y
m) for degree d ≤ 3, we first classify

all smooth rational curves P1 → Ym, with degree ≤ 3. For this purpose,

we first classify all smooth rational curves P1 → Gr(2, n) =: G with degree

≤ 3. Using this classification, we define the following rational morphisms(cf.

Proposition 3.2.3) :

1. A vertex map ζ1 : R1(G) → Pn−1 which maps each projective lines in

G to its vertex.

2. An envelope map ζ2 : R2(G) 99K Gr(4, n) which maps each smooth

conic in G to its envelope.

3. A axis map ζ3 : R3(G)) 99K Gr(2, n) which maps each twisted cubic

curve in G = Gr(2, 5) to its axis.

This classification of smooth rational curves and construction of ratio-

nal morphisms were already studied in the literature. For the degree 1 case,

there is a corresponding result in Harris’ book [40, Excercise 6.9].

For degree 2 case, the classification of conics in the Grassmannian Gr(2, n)

can be found in [48], [26] and [80]. Our classification may look different from

theirs but we can easily check that smooth conics obtained from a rational

normal scroll S(p0, C0) of a point p0 and a smooth conic C0 in the projective

space Pn−1 (See Proposition 3.2.3) correspond to σ-conics in [48, 26], and

smooth conics obtained from a rational normal scroll S(`0, `1) of two lines

`0 and `1 in Pn−1 correspond to τ-conics and ρ-conics in [48, 26]. Moreover,

4



Chapter 1. Introduction

the idea of assigning an envelope P3 ⊂ Pn−1 for each conic in Gr(2, n) also

appeared in [48, 26].

For the degree 3 case, we could not find a former reference about the

classification of twisted cubics in Gr(2, n) and the axis map. But this con-

struction may be classical since its construction is very simple.

In addition, we exactly describe general fibers of these morphisms. These

rational morphisms ζi restrict to the moduli space of rational curves Ri(Y
m)

in Ym ⊂ Gr(2, 5). Then we can also exactly describe the general fiber of

these restricted morphisms. Moreover, we show that these morphisms are

birationally equivalent to Grassmannian bundles. Using these properties, we

show that Ri(Y
m) are rational varieties for 1 ≤ i ≤ 3 and 1 ≤ m ≤ 6, which

is the main result of Chapter 3.

Main Theorem 1 (Theorem 3.3.1). Each moduli space Rd(Y
m) of degree

d smooth rational curves on Ym is a rational variety for 2 ≤ m ≤ 6 and

1 ≤ d ≤ 3.

Next, we consider various compactifications of these moduli spaces in

Chapter 4 and 5.

1.2 Compactifications of the moduli spaces of

smooth rational curves in Ym

The results presented in Chapter 4 are based on the results obtained joint

with Chung and Hong in [19].

In this chapter, we consider compactifications of the moduli spaces R3(Ym)

of smooth rational curves of degree d ≤ 3 in Ym ⊂ Gr(2, 5).

For m = 6 case, i.e. Ym = Gr(2, 5) = G, G is a homogeneous va-

riety. In this case, we can use a result of Chung, Hong, and Kiem [18],

which deals with the birational geometry of the Simpson compactifications

and the Hilbert compactifications of moduli spaces of smooth conics and

5



Chapter 1. Introduction

moduli spaces of twisted cubics in homogeneous varieties. As a result, we

obtain Theorem 4.2.3 and 4.2.4. Furthermore, we will check that we can ap-

ply the methods in [18] for the homogeneous space Gr(2, 2n)∩H in Chapter

6.

On the other hand, we construct the following blow-up and blow-down

diagram :

H2(Gr(2,U))
Ξ

uu

Φ

))

ζ̃2

��

Gr(2,∧2U)

%-

H2(G)
ζ2

uu

Gr(4, 5),

(1.1)

where U is the tautological rank 4 bundle over the Grassmannian Gr(4, 5),

H2(G) and H2(Gr(2,U)) are Hilbert scheme compactification of R2(G) and

R2(Gr(2,U)) respectively, ζ2 is a rational map induced from the envelope

map R2(G) 99K Gr(4, 5). The blow-up morphisms Φ and Ξ were constructed

by Iliev-Manivel in [50].

The blow-up locus of the map Ξ can be identified with a set consisting

of pairs (P, V4), where P is a σ2,2-type plane or σ3,1-type plane in G, and V4

corresponds to a linear space P3 ⊂ P4 = P(C5) enveloping the plane P. We

denote this blow-up locus by T(G).

The above diagram also plays a key role in studying the Hilbert scheme

of conics H2(Y
m) in Ym, for the m = 4, 5 cases. For this purpose, we want

to ‘restrict’ the above diagram to the Ym case. So we need to know how the

blow-up loci of Ξ and Φ change for the m = 4, 5 cases. So we study the

spaces of lines and planes in Ym in this chapter. For m = 4, the result on

the spaces of lines and planes are due to Todd [97]. For m = 6, the result

on the space of lines and planes appeared in [26, Section 3.1].

If we let S(Ym) = {V2 ∈ Gr(2,∧2U) | V2 ⊂ Ym}, we should check that

6



Chapter 1. Introduction

T(G) and S(Ym) cleanly intersect in Gr(3,∧2U). We first compute the in-

tersection locus in Chapter 4, Section 4.3.3. We check the clean intersection

in two ways (Chapter 4, Lemma 4.3.7 and Subsection 4.3.4). As a conclu-

sion, we succeed to restrict the above diagram 1.1 to Ym cases, and obtain

the following main result of Chapter 4.

Main Theorem 2 (Theorem 4.3.9, 4.4.7, 4.5.2). The Hilbert scheme H2(Y
m)

smooth conics in Ym for m = 3, 4, 5 is a blow-down of S̃(Ym), which is a blow-

up of S(Ym) := Gr(3,K) :

S̃(Ym)

Φ
%%

Ξ
zz

S(Ym) H2(Y
m),

(1.2)

where Ξ is the blow-up along T(Ym) and Φ is the blow-up along the locus

of conics lying on σ2,2-type planes. Furthermore, H2(Y
m) is an irreducible

smooth variety for m = 3, 4, 5.

We also note that blow-up and blow-down diagrams like (1.2) are usually

helpful for computing Poincare polynomials (cf. [18, Chapter 5]) and Chow

rings (cf. [22]).

1.3 Compactifications of the moduli spaces of

degree 3 smooth rational curves in N
The results presented in Chapter 5 are based on the results obtained joint

with Chung in [20].

Independently of the compactification story, the moduli space of stable

maps M0(N , d) :=M0,0(N , d) in N has been studied for low degree cases.

For the d = 1 case, Munoz [74] showed that M0(N , 1) is a fibration over

Pic0(X), with fiber Gr(2, g(X)). Since the virtual counts on the stable map

7



Chapter 1. Introduction

space are related to quantum cohomology, the authors studied the quantum

cohomology of the space N .

For the d = 2 case, Kiem [54] showed that M0(N , 2) has two irreducible

components. One parametrizes Hecke curves and the other one parametrizes

the rational curves of extension type. Furthermore, the two irreducible com-

ponents intersect transversally and both components can be obtained by the

partial desingularizations of GIT(Geometric Invariant Theory) quotients of

projective varieties. Furthermore, the author also studied the Hilbert scheme

Hilb2m+1
N of conics in N , which the author denotes it by H. The author re-

lated this Hilbert scheme H with the stable map space M0(N , 2) by a com-

position of a blow-up and a contraction. The author also showed that the

two irreducible components of H are smooth.

In this thesis, we deal with d = 3 case. A big difference arises as there

exists an irreducible component in M0(N , 3), whose general elements has

nodal domain curves, and whose dimension is much bigger than the expected

dimension. In fact, there are 4 irreducible components in M0(N , 3). Only

two of them comes from compactifying of the moduli space R3(N ) of smooth

rational curves. We can easily observe that one of them is easily described.

So we concentrate on the other component in our thesis. We denote this

component by Λ1. We study which topological types of nodal curves are

contained in the boundary of Λ1. We classify all stable maps in M0(N , 3)
in Lemma 5.3.1 into five types, and study which types of stable maps are

contained in the component Λ1.

In Section 5.3.1, we consider a conjectural morphism :

Ψ̃ : P̃→ N
where P̃ is a relative blow-up space, which is a fibration over Pic1(X), whose

fiber over a line bundle L ∈ Pic1(X) is isomorphic to P̃L := BlXPExt1(L, L−1(−x)),

where the blow-up locus X is embedded in PExt1(L, L−1(−x)) by the com-

8



Chapter 1. Introduction

plete linear system |KX ⊗ L2(x)|. Then, the conjectural morphism Ψ̃ will in-

duces a morphism between stable map spaces :

M0(P̃L, β)
i //M0(P̃, β)

j
//M0(N , 3)

where the homology class β is the l.c.i pull-back π∗[line], for the blow-up

morphism π : P̃L → PExt1(L, L−1(−x)) where [line] is the homology class of

line in the projective space PExt1(L, L−1(−x)).

Then we can observe that the component Λ1 is contained in the image of

the morphism j. Therefore, it is enough to classify topological types of nodal

curves in the boundary of M0(P̃, β), under this conjectural picture. For a

non-trisecant line bundle L ∈ Pic1(X) (see Definition 5.2.2), we proved that

Ψ̃L : P̃L → N is a closed embedding(see Proposition 5.2.4). Therefore the

induced morphism of stable maps M0(P̃L, β) → M0(N , 3) is also a closed

embedding.

On the other hand, we also conjecture that there is a morphism p : Λ1 →
Pic1(X) which is compatible with the morphism j and the projection q :

M0(P̃, β) → Pic1(X). Then over the non-trisecant line bundle L ∈ Pic1(X),

we expect that the fiber p−1(Λ1) isomorphic to an irreducible component of

the stable map space q−1(L) = M0(P̃L, β)(We also conjecture that the fiber

of the projection q over L is equal to M0(P̃L, β)). Based on this conjectural

picture, we focused on the stable map space M0(P̃L, β) in this thesis.

In this chapter, we classify all stable maps which are element of M0(P̃L, β).

It is the main theorem of this chapter.

Main Theorem 3 (Theorem 5.3.2). The stable map space M0(P̃L, β) is a

union of two irreducible components B1 and B2 which satisfies the following

1. B1 parametrizes projective lines in Pg+1L \ X. Moreover, B1 consists of

stable maps of types (1), (2), (3), (5) in Lemma 5.3.1.

2. B2 parametrizes the union of a smooth conic in the exceptional divisor

9



Chapter 1. Introduction

of P̃ and a proper transformation of a projective line ` where ` is a

projective line which intersects the curve X with multiplicity 2 (so that

` can be a tangent line of X), intersecting with the smooth conic at a

point. Moreover, B2 consists of stable maps of types (4), (5) in Lemma

5.3.1.

In particular, closed points of the intersection B1 ∩ B2 correspond to type

(5) stable maps of Lemma 5.3.1.

We also note that the two irreducible components B1 and B2 have dimen-

sion 3g, which exactly coincide with the expected dimension of the moduli

space M0(P̃L, β). Here, we expect that the irreducible B1 maps to the Λ1

via the morphism of stable map spaces ΨL.

The existence of the conjectural morphisms Ψ̃ : P̃→ N , p : Λ1 → Pic1(X)

is not proven yet. Moreover, the statement that the fiber q−1(L) is isomor-

phic to M0(P̃L, β) is not clear yet. Also, over the trisecant line bundle L ∈
Pic1(X), we do not know the topological types of the stable maps which are

elements of M0(P̃L, β). So, there are still many obstacles remains for figur-

ing out all topological types of all nodal curves in the boundary of M0(P̃, β).

We conclude with the following questions.

Question. 1. Classify all stable maps in the component Λ1 of the moduli

space M0(N , 3).

2. Let U ⊂ Pic1(X) be an open sublocus of non-trisecant line bundles.

Let us assume that there is a conjectural morphism p : Λ1 → Pic1(X).

Then, elements of Λ1 ×Pic1(X) U consists of stable maps of types

(1), (2), (3), (5) in Lemma 5.3.1?

10



Chapter 2

Preliminaries

2.1 Moduli problems

Throughout this chapter, we fix k to be an algebraically closed field with

characteristic 0.

Moduli problem arises in many areas in algebraic geometry. First, we

consider a class of object we want to collect, i.e. algebraic curves, vector

bundles, closed subschemes in projective spaces, etc. Then, roughly speak-

ing, moduli problem is to find a family of these object over some parameter

space. Further, in many cases, we want to view objects up to isomorphisms.

For examples, degree d-hypersurfaces in Pn up to PGL(n + 1)-action, alge-

braic curves up to isomorphisms, etc. So we also consider equivalences be-

tween families.

In summary, a moduli problem consists of three components : (1) a pa-

rameter space scheme S, (2) a flat morphism φ : F→ S such that each fiber

Fs over any closed points s ∈ S are objects what we want to collect, i.e.

algebraic curves of genus g, algebraic surfaces, etc. (3) an equivalence rela-

tions between families: For example, When φ1 : F1 → S and φ2 : F2 → S

are two flat families of genus g curves on S, then equivalence relation is an

11
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isomorphism ψ : F1 → F2 such that ψ◦φ2 = φ1. Flatness condition is impor-

tant since it preserves many topological invariants of the fibers, i.e. degrees,

genus, Hilbert polynomials.

Sometimes, we want to consider a family with extra structures, there are

some examples :

Example 2.1.1 (Family of conics in P2). Let S = km and F = c0(t1, ..., tm)x
2
0+

c1(t1, ..., tm)x
2
1 = c0(t1, ..., tm)x

2
2 + c3(t1, ..., tm)x0x1 + c4(t1, ..., tm)x0x2+

c5(t1, ..., tm)x
2
0, be a polynomial which is homogeneous in coordinate x0, x1, x2

with degree 2, such that c0, ..., c5 does not commonly vanish in km. Then

{F = 0} ⊂ P2×km is a flat family over km, with a natural projection π : {F =

0}→ km. In this case this flat family naturally has an additional structure,

an embedding to the ambient space P2×km. This kind of addition structure

leads to the definition of Hilbert scheme which will be introduced later.

Example 2.1.2. (Family of maps) Consider a flat family of nodal curves

φ : C → S with genus g over a parameter space S. Furthermore, Consider

a map f : C → Pn. We define equivalence between this pairs (φ : C →
S, f : C → Pn) and (φ ′ : C ′ → S, f ′ : C ′ → Pn) if there is an isomorphism

F : C → C ′ such that f = f ′ ◦ F. This kind of additional structure leads to

the definition of Stable map space which will be introduced later.

2.1.1 Moduli functors

In various kind of moduli problems, we define moduli functors as a cor-

respondence corresponding to a parameter space S to a set of equivalence

class of a flat family. i.e. it is a functor :

F : (Sch/k)op � // Sets

S � // {equivalence class of flat families over S}

If there exists a classifying space of this functor, we call it a fine moduli

12
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space

Definition 2.1.1 (Representable functor, fine moduli space, universal fam-

ily). If there is a scheme X ∈ Sch/k such that its Yoneda embedding hX(−) :=

HomSch/k(−, X) is isomorphic to F, we call our moduli functor F representable

and we call X a find moduli space of our moduli problem. Furthermore, we

call the family on X corresponding to an element idX ∈ HomSch/k(X,X) a

universal family.

In many moduli problems, fine moduli space does not exist. Instead, we

have a weaker form of moduli space, called coarse moduli space.

Definition 2.1.2. For a moduli functor F, a coarse moduli space is a pair

of a scheme X ∈ Sch/k and a natural transform u : F→ hM such that

(i) u(Spec(k)) : F(Spec(k))→ Hom(Spec(k),M) = {Set of closed points of M}

is bijective.

(ii) (M,u) is initial among this kind of pairs, i.e. if there are another pair

(M ′, u ′), u ′ : F → hM ′ . Then there exists a unique natural transform

T : hM → h ′M makes the following diagram commutes:

F
u //

u ′   

�

hM
T

∃!||

hM ′

2.2 Hilbert schemes

2.2.1 Hilbert functor and Quot functor

The Hilbert scheme is the moduli space parametrizing subschemes in the

projective spaces Pn with some fixed Hilbert polynomial. A very simple ex-

ample about family of conics P2, which has Hilbert polynomial 2t + 1, was

already appeared in the previous section in example 2.1.1.

13
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More explicitly, moduli functor is given by the following. Fix OPn(1) a

very ample line bundle of Pn. For a coherent sheaf E on Pn we define χ(E) :=∑
i≥0

(−1)ihi(E). Furthermore, we define a Hilbert polynomial HP(E) of E to

be HP(E)(m) := χ(E ⊗OPn(1)m). When we fix a Hilbert polynomial F, then

we define a Hilbert functor to be :

HilbFPn : (Sch/k)op � // Sets

S � // {Z ⊂ S× Pn | Z→ S is flat, HP(OZ×S{s}) = F ∀s ∈ S }.

When we replace Pn by a general projective variety X over k and fix a very

ample line bundle L, and define a Hilbert characteristic of a coherent sheaf E
on X to be HP(E)(m) := χ(E ⊗ Ln), we have a definition of Hilbert functor

HilbF,LX , which parametrizes closed subschemes in the projective variety X

with the Hilbert polynomial F.

Sometimes, it is more convenient to consider a slight generalization of

Hilbert functors, called Quot functor. Let X be a projective variety and L

be a very ample line bundle on X. Then For any coherent sheaf E on X, we

define its Hilbert polynomial HP(E) to be HP(E)(m) := χ(E ⊗ Ln). We fix

a coherent sheaf V on X.

Then the Quot functor QuotF,LV/X is a functor corresponding to each scheme

S ∈ Sch/k to the set of isomorphism class of pairs (E , p) where E is a co-

herent sheaf on X × S with Hilbert polynomial HP(E) = F, and p : V � E
is a surjection. We define an isomorphism between two pairs (E , p), (E ′, p ′)
as an isomorphism q : E → E ′ of coherent sheaves such that q ′ ◦ f = q.

E

∼= q

��

V
p 88

p ′ &&

�

E ′

When in the case X = Pn, L = OPn(1), E = OPn , we can easily observe

14
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that the Quot functor is isomorphic to the original Hilbert functor by a nat-

ural transformation. We sometimes abbreviate a Quot functor by QuotFV/X
if there was no confusion for the choice of very ample line bundle L.

2.2.2 Existence of Quot scheme and Hilbert scheme

Contents in this section mostly follow [31, Part 2, Chapter 5]. In this

section, we briefly explain the existence of a fine moduli space of a Quot

functor. For this purpose, we use following two theorems and one lemma

without proofs.

Let E be a coherent sheaf on the projective space Pn. For an integer m,

The E is called m-regular if satisfies the following :

Hi(Pn, E(m− i)) = 0 for all i ≥ 1.

Then we have the following theorem. According to Mumford, it is due to

Castelnuovo [72].

Theorem 2.2.1 (Castelnuovo-Mumford regularity). [31, Lemma 5.1] Let E
be a m-regular coherent sheaf on the projective space Pn. Then E satisfies

the following properties:

(i) The natural morphism H0(Pn,OPn(1))⊗k H0(Pn, E(k))→
H0(Pn, E(k+ 1)) is surjective for every k ≥ m.

(ii) Hi(Pn, E(r)) = 0 for every i ≥ 1 and k ≥ m−i. Or equivalently, we can

also say that If E is m-regular, then E is m ′ regular for every m ′ ≥ m.

(iii) E(m ′) is globally generated and Hi(Pn, E(m ′)) = 0 for every m ′ ≥ m.

The following lemma is a weaker form of the much powerful theorem of

Mumford.

15
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Lemma 2.2.2. [31, Theorem 5.3] Consider a following short exact sequence

of coherent sheaves :

0→ F → O⊕mPn → E → 0

with Hilbert polynomial HP(E) = F
Then there exists an integer m0 which only depends on m, n and the

polynomial F such that F and E are m0-regular.

Theorem 2.2.3 (Flattening stratification). [31, Theorem 5.13]

Let X be a noetherian scheme over k and E be a coherent sheaf on X×Pn.

Then there exists a finite set I of Hilbert polynomials and for each F ∈ I,

and there exist a locally closed subschemes XF ⊂ X of X which satisfies the

followings :

(i) The set of closed points |XF| of XF is the set of all closed points x ∈ X
such that over its fiber Pnx := Pn× {x}, Hilbert polynomial HP(F |Pn

x
) is

equal to F.

(ii) Let X̂ :=
∐
XF. Consider a morphism ι : X̂→ X induced from the inclu-

sion morphisms ιF : XF ↪→ X by a universal property of the coproduct.

Then ι∗(E) is flat over X̂. Furthermore, the morphism ι has the fol-

lowing universal property: Consider an arbitrary morphism u : Y → X.

Then u∗E is flat over Y if and only if the morphism u factors through

the morphism ι : X̂→ X.

(iii) Consider a total order on I defined by the relation F < G if and only

if F(t) < G(t) for all t � 0. Then the closure of |XF| is contained in

the union of all |XG| for all polynomials G ≥ F, i.e.

|XF| ⊂
⋃
G≥F

|XG|

We call each XF a stratum of X corresponding to a Hilbert polynomial F

appeared in this theorem.

16
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Before explaining the existence of Hilbert schemes, we should explain one

simple and interesting moduli functor called Grassmannian functor, whose

fine moduli space is a Grassmannian variety.

Definition 2.2.1 (Grassmannian functor). For an integer m ≤ n, the Grass-

mannian functor is the following moduli functor :

Grass(n,m) : (Sch/k)op � // Sets

S // {S× kn � E | E is a rank m bundle on S}

We note that Grass(n,m) is representable by a fine moduli space Gr(n −

m,n), a space of (n−m)-dimensional sub-vector spaces of kn. Now we are

ready to sketch the proof of the existence of the Quot scheme, which is the

slight generalization of the Hilbert scheme.

First, we construct a natural transform from Quot functor to Grassman-

nian functor. For a scheme S ∈ Sch/k, consider a family p : O⊕mPn×S � E on

S which is an element of QuotFO⊕m
Pn

(S). Let F := ker(p). Then, by lemma

2.2.2, we can find an integer m0 Such that Es and Fs are all m0 regular for

all closed points s ∈ S. Then Hi(Pns ,Fs(k)) and Hi(Pns , Es(k)) are all 0 for

i > 0 and k ≥ m0. For the projection Pn × S→ S, m0-regularity guarantees

that πS∗E(k) and πS∗F(k) are locally free sheaves and globally generated for

k ≥ m0.

For k ≥ m0, we have a short exact sequence of locally free sheaves :

0→ πS∗F(k)→ S× (Symk(kn))⊕m → πS∗E(k)→ 0

such that the Hilbert polynomial HP(πS∗E(k)) is equal to F(k). Now,

when we fix an integer k ≥ m0, from the surjection S × (Symk(kn))⊕m �

17
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πS→∗E(k) we obtain a natural transformation of functors :

Tk : Quot
F
O⊕m

Pn

� // Grass
((
n+k−1
k

)
m, F(k)

)
[
p : O⊕mPn×S � E

] � //
[
S× (Symk(kn))⊕m � πS∗E(k)

]
Roughly speaking, we can show injectiveness of this functor since πS∗E(k)

and πS∗F(k) are generated by their global sections.

Next, we construct a coherent sheaf G over Gr(
(
n+k−1
k

)
m−F(k),

(
n+k−1
k

)
m)×

Pn. Then we can show that the Quot functor is representable by the strata

Gr(
(
n+k−1
k

)
m−F(k),

(
n+k−1
k

)
m)F corresponds to the Hilbert polynomial F. So

we denote it by QuotFO⊕m
Pn

, a fine moduli space of the Quot functor. When

m = 1, Quot functor is isomorphic to the Hilbert functor by a natural trans-

formation so we denote it by HilbFPn , a Hilbert scheme.

We introduce a general existence result for a Quot scheme by Grothendieck.

The original theorem covers the case when X is a projective scheme over a

noetherian scheme S but we omit here.

Theorem 2.2.4 (Grothendieck). [31, Theorem 5.14]

The Quot functor QuotF,LV/X is representable by a projective scheme

QuotF,LV/X ∈ Sch/k for any coherent sheaf G and a Hilbert polynomial F.

So, for the case when V = OX, since Quot functor is isomorphic to the

Hilbert functor by natural transformation, we obtain that HilbF,LX is repre-

sentable by a projective scheme for any projective variety X over k and any

Hilbert polynomial F. As a special case, we obtain the projectiveness of the

Hilbert scheme HilbFPn .

2.2.3 Tangent-obstruction theories of Quot schemes

Contents in this section mostly follow [31, Part 3, Chapter 6]. In this

section we study tangent spaces of Hilbert schemes and smoothness condi-

18
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tion of Hilbert schemes on certain points. For this, we need some elementary

deformation theory. We start with defining a deformation functor.

Consider the category (Art/k) of local Artinian k-algebras, which have

residue field k.

Definition 2.2.2. A deformation functor D is a following covariant functor

D : (Art/k)
ϕ→ (Sets)

such that D(k) is a one point set. For an local Artinian ring (R,mR), we

can consider a canonical morphism D(k) = D(R/mR)→ D(R), and therefore

we can consider a distinguished element in D(R), which is an image of D(k).

We denote this element by 0 ∈ D(R).

Definition 2.2.3 (Small extension). A small extension is a following exact

sequence of R-modules :

0→ K→ R→ S→ 0

where ϕ : R → S is a surjective homomorphism of Artinian rings over k,

K = Kerϕ and K ·mR = 0 (mR is a maximal ideal of R). Therefore R acts

on K just as a scalar multiplication of its residue field R/mR
∼= k.

The type of deformation functor we usually want is a deformation functor

with the following properties :

Definition 2.2.4. [31, Definition 6.1.21] We said that a deformation functor

D have a tangent-obstruction theory when there exist a k-vector space T1,

called tangent space for D, and T2, called obstruction space for D, which

satisfies the following properties :

1. For any small extension 0→ K→ R→ S→ 0, there is a corresponding

exact sequence of sets

T1 ⊗k K→ D(R)→ D(S)
ob−→ T2 ⊗k K.
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We note that we can consider exact sequence of sets since D(R) and

D(S) contains distinguished elements 0 ∈ D(R) and 0 ∈ D(S).

2. When S = k, then the above sequence is left exact :

0→ T1 ⊗k K→ D(R)→ D(k)
ob−→ T2 ⊗k K

3. The exact sequence of sets in (1) and (2) are functorial for small ex-

tensions. i.e. for a commutative diagram :

0 // K //

f
��

R //

g
��

S //

h
��

0

0 // K ′ // R ′ // S ′ // 0

where horizontal rows are small extensions, g, h are morphisms in Art/k,

f is a morphism of k-vector spaces, we have a corresponding commu-

tative diagram of sets :

T1 ⊗k K //

id⊗f
��

D(R) //

D(g)

��

D(S)
ob //

D(h)

��

T2 ⊗k K

id⊗f
��

T1 ⊗k K
′ // D(R ′) // D(S ′)

ob // T2 ⊗k K
′

or when S = k, we have commutative diagram where each horizontal

rows are left exact :

0 // T1 ⊗k K //

id⊗f
��

D(R) //

D(g)

��

D(S)
ob //

D(h)

��

T2 ⊗k K

id⊗f
��

0 // T1 ⊗k K
′ // D(R ′) // D(S ′)

ob // T2 ⊗k K
′.

Now, consider the Quot functor QuotF,LV/X for a projective variety X over

k, very ample line bundle L on X, a coherent sheaf V on X and a Hilbert
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polynomial F. We want to restrict our Quot functor QuotF,LV/X which repre-

sents the local neighborhood of the Quot scheme QuotF,LV/X around the point

Q, which is a quotient sheaf Q = V/E such that Hilbert polynomial HP(Q) =
F. So we define our deformation functor D

QuotF,LV/X
[Q] : Art/k → Sets to be,

for an Artinian local ring R, D
QuotF,LV/X
[Q] (R) is a set is a quotient sheaf Q̂ =

(V ⊗ R)/Ê which is flat over R, and whose restriction to X× Spec(R/mR) is

the quotient sheaf Q.

Then this deformation functor admits a tangent-obstruction theory with

the tangent space T1 = HomOX
(E ,Q) and the obstruction space T2 = Ext1OX

(E ,Q).
For the proof of this statement, we need some information about the exten-

sion about quotient sheaf. First, we consider a small extension 0 → K →
R → S → 0. Then we consider an extension of the following short exact

sequence along the small extension.

0→ Ê → V ⊗ S→ Q̂→ 0. (2.1)

Its extension over SpecR is defined to be the following coherent sheaf Q̂ ′ :

0→ Ê ′ → V ⊗ R→ Q̂ ′ → 0 (2.2)

such that Q̂ ′ is flat over S, Ê ′ = Ê ⊗R S. Then we have the following propo-

sition on the extension of the above short exact sequence associated to flat

quotient sheaves.

Proposition 2.2.5. [31, Theorem 6.4.5, Proposition 6.4.7]

For the short exact sequence 2.1, we can assign an obstruction class ob(e) ∈
Ext1OX

(E ,Q) ⊗k K. Then, an extension of the short exact sequence 2.1 for

the small extension 0 → K → R → S → 0 in the form of 2.2 satisfies the

conditions stated above exists if and only if the obstruction class ob(e)=0.

Moreover, if an extension exists, the set of such extensions is a torsor under

HomOX
(E ,Q)⊗k K.
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Using this result, we get the following result which we want to prove from

the beginning of this subsection.

Proposition 2.2.6. [31, Theorem 6.4.9] The deformation functor D
QuotF,LV/X
[Q]

admits a generalized tangent-obstruction theory with its tangent space T1 =

HomOX
(E ,Q) and the obstruction space T2 = Ext1OX

(E ,Q).

Proof. By Proposition 2.2.5, axiom (1) and (2) of tangent-obstruction theory,

Definition 2.2.4 is automatically satisfied. We can check axiom (3) by direct

diagram chasing so we omit here.

When V = OX, we have QuotF,LOX/X
= HilbF,LX . In a similar manner as

we constructed the deformation functor D
QuotF,LV/X
[Q] , for a closed subscheme

Z ⊂ X with Hilbert polynomial HP(OZ) = F, we can define a deformation

functor D
HilbF,LX

[Z] . Then as a result of Proposition 2.2.6, D
HilbF,LZ

[Z] is a deforma-

tion functor which has a tangent-obstruction theory with the tangent space

T1 = HomOX
(IZ,OZ) and the obstruction space T2 = Ext1OX

(IZ,OZ).
Then, using the results of pro-representable functors [31, Theorem 6.2.4,

Corollary 6.2.6], we have the following results on the local geometry of Hilbert

schemes.

Proposition 2.2.7. [42, Corollary 2.5] Let Z ⊂ X be a closed subscheme

of a projective variety X over k polarized by a very ample line bundle L,

with a Hilbert polynomial F, which is a closed point in a Hilbert scheme

HilbF,LX . Then the Zariski tangent space T[Z]HilbF,LX of HilbF,LX at the point [Z]

is isomorphic to the vector space HomOX
(IZ,OZ).

Proposition 2.2.8. [31, Corollary 6.4.11] For a closed subscheme Z ⊂ X in

a projective variety X over k polarized by a very ample line bundle L with a

Hilbert polynomial F, which is a closed point in a Hilbert scheme HilbF,LX . Let

d1 := dim(HomOX
(IZ,OZ))) and d2 := dim(Ext1OX

(IZ,OZ)). Then we have

d1 ≥ dim[Z]HilbF,LX ≥ d1 − d2. Furthermore, if dim[Z]HilbF,LX = d1 − d2, then
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the Hilbert scheme HilbF,LX is locally a complete intersection around the point

[Z]. In particular, if Ext1OX
(IZ,OZ) = 0, then the Hilbert scheme HilbF,LX is

smooth at the point [Z].

2.3 Geometric invariant theory

We use [82, 28] as main references of this section. In this section, we

study how to construct a quotient of a variety via a group action. Let X

be a variety and G be an algebraic group acting on X. The group action

G× X→ X is algebraic.

We start by classifying the notion of quotients. There are three notions

of quotients: Categorical, good, and geometric.

Definition 2.3.1 (Categorical quotient). Let X is a variety equipped with a

G-action. Then consider a pair (Y, p) where Y is a variety and p : X→ Y is

a G-invariant morphism. Then we call the pair (Y, p) a categorical quotient

if is satisfies the following universal property. If there is another G-invariant

morphism f : X → Z, then there exists a unique morphism f : Y → Z such

that f = p ◦ f.
X

p

��

f

��

Y

�

f

∃!
// Z

We note that the categorical quotient (Y, p) is unique up to isomorphism by

universal property.

Definition 2.3.2 (Good quotient). Let X be a variety equipped with a G-

action. Then a pair (Y, p) of a variety Y and a G-invariant morphism p :

X→ Y is called a good quotient of X if it satisfies the following properties :

1. The morphism p is surjective and affine.
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2. The image of a closed G-invariant subspace of X is again closed in Y,

and two closed disjoint G-invariant subspaces of X has disjoint images

in Y.

3. For an affine open set U ⊂ Y, we have Γ(p−1(U),OX)G = Γ(U,OY),
which is equivalent to say that the sections of the structure sheaf OY
is the G-invariant sections of the structure sheaf OX. In this case, we

emphasize that p−1(U) is also affine since the morphism p is affine.

The following proposition says that good quotient is a stronger condition

than categorical quotient, but it is not an orbit space in general.

Proposition 2.3.1. [82, Proposition 3.11] Let X be a variety equipped with

G-action and let a pair (Y, p : X → Y) be a good quotient. Then we have

the followings

1. The pair (Y, p) is a categorical quotient.

2. For x, y ∈ X, p(x) = p(y) if and only if two orbit closures intersects,

i.e. Gx ∩Gy 6= ∅.

Therefore, even if two orbits Gx and Gy are disjoint, they may intersect

in their closures. So if we want to make quotient to an orbit space, we need

the condition that every orbit is closed. This condition leads to the definition

of the geometric quotient in the following.

Definition 2.3.3 (Geometric quotient). Let X be a variety equipped with

G-action and let a pair (Y, p : X → Y) be a good quotient. Then we call

(Y, p) a geometric quotient if all G-orbits in X are closed.

In summary, a geometric quotient is a good quotient, and a good quotient

is a categorical quotient. We note that the notions of the good quotient and

the geometric quotient are local.
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Proposition 2.3.2. [82, Proposition 3.10] Let X be a variety equipped with

G-action. Consider a pair (Y, p) of variety Y and a G-invariant morphism

p : X→ Y.

Then the pair (Y, p) is a good(resp. geometric) quotient if and only if

There is an open cover {Ui}i∈I of Y such that G-invariant morphisms p|p−1(Ui) :

p−1(Ui)→ Ui are good(resp. geometric) quotients.

Next, we start from the case when X is affine variety.

2.3.1 Affine quotient

Let X be a affine variety X ∼= SpecR. Since there is an algebraic action

on X by an algebraic group G, there is also an induced algebraic action on

the ring of functions R = Γ(X,OX) by the group G. Let RG be its invariant

subring.

From now on, we further assume that G is a reductive group. We will not

explain about the definition of linearly reductive groups. But we note that

general linear groups GL(n, k), special linear groups SL(n, k), projective lin-

ear groups PGL(n, k) are all reductive groups. There is a following famous

theorem of Nagata [75] for linear reductive groups. For state Nagata’s the-

orem, we first define the notion of rational group action by a group G on a

ring R.

Definition 2.3.4 (Rational actions). [73, Definition 1.2],[82, Definition on

p. 47] Let G be a affine linear algebraic algebraic group acting on a ring

R. Let S = Γ(G,OG) be the function ring of the group G. Then the group

action G× R→ R induces a morphism of rings â : R→ S⊗k R (If we fix an

element r ∈ R, then it induces a function G → R given by g 7→ g · r. Then

the function G→ R induces an element of the ring S⊗k R).

On the other hand, multiplication on the group G, G × G → G induces

a dual multiplication m̂ : S → S ⊗k S and an identity map id : Speck → G

induces a dual identity map îd : S→ k.
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Next, we define the notion of dual actions for the class of morphism of

rings ϕ : R→ S⊗kR. This is a dual notion of the definition of group actions

on algebraic varieties. A morphism of rings ϕ : R → S ⊗k R is said to be a

dual action if and only if it satisfies the following axioms.

(1) (Associativity axiom)

S⊗k R
m̂⊗idR

''

S

ϕ
<<

ϕ
""

S⊗k S⊗k R

S⊗k R

idS⊗ϕ

77

The above diagram commutes.

(2) (Identity axiom)

R
ϕ // S⊗k R

îd⊗idR // R

We have the composition (îd⊗ idR) ◦ϕ is equal to the identity idR.

Then we call the group action is rational if the induced morphism of

groups â : R→ S⊗k R is a dual action.

Remark 2.3.3. To extend the notion of rational action to the linear reduc-

tive group action of a group G which is not affine, it is enough to consider

a sheaf of rings OG instead of the function ring S = Γ(G,OG). It need some

technical justification but we omit here.

Theorem 2.3.4 (Nagata). [75] Let G be a linearly reductive group and let

R be a finitely generated k-algebra where the group G rationally acts on it.

Then the invariant ring RG is finitely generated.

Remark 2.3.5. In 1975, Haboush [39] proved that every reductive group is

linearly reductive. Therefore we can use above theorem in the assumption

that the group G is reductive.

26



Chapter 2. Preliminaries

Let R be a finitely generated k-algebra equipped with a G-action. Then

the inclusion of rings RG ↪→ R induces a morphism of affine schemes p : X =

SpecR → Y = SpecRG. Then it is natural to define a quotient of the affine

variety X = SpecR to be the pair (Y, p). The following proposition says that

it is the right way.

Proposition 2.3.6 (Affine quotients). [28, Theorem 6.1, p. 97] In the above

setting, the G-invariant morphism p : X→ Y is a good quotient.

2.3.2 Projective quotients

Consider a projective variety X which is embedded in Pn as a closed em-

bedding ι : X ↪→ Pn, equipped with an algebraic group action given by a

linearly reductive group G.

In this case, we further assume that the group action G extends to lifts

to the general linear action of the affine cone An+1 of the projective space Pn.

More explicitly, this means that there is a homomorphism G → GL(n + 1)

and the affine cone X̂ ⊂ An+1 of X is GL(n + 1)-invariant, and G-action on

X is induced from the GL(n+ 1)-action on X̂. In this case, we say that the

group G acts on X linearly.

Since there is a GL(n + 1)-action on An+1, we claim that there is also

a canonically induced action on the global section space Γ(Pn,OPn(1)). Let

(x0, ..., xn) be coordinate functions of An+1. Then we can see x0, ..., x1 as

generators of Γ(Pn,OPn(1)). Consider a tautological family on Pn :

0→ OPn(−1)→ O⊕n+1Pn
∼= Pn × kn+1 → Q→ 0

where OPn(−1) is a sub-line bundle of the trivial bundle Pn×kn+1 whose fiber

over a point [t0 : t1 : · · · : tn] is a 1-dimensional sub-vector space generated

by the vector (t0, t1, . . . , tn) ∈ kn+1, and Q is a tautological quotient bundle.

Next, consider an isomorphism kn+1
x0⊕···⊕xn // k⊕ k⊕ · · · ⊕ k︸ ︷︷ ︸

n+1

. Finally, con-
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sider the following composition :

OPn(−1) ↪→ Pn × kn+1
∼=−→ Pn × k⊕n+1

pi−→ Pn × k = OPn

where pi is a projection to the i-th summand. Then we observe that on

the fiber, the morphism acts exactly the same as the coordinate function

xi, and by definition, this is an element of the global section Γ(Pn,OPn(1)).

So we call element as xi ∈ Γ(Pn,OPn(1)). So we constructed the correspon-

dence between coordinate functions x0, ..., xn of kn+1 and the global sections

x0, ..., xn+1 of Γ(Pn,OPn(1)).

So we have the induced G-action on the space of sections Γ(Pn,OPn(1)).

Therefore we also have the induced G-action on Γ(X, L) where L := OPn(1)|X.

In a similar manner, we can define a G-action on the graded ring of sections⊕
d≥0
Γ(X, Ld). Then we can again consider its invariant ring, and consider its

proj, Proj(
⊕
d≥0
Γ(X, Ld)G).

Unfortunately, in projective case, Proj(
⊕
d≥0
Γ(X, Ld)G) is not a good quo-

tient or even a categorical quotient of the projective variety X in general. To

solve this problem. We should discard some bad locus of X for the G-action.

For this, we need a notion of stable and semi-stable points.

2.3.3 Stable and semi-stable points

Again we consider the projective variety X ⊂ Pn where the reductive

group G acts linearly.

Definition 2.3.5. 1. A point x ∈ X is called semi-stable if there exist

a nonconstant G-invariant homogeneous polynomial f ∈ (
⊕
d≥0
Γ(X, Ld))G

such that f(x) 6= 0. We write Xss ⊂ X be a subset of semi-stable points.

2. A semi-stable point x ∈ X is called stable if its G-orbit Gx is closed in

X and the dimension of Gx equals to the dimension of the group G.
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We write Xs ⊂ X be a subset of stable points.

3. A semi-stable point x ∈ X is called strictly semi-stable if it is not sta-

ble.

4. A point x ∈ X is called unstable if x is not semi-stable.

We can easily observe that Xss and Xs are open subsets of X.

Proposition 2.3.7. [82, Theorem 3.14],[28, Proposition 8.1] Consider the

morphism φ : X → Y := Proj(
⊕
d≥0
Γ(X, Ld)) induced from the inclusion of

graded rings (
⊕
d≥0
Γ(X, Ld))G ↪→ ⊕

d≥0
Γ(X, Ld). Its restrictions to Xss and Xs

have the following properties.

1. φ|Xss : Xss → Y is a good quotient.

2. There exist an open subset Ys ⊂ Y such that φ−1(Ys) = Xs and φ|Xs :

Xs → Ys is a geometric quotient.

So, by the above proposition, if we discard bad locus for G-actions, which

means unstable locus, from X then we can construct good quotients in a

similar manner as in the case of affine quotients.

2.3.4 Linearization

In the previous subsection, we constructed the good quotient of the semi-

stable locus of the projective variety. In this section, we consider a more

general case.

Let X be a variety and G be a reductive group act on X. Consider a line

bundle L on the variety X. We first define a notion of linearization of the

group action with respect to the line bundle L.

Definition 2.3.6 (Linearization). Let L be a line bundle on the variety X.

Then a linearization of the group action with respect to the line bundle L
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is an action on the total space of the line bundle L, which is compatible

with the action on X, which is linear on the fiber. On the other word, for

each group element g ∈ G and a point x ∈ X, we correspond linear maps

Lx → Lg·x on fibers of the line bundle.

If there is a linearization of the group action G with respect to the line

bundle L, then there is a group action on the section space Γ(X, Ld) for all

d ≥ 0. Then we call each section s ∈ Γ(X, Ld)G a homogeneous invariant

section.

Then in a similar manner as we defined semi-stable points and stable

points in the previous subsection, we can define semi-stable and stable points

Definition 2.3.7. We classify points in the variety X as follows.

1. A point x ∈ X is called semi-stable if there exists a nonzero homoge-

neous invariant section s ∈ Γ(X, Ld)G for some d ≥ 1 such that s(x) 6= 0
and Xs = {x ∈ X|s(x) 6= 0} is affine. We write Xss(L) as the set of semi-

stable points of X.

2. A semi-stable point x ∈ X is called stable if dimGx = dimG and G-

action on Xs is affine, and all G-orbits in Xs are closed. We write Xs(L)

as the set of stable points of X.

3. A semi-stable point x is called strictly semi-stable if it is not stable.

4. A point x is called unstable if it is not semi-stable. We write Xs(L) as

the set of stable points of X.

We easily observe that Xss(L) and Xs(L) are open G-invariant subsets of X.

Then, we can find a good quotient for semi-stable locus, and geometric

quotient for stable locus, which is exactly the same as the projective quo-

tient case. But in this case, Proj(
⊕

d≥0 Γ(X, L
d)G) is not the answer for the

quotient. It is a big difference.
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Proposition 2.3.8. [28, Theorem 8.1] Let X be a variety equipped with a

reductive group G-action. Let L be a line bundle on X and G has a lin-

earization respect to the line bundle L. Then we have the followings :

1. There exist a good quotient p : Xss(L)→ Xss //L G, where Xss //L G is a

quasi-projective variety. In this case, we call Xss //L G a GIT quotient

of X by G.

2. There is an open subset Xs//LG ⊂ Xss//LG such that p−1(Xs//LG) = X
s

and p|Xs : Xs → Xs //L G is a geometric quotient.

The quotients p : Xss(L) → Xss(L) //L G and its restriction p|Xs : Xs →
Xs //L G satisfies the following properties.

Proposition 2.3.9. [82, Theorem 3.21]

1. For semistable points x1, x2 ∈ Xss(L), p(x1) = p(x2) if and only if

the closure of two orbits meet on the semi-stable locus. i.e. (G(x1) ∩
G(x2)) ∩ Xss(L) 6= ∅.

2. A semi-stable point x is stable if and only if dimGx = dimG and the

orbit Gx is closed in the semi-stable locus Xss(L).

2.3.5 Hilbert-Mumford criterion

In this subsection, we introduce practical way how to determine each

point is semi-stable or stable, or unstable.

First we define 1-parameter subgroups of the group G.

Definition 2.3.8 (1-parameter subgroups). A 1-parameter subgroup λ is an

injective group homomorphism k∗
λ
↪→ G.

The following proposition is a small part of a much powerful theorem

of Borel on the diagonalizable groups, which says that every 1-parameter

subgroup actions on the affine space kn+1 can be diagonalized.
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Proposition 2.3.10. [5, Chapter III, §8 Proposition, 114p] Let λ be a 1-

parameter subgroup. Since the induced action on kn+1 is algebraic, there is

a basis (v0, . . . , vn) of kn+1 where the 1-parameter subgroup λ acts diago-

nally. When we write x0, . . . , xn as a coordinate functions of kn+1 for the

basis (v0, . . . vn), λ acts on the point (x0, . . . , xn) ∈ kn+1 as t · (x0, . . . , xn) =
(td0x0, . . . , t

dn
n xn) such that d0 ≤ d1 ≤ · · · ≤ dn. We call this number

d0, . . . , dn weights of this 1-parameter group action.

Furthermore, this series of numbers d0, ..., dn are unique, i.e. invariant

up to the choice of a basis of kn+1.

The following criterion enables us to compute semistable and unstable

locus exactly in many examples.

Proposition 2.3.11 (Hilbert-Mumford criterion). [82, Proposition 4.8, The-

orem 4.9] For a point x ∈ X, we define µ(x, λ) := −min(di : xi 6= 0). Then

we have

1. The point x is semistable if and only if µ(x, λ) ≥ 0 for all 1-parameter

subgroups λ.

2. The point x is stable if and only if µ(x, λ) > 0 for all 1-parameter

subgroups λ.

2.3.6 Examples

Example 2.3.12 (Projective space). It is well known that projective space

Pn is a good quotient of a variety kn+1 \ {0} for an action of a group k∗.

We explain about this good quotient kn+1 \ {0}→ Pn here. A group element

t ∈ k∗ act on (x0, . . . , xn) ∈ kn+1 \ {0} as t · (x0, . . . , xn) = (tx0, . . . , txn). So,

the problem is that there is no invariant functions. To solve this problem,
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we embed kn+1 \ {0} in Pn+1 as follows:

kn+1 \ {0} �
�

// Pn+1

(x0, . . . , xn+1)
� // [x0 : · · · : xn+1 : 1].

Then we extend a k∗-action on Pn+1 to be t · [x0 : · · · : xn+1] = [tx0 : · · · :
txn : t−1xn+1]. Then invariant homogeneous polynomials are f(x0, . . . , xn)x

d
n+1

where f(x0, . . . , xn) is a homogeneous polynomial in x0, . . . , xn with degree

d. Therefore, we observe that semi-stable points of this k∗-action on Pn+1 is

exactly equal to kn+1 \ {0}.

Furthermore, there is a natural graded ring isomorphism from the graded

invariant ring
⊕

d≥0{f(x0, . . . , xn)x
d
n+1 |f is degree d homogeneous.} to the graded

ring
⊕

d≥0{f(x0, . . . , xn)|f is degree d homogeneous.}. Therefore we have a good

quotient :

kn+1 \ {0}→ Proj(
⊕
d≥0

{f(x0, . . . , xn)|f is degree d homogeneous.}) = Pn

by Proposition 2.3.7.

On the other hand, let L := OPn+1(1). By definition, k∗-action on Pn+1

already has linearization with respect to the line bundle OPn+1(1). Therefore,

k∗ on kn+1 \ {0} has also linearization respect to the line bundle L. Then we

can write (kn+1 \ {0}) //L k∗ = Pn.

Example 2.3.13 (Multiple projective lines). Let X = P1 × · · · × P1 = (P1)n

and G = SL(2, k). Each element

(
a b

c d

)
∈ SL(2, k) acts on an element [u :

v] ∈ P1 as left multiplication

(
a b

c d

)(
u

v

)
. Consider the Segre embedding
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as follows :

X = (P1)n � � f // P2n−1

([x1 : y1], . . . , [xn : yn])
� // [x1x2, . . . , xn : x1, . . . , xn−1yn : · · · : y1y2, . . . , yn],

and a very ample line bundle f∗OP2n−1(n) on X. Then there is a natural

linearization on f∗OP2n−1(n).

Next, consider a 1-parameter subgroup λ of SL(2, k) given by :

λ(t) =

(
tw 0

0 t−w

)
.

Then t·xi1xi2 . . . xin−ayj1yj2 . . . yja = tw(n−2a)·xi1xi2 . . . xin−ayj1yj2 . . . yja .

Therefore, for a point ([x1 : y1], . . . , [xn : yn]) with a-indices where yi = 0,

homogeneous polynomial which has minimal weight for λ-action has weight

w(n − 2a). Since yi = 0 is equivalent to say that [xi : yi] = [1 : 0], we can

also say that a multiple point x = ([x1 : y1], . . . , [xn : yn]) has [1 : 0] with

multiplicity a then µ(x, λ) = −w(n− 2a).

By the base change, we can take similar 1-parameter subgroup. So we

can observe that if a multiple point x = ([x1 : y1], . . . , [xn : yn]) has any point

p ∈ P1 with multiplicity a, we can find a 1-parameter subgroup λ ′ such that

µ(x, λ ′) = −w(n − 2a). Therefore we have the following description of the

semi-stable and stable points in the multiple line (P1)n

In summary, we obtain the following criterion for semi-stable and stable

locus of multiple projective lines under the SL(2, k)-action.

Proposition 2.3.14. [82, Proposition 4.16]

1. A multiple point p = (p1, ..., pn) ∈ (P1)n is semi-stable for SL(2, k)-

action if it all points pi ∈ P1 has multiplicity ≤ n
2
.

2. A multiple point p = (p1, ..., pn) ∈ (P1)n is semi-stable for SL(2, k)-

action if it all points pi ∈ P1 has multiplicity < n
2
.
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So we note that the integer n is odd, then semi-stable conditions and stable

conditions are equal so there are no strictly semi-stable points.

Example 2.3.15 (Gr(r, V ⊗W) with SL(V)-action). Here we make a key

observation which is crucially used in the construction of moduli space of

vector bundles on a curve in the next section.

Consider a vector space V , W with dimension n,m and the Grassman-

nian Gr(r, V ⊗ W). Consider an SL(V)-action act on it. Consider a one-

parameter subgroup λ of SL(V). Let d0 ≤ · · · ≤ d` be a series of numbers

obtained from the series appeared in Proposition 2.3.10 by removing dupli-

cated values. Then, by Proposition 2.3.10, we have a weight decomposition

V = V0⊕ · · · ⊕V` such that for each vector vi ∈ Vi, λ act on vi as weight di

i.e. for t ∈ k∗, t · vi = tdivi.
For an r-dimensional subspace K ∈ Gr(r, V⊗W), we let Ki := (Vi⊗W)∩

K and define ui := dimKi. Therefore, when we take a Plücker embedding

Gr(r, V ⊗W) ↪→ P(∧rV ⊗W), we observe that t · ∧rK = t(
∑

i diui) · ∧rK so

we deduce that µ(K, λ) = −(
∑

i diui).

Therefore, we have the following description of semi-stable and stable

points.

Proposition 2.3.16. [66, Proposition 6.6.1] Consider an r-dimensional sub-

vector space K ⊂ V⊗W, an element of Gr(r, V⊗W). Then K is semi-stable

with respect to the SL(V)-action if and only if for any proper nonzero sub-

vector space V ′ ⊂ V , it satisfies the following equation :

dimK ′

dimV ′
≤ dimK

dimV
(K ′ := (V ′ ⊗W) ∩ K) .

Proof. We first prove inverse direction. We use Hilbert-Mumford criterion.

For a 1-parameter subgroup λ, we already calculated that µ(λ, K) =
∑̀
i=0

diui.

Then by Abel’s summation formula, we have µ(λ, K) = d`r −
`−1∑
i=0

(di+1 −
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di)

(
i∑
j=0

uj

)
. We note that when we define V ′i :=

⊕i
j=0 Vi ⊂ V and K ′i :=

(V ′i ⊗W)∩K then we have
i∑
j=0

uj = dimK ′i. Therefore we can write µ(λ, K) =

d`r−
`−1∑
i=0

(di+1 − di)dimK ′i.

Now, assume that we have dimK ′

dimV ′
≤ dimK

dimV
for any nonzero proper subspace

V ′ ⊂ V . We apply this inequality to each dimK ′i, then we have :

µ(λ, k) ≥ d`r−
`−1∑
i=0

(di+1 − di)r
dimV ′i
dimV

= −
r

n

(
`−1∑
i=0

(di − di+1)dimV ′i + d`n

)
.

=
∑̀
i=0

di(dimV ′i − dimV ′i−1) =
∑̀
i=0

didimVi = 0

where the last equality comes from the fact that total weight of an action of

any 1-parameter subgroup of an SL(V)-action must be zero. Therefore, by

Hilbert-Mumford, K ∈ Gr(r, V⊗W) is a semi-stable point. Now, assume that

K is a semi-stable point and V0 ⊂ V be a nonzero proper sub-vector space of

V . of dimension n0 < n = dimV . Then by the basis extension theorem, we

can find a n−n0-dimensional sub-vector space V1 ⊂ V such that V = V0⊕V1
and we can construct a 1-parameter subgroup λ-action on V as follows. For

an element t ∈ k∗, t act on V by the matrix :(
t−(n−n0)idV0 0

0 tn0 idV1

)
.

Similarly we define K0 := (V0 ⊗W) ∩ K. Then as we calculated above, we

have µ(λ, K) = −(n−n0)dimK0+n0(dimK−dimK0) = ndimK0−n0dimK ≥ 0.
Thus we have :

dimK0
dimV ′

≤ dimK

dimV
.
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2.4 Vector bundles and coherent sheaves on a

smooth projective curve

Contents in this section mostly follow [66, Part I, Chapter 1,2,5]. In this

section, we study various properties on coherent sheaves on a smooth pro-

jective curve C.

2.4.1 Basic properties

In this section, we introduces some basic properties on coherent sheaves

and vector bundles on the smooth projective curve C. We start by defining

a notion of rank of coherent sheaves.

Lemma 2.4.1. [66, Lemma 2.6.1] Let F be a coherent sheaf on the curve

C. Then there is an open dense subset U ⊂ C of C such that F |U ∼= O⊕ru .

Proof. By [43, II, Chapter 5, ex 5.8], there is an open dense subset U ⊂ C
such that a stalk Fx has a maximal rank r for a point x ∈ U. Then again

by [43, II, Chapter 5, ex 5.8], F |U is locally free. Therefore, we can choose

a smaller dense open subset V ⊂ U such that F |V ∼= O⊕rV .

Using this lemma, we can define a notion of rank of a coherent sheaf F
on a curve C

Definition 2.4.1 (Rank). We define a rank of F to be rankF := r.

We can easily check that this number r is uniquely defined since the c

urve C is connected. So we do not check it here.

The following definition is, in fact, equivalent to famous ‘Riemann-Roch

theorem’ when F is a line bundle. So it uses the Riemann-Roch theorem in

the line bundle case to define a notion of degree of coherent sheaves.
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Definition 2.4.2 (Degree). [66, Chapter 2.6] Let F be a coherent sheaf on

C. Then we define a degree F to be:

degF := χ(F) − r · χ(OC)

where r = rank(F) and χ(E) :=
∑
i

(−1)ihi(E) is the Euler characteristic for

the coherent sheaf E .

Example 2.4.2. (a) For a coherent sheaf OC(x1 + · · ·+ x`),
degOC(x1 + · · ·+ x`) = `

(b) For a subscheme Z ⊂ C, its structure sheaf OZ has degree equal to

length(Z).

We note that the degree of coherent sheaves is additive in short exact se-

quences

Lemma 2.4.3. [66, Chapter 2.6, p. 30] Consider a short exact of coherent

sheaves :

0→ E → F → G → 0

Then we have degF = degE + degG.

Proof. From long exact sequences of cohomologies, we can show that Euler

characteristic χ is additive in short exact sequence. Also, it is trivial that

rank of coherent sheaves is additive in short exact sequence.

2.4.2 Grothendieck group

In this section, we define the Grothendieck group K(C) of coherent sheaves

and Grothendieck group K0(C) of locally free sheaves. We compare these two

definitions and we prove the degree of determinant line bundle of a coherent

sheaf is equal to the degree of the original coherent sheaf using the structure

of Grothendieck groups.
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Definition 2.4.3 (Grothendieck group). Grothendieck group K(C)(resp. K0(C))

of coherent sheaves on the curve C is defined by the following. Let M be a

free abelian group generated by coherent(resp. locally free) sheaves on the

curve C and let N be a subgroup of N generated by elements of the forms

F−F ′−F ′′ comes from all short exact sequences 0→ F ′ → F → F ′′ → 0 of

coherent(resp. locally free) sheaves. Then we define the Grothendieck group

K(C)(resp. K0(C)) to be K(C) :=M/N.

To Compare K(C) and K0(C) we want to find a two-term resolution 0→
E1 → E0 → F → 0 for any coherent sheaf F on C.

Since C is projective, by [43, Theorem II.5.17], there is an integer n such

that F(n) is globally generated, i.e. there is a surjection E0 = O⊕mC (−n)
p
�

F from a locally free sheaf E0. Thus, it is enough to show that ker(p) is

locally free. To show this, we need the following lemma.

Lemma 2.4.4. [66, Lemma 2.3.3] Consider a commutative local ring (R,m)

and its residue field k = R/m. Let N be a finitely generated R-module. Then

N is a free R-module if and only if TorR1(N, k) = 0.

Proof. First, assume that TorR1(N, k) = 0 and choose a basis {v1, ..., vd} of the

vector space N⊗R k = N/mN. Then we can find an element v1, ..., vd which

are lifts of elements v1, ..., vd. Consider a surjective morphism R⊕d → N

sending each generators of i-th components to vi. Then we have the fol-

lowing short exact sequence :

0→ Ker→ R⊕d → N→ 0

By taking the functor (−⊗ k) to the above short exact sequence, we obtain

the following long exact sequence :

0→ TorR1(N, k)→ Ker⊗R k→ k⊕d → N⊗R k

Since we choose (v1, ..., vd) to be basis, the last morphism in the above long
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exact sequence is injective. Furthermore since TorR1(N, k) = 0, we have Ker⊗R
k = 0. By Nakayama’s lemma, we have Ker = 0. Therefore we have R⊕d ∼=

N. The opposite direction is trivial so we omit it here.

Now, using the above lemma, we show that ker(p) is locally free. Since

ker(p) is clearly a coherent sheaf, it is enough to show that its stalk ker(p)x

is a free OC,x module for every point x ∈ k. Consider the short exact se-

quence of stalks 0 → ker(p)x → (E0)x → Fx → 0. By applying the functor

(− ⊗Ox k), we obtain the long exact sequence and using the result in the

lemma 2.4.4, we have TorOC,x

2 (Fx, k) ∼= TorOC,x

1 (ker(p)x, k). But since C is a

smooth projective curve, OC,x is a principal ideal domain. Therefore maxi-

mal ideal is generated by a single element. Therefore, we have a free reso-

lution 0 → OC,x → OC,x → k → 0, and by taking a functor (Fx ⊗OC,x
−),

we obtain a long exact sequence and using Lemma 2.4.4 again we conclude

that TorOC,x

i (Fx, k) = 0 for all i > 1. Thus we obtain TorOC,x

1 (ker(p)x, k) = 0

and therefore ker(p) is locally free.

In summary, for all coherent sheaf F on the smooth projective curve C,

we can find a two-term locally free resolution :

0→ E1 → E0 → F → 0. (2.3)

Using this resolution, we can compare K(C) and K0(C). We define a mor-

phism φ : K(C) → K0(C) to be φ(F) := [E0] − [E1]. First, we should check

well-definedness of this morphism. Assume that there is another locally free

resolution of F , 0 → E ′1 → E ′0 → F → 0. Then we can construct the third

locally free resolution, 0→ Ker→ E0⊕E ′0 → F → 0. We can check that Ker

is locally free in the same manner as we used above. It is enough to show

that [E0] − [E1] = [E0 ⊕ E ′0] − [Ker]. Since [E0 ⊕ E ′0] = [E0] + [E ′0], it is equiv-

alent to show that [Ker] = [E ′0] + [E1]. Consider the following commutative
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diagram :

0 //

��

E0 ⊕ E ′0
pr1

��

E0 ⊕ E ′0

����

// 0

0 // E1 // E0 // F // 0

By the snake lemma, we obtain the short exact sequence 0 → E ′0 → Ker →
E1 → 0. Therefore we have [Ker] = [E ′0]+[E1]. Therefore φ is well-defined. It

is easy to prove that φ is a homomorphism so we omit it. Let ψ : K(C)→
K0(C) be a trivial homomorphism sending a locally free sheaf to itself. Then

it is clear that ψ and φ are inverse to each other. Therefore K(C) and K0(C)

are isomorphic. In summary, we prove the following.

Proposition 2.4.5. [66, Proposition 2.6.6] Grothendieck groups K(C) and

K0(C) are isomorphic to each other. More explicitly, φ : K(C)→ K0(C) and

ψ : K0(C)→ K(C) are inverse to each other.

Remark 2.4.6. There is a natural ring structure on K0(X) given by a tensor

product of locally free sheaves since the tensor product of locally free sheaves

preserves short exact sequence. Therefore, we give a ring structure on K(X)

transferred from K0(X) via isomorphisms φ and ψ.

Definition 2.4.4 (Determinant line bundle). Let E be a locally free sheaf of

rank r on a smooth projective curve C. Then by taking a top wedge ∧rE,

we obtain a line bundle and we call it a determinant line bundle detE of E.

We note that for a short exact sequence of locally free sheaves 0→ E→
F→ G→ 0 with rankE = r1, rank F = r2, rankG = r3, we can easily observe

that ∧r2F ∼= ∧r1E ⊗ ∧r3G from linear algebra. Therefore, taking a determi-

nant is a functor K0(C) → Pic(C). Therefore, composing with isomorphism

φ, we have a functor det : K(C)→ Pic(C).

Lemma 2.4.7. [66, Corollary 2.6.8] For an effective divisor D on the curve

C, and a structure sheaf OD we have det(OD) = OC(D). In particular, we

have deg(det(OD)) = deg(OD).

41



Chapter 2. Preliminaries

Proof. This is clear from the following resolution of the structure sheaf OD
:

0→ OC → OC(D)→ OD → 0

Next, we state the following structure theorem of the Grothendieck group

K(C).

Lemma 2.4.8. [66, Lemma 2.6.10] Let S(C) be a subgroup of K(C) gener-

ated by skyscraper sheaves Ox for all point x ∈ C. Then we have :

K(C) ∼= S(C)⊕ Z

By the structure theorem of the Grothendieck group K(C) and Lemma

2.4.7, finally we obtain the following :

Proposition 2.4.9. [66, Corollary 2.6.7] For a coherent sheaf F on the curve

F , we have degF = deg(detF).

(sketch of the proof). By Lemma 2.4.8, for any coherent sheaf F its class

[F ] equals to the sum of classes of skyscraper sheaves, i.e. [F ] =
∑
i

[Opi ].

Therefore, by Lemma 2.4.7 we have [detF ] =
∑
i

[O(pi)]. Therefore we have

deg(detF) = degF .

2.4.3 Semi-stability

In many moduli problems, we define a notion of stability or semi-stability

of isomorphism class of objects, we want to collect. There are many reasons

we define this notion. One of them is that almost all cases we cannot find

moduli space which parametrizes all objects. Many cases this problem solved

by defining suitable notion of semi-stability and collect only semi-stable ob-

jects.
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In this section we define stable and semi-stable vector bundles on the

curve C and study how it works in the category of vector bundles on the

curve C.

Definition 2.4.5 (slope). Let F be a coherent sheaf on the curve C. Then

we define a rational number called slope of F to be

µ(F) := degF
rankF

Definition 2.4.6 (Stable, Semi-stable bundles). Let E be a vector bundle(locally

free sheaf) on the curve C. Then we call E stable(resp. semi-stable) if every

nontrivial coherent subsheaf F ⊂ E satisfies the following condition

µ(F) < (resp. ≤) µ(E).

Fortunately, since we are working on the smooth projective curve case,

we can make above definition more simple. For this, we need the following

lemma.

Lemma 2.4.10. [66, Chapter 5.3, p. 73] Let E be a vector bundle on the

curve C and F ⊂ E be a coherent subsheaf. Then there exists a vector

bundle F between F and E, F ⊂ F ⊂ E, i.e. F is a sub-vector bundle of E

and contains F as a subsheaf, satisfying :

µ(F) ≤ µ(F).

Proof. Consider a quotient sheaf E/F . Then we can decompose it as a direct

sum of torsion free part and torsion part. Therefore we can write E/F ∼=

Ẽ⊕ Tor, where Ẽ is the torsion free part and Tor is the torsion part.

Since every local ring OC,x at a point x ∈ C are principal ideal domains

torsion free OC,x-modules are free modules [70, Excercise 11.10]. Therefore

the torsion free part Ẽ is locally free. Then consider the projection p : E→ Ẽ
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and let F := ker(p). Then F is clearly a sub-vector bundle of E containing

F . Furthermore, by construction, F/F is a torsion sheaf. Thus we obtain

rank F/F = 0. Therefore, since we have the following short exact sequence :

0→ F → F→ F/F → 0

rank(F) = rank F and degF ≤ degF. So we conclude that µ(F) ≤ µ(F).

By the above lemma, we can make the equivalent definition of stable and

semi-stable bundles, which is more simple.

Definition 2.4.7 (Stable, Semi-stable bundles). Let E be a vector bundle(locally

free sheaf) on the curve C. Then we call E is stable(resp. semi-stable) if ev-

ery nontrivial vector bundle F ⊂ E satisfies the following condition condition

:

µ(F) < (resp. ≤) µ(E)

The next proposition says that semi-stability determines the ‘direction’

of morphisms in the category of semi-stable vector bundles on the curve C.

Morphisms always arise in the direction of increasing slopes of semi-stable

vector bundles.

Proposition 2.4.11. [66, Proposition 5.3.3] When there is a non-zero mor-

phism ϕ : E → F between semi-stable vector bundle E and F on the curve

C, we obtain µ(E) ≤ µ(F).

Proof. First consider the image sheaf Im(ϕ) ⊂ F of the morphism ϕ. Then,

applying Lemma 2.4.10 to Im(ϕ), we obtain the sub-vector bundle I ⊂ F

containing Im(ϕ) having the same rank with Im(ϕ). Since F is semi-stable,

we have µ(I) ≤ µ(F). By definition, we have the following long exact se-

quence :

0→ ker(ϕ)→ E
ϕ→ I→ Tor→ 0
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Where Tor is a torsion sheaf. We can observe that ker(ϕ) is a locally free

sheaf in the same manner as we showed the existence of a 2-term resolution

in the equation (2.3). Since E is semi-stable, we have µ(ker(ϕ)) ≤ µ(E)

and since Tor is torsion free, we obtain rank(Tor) = 0. Therefore, by direct

calculation, we have µ(E) ≤ µ(I). Thus we showed µ(E) ≤ µ(F).

Furthermore, for morphisms between stable vector bundles, we obtain

more powerful result.

Proposition 2.4.12. [66, Proposition 5.3.3] Let ϕ : E → F be a nonzero

morphism between stable vector bundles E and F on the curve C where

µ(E) = µ(F). Then ϕ is an isomorphism.

Proof. Recall the proof of the previous lemma. If I 6= F, then since F is stable

we have µ(E) ≤ µ(I) < µ(F), which contradicts to the fact that µ(E) = µ(F).

Therefore we have I = F. Next, recall the following long exact sequence :

0→ ker(ϕ)→ E→ I→ Tor→ 0

If ker(ϕ) 6= 0, then µ(ker(ϕ)) < 0. If Tor 6= 0, then deg Tor > 0. Therefore

if ker(ϕ) 6= 0 or Tor 6= 0 then we have µ(E) < µ(I), which leads to a con-

tradiction. Thus we have ker(ϕ) = Tor = 0 so we conclude that ϕ : E → F

is an isomorphism.

Corollary 2.4.13. [66, Corollary 5.3.4] Let ϕ : E → E be a nonzero en-

domorphism of stable vector bundle E on the curve C. Then ϕ is a scalar

multiplication.

Proof. Consider an algebra of endomorphisms k[ϕ] generated by the endo-

morphism ϕ. By the above proposition, this algebra is a field. But since the

field k is algebraically closed, k[ϕ] = k. Therefore ϕ must be equal to one

of the scalar multiplication.

The next lemma follows from the direct calculations.
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Lemma 2.4.14. [66, Proposition 5.3.6] Consider the following short exact

of vector bundles :

0→ E→ F→ G→ 0

If two of three vector bundles have the same slope µ, then the third one

have also same slope µ.

Next, we introduce an important structure result about semi-stable vec-

tor bundles. A filtration called Jordan-Hölder filtration suggest us a way to

analyze a semi-stable bundle via stable bundles with same slopes.

Definition 2.4.8 (Jordan-Hölder filtration). Let E be a semi-stable vector

bundle on the curve C with a slope µ. Then a Jordan-Hölder filtration is

the following increasing filtration of sub-vector bundles with the same slope

µ :

0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that each successive quotient gri := Ei/Ei−1 are stable vector bundles.

We call
⊕

i gri the associated grading of the Jordan-Hölder filtration.

Proposition 2.4.15. [66, Proposition 5.3.7] For a semi-stable vector bundle

E on the curve C, every Jordan-Hölder filtration of E has the same length

and the associated gradings
⊕

i gri are isomorphic as a vector bundle.

Proof. Consider two different Jordan-Hölder filtrations

0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Em = E

and

0 ⊂ E ′0 ⊂ E1 ⊂ · · · ⊂ E ′n = E.

Then there exist an integer i such that E0 ⊂ E ′i and E0 ( E ′i−1. Since nonzero

morphisms between stable vector bundles are isomorphisms, we have E0 ∼=
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E ′i/E
′
i−1. Now we obtain two Jordan-Hölder filtrations of E/E0

0 ⊂ E1/E0 ⊂ · · · ⊂ Em/E0 = E/E0

and

0 ⊂ E ′0/(E0 ∩ E ′0) ⊂ E1/(E0 ∩ E1) ⊂ · · · ⊂ E ′i−1/(E0 ∩ E ′i−1) ⊂ Ei+1/E0 ⊂ . . .
⊂ E ′n/E0 = E/E0.

But using induction on the rank of E, we obtain that associated grading

of these two filtrations are isomorphic. Since associated grading of original

two filtrations are just obtained by the direct sum of E0 with this associated

gradings, we completed the proof by induction on the rank of E.

Definition 2.4.9 (S-equivalence class). For two semi-stable vector bundles

E and E ′, we call E and E ′ are S-equivalent if their associated gradings are

isomorphic.

Similar to Jordan-Hölder filtration, we introduce a structure result about

vector bundles, called Harder-Narasimhan filtration. It suggests us a way to

analyze a vector bundle via semi-stable vector bundles.

Definition-Proposition 2.4.16 (Harder-Narasimhan filtration). [66, Propo-

sition 5.4.2] Let E be a vector bundle on the curve C. Then there exist a

unique increasing filtration called Harder-Narasimhan filtration

0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Em = E

satisfies the following properties

1. the i-the grading gri = Ei/Ei−1 is a semi-stable vector bundle

2. Slopes µ(gri) are strictly decreasing.
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2.5 Moduli space of vector bundles on a smooth

projective curves

2.5.1 Construction of Moduli spaces of vector bundles

Contents in this section mostly follow [66, Part I, Chapter 7]. In this

section we define the moduli space of isomorphism classes of vector bundles

on the smooth projective curve C with a fixed rank r and fixed degree d,

as a GIT quotient of a Hilbert scheme. We observe a quite surprising phe-

nomenon that the GIT stable and semi-stable conditions coincide with the

stable and semi-stable condition of vector bundles on the curve C, what we

defined in the previous section.

The construction of moduli space based on the following observation. Let

S(r, d) be an isomorphism class of semi-stable vector bundles on C with rank

r and degree d. Consider a vector bundle class [E] ∈ S(r, d). Fix a point x ∈
C, and choose a large integer N > 2g−1−µ(E). Then by Proposition 2.4.11,

we obtain Hom(F(Nx), wC) = 0, where wC is a dualizing sheaf of the curve

C. Therefore, by Serre duality, we have H1(C, E(Nx)) = 0. By Riemann-

Roch formula, we obtain H0(C, E(Nx)) = d+r(N+1−g). Again by Riemann-

Roch, we can check that H0(C, E(Nx − 1)) = H0(C, E(Nx)) − 1. Therefore,

E(Nx) is generated by its global sections. Thus, If we fix a d+ r(N+1−g)-

dimensional k-vector space W, we have a surjection of vector bundles :

W ⊗OC(−Nx)� E

Therefore this surjection correspond to a closed point in QuotF
rt+d+r(1−g)
W⊗OC(−Nx)/C

.

The reason that we choose Hilbert polynomial as rt + d + r(1 − g) is the

following. Consider a rank r and degree d vector bundle E, and for a fixed

point x ∈ C, OC(x) is an ample line bundle. Then For a sufficiently large

integer t >> 0, we have H0(F ⊗OC(x)t) = r(µ+1+ t−g) = rt+d+ r(1−g)
by Riemann-Roch. Therefore we choose the Hilbert polynomial to be rt +
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d + r(1 − g). We usually write d + r(1 − g) := χ. Therefore we have the

Hilbert polynomial rt+ χ.

Now we have natural SL(W)-action on this Quot scheme Quotrt+χW⊗OC(−Nx)/C

by definition. We will obtain the moduli space of vector bundles on the curve

C with rank r, degree d as a good quotient of this Quot scheme for SL(W)-

action. For this goal. We should show that GIT semi-stable locus in the

Quot scheme coincides with the locus of points comes from semi-stable vec-

tor bundles. The following proposition helps us to compare these two loci.

Proposition 2.5.1. [66, Proposition 7.1.1, Proposition 7.1.3] We can choose

a sufficiently large integer N(r, d) satisfies the following:

1. For any N ′ ≥ N(r, d), and a coherent sheaf E with rank r and degree

d and a fixed point x ∈ C, E is locally free and semi-stable if and only

if all coherent subsheaves of E ′ ⊂ E with rank r ′ satisfies :

h0(C, E ′(N ′x)) ≤ r
′

r
h0(C, E(N ′x)).

2. For any integer N ′ ≥ N(r, d) and a vector bundle E with rank r and

degree d, and for any nonzero subsheaf E ⊂ E of rank r ′ and a fixed

point x ∈ C, µ(F ′) = µ(F) if and only if

h0(C, E(N ′x))
r ′

=
h0(C, E(N ′x))

r
.

Now we recall the construction of Quot scheme in Section 2.2.2. For suf-

ficiently large integer N ′, there is an embedding of functors :

TN ′ : Quot
rt+χ
W⊗OC(−Nx)/C

� // Grass (H⊗ Γ(C,OC((N ′ −N)x), rN ′ + χ)

[p :W ⊗OC(−Nx)� E] � //
[
W ⊗ H0(C,OC((N ′ −N)x)� H0(C, E(N ′x))

]
.
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When we write DN ′−N := H0(C,OC((N ′ −N)x), then we can rewrite

Grass (W ⊗ Γ(C,OC((N ′ −N)x), rN ′ + χ) by Grass (W ⊗DN ′−N, rN
′ + χ).

Based on Proposition 2.3.16, we can show the following lemma, which

gives us the description about stable and semi-stable locus in the TN ′-embedding

under SL(W)-action.

Lemma 2.5.2. [66, Lemma 7.2.2] For a point x = [W ⊗ OC(−Nx) � E ] ∈
Quotrt+χW⊗OC(−Nx)/C

and a sufficiently large integer n >> 0, the following state-

ments are equivalent

1. The point x is semi-stable(resp. stable) under the functor Tn and the

SL(W)-action.

2. For any nonzero proper sub-vector space W ′ ⊂W, and its image sub-

coherent sheaf E ′ ⊂ E , it satisfies the following equation :

HP(E ′)
dimW ′ ≥ (resp.>)

rt+ χ

dimW

where HP(E ′) is the Hilbert polynomial of the sub-coherent sheaf of

E ′.

(Sketch of the proof). Assume that the point x is semi-stable. Using [66,

Lemma 7.2.3] for boundedness, we can show that there is an integer N ′(r, d)

such that H1(C, E(n)) = H1(C, E ′(n)) = 0 and the canonical morphism W ′⊗
Dn−N � E ′(n) is surjective for any n > N ′(r, d).

Then from Proposition 2.3.16, we can directly induce that :

h0(C, E ′(nx))
dimW ′ ≥ h0(C, E(nx))

dimW

for all n > N ′(r, d). Therefore we obtain

HP(E ′)
dimW ′ ≥

rt+ χ

dimW
.
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The inverse direction is straightforward.

We can induce another description about stable and SL(W)-semistable

locus.

Lemma 2.5.3. [66, Lemma 7.2.4] For a point x = [W ⊗ OC(−Nx) � E ] ∈
Quotrt+χW⊗OC(−Nx)/C

, there exist an integer N ′′(r, d) such that for every n >

N ′′(r, d), x is semi-stable with respect to the SL(W)-action if and only if E
is semi-stable coherent sheaf and the natural morphism :

W ⊗Dn−N → H0(C, E(nx))

is an isomorphism.

Furthermore, we can find 1-1 correspondence between sub-coherent sheaves

of semi-stable coherent sheaves with same slope and sub-vector spaces of sec-

tions.

Lemma 2.5.4. [66, Lemma 7.2.5] Consider a point x = [W ⊗ OC(−Nx) �
E ] ∈ Quotrt+χW⊗OC(−Nx)/C

. We note that E is a semi-stable coherent sheaf by

Lemma 2.5.3. Let E ′ ⊂ E be a coherent subsheaf with rank E ′ > 0 and

µ(E ′) = µ(E). Then E ′ is generated by a vector subspace W ′ ⊂ W which

satisfies :
HP(E ′)
dimW ′ =

HP(E)
dimW

.

Explicitly, we have W ′ = H0(C, E ′(Nx)) for such W ′ ⊂W.

Finally, we define the projective space M(r, d) :=
(

Quotrt+χW⊗OC(−Nx)/C

)ss
//

SL(W). Consider a point x = [W ⊗OC(−Nx)� E ] ∈
(

Quotrt+χW⊗OC(−Nx)/C

)ss
.

Then by Lemma 2.5.3, 2.5.3, 2.5.4, We can show that E is a semi-stable

vector bundle with rank r and degree d. Similarly, we can also show that if

x ∈
(

Quotrt+χW⊗OC(−Nx)/C

)s
, E is a stable vector bundle with rank r and degree

d. Furthermore, we have the following theorem.
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Theorem 2.5.5. [66, Theorem 7.2.1] Consider a functor M(r, d) : Sch/k→
Sets which correspond a parameter scheme S to a set of isomorphism class

of vector bundle E on S × C such that each fiber E|x over x ∈ C are semi-

stable bundle of degree d.

Then M(r, d) is a coarse moduli space of the functor M(r, d). A closed

point of M(r, d) correspond to an S-equivalence class of semi-stable bundles

of rank r and degree d. Furthermore, its stable locus

Ms(r, d) =
(

Quotrt+χW⊗OC(−Nx)/C

)s
// SL(W) ⊂ M(r, d) parametrizes isomor-

phism classes of stable vector bundles.

We note that if two semi-stable bundle E and E ′ with rank r and degree

d are S-equivalent, then we can check that closures of their SL(W)-orbit in

some embedding in Grassmannian has nonzero intersection. So by Proposi-

tion 2.3.9, E and E ′ induce the same point in M(r, d).

2.5.2 Smoothness of Ms(r, d)

Contents in this section mostly follow [66, Part I, Chapter 8]. In this

section, we show the smoothness of the stable locus

Ms(r, d)
open
⊂ Ms(r, d).

Let us introduce the main result of this subsection

Proposition 2.5.6. [66, Theorem 8.3.2] If Ms(r, d) is nonempty, then it is

a smooth (r2(g− 1) + 1)-dimensional variety where g = g(C). Furthermore,

for a closed point [F] ∈Ms(r, d), represented by a stable bundle F, we have

a natural identification for the tangent space of Ms(r, d) at the point [F] as

follows

T[F]M
s(r, d) ∼= Ext1(F, F).

For a reader who is familiar with the deformation theory of the vector bun-

dle, the above result on tangent space looks clear. It seems that the result
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directly follows from the result on the extension of vector bundle [42, The-

orem 7.3]. But in fact, it is not so clear since Ms(r, d) is not always a fine

moduli. In fact, Ms(r, d) is a fine moduli space if and only if (r, d) = 1 [82,

Theorem 5.12], [88].

So we prove the theorem from the GIT quotient construction of Ms(r, d).

For a point [E] ∈Ms(r, d), we can represent it as a point in the Quot scheme

Quotrt+χW⊗OC(−Nx)/C
:

W ⊗OC(−Nx)� E.

Let K be the kernel of the above surjection so we have the short exact se-

quence 0 → K → W ⊗ OC(−Nx) → E → 0. Then by taking the functor

Hom(−, E), we have the following long exact sequence :

0→ Hom(E, E) ∼= k→ Hom(W ⊗OC(−Nx), E) ∼= End(W)→ Hom(E, K)→ Ext1(E, E)→W ⊗k H
1(E(Nx)) = 0 (2.4)

Then by the result in section 2.2, Proposition 2.2.7 on the tangent space

of Quot schemes, we have T[E]Quotrt+χW⊗OC(−Nx)/C
= HomOC

(K, E).

Since End(W)/k is isomorphic to the lie algebra of SL(W), which we use

in the GIT quotient construction Ms(r, d) :=
(

Quotrt+χW⊗OC(−Nx)/C

)s
// SL(W),

we need to know the information about the stabilizer subgroup of GL(W)

at the point [E]. We state the following result :

Proposition 2.5.7. [66, Lemma 8.3.1] The stabilizer subgroup of GL(W)-

action on Quotrt+χW⊗OC(−Nx)/C
at the point [W ⊗ OC(−Nx) � E] is the auto-

morphism group AutOC
(E, E) of the sheaf E.

Proof of Proposition 2.5.6. Let E is a stable bundle, then the stabilizer sub-

group is isomorphic to k∗. Therefore, the stabilizer subgroup of SL(W)-subgroup

at the point [E] where E is a stable bundle, is Z2, which has endomorphism

group 0. Therefore, from the sequence (2.4) and the above argument, we

conclude that T[E]M
s(r, d) ∼= T[E]Quotrt+χW⊗OC(−Nx)/C

/End(SL(W)) = Ext1(E, E).
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By using the local-to-global spectral sequence, we have dimExt1(E, E) =

H1(C,Hom(E, E)). Since endomorphism bundle Hom(E, E) has rank r2 and

degree 0, and since H0(Hom(E, E)) = Hom(E, E) = k, by Riemann-Roch for-

mula, we have dimExt1(E, E) = r2(g− 1) + 1. Therefore, Ms(r, d) has same

tangent bundle dimension at every point. Therefore, by generic smoothness,

Ms(r, d) is smooth with dimension r2(g− 1) + 1.

2.5.3 Various properties

In this subsection, we introduce various geometric properties of the mod-

uli space M(r, d). In addition to the smoothness result of Ms(r, d) in the

previous subsection, the following proposition figures out exactly what is the

singularity of the moduli space M(r, d).

Proposition 2.5.8. [79, Theorem 1] Except for n = 2, g = 2 case, singular

locus of M(r, d) is exactly the locus of strictly semi-stable bundles.

Fortunately, regardless of (r, d), we have the irreducibility of the moduli

space M(r, d).

Proposition 2.5.9. [66, Theorem 8.5.2] The moduli space M(r, d) is an ir-

reducible variety.

We often overlook that non-emptiness of M(r, d) is not a trivial fact. In

fact, moduli space M(r, d) is empty if the curve C is the projective line P1,
r ≥ 2 and if r does not divides d.

Proposition 2.5.10. [66, Theorem 8.6.1, Theorem 8.6.2],[2, Theorem 7]

1. If the curve C has genus g(C) ≥ 2, stable locus Ms(r, d) is non-empty

for all (r, d).

2. If the curve C is elliptic, then M(r, d) is non-empty for all (r, d).
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As we commented above, stable locus Ms(r, d) is a fine moduli space,

i.e. it carries universal family if and only if (r, d) = 1.

Proposition 2.5.11. [82, Theorem 5.12],[88, Theorem 2] If the curve C has

genus g(C) ≥ 2, then the open sublocus Ms(r, d) is a fine moduli space if

and only if (r, d)=1

2.6 Examples of Fano varieties

In this section, we introduce past results on the geometry of Fano vari-

eties which will be the main objects of our paper.

2.6.1 Moduli space N of rank 2 stable vector bundle on

a curve with fixed determinant

Let C be a smooth projective curve with genus g ≥ 4 over C and M(r, d)

be the moduli space of stable rank r and degree d vector bundles over C,

which we constructed in Section 2.5. Then there is a determinant map det :

K0(C) → Pic(C) induces a morphism M(r, d) → Picd(C) [66, Chapter 8.6]

from the moduli space of vector bundles to the Picard group of degree d line

bundles.

For a moduli functor ML(r, d) : Sch/k→ Sets which assigns a parameter

scheme S to a set of isomorphism class of vector bundle E on S×C such that

its determinant ∧rE is isomorphic to π∗2L⊗π∗1M where π1, π2 : S×C→ S,C

are projections and M is a line bundle on S. Seshadri [92] showed that there

exist a coarse moduli space ML(r, d) of the moduli functor ML(r, d) which

parametrizes S-equivalence class of semi-stable bundles with fixed determi-

nant L.

Proposition 2.6.1. [92, Theorem 8.1] A moduli functor ML(r, d) has a

coarse moduli space ML(r, d) which is a normal projective variety parametriz-
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ing S-equivalence class of semi-stable rank r, degree d vector bundles which

has fixed determinant line bundle L ∈ Picd(C).

By construction in [92], we have M(r, d) ×Picd(C) [L] = ML(r, d). Since

M(r, d) is a fine moduli space i.e. carries a universal family for a pair (r, d) =

1, ML(r, d) is also a fine moduli, which carries a universal family which is

a pull-back of a universal family on M(r, d).

Moreover, M(r, d) → Picd(C) induces a map between tangent spaces

Ext1(E, E) ∼= H1(C,Hom(E, E)) → H1(C,OC) which is obtained from the

trace map Hom(E, E)
tr−→ OC. Since this map is surjective with constant

codimension, we conclude that the map M(r, d) → Picd(C) is smooth [43,

Chapter III, Proposition 10.4], therefore we conclude that ML(r, d) is smooth

with dimension r2(g− 1) + 1− g = (r2 − 1)(g− 1).

Furthermore, in [29], Drezet and Narasimhan found out the Picard group

of ML(r, d) is isomorphic to Z, where its generator is a divisor called gen-

eralized theta divisor.

Proposition 2.6.2. [29, Theorem B] Let, the curve C has genus g(C) ≥ 2.
Then we have the following.

1. We define the generalized theta divisor Θ to be the following Brill-

Noether type divisor :

Θ = {E ∈ N |H0(C, E⊗ L) 6= 0}

for any degree g line bundle L, i.e. it does not depend on the choice

of the degree g line bundle L.

2. The Picard group of the moduli space ML(r, d) is given by Pic(ML(r, d)) ∼=

Z = 〈Θ〉.

Moreover, for (r, d) = 1, Ramanan [88] figured out that canonical class

of the smooth variety ML(r, d) is equal to −2Θ, which says that ML(r, d)

is a Fano variety.
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Proposition 2.6.3. [88, Theorem 1] The canonical class KML(r,d) is equal to

−2Θ.

Since we know that ML(r, d) is projective by Seshadri [92, Theorem 8.1],

it is natural to curious about the very ampleness about the divisor kΘ. We

have an answer for the case r = 2 and d is odd by Brivio and Verra.

Proposition 2.6.4. [7, Theorem 1] For r = 2, d is odd, the curve C has

genus g(C) ≥ 2, then the generalized theta divisor Θ is very ample.

For small (r, d), we have explicit information about ML(r, d). The fol-

lowing results are due to Newstead and Narasiman-Ramanan.

Proposition 2.6.5. [79, Theorem 3, Remarks 1], [81, Theorem 1], [78] For

the r = 2 case, we have the following results:

1. If g(C) = 2, ML(2, 0) ∼= P3.

2. If g(C) = 2, ML(2, 1) is a smooth complete intersection of two quadric

hypersurfaces in P5.

3. If g(C) = 3 and C is not hyperelliptic, then ML(2, 0) is a coble quartic

[25] in P7, which is singular along the Kummer variety KC ⊂ML(2, 0).

On the other hand, we have a result on the rationality of the moduli

space ML(r, d) by King and Schofield.

Proposition 2.6.6. [60, Theorem 1, Theorem 2] When g(C) ≥ 2, we have

the following.

1. The moduli space ML(r, d) and the product M(m, 0)×P(r2−m2)(g−1) are

birational when m = (r, d).

2. If (r, d) = 1, then the moduli space ML(r, d) is rational.
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Finally, we define a space N :=MOX(−x)(2,−1), which is a moduli of rank

2 stable vector bundles on the smooth projective curve X with determinant

g(X) ≥ 4 over C with a fixed determinant line bundle OX(−x), where x ∈ X
is a fixed point. This space will be one of the main object of our story.

By the results we summarized above, N is a smooth projective Fano va-

riety with Picard group PicN ∼= Z = 〈Θ〉, where Θ is a generalized theta

divisor, which is very ample. We also have KN = −2Θ. Moreover, N is a

fine moduli space and N is a rational variety.

As we finish this subsection, we strongly recommend the lecture note,

‘Vector Bundles on Algebraic Curves’ by P.E. Newstead which is good for

review the result from past to the present on the study of moduli space of

vector bundles on algebraic curves even though it is not published.

2.6.2 Hyperplane sections of the Grassmannian Gr(2, 5)

Let G = Gr(2, 5) and we denote by Ym the intersection of the Grassman-

nian Gr(2, 5) ⊂ P(
5
2)−1 = P9 and 6 −m general hyperplanes. Then Ym is a

smooth Fano variety of dimension m.

We note that for any choice of general 6 − m hyperplane sections, the

smooth Fano variety Ym the intersection of Gr(2, 5) with these 6−m hyper-

plane sections does not depend on the choice of 6−m hyperplanes up to the

projective equivalence given by PGL(C5)-action. For m = 3 case, the proof

is appeared in [91, Lemma 2.1] and [52, Chapter II, theorem 1.1].

Then, hyperplane sections of Grassmannian Gr(2, 5) has many interesting

properties. One of them is about their automorphism groups. More gener-

ally, Piontkowski and Van de Ven [85] studied automorphism groups of hy-

perplane sections of Gr(2, n). In particular, for Y3 = Gr(2, 5)∩H1 ∩H2 ∩H3

for general hyperplanes H1, H2, H3 ⊂ P9, its geometry well explained in the

book of Cheltsov and Shramov, ‘Cremona Groups and the Icosahedron’ [14].

We introduce part of these results in this section.
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For hyperplane sections of Grassmannian Gr(2, n), we have the following

results for their automorphism groups by Piontkowski and Van de Ven.

Proposition 2.6.7. [85, Proposition 2.1, Theorem 3.5, Theorem 6.6]

1. The automorphism group Aut(Gr(2, 2n)∩H) where H is a general hy-

perplane section of the Grassmannian under the Plüker embedding is

Sp(2n,C)/Z2. Furthermore, its action on Gr(2, 2n)∩H is homogeneous.

2. When n ≥ 3, the automorphism group Aut(Gr(2, 2n)∩H1∩H2) where

H1, H2 are 2 general hyperplane sections of the Grassmannian under

the Plüker embedding has SL(2,C)n/Z2 as a normal subgroup. More-

over, its quotient group Aut(Gr(2, 2n)∩H1∩H2)/ (SL(2,C)n/Z2) is iso-

morphic to the symmetric group S3 for n = 3, isomorphic to Z2 × Z2
for n = 4, and trivial for n ≥ 5.

Proposition 2.6.8. [85, Proposition 5.2, Theorem 6.6]

1. The automorphism group Aut(Gr(2, 2n+ 1)∩H) where H is a general

hyperplane section of the Grassmannian under the Plücker embedding

is isomorphic to an extension of Sp(2n,C) × C∗/Z2 by C2n, which is

also isomorphic to the group :


0

T
...

0

a0 . . . a2n−1 b


∣∣∣∣∣∣∣
T ∈ Sp(2n,C)

ai ∈ C
b ∈ C∗

 /{1,−1}.

2. The automorphism group Aut(Gr(2, 2n+1)∩H1∩H2) where H1, H2 are

a 2 general hyperplane sections of the Grassmannian under the Plücker

embedding is isomorphic to an extension of PGL(2,C) by the semi-

direct product C2n n C∗. More precisely, the automorphism group is

59



Chapter 2. Preliminaries

isomorphic to the subgroup of PGL(2n+ 1,C), whose elements are of

the following form : (
cMn 0

N Mn+1

)(
tt−1n 0

0 tn+1

)

where c ∈ C∗, N ∈ Mn+1,n(C) such that its entry satisfies nij = nkl

whenever i + j = k + l, and tn are transformation induced from the

PGL(2,C)-action on the standard rational normal curve in Pn−1, tn+1
is defined in the same manner.

For a general hyperplane section H of the Grassmannian Gr(2, 2n + 1)

under the Plücker embedding, H is defined by the linear equation ΩH ∈
(∧2C2n+1)∨, which is a skew-symmetric 2-form. Since every skew-symmetric

2-form has even rank, ΩH should have a kernel 0 6= cH ∈ C2n+1. Since we

choose general hyperplane H, rankΩH = 2n and cH is unique up to scaling.

So we call the unique point [cH] ∈ P2n the center of H.

The following proposition says that the center point plays a key role in

the geometry of Gr(2, 2n+ 1) ∩H.

Proposition 2.6.9. [85, Proposition 5.3] The automorphism group

Aut(Gr(2, 2n+ 1)∩H) acts on Gr(2, 2n+ 1)∩H, which is a subspace of the

space of projective lines in P2n, with two orbits :

1. lines passing through the center point [cH].

2. lines which do not pass through the center point.

Moreover, if we consider two general hyperplane sections H1, H2 in the

Grassmannian Gr(2, 2n + 1), we can also consider P1-parameter [s : t] ∈ P1,
and for each [s : t] ∈ P1, we can assign a center point c[s:t] := c[sH1−tH2].

Since H1, H2 are general hyperplane sections, sH1 − tH2 are has rank 2n so

c[sH1+tH2] is well-defined. So, we have an assignment from P1 to the point in

P2n. Moreover, it is known that it is a rational normal curve of degree n.
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Proposition 2.6.10. [85, Proposition 6.3] The map defined above :

c : P1 // P2n

[s : t] � // [csH1−tH2
] := [ker(sH1 − tH2)].

is equal to the standard rational normal curve of degree n up to a linear

coordinate change.

We call this rational normal curve the center curve. This center plays a

key role in the geometry of Gr(2, 2n + 1) ∩ H1 ∩ H2. This is clear by [85,

Remark 6.7]. The following proposition is also an example.

Proposition 2.6.11. [85, Proposition 6.8] The automorphism group

Aut(Gr(2, 5) ∩H1 ∩H2) acts Gr(2, 5) ∩H1 ∩H2, which is a subspace of the

space projective lines in P4, with four orbits :

1. Projective tangent lines of the center conics in P4

2. Projective lines joining two distinct points on the center conics

3. Projective lines passing through the center conics and do not lie on the

plane which is spanned by the center conic

4. Projective lines do not intersect with the plane which is spanned by

the center conic.

When we consider three general hyperplane sections H1, H2, H3 in the

Grassmannian Gr(2, 2n + 1), we can consider a P2-parameter [s : t : u] ∈
P2 and for each [s : t : u] ∈ P2, we can assign a center point c[s:t:u] :=

v[sH1+tH2+uH3]. So, we have an assignment from P2 to the point in P2n. More-

over, for n = 2 case, is known that it is a degree 2 embedding with its image

isomorphic to the Veronese surface.
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Proposition 2.6.12. [85, Proposition 7.2] The map defined above :

P2 // P4

[s : t : u] � // [csH1+tH2+uH3
] := [ker(sH1 + tH2 + uH3)].

is a degree 2 embedding, and its image c(P2) is a Veronese surface.

We can view Gr(2, 5) as the space of projective lines in the projective

space P4. For a closed subvariety Z ⊂ PN, we can define the trisecant variety

Tri(Z) to be the following :

Tri(Z) := {` ∈ Gr(2,N+ 1) | #(Z ∩ `) ≥ 3} ⊂ Gr(2,N+ 1)

where #(Z ∩ `) is the scheme-theoretic intersection number of Z and the

projective line `. Then, we have the following description of the smooth Fano

threefold Y3 = Gr(2, 5) ∩H1 ∩H2 ∩H3 due to Castelnuovo.

Proposition 2.6.13. [85, Corollary 7.4],[11] The smooth Fano threefold Y3

is the trisecant variety Tri(c(P2)) of the Veronese surface c(P2) ⊂ P4.

As before, the image of the center map c, the Veronese surface c(P2)
plays a key role in the geometry of Y3 as follows. We introduce the following

result on the automorphism group of Y3.

Proposition 2.6.14. [85, Theorem 7.5] The automorphism group of the smooth

Fano threefold Y3 is isomorphic to the projective linear group PGL(2,C).

Then we can describe the orbit of this automorphism group action in Y3

via the geometry of the Veronese surface.

Proposition 2.6.15. [85, Proposition 7.6] The automorphism group Aut(Y3),

which is isomorphic to PGL(2,C) acts on Y3, which is a subspace of the

space of projective lines in P4 with three orbits :
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1. Projective lines intersect with the Veronese surface c(P2) at 3 distinct

points.

2. Projective lines tangent to the Veronese surface c(P2) at one point and

intersect to it at another point.

3. Projective lines intersect with the Veronese surface c(P2) at only one

point with multiplicity 3.

Moreover, we have another geometric interpretation about this three

PSL(2,C)-orbits.

Proposition 2.6.16. [71, Lemma 1.5], [51, Remark 3.4.6 and p.61], [91,

Proposition 2.13] The smooth Fano threefold Y3 has three Aut(Y3)-orbits :

1. Degree 6 rational normal sextic curve C ⊂ Y3 ⊂ P6. This orbit matches

to the orbit 3 in Proposition 2.6.15.

2. S \ C where S is some general quadric surface containing C in the

linear system OP9(2) in the Plücker embedding Gr(2, 5) ⊂ P9. This

orbit matches to the orbit 2 in Proposition 2.6.15.

3. Y3\S is a single orbit, isomorphic to PSL(2,C)/S4. This orbit matches

to the orbit 1 in Proposition 2.6.15.

On the other hand, Cheltsov and Shramov [14] concentrated on the icosa-

hedral group A5 embedded in the automorphism group Aut(Y3) ∼= PSL(S,C).
They found the following important result in the viewpoint of the birational

geometry.

Proposition 2.6.17. [14, Theorem 1.4.1] The smooth Fano threefold Y3 is

A5-birationally rigid, and the group of A5-invariant birational selfmaps on

Y3, BirA5(Y3) is isomorphic to the group S5 × Z2.
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Furthermore, using the A5-action on Y3, Cheltsov and Shramov revealed

many interesting geometric structures in the smooth Fano threefold Y3. For

example, they classified invariant cubic hypersurfaces and invariant low de-

gree curves under A5-actions in [14, Chapter 12, Chapter 13]. However, the

research in this direction is somewhat distant from the subject of our paper,

so we will stop here, despite interest of their study.
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Moduli spaces of smooth rational

curves in Fano varieties

The results presented in this chapter are based on the results obtained

joint with Kiryong Chung and Jaehyun Hong in [19], the results of Castravet

[12, 13] and the results of Kiem [54]. In this chapter, we study moduli space

of degree d smooth rational curves Rd(V) where V is a Fano variety N or

Ym we studied in Subsection 2.6. Here, Rd(V) is defined to be an open sub-

scheme of the degree d map space Homd(P1, V), where Homd(P1, V) is con-

structed as an open subscheme in the Hilbert scheme of the graph space in

P × V [61, Chapter I, Theorem 1.10]. Before we study the moduli space of

rational curves in the smooth Fano variety N , we note that by the result

on local geometry of Hilbert schemes in Chapter 2, Proposition 2.2.8, all ir-

reducible components of Rd(N ) should have the dimension greater or equal

than 2d+ 3g(X) − 3.
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3.1 Moduli space Rd(N ) of smooth rational curves

in N
Contents in this section based on the results of Castravet [12, 13] and

the results of Kiem [54]. In the work [13], Castravet classified all irreducible

components of the moduli space Rd(N ) which parametrizes degree d smooth

rational curves P1 → N . Castravet’s work based on the classification of the

rank 2 vector bundles on the ruled surface by Brosius [9], [10]. But there

is a slight difference that Castravet considered a moduli space N1 of stable

rank 2 bundles on a smooth projective curve X with fixed determinant line N

bundle of degree 1. But we can easily compensate this difference by taking

dual. We first introduce Castravet’s result and we can obtain the result in

our setting by taking dual.

Before we introduce the result of Castravet, we introduce an important

notion called elementary modification.

Definition-Proposition 3.1.1. [54] Consider a rank 2 vector bundle E on

the curve X and let fix a point p ∈ X. Then we define Evp to be the kernel

of the surjective map vp in the following short exact sequence :

0 −→ Evp −→ E
vp−→ kp −→ 0. (3.1)

Then we can easily see that Evp is again a vector bundle such that det(Evp) =

det(E)(−p). We call Evp an elementary modification of the vector bundle E

at the point p.

We have Hom(E, kp) = Hom(E|p, kp) = k2 and Ker(vp) = Ker(λ·vp) for all

λ ∈ k∗. So we may choose vp in the equivalence class under k∗, [vp] ∈ (k2 \

{0})/k∗ ∼= P1. If we choose E to be a rank 2 stable bundle with determinant

O(p− x), then we can observe that there is an induced map P1 → N . It is

well known that this is a degree two smooth conic by Narasiman-Ramanan

[77] this is called Hecke curve.
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In the work of Kiem [54], he introduced a generalized notion of the Hecke

curve, the generalized Hecke curve. We explain it in a slightly different way.

First, consider a degree D effective divisor on X and consider a short exact

sequence :

0 −→ EvD −→ E
vD−→ OD −→ 0.

Then we can also show that EvD is a vector bundle with determinant det(EvD) =

det(E)(−D). We call EvD an elementary transform of the vector bundle E at

the divisor D.

Then, consider a projectivized extension group PExt1(F,OD), where F

is a rank 2 stable vector bundle such that its determinant line bundle is

O(−D− x). An elements of this space is an equivalence class of the follow-

ing extension sequence :

0→ OD → F ′ → F→ 0.

We can check that F ′ becomes a rank 2 vector bundle with determinant

O(−x). In fact, we can observe that (F ′)∨ can be obtained by an elementary

transform of F∨ at the exceptional divisor D.

Since vector bundles F ′ appeared in the extension space can be unstable,

we consider stable locus P(Ext1(F,OD))s. Next, consider the middle term of

the universal extension sequence [47, Example 2.1.12] on the projectivized

extension group P := P(Ext1(F,OD))

0→ p∗1OD → F → p∗1F⊗ p∗2OP(1)→ 0

on X×P where p1, p2 are projections to X and P, is a rank 2 vector bundle

on X× P. Then, its restriction F |X×Ps induces a morphism

P(Ext1(F,OD))s
HD,E−→ N .

since N is a fine moduli space. The degree of this curve will be turned out
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to be 2degD since the HE,D has degree 2degD.

Now we introduce the following result of Castravet, which classifies irre-

ducible components of the moduli space of degree d smooth rational curves

Rd(N1) in the moduli space of rank 2 vector bundles N1.

Proposition 3.1.2 (Castravet). [13, Theorem 1.5, Lemma 4.10, Lemma 4.12]

For all pair of integers (a, b) in the following :{
(a, b) | d ≥ a > d/2, d− a

2a− d
≥ b > 0

}
∪ {(d, 0)}

There exist irreducible subvarieties R(a, b) of Rd(N1) whose elements are ra-

tional curves f : P1 → N1 obtained by the completion of the following ratio-

nal map f ′ : P1 99K N1 obtained by the composition :

f ′ : P1 99K P(Ext1OX
(L−1 ⊗N, L))s ΨL−→ N1

where L ∈ Pic−b(X) is a degree −b line bundle, ΨL is a morphism induced by

extension which has degree 2b+ 1, taking a class of rank 2 vector bundle in

the middle term of an extension as its value and (Ext1OX
(L−1⊗N, L))s means

a stable part in the extension group. Here, if r = (d − a) − b(2a − d) = 0,

then f ′ is a regular map with degree 2a− d = d
2b+1

.

If d = 2k is even, there is an irreducible subvariety RE ⊂ Rd(P1,N1)
whose element is a rational curve obtained by the following composition :

f : P1 deg1−→ PExt1((E,OD))s
H ′D,E−→ N1

where the first arrow is a degree 1 regular map, D is a degree k divisor

on the curve X, E is a rank 2 stable vector bundle with the determinant

line bundle L(−D) and H ′D,E is a morphism induced by the extension, which

exactly coincide with the dual notion of the elementary modification.

Furthermore, we have the followings :
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1. For odd d, closures R(a, b) ⊂ Rd(N1) such that dimR(a, b) ≥ 2d+3g−3
are all irreducible components of Rd(N1).

2. For even d, R(a, b) satisfies the same dimension condition and RE are

all irreducible components of Rd(N1).

We note that since the map H ′E,D : Ext1((E,OD))s → N1 has degree 2k =

2degD, we conclude that the map HE,D we defined at the beginning has also

degree 2degD as we announced since it is the dual notion of H ′E,D.

As we previously announced, by taking dual, we obtain the result in our

setting, the information on irreducible components of Rd(N ). On the other

hand, for d ≤ 4 case, there is an independent result of Kiem [54, Proposition

3.6, Proposition 3.9] on the classification of the smooth rational curves P1 →
N . We summarize it to the following.

Proposition 3.1.3. [54, Proposition 3.6, Proposition 3.9], [13, Theorem 1.5,

Lemma 4.10, Lemma 4.12] We denote N the moduli space of rank 2 sta-

ble vector bundles on the curve X whose determinant are fixed line bundle

O(−x). For d ≤ 4, we have the following results on Rd(N )

1. For d = 1, R1(N ) is irreducible, which parametrizes degree 1 rational

curves obtained from the following composition :

f : P1 deg1−→ PExt1(L, L−1(−x))
ΨL−→ N

where L ∈ Pic0(X) is a degree 0 line bundle.

2. For d = 2, R2(N ) has two irreducible component R2(0) and R2,E. Here,

R2(0) parametrizes degree 2 rational curves obtained from the following

composition :

f : P1 deg2−→ PExt1(L, L−1(−x))
ΨL−→ N
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where L ∈ Pic0(X) is a degree 0 line bundle, and R2,E parametrizes

degree 2 rational curves which is a form of Hecke curves

3. For d = 3, R3(N ) has two irreducible component R3(0) and R3(1).

Here, R3(0) parametrizes degree 3 rational curves obtained from the

following composition :

f : P1 deg3−→ PExt1(L, L−1(−x))
ΨL−→ N

where L ∈ Pic0(X) is a degree 0 line bundle, and R3(1) parametrizes

degree 3 rational curves obtained from the following composition :

f : P1 deg1−→ P(Ext1(L, L−1(−x)))s
ΨL−→ N

where L ∈ Pic1(X) is a degree 1 L line bundle.

4. For d = 4, R4(N ) has two irreducible component R4(0) and R4,E. Here,

R4(0) parametrizes degree 4 rational curves obtained from the following

composition :

f : P1 deg4−→ PExt1(L, L−1(−x))
ΨL−→ N

where L ∈ Pic0(X) is a degree 0 line bundle, and R4,E parametrizes

rational curves which is a form of generalized Hecke curves of degree

4.

Here, ΨL are morphisms induced from the middle terms of the universal ex-

tension sequence [47, Exmaple 2.1.12] of the projectivized extension groups

PExt1(L, L−1(−1)), which takes isomorphism class of a rank 2 vector bun-

dle in the middle term of the extension as a value. It has degree degΨL =

2degL+ 1. Moreover, when L ∈ Pic0(X), ΨL is a closed embedding.
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3.2 Rational curves in Gr(2, n)

Contents in this section based on the results obtained joint with Chung

and Hong [19]. In this section, we describe all degree ≤ 3 rational curves in

the Grassmannian Gr(2, n) explicitly. We can consider the space Gr(2, n)(n ≥
4) as the moduli space of lines in Pn−1 and keep in mind the following Plücker

embedding :

G := Gr(2, n) ↪→ P(∧2Cn) = P(
n
2)−1.

For fixed vector subspaces V1 ⊂ V2 ⊂ Cn, we define σc1,c2 = {[L] ∈ G|dim(L∩
Vi) ≥ i} by the Schubert variety where ci := n + i − dim(Vi) − 2, i =

1, 2.

To describe rational curves in the Grassmannian Gr(2, n), we need to

consider the Schubert varieties in Gr(2, n) in the following.

Definition 3.2.1. Consider a point ` ∈ Gr(2, n), which correspond to a pro-

jective line in Pn−1, and choose a flag p ∈ P1 ⊂ P2 ⊂ P3 ⊂ Pn−1. Then we

define the following Schubert varieties :

• σn−4,0 = {` | ` ∩ P2 6= ∅} (dim n, degn(n− 3)/2)

• σn−3,0 = {` | ` ∩ P1 6= ∅} (dim n− 1, degn− 2)

• σn−4,n−4 = {` | ` ⊂ P3} (dim 4, deg 2)

• σn−3,n−4 = {` | ` ∩ P1 6= ∅, ` ⊂ P3} (dim 3, deg 2)

• σn−2,0 = {` |p ∈ `} (dim n− 2, deg 1)

• σn−3,n−3 = {` | ` ⊂ P2} (dim 2, deg 1)

• σn−2,n−4 = {` |p ∈ ` ⊂ P3} (dim 2, deg 1)

• σn−2,n−3 = {` |p ∈ ` ⊂ P2} (dim 1, deg 1).
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Remark 3.2.1. We note that family of Schubert varieties σn−2,n−4 and σn−3,n−3

are all planes in Gr(2, n).

Remark 3.2.2. For a point p, a line `, a plane P, a 3-dimensional linear

space P3 ⊂ Pn−1, we sometimes use a notation σi,j(p), σi,j(`), σi,j(P), σi,j(P3),
σi,j(p,P3) which denotes a Schubert variety correspond to a flag containing

p, `, P, P3, {p} ⊂ P3 at each cases.

We can find the degrees and dimensions of the Schubert varieties from

[38, Page 196] and [34, Example 14.7.11]. When n = 5 case, these varieties

are free generators of the homology group H∗(Gr(2, 5),Z).
Next, we write S(C0, C1) to denote the rational normal scroll induced

from two smooth rational curves C0 and C1 (The curve C0 can be a point).

Proposition 3.2.3. Consider a degree d smooth rational curve C : P1 →
Gr(2, n) in the Grassmannian Gr(2, n) where the degree is defined via the

Plücker embedding.

1. If d = 1, then the image of C is equal to the the Schubert variety

σn−2,n−3(p0, P), which is a family of projective lines contained in a fixed

plane P ⊂ Pn−1 containing the fixed point p0 ∈ P.

2. If d = 2, then the image of C is either the family of projective lines in

the ruling of the rational normal scroll S(`0, `1) of two projective lines

`0 and `1, or the family of projective lines in the ruling of the rational

normal scroll S(p0, C0) for a fixed point p0 and a smooth conic C0 in

Pn−1.

3. If d = 3, then the image of C is either the family of projective lines in

the ruling of S(`, C0) for a projective line ` and a smooth conic C0, or

the family of projective lines in the ruling of the rational normal scroll

S(p0, C1) for a fixed point p0 and a twisted cubic C1 in Pn−1.
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Proof. Let ` be a projective line in Pn−1. Then hyperplanes in Pn−1 which

contains the line ` forms a sublocus in the dual projective space (Pn−1)∗

which is isomorphic to Pn−3. Thus, the sublocus of hyperplanes in Pn−1 which

contains one of a projective line in the family correspond to the curve C with

dimension ≤ n − 2. Therefore we can choose a point [Λ] ∈ (Pn−1)∗ of the

complement of this sublocus. Thus Λ ⊂ Pn−1 intersects each projective line

in the family correspond to C transversely by construction ([43, Chapter I,

Theorem 7.1]). We denote C← F
φ→ Pn−1 the family of projective lines cor-

respond to C, where π : F→ C is a P1-bundle and φ is the morphism such

that it is the natural embedding when restricted on each fiber of π. As a

result, we obtain a following fiber diagram :

f−1(Λ) //

��

Λ� _

��

F

π
��

φ
// Pn−1

C

Since each fibers π−1(x) intersect with the hyperplane Λ transversely, lo-

cally we can describe the bijection φ−1(Λ)→ F→ C by the following :

{(z1, z2) | z2 = g(z1)} ⊂ C2 → C, (z1, z2) 7→ z1.

When we let C0 := φ−1(Λ), then it is the image of a section s0 : C → F.

Consider a normal bundle NC0/F of C0 in F. Then we can observe that F

has the projective bundle structure F = P(OC ⊕ N) where N = s∗0NC0/F.

Let s1 : C ∼= PN ↪→ P(OC ⊕N) = F be the canonical section. Let L0 = (φ ◦
s0)
∗OPn−1(1) and L1 = (φ◦s1)∗OPn−1(1) so the induced morphism φ◦s0 : C→

Pn−1 becomes (a0 : a1 : · · · : an−1) where ai ∈ H0(C, L0) and φ◦s1 : C→ Pn−1

becomes (b0 : b1 : · · · : bn−1) where bi ∈ H0(C, L1). In summary, projective
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lines in the family F can be described by two-dimensional vector subspaces

of Cn the row space of the following matrix :(
a0 a1 a2 a3 · · · an−1
b0 b1 b2 b3 · · · bn−1

)

where ai ∈ H0(C, L0) and bi ∈ H0(C, L1) are sections of the line bundles L0

and L1. Thus we can write Plücker coordinates of C ⊂ Gr(2, n) ⊂ P(
n
2)−1 as

aibj−ajbi ∈ H0(C, L0⊗ L1). Hence, we observe that the degree of the curve

C is equal to :

degC = d0 + d1, where d0 = deg L0 and d1 = deg L1.

We recall the fact that C ∼= P1 since C is a smooth rational curve. If

d = 1, without loss of generality, it should be L0 = OP1 and L1 = OP1(1).

Therefore, If we let p0 = (a0 : a1 : · · · : an−1) and P be the projective plane

spanned by three vectors p0, (b0(0) : · · · : bn−1(0)) and (b0(1) : · · · : bn−1(1)),
we prove the case (1)

Next, consider the case d = 2. If d0 = 0 and d1 = 2, we may write

p0 = (a0 : a1 : · · · : an−1) and C0 = {(b0(t) : · · · : bn−1(t)) | t ∈ P1} and C

is the family of projective lines in the ruling of the rational normal scroll

S(p0, C0). If d0 = 1 and d1 = 1, the images `0 := f◦ s0(C) and `1 := f◦ s1(C)
are both projective lines and therefore C parametrizes lines passing through

a pair of points, one of them moving in the line `0 and the other one moving

in the line `1.

We can also show the d = 3 case in a similar manner so we omit here.

Remark 3.2.4. We can also prove Proposition 3.2.3 through Grothendieck’s

theorem that every vector bundle over the projective line P1 can be decom-

pose to a direct sum of line bundles.

For a degree d curve C : P1 f−→ Gr(2, n), consider the pull-back of the

rank 2 tautological bundle U ϕ
↪→ O⊕nG . Then we have a splitting of a vector
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bundle :

f∗U = OP1(−d1)⊕OP1(−d2)

where d1 + d2 = 2d.

Moreover, let us write the induced morphism φ∗U = OP1(−d1)⊕OP1(−d2)
f∗ϕ
↪→

O⊕nP1 as the following n× 2 matrix :(
a0 a1 a2 · · · an−1
b0 b1 b2 · · · bn−1

)

where ai ∈ H0(P1,OP1(d1)) and bi ∈ H0(P1,OP1(d2)).

Then the sections a0, a1, . . . , an−1 defines a degree d1 rational curve C1

and the sections b0, b1, . . . , bn−1 defines a degree d2 curve C2.

For a point x ∈ P1, the image f(x) ∈ Gr(2, n) is the row space of the

matrix : (
a0(x) a1(x) a2(x) · · · an−1(x)
b0(x) b1(x) b2(x) · · · bn−1(x)

)
,

which correspond to the projective line in Pn−1 joining two points [a0(x) :

a1(x) : · · · : an−1(x)] and [b0(x) : b1(x) : · · · : bn−1(x)]. Therefore the curve

the curve C is a family of lines in the ruling of the rational normal scroll

S(C1, C2). Especially, for d = 1 case, family of lines in the ruling S(p0, `) of

the point p0 and a line `, is equivalent to the family of lines in P which pass

through the point p0 ∈ P where P is the plane spanned by p0 and the line

`.

We note that even distribution types are general types among the split-

ting types. This says which types are general types in d = 2 and d = 3

case. In d = 2 case, the curve C which is a family of lines in the ruling

of rational normal scroll S(`0, `1) for two lines `0, `1 ⊂ Pn−1, is the general

type. In d = 3 case, the curve C which is a family of lines in the ruling of

rational normal scroll S(`, C0) for a line ` and a smooth conic C0 in Pn−1 is

the general type.
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By the Part 1 of Proposition 3.2.3, we can prove the following result

on the planes in the Grassmannian Gr(2, n), which we already mentioned in

Remark 3.2.1. When n = 5 case, the result in the following corollary already

appeared in [26], and we think that this result may be classical since it is

very simple. But we provide the proof for readers convenience.

Corollary 3.2.5. [26, Section 3.1] Every plane in the Grassmannian Gr(2, n)

arises in one of the following forms :

1. A family of projective lines in a fixed plane P ∈ Pn−1. This family of

lines is equal to the Schubert variety σn−3,n−3(P) ⊂ Gr(2, n).

2. A family of lines in a fixed three-dimensional space P3 ∈ Pn−1, pass-

ing through a fixed point p ∈ P3. This family of lines is equal to the

Schubert variety σn−2,n−4(p,P3) ⊂ Gr(2, n)(See Remark 3.2.2 about the

definition of this Schubert variety).

Proof. Let Λ be a plane in Gr(2, n). Consider two different lines `0, `1 ⊂ Λ.

Then by Proposition 3.2.3, the line `0 is a set of lines contained in a plane

P0 ⊂ Pn−1 which pass through a fixed point p0 ∈ P0 and the line `1 is a set

of lines in Pn−1 in a projective plane P1 ⊂ Pn−1 which pass through a fixed

point p1 ∈ P1. Let x := `0 ∩ `1 be the intersection point of two lines.

If p0 = p1 = p, then we can observe that the planes P0 and P1 inter-

sects along the line which corresponds to the point x ∈ Gr(2, n). There-

fore, P0 and P1 spans the three-dimensional space P3 ⊂ Pn−1. Therefore,

we can observe that the lines `0 and `1 contained in the Schubert variety

σn−2,n−4(p,P3), which is a plane in Gr(2, n). Therefore we have Λ = σn−2,n−4(p,P3).
If p0 6= p1, then we can observe that x is a line joining two points p0 and

p1, so we can write x = p0p1. Therefore, planes P0 and P1 intersects along

the line p0p1. If P0 6= P1, then we can choose two lines p0a ∈ `0 for a point

a ∈ P0 and p1b ∈ `1 for a point b ∈ P1, such that p0a ∩ p1b = ∅. Then

by Proposition 3.2.3, p0a, p1b ∈ Gr(2, n) cannot lie on a line in Gr(2, n).
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Therefore we have P0 = P1 = P. Then the lines `0 and `1 contained in the

Schubert variety σn−3,n−3(P), which is a plane in Gr(2, n). Therefore we have

Λ = σn−3,n−3(P).

Also, as a result of Proposition 3.2.3, we have the following geometric

descriptions for smooth rational curves in the Grassmannian Gr(2, n).

Proposition 3.2.6. (1) ([40, Exercise 6.9]) The variety R1(Gr(2, n)) of pro-

jective lines in G = Gr(2, n) is isomorphic to the flag variety Gr(1, 3, n),

which parametrizes flags V1 ⊂ V3 ⊂ Cn of Cn where dimVi = i.

(2) For a smooth conic curve C ⊂ Gr(2, n) ⊂ P(
n
2)−1, there exists a three

dimensional sub-linear space P3 ⊂ P(
n
2)−1 which contains every projective

lines in Pn−1 parametrized by the curve C.

(3) For a twisted cubic curve C ⊂ Gr(2, n) ⊂ P(
n
2)−1, there exist a pro-

jective line ` ⊂ Pn−1 which intersects all projective lines parametrized by C

transversally in Pn−1.

Proof. By Proposition 3.2.3 (1), each projective line in Gr(2, n) corresponds

to the family of projective lines in a plane P2 ⊂ Pn−1 which contains a fixed

point p ∈ P2. On the contrary, such family of projective lines in Pn−1 deter-

mines a projective line in Gr(2, n).

By Proposition 3.2.3 (2), a conic C in the Grassmannian Gr(2, n) is the

family of lines in the ruling of a rational normal scroll S(`0, `1) for projec-

tive lines `0, `1 in Pn−1 or a rational normal scroll S(p0, C0) for a point p0

and a smooth conic C0 in Pn−1. Hence, if we choose a P3(may not unique)

containing p0 and C0 in the former case or P3 containing `0 and `1 in the

latter case, then all lines of the family parametrized by the curve C should

be contained in the linear space P3.
By Proposition 3.2.3 (3), a twisted cubic C in the Grassmannian Gr(2, n)

is the family of lines in the ruling of a rational normal scroll S(`, C0) for

a projective lines ` and a smooth conic C0 in Pn−1 or a rational normal

scroll S(p0, C1) for a single point p0 and a twisted cubic C1 in Pn−1. If we
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choose the projective line ` in the former case or any projective line ` passing

through the point p0 in the latter case, it is clear that every line of the

family parametrized by C should intersect with the line `.

The above Proposition leads to the following definition.

Definition 3.2.2. (1) We call the point p in Proposition 3.2.3 (1), the vertex

of the projective line in Gr(2, n).

(2) We call the three-dimensional linear subspace P3 in Proposition 3.2.6

(2), an envelope of the conic C ⊂ Gr(2, n).

(3) We call the line ` in Proposition 3.2.6 (3), an axis of the twisted

cubic C ⊂ Gr(2, n).

Corollary 3.2.7. (cf. [40, Exercise 6.9] and [16]) We denote Rd(Gr(2, n))

the moduli of degree d smooth rational curves in Gr(2, n) where d ≤ 3,

n ≥ 4. Then we have the followings :

1. We have a regular map ζ1 : R1(Gr(2, n))→ Pn−1 = Gr(1, n) that sends

each projective lines in G to its vertex. Then, each fiber of ζ1 over

V1 ∈ Gr(1, n) is isomorphic to Gr(2,Cn/V1).

2. We have a rational map ζ2 : R2(Gr(2, n)) 99K Gr(4, n) that sends

each smooth conic in Gr(2, n) to its envelopes. A fiber of the ratio-

nal map ζ2 over a point V4 ∈ Gr(4, n) is isomorphic to the moduli

space R2(Gr(2, V4)) of smooth conics in the Grassmannian Gr(2, V4) ∼=

Gr(2, 4).

3. We have a rational map ζ3 : R3(Gr(2, n)) 99K Gr(2, n) that sends each

twisted cubic in G to its axis. A fiber of the map ζ3 over a point

` ∈ Gr(2, n) is the moduli space R3(σn−3,0(`)) of twisted cubic curves

in the Schubert variety σn−3,0(`) in Remark 3.2.2.

Proof. (1) By Proposition 3.2.6 (1), the map ζ1 is, in fact, the forgetful map

R1(Gr(2, n)) = Gr(1, 3, n) → Gr(1, n) which is given by (V1, V3) → V1. The
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choice of the vector space V3 which contains V1 is clearly parametrized by

Gr(2,Cn/V1).
(2) General smooth conic C is a family of lines of the ruling of a ra-

tional normal scroll S(`0, `1) of two lines `0, `1 in the projective space Pn−1

by Proposition 3.2.3. Then since C is general, lines `0 and, `1 span a three-

dimensional linear subspace P3 = P(V4) ⊂ Pn−1. Thus, the smooth conic C

should be contained in the Grassmannian Gr(2, V4), which is a space of lines

in P4, a fiber of the map ζ2 over V4 ∈ Gr(4, n) is isomorphic to R2(Gr(2, V4)).

(3) General twisted cubic curve C is determined by (`, C1) in the nota-

tion of the part (3) of the Proposition 3.2.3. The locus of projective lines

intersecting ` is the Schubert variety σn−3,0(`). Thus the curve C should be

contained in the Schubert variety σn−3,0(`) and therefore a fiber of the map

ζ3 over ` ∈ Gr(2, n) is isomorphic to R3(σn−3,0(`)).

3.3 Moduli space Rd(Y
m) of smooth rational curves

in Ym

Every scheme in this section is defined over C and the Grassmannian

Gr(`, n) means the moduli space of `-dimensional subspaces of the vector

space Cn.

We write {e0, e1, · · · , en−1} as the standard basis of the n-dimensional vector

space Cn unless we mention it otherwise. We denote pi1i2···i` the projective

coordinates of the Plücker embedding Gr(`, n) ↪→ P(∧`Cn), which is called

Plücker coordinates.

Before we start to study the birational models of moduli space of rational

curves in linear sections of Grassmannians, we need to clarify their birational

types. In this section, we prove rationality results of the moduli spaces in

the following.

From now on, we adopt the following notations. We let G := Gr(2, 5)
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and Ym be the intersection of the Grassmannian Gr(2, 5) ⊂ P(
5
2)−1 = P5

with 6 − m general hyperplanes in P5. For example, Y6 = Gr(2, 5) = G,

Y5 = Gr(2, 5)∩H and Y4 = Gr(2, 5∩H1 ∩H2), where H, H1, H2 are general

hyperplanes in P5. Then Ym are smooth Fano varieties. We first introduce

the main result of this Chapter.

Theorem 3.3.1. The moduli space Rd(Y
m) of degree d smooth rational curves

in Ym are all rational varieties for 1 ≤ d ≤ 3 and 2 ≤ m ≤ 6.

We note that if m = 0, then Y0 is a five point set since the degree of

G in P9 is 5. If m = 1, then Y1 is a degree 5 smooth elliptic curve so that

there exist no rational curve in Y1.

Lemma 3.3.2. 1. The moduli of lines R1(Y
2) is a variety of 10 disjoint

reduced points.

2. The moduli of conics R2(Y
2) is the disjoint union of five P1− {0, 1,∞}.

3. The moduli of cubics R3(Y
2) is isomorphic to the disjoint union of four

P2 − P1 and P2 − {4 projective lines}.

4. There does not exist any planes in Y2.

Proof. We can observe that Y2 is a degree 5 del Pezzo surface and therefore

it is isomorphic to the blow-up of P2 at 4 general points. Hence, it is obvious

that there is no plain contained in Y2.

By adjunction, we can observe that a projective line in Y2 is equivalent

to a rational curve in Y2 which has self-intersection number −1. Since Y2 is

isomorphic to the blow-up of P2 at 4 general points, there are 4 exceptional

curves and strict transformations of 6 projective lines in P2 joining 2 out of

the 4 blow-up points. Thus, there are exactly 10 projective lines in the del

Pezzo surface Y2.

Again by adjunction, we can observe that a smooth conic in Y2 is equiv-

alent to a rational curve which has self-intersection number 0. They are

80



Chapter 3. Moduli spaces of smooth rational curves in Fano varieties

strict transformations of projective lines passing through one of the 4 blow-

up points or conics which pass through every blow-up point, minus projec-

tive lines passing through 2 out of the 4 blow-up points and the three sin-

gular conics passing through the 4 points.

Again by adjunction, we can observe that a twisted cubic curve in Y2 is

equivalent to a rational curve which has self-intersection number 1. They are

strict transformations of projective lines in P2 which does not pass through

any of the blow-up center points, or conics which pass through 3 out of the

4 blow-up points. The first family parametrized by P2 minus four projective

lines and the second family is parametrized by disjoint union of four P2 \
P1.

Proposition 3.3.3. ([30, 36, 48, 91]) For d = 1, 2, 3, the Hilbert schemes

Hd(Y
3) with Hilbert polynomials dt+ 1 in the Fano variety Y3 are equal to

the following :

H1(Y
3) ∼= P2, H2(Y

3) ∼= P4, and H3(Y
3) ∼= Gr(2, 5). (3.2)

In particular, moduli of smooth rational curves Rd(Y
3) for d ≤ 3 are

rational.

We will re-prove the same result on the moduli space of lines and the

moduli space of conics in Y3 in Section 4.5 through our own method.

Remark 3.3.4. The isomorphisms in (3.2) are defined by the composition

map ζd ◦ ι where ι : Rd(Y
3) ⊂ Rd(G) is the inclusion and the map ζd defined

in Corollary 3.2.7. We will geometrically describe the generic fibers of the

map ζd ◦ ι for d = 2, 3 (cf. [1, §1] and [91, Remark 2.47]) in the remainder

of this section. Since the Schubert variety σ1,1(P3) ∼= Gr(2, 4) has degree two

(Definition 3.2.1) in the Plücker embedding, the intersection σ1,1(P3) ∩H1 ∩
H2 ∩H3 is generically a conic in Y3.
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In a similar way, we can show that a Schubert variety σ2,0(P1) is con-

tained in some P6 ⊂ P9 and σ2,0(P1) is determined by three quadric equa-

tions using an explicit coordinate computation.

Hence the intersection σ2,0(P1) of hyperplanes H1∩H2∩H3 with P6 ⊂ P9

is generically a twisted cubic, and this is the generic fiber of the map ζ3 ◦ ι
(cf. [49, Proposition 4.5]).

Corollary 3.3.5. Rd(Y
m) are all irreducible for d ≤ 3 and m ≥ 3.

Proof. We recall that the spaces Ym does not depend on the generic choice

of the hyperplane sections Hi. We define

I = {(C,H) ∈ Rd(Ym)×Gr(13−m, 10)|C ⊂ H}

as the incidence variety of pairs of a curve C and a linear subspace H ⊂ P9

with codimension m−3. We observe that the second projection map p2 : I→
Gr(13 −m, 10) is dominant. Also, since the Grassmannian Gr(13 −m, 10)

is irreducible and the generic fiber p−12 (H) = Rd(Y
3) is irreducible for the

general linear subspace H (Proposition 3.3.3), the incidence variety I is irre-

ducible. Next, we observe that the first projection p1 : I→ Rd(Y
m) is domi-

nant since each degree d ≤ 3 smooth rational curve in Ym ⊂ Gr(2, 5) ⊂ P9 is

contained in some three dimensional linear subspace P3 and also contained

in some linear subspace H ⊂ P9 of codimension m−3. Since dominant image

of the irreducible space is irreducible, we prove the claim.

Combined with irreducibility result (Corollary 3.3.5), we prove the ratio-

nality of moduli spaces Rd(Y
m) for 1 ≤ d ≤ 3 and 4 ≤ m ≤ 6 in the follow-

ing lemmas.

Lemma 3.3.6. (cf. [59, Theorem 3] and [63, Theorem 4.9]) Recall that G =

Gr(2, 5). Then we have the following :

1. R1(G) = F(1, 3, 5) is isomorphic to a Gr(2, 4)-bundle on the projective

space P4;
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2. R2(G) is birational to a Grassmannian Gr(3, 6)-bundle on the Grass-

mannian Gr(4, 5) = P4;

3. R3(G) is birational to a Grassmannian Gr(4, 7)-bundle on the Grass-

mannian Gr(2, 5);

4. The Fano variety of projective planes in G is isomorphic to the disjoint

union F(1, 4, 5) tGr(3, 5).

Proof. By Proposition 3.2.3, a line in G is determined by a pair of a vertex

point p ∈ P4 and a projective plane P which contains the point p. So we

proved the Part 1.

By Corollary 3.2.7 (2), there is the rational map (envelope) ζ2 : R2(G) 99K

Gr(4, 5) ∼= P4 where its fiber over V4 ∈ Gr(4, 5) is R2(Gr(2, V4)). Via the

Plücker embedding, we have an identification Gr(2, V4) ⊂ P5 with the quadric

hypersurface in P5. Therefore a general plane P ⊂ P5 determines a smooth

conic Gr(2, V4)∩ P. Conversely, a smooth conic in Gr(2, V4) spans the plain

P ⊂ P5. Thus, ζ−12 (V4) is birational to Gr(3,∧2V4), which is a moduli space

of planes in the Plücker embedding P5 = P(∧2V4). Then, if we consider

U → Gr(4, 5), the tautological rank 4 vector bundle, a fiber of the relative

Grassmannian bundle Gr(3,∧2U) over V4 ∈ Gr(4, n) equals to Gr(3,∧2V4).

Therefore, R2(G) is birational to this Grassmannian bundle, so we proved

Part 2.

By Corollary 3.2.7 (3), there is the rational map (axis) ζ3 : R3(G) 99K

Gr(2, 5) where its fiber over ` ∈ Gr(2, 5) is R3(σ2,0(`)). Let ` = P(V2) for a

2-dimensional subspace V2 ⊂ C5, consider a kernel of the morphism KL :=

ker(∧2C5 → ∧2(C5/V2)). Then we can check that the Schubert variety σ2,0(`)

is a 4-dimensional space contained in P6 ∼= P(KL) ⊂ P9 and σ2,0(`) is de-

termined by three(hence linearly dependent) Plücker quadric equations. As

we explained in Remark 3.3.4, a general linear subspace P3 in P6 intersects

with the Schubert variety σ2,0(`) along with a twisted cubic curve. There-

fore, ζ−13 (`) is birational to Gr(4, KL).
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We denote Q the universal quotient bundle of the Grassmannian Gr(2, 5).

We define K7 to be the kernel of the natural surjection ∧2O⊕5Gr(2,5) � ∧2Q.

Then a fiber of the relative Grassmannian bundle Gr(4,K7) over ` ∈ Gr(2, 5)

over ` = P(L) ∈ Gr(2, 5) is Gr(4, KL). Therefore R3(G) is birational to this

Grassmannian bundle, so we proved the Part 3.

By Corollary 3.2.5, a plane in the Grassmannian Gr(2, 5) is either the

family of projective lines in P3 ⊂ P4 which pass through a fixed point p ∈ P3

or the family of lines in a projective plane P ∼= P ⊂ P4. The former type of

planes are parametrized by the flag variety F(1, 4, 5) and the latter type of

planes are parametrized by Gr(3, 5).

Lemma 3.3.7. 1. R1(Y
5) is birational to a Grassmannian Gr(2, 3) ∼= P2-

bundle on the projective space P4;

2. R2(Y
5) is birational to a Grassmannian Gr(3, 5)-bundle on the Grass-

mannian Gr(4, 5) ∼= P4;

3. R3(Y
5) is birational to a Grassmannian Gr(4, 6)-bundle on the Grass-

mannian Gr(2, 5).

Proof. Recall that Y5 = Gr(2, 5) ∩ H1 ⊂ P9 where H1 is a general hyper-

plane. Then the inclusion Y5 ⊂ G = Gr(2, 5) naturally induces the inclusion

between moduli of smooth rational curves :

ıd : Rd(Y
5) ↪→ Rd(G).

For a point p = P(V1) ∈ P4, consider the Schubert variety σ3,0(p) = {` ∈
Gr(2, 5) = G |p ∈ `} ∼= P3 which is embedded in the projective space P9 as

a linear subspace. Then, for a general point p, the Schubert variety σ3,0(p)

intersects the hyperplane H1 cleanly along a projective plane P2. Thus, a

general fiber of the rational map ζ1◦ı1 : R1(Y5)→ P4 is isomorphic to R1(H1∩
σ3,0(p)) ∼= Gr(2, 3) ∼= P2.
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A general fiber of the rational map ζ2◦ı2 : R2(Y5) 99K Gr(4, 5) ∼= P4 is iso-

morphic to R2(σ1,1∩H1) for the restricted hyperplane H1 of σ1,1 = Gr(2, 4) ⊂
P5. Since the Schubert variety σ1,1 is isomorphic to a quadric hypersurface in

the projective space P5, the fiber is birational to Gr(3, 5) which parametrizes

projective planes in H1∩P5. Let U be the tautological rank 4 vector bundle

on the Grassmannian Gr(4, 5) and we define K5 := ker{∧2U → ∧2O⊕5 → O}
as the kernel of the above composition morphism where the second arrow

in the sequence is induced from the linear equation of the hyperplane H1.

Then general points of the relative Grassmannian bundle Gr(3,K5) on the

Grassmannian Gr(4, 5) determine conics in Y5.

The general fiber of the rational map ζ3 ◦ ı3 : R3(Y5) 99K Gr(2, 5) is iso-

morphic to R3(σ2,0(P1)∩H1) for the restricted hyperplane H1 of P6. Through

the proof of Lemma 3.3.6, we know that a general linear subspace P3 in

H1 ∩ P6 determines a twisted cubic σ2,0(P1) ∩ P3 and therefore the general

fiber is isomorphic to Gr(4, 6). Thus, when we recall K7 the rank 7 bun-

dle defined in Part (3) of Lemma 3.3.6, then we define K6 as the kernel of

the following composition morphism K7 ↪→ ∧2O⊕5Gr(2,5) → OGr(2,5) where the

second arrow is induced by the linear equation of the hyperplane H1. Thus

the relative Grassmannian bundle Gr(4,K6) over the Grassmannian Gr(2, 5)

becomes the birational model for the moduli space of cubics R3(Y4).

Lemma 3.3.8. 1. R1(Y
4) is birational to the projective space P4;

2. R2(Y
4) is birational to a Grassmannian Gr(3, 4) = P3-bundle on the

Grassmannian Gr(4, 5) = P4;

3. R3(Y
4) is birational to a Grassmannian Gr(4, 5) = P4-bundle on the

Grassmannian Gr(2, 5).

Proof. The proof proceeds in the same manner as the proof for Lemma 3.3.7.

If we replace H1 with H1 ∩H2 and replace Y5 with Y4 where H1 and H2 are

general hyperplanes, then the rest of proof proceeds in the same manner.
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Combining Corollary 3.3.5 and the above lemmas, we finally obtain the

proof of Theorem 3.3.1 since the Grassmannian varieties Gr(`, n) are clearly

rational.
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Chapter 4

Compactifications of the moduli

spaces of smooth rational curves

in Ym

4.1 Various compactifications

The results presented in this chapter are based on the results obtained

joint with Chung and Hong in [19]. Let us start this chapter by introducing

some typical compactifications of moduli space of smooth rational curves in

the case of G = Gr(2, 5).

(1) Hilbert compactification: Since G = Gr(2, 5) ⊂ P9 is a projective

variety, Grothendieck’s existence theorem 2.2.4 guarantees us the existence

of the Hilbert scheme Hilbdt+1(G) of closed subschemes of the Grassmannian

G which have the Hilbert polynomial HP(t) = dt+1. We denote the closure

of Rd(G) in Hilbdt+1(G) by Hd(G) and we call it the Hilbert compactification

of Rd(G).

Before we introduce the Kontsevich compactification, we briefly introduce

the definition of the stable map space.
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Definition 4.1.1 (Stable map space). [35] Let X be a smooth projective

vareity over C, and β ∈ H2(X) be a homology class. Then, we call a pro-

jective genus g, n-pointed connected reduced nodal curve (C, p1, p2, . . . , pn)

where p1, . . . , pn are all distinct quasi-stable curve. Then we call a morphism

f : C → X a stable map with homology class β if automorphism group of f

preserving marked points p1, . . . , pn is finite and f∗[C] = β.

Then we consider a family of maps. For a scheme S, a family of quasi-

stable n-pointed genus g stable maps consist of the following data :

- Flat family of nodal curves π : C → S.

- Disjoint n-sections p1, . . . , pn : S→ C.
- Family morphism F : C → X

which satisfies for each closed point s ∈ S, the fiber (Cs, p1(s), . . . , pn(s))
and Fs : Cs → X is a stable map with homology class β. We define an iso-

morphisms between families, as an isomorphisms between families of curves,

which commutes with family morphisms and sections.

Then there exists a fine moduli space of this moduli problem, as a proper

Deligne-Mumford stack, we denote it by Mg,n(X,β). If the Picard group of X

is generated by the very ample line bundle on X, we use notation Mg,n(X, d),

where d means the homology class correspond to d times of the Poincare

dual of the very ample divisor.

From now on, we use notation M0,0(X,β) =: M0(X,β).

(2) Kontsevich compactification: We denote the closure of Rd(G) in the

stable map space M0(G,d) by Md(G) and we call it the Kontsevich com-

pactification of Rd(G).

(3) Simpson compactification: An arbitrary coherent sheaf E over the

Grassmannian G is called pure if for any nonzero subsheaf E ′ ⊂ E of E ,

its support Supp(E ′) and Supp(E) have same dimension.
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An arbitrary pure sheaf E is said to be semi-stable(resp. stable) if

HT(E ′)
r(E ′)

≤ (resp. <)
HT(E)
r(E)

for t >> 0

for any nontrivial subsheaf E ′, and the leading coefficient r(E) of the Hilbert

polynomial HP(E)(t) = χ(E⊗OG(t)). By replacing the subsheaves E ′ by quo-

tient sheaves E ′ and inverting the inequality, we have the equivalent defini-

tion of the (semi-)stability.

Next, under this stability condition, we can define a projective moduli

space SimP(G) of semi-stable sheaves on G which have Hilbert polynomial

P, called Simpson moduli space [65, 47, 94]. There is a natural embedding

Rd(G) ↪→ Simdt+1(G) which assigns a smooth rational curve C on G to its

structure sheaf OC. We note that OC is a stable pure sheaf. We denote the

closure of Rd(G) in the Simpson moduli space Simdt+1(G) by Simd(G) and

call it the Simpson compactification of Rd(G).

In the remaining sections, we deal with various compactifications of mod-

uli of smooth rational curves Rd(Y
m). We mainly study Hilbert compactifi-

cations Hd(Y
m) and their birational models in this Chapter.

4.2 Fano 6-fold G = Gr(2, 5) = G

Throughout this section, we fix notation G = Gr(2, 5) = Y6 and we con-

sider various compactification of moduli spaces of smooth rational curves

Rd(G) of degree 1 ≤ d ≤ 3 in G.

We first note that R1(G) = F(1, 3, 5) is already compact and therefore

H1(G) = M1(G) = P1(G) = R1(G) = Gr(1, 3, 5). So we have nothing to do

with for compactification of R1(G).
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4.2.1 Hilbert scheme of conics H2(G) in G = Gr(2, 5)

We start by discussing the birational geometry of the Hilbert scheme

H2(G) via the envelope map, which we defined in Corollary 3.2.7 (2) :

ζ2 : R2(G) 99K P4 = Gr(4, 5).

Therefore there is also a rational map ζ2 : H2(G)→ Gr(4, 5). So it is natural

to blow up the base locus of the rational map ζ2, to complete it as a regular

map. Then we should know what is the base locus of the map ζ2.

First, we can easily observe that the base locus of the rational map ζ2 :

R2(G) 99K P4 = Gr(4, 5) consists of the following types of conics : (1) A

conic which is the family of lines in the ruling of a rational normal scroll

S(`0, `1) of two projective lines `0, `1 ⊂ Pn−1 such that `0 and `1 lies in a same

projective plane P. (2) A conic which is the family of lines in the ruling of

a rational normal scroll S(p0, C0) for a fixed point p0 and a smooth conic

C0 ⊂ Pn−1, such that the point p0 lies in the plane P spanned by the conic

C0.

We can easily observe that both cases happen if and only if a smooth

conic lies in a σ2,2-plane, which correspond to the projective plane P ⊂
Pn−1. Therefore, we can guess that the base locus of the extended map

ζ2 : H2(G) 99K Gr(4, 5) is the locus of conics in the σ2,2-planes. We de-

note this locus as Γ2,2.

On the other hand, consider the relative Grassmannian Gr(2,U) on the

Grassmannian Gr(4, 5) where U is the tautological bundle over Gr(4, 5). Then

it is known by [61, Theorem 1.4], that we have a relative Hilbert scheme of

conics

ζ̃2 : H2(Gr(2,U))→ Gr(4, 5)

with the natural projection map ζ̃2. In this viewpoint, it is natural to guess

that BlΓ2,2H2(G) is isomorphic to Gr(2,U), and it is true by the following

theorem of Iliev and Manivel.
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Proposition 4.2.1. [50, Section 3.1, p. 9] Under the above definitions and

notations, there is a natural birational morphism

Φ : H2(Gr(2,U)) −→ H2(G)

which is a smooth blow-up along the sub-locus Γ2,2 consists of conics lying

on the σ2,2-planes.

Proof. The exceptional divisor of the blow-up is the P5-bundle on the flag

variety F(3, 4, 5). By its construction, the flag variety F(3, 4, 5) is canonically

isomorphic to the Gr(1, 2) ∼= P1-bundle on the Grassmannian Gr(3, 5) where

Gr(1, 2) parametrizes linear subspace P3 in P4 containing a fixed projective

plane P2 ⊂ P4. Next, to show that Φ is the smooth blow-up, we compute

the normal space of the blow-up locus Γ2,2 in H2(G) at arbitrary conic C.

From the following canonical exact sequence of normal bundles 0→ NC/P2 →
NC/G → NP2/G|C → 0 and the the structure sequence 0 → NP2/G(−2) →
NP2/G → NP2/G|C → 0, we compute the normal space as follows

NΓ2,2/H2(G),C
∼= H1(NP2/G(−2)).

By diagram chasing, we can check that NP2/G
∼= Q ⊗ O⊕2P2 for a σ2,2-type

plane P2 ⊂ G, where Q is the universal quotient bundle restricted on P2. So

we conclude that the later space H1(NP2/G(−2)) is isomorphic to H0(O⊕2P2 )
∨.

Furthermore, this space has a 1-1 correspondence with the choice of linear

subspace P3 in P4 which contains the fixed projective plane P2.

In Iliev-Manivel [50], the authors also explained blow-down of H2(Gr(2,U))
which contracts conics lies in σ3,1-type planes. We state it as follows.

Proposition 4.2.2. [50, Section 3.1, p. 9] We denote S(G) = Gr(3,∧2U)
the relative Grassmannian of the wedge product tautological bundle U over
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the Grassmannian Gr(4, 5). Then there is a blow-up morphism

Ξ : H2(Gr(2,U)) −→ S(G)

along the smooth blow-up center T(G), which equal to the relative Orthogo-

nal Grassmannian OG(3,∧2U) over the Grassmannian Gr(4, 5) ⊂ Gr(3,∧2U).
Here, orthogonal means orthogonal via the canonical symmetric 2-form on

∧2U .

Proof. Since blow-up morphisms satisfify the base change property, it is enough

to show the claim up to fiber. Then the fiberwise construction has been stud-

ied in [16, Lemma 3.9]. It should be noted that T(G) can be identified with

the disjoint union of two flag varieties, i.e. T(G) ∼= F(1, 4, 5)t F(3, 4, 5) ([46,

Proposition 4.16]).

Combining Proposition 4.2.1 and 4.2.2, we have the blow-up and blow-

down diagram in the following

H2(Gr(2,U))
Ξ

uu

Φ

**

ζ̃2

��

S(Gr(2, 5))

%-

H2(Gr(2, 5))
ζ2

tt

Gr(4, 5)

(4.1)

where U is the tautological rank 4 vector bundle over Gr(4, 5). This diagram

(4.1) plays a key role when we show smoothness of H2(Y
4), H2(Y

5) later.

Furthermore, it turned out that there is a similar blow-up blow-down di-

agram Kontsevich compactification M2(G) of R2(G) [16]. Since this contents

does not appear again in the remaining parts of this thesis, we only explain

the results briefly. We denote M2(Gr(2,U)) the moduli space of relative sta-

ble maps with genus zero and degree two. Let M2(Gr(2,U))→M2(Gr(2, 5))
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be the map induced by the natural inclusion U ↪→ O⊕5G . Furthermore we

denote by N(Gr(2, 5)) the moduli space of relative Kronecker quiver repre-

sentations N(U ; 2, 2), whose fibers are isomorphic to N(4; 2, 2) (for the def-

inition of the moduli space of Kronecker quiver representations, see [21]).

Then there is a map obtained by divisorial contraction M2(Gr(2,U)) →
N(Gr(2, 5)), which contracts the locus of stable maps such that their im-

ages are planar ([21]). In summary, we have the following diagram :

M2(Gr(2,U))

tt **

��

N(Gr(2, 5))

&.

M2(Gr(2, 5))

tt

Gr(4, 5).

Let U ↪→ O⊕5G be the tautological rank 2 subbundle over the Grassmannian

G = Gr(2, 5) and let O⊕5Y � U∨ its dual bundle. For a general smooth conic

P1 ∼= C ↪→ Gr(2, 5), the restriction of the bundle U∨ on C splits in the form

of U∨|C ∼= OP1(1) ⊕ OP1(1). Therefore, the dual map O⊕5Y � U∨ restricted

to C as O⊕5P1 � OP1(1) ⊕OP1(1). Hence general conics are parametrized by

an open subset of the following GIT quotient :

P(H0(P1,O(1))⊗ C2 ⊗ C5)//SL2(C)× SL2(C)

where the first SL2(C) acts on H0(P1,O(1)) in the canonical way and the sec-

ond SL2(C) acts on C2 by canonical matrix multiplication. This GIT quo-

tient is in fact isomorphic to the moduli of quiver representations N(5; 2, 2)

correspond to the quiver which has two vertices equipped with 2-dimensional

vector spaces on each of them and five edges between the two vertices. The

geometry of the stable map space M2(Gr(2, 5)) in the viewpoint of the min-

imal model program was studied in [23].
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On the other hand, since the Grassmannian G is a homogeneous variety,

there is the following results of Chung, Hong, and Kiem [18].

Proposition 4.2.3. [18, Theorem 3.7]

1. Sim2(G) ∼= H2(G).

2. The blow-up of the Kontsevich compactification M2(G) along the sub-

locus of stable maps whose image is a projective line in the Plücker

embedding G ↪→ P9 and the smooth blow-up of the Simpson compacti-

fication Sim2(G) along the sub-locus of semi-stable pure sheaves whose

support is a projective line in the Plücker embedding G ↪→ P9. In sum-

mary, we have a blow-up and blow-down diagram :

M̃2(G)

zz %%

M2(G) Sim2(G)

4.2.2 Hilbert scheme of twisted cubics H3(G) in G = Gr(2, 5)

Because the Grassmannian Gr(k, n) can be represented by a quotient of a

Matrix group Mk+n,k+n(C) by a parabolic subgroup of block upper triangular

matrices of the form : (
Mk ∗
0 Mn

)
where Mk is a k×k-matrix and Mn is an n×n-matrix. So the Grassmannian

Gr(k, n) is a homogeneous variety. Therefore we again use the results of [18]

on G = Gr(2, 5).

Proposition 4.2.4. [18, §4]

1. The Hilbert compactification H3(G) is obtained by the smooth blow-

up of the Simpson compactification Sim3(G) along the sublocus Λ(G)

consists of planar stable pure sheaves.
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2. Sim3(G) is obtained from the Kontsevich compactification M3(G) by

three times weighted blow-ups which is followed by three times weighted

blow-downs. More precisely, the blow-up centers are Γ 10 , Γ 21 , Γ 32 and the

blow-down is taken along the loci Γ 23 , Γ 34 , Γ 15 . Here, Γ ji is the proper

transformation of Γ ji−1 if Γ ji−1 is neither the blow-up/-down center nor

the image/preimage of Γ ji−1. Furthermore, Γ 10 is the locus consists of

stable maps such that their images are projective lines in G ⊂ P9. Γ 21
is the locus consists of stable maps such that their images are unions

of two projective lines. Γ 32 is the sublocus of Γ 11 , and it is a fiber bun-

dle via the morphism Γ 32 ⊂ Γ 11 → Γ 10 . Its fiber over a stable map f ∈ Γ 10
which has projective line L ⊂ G as its image is isomorphic to

PHom1(C2,Ext1G(OL,OL(−1))) ∼= P1 × PExt1G(OL,OL(−1))

where Hom1 is the locus of rank 1 linear maps.

M3
Γ32

}}

Γ23

!!

M2

Γ21

}}

M4

Γ34

!!

M1

Γ10

{{

M5

Γ15

!!

H3(G)

Λ(G)

��

M3(G) M6

∼= // Sim3(G).

4.3 Fano 5-fold Y5

In this section, we denote by Y = Y5 the intersection Y = Y5 = Gr(2, 5)∩
H where H is a general hyperplane in P9. As we commented in Chapter 2,

Section 2.6.2, the Fano 5-fold Y5 does not depend on the choice of H up to
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projective equivalence given by PGL(C5)-action. So we may assume that

H = {p12 − p03 = 0}

where pij are Plücker coordinates, for explicit calculation.

We want to restrict the key birational model (4.1) for the Hilbert com-

pactification H2(Y
5) ⊂ H2(G). For this, we first need to know how the blow-

up and blow-down locus of the map Ξ and Φ in (4.1) changes. Since these

loci are induced from the loci of Fano variety of σ2,2-planes and Fano variety

of σ3,1-planes, we first study Fano variety of projective planes in Y.

4.3.1 Fano varieties of lines and planes in Y5

In this section, we precisely describe the Fano variety of projective lines

F1(Y) in Y and the Fano variety of projective planes F2(Y) in Y. The next

two propositions summarize the contents of this subsection.

Proposition 4.3.1. F1(Y) = H1(Y) = S1(Y) = M1(Y) is isomorphic to the

blow-up of Gr(3, 5) along the smooth quadric threefold Σ.

Proof. Each projective line in G can be uniquely written by {` ∈ G |p ∈ ` ⊂
P} ⊂ G for a point p ∈ P4 and a projective plane P ⊂ P4 which contains a

point p. Then we have the following forgetful map :

ψ : F1(Y) ↪→ F1(G) = Gr(1, 3, 5) −→ Gr(3, 5), (p, P) 7→ P.

Consider a projective plane P ∈ Gr(3, 5) which is represented by the row

span of the following matrix :1 0 0 a3 a4

0 1 0 b3 b4

0 0 1 c3 c4

 ,
96



Chapter 4. Compactifications for Rd(Y
m)

and we consider projective lines in P which is represented by the row span

of the following matrix :(
1 0 α a3 + αc3 a4 + αc4

0 1 β b3 + βc3 b4 + βc4

)
. (4.2)

Then the equation p12 = p03 induces the equation α + b3 + βc3 = 0 so it

determines a unique line L in Y. Furthermore, we can easily check that pro-

jective lines which have types different from (4.2) cannot satisfy the equa-

tion p12 = p03. Thus we conclude that ψ−1(P) is a unique point L.

Consider a projective plane P ∈ Gr(3, 5) which is represented by the row

span of the following matrix :1 0 a2 a3 0

0 1 b2 b3 0

0 0 c2 c3 1

 , (4.3)

and we consider projective lines in P which are represented by the row span

of the following matrix :(
1 0 a2 + αc2 a3 + αc2 α

0 1 b2 + βc2 b3 + βc3 β

)
.

Then the equation p12 = p03 induces the equation a2+b3+αc2+βc3 = 0 so

it determines a unique line in Y unless c2 = c3 = a2 + b3 = 0. Furthermore,

we can easily check that projective lines which has types different from (4.3)

cannot satisfy the equation p12 = p03. Thus we conclude that ψ−1(P) is a

single point unless c2 = c3 = a2 + b3 = 0. When c2 = c3 = a2 + b3 = 0,

we have ψ−1(P) = P∨ ∼= P2 is the set of all projective lines contained in the

plane P.

By applying the same process to all other affine charts, we can observe
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that if we consider the following smooth quadric threefold

Σ = Gr(2,W4) ∩H ⊂ H ∼= P4

where W4 = 〈e0, e1, e2, e3〉 is the vector subspace of C5 and Gr(2,W4) ⊂
Gr(3, 5) is the linear embedding, which assigns a 2-dimensional subspace A

to A + 〈e4〉, and H = zero(p12 − p03) is the hyperplane in P(∧2W4) ∼= P5,
which is the restriction of the hyperplane H, then ψ−1(P) is a single point

if P /∈ Σ and ψ−1(P) is the set of all lines represented by pairs (p, P), p ∈ P
if P ∈ Σ. By local chart computation, we can directly check that ψ is the

blow-up along the smooth quadric threefold Σ. For example, consider the

local chart (a2, b2, c2, a3, b3, c3, λ, µ) of the flag variety F(1, 3, 5) represented

following matrix :1 λ a2 + λb2 + µc2 a3 + λb3 + µc3 µ

0 1 b2 b3 0

0 0 c2 c3 1


where its first row corresponds to the one-dimensional subspace V1 and the

row span of all three rows corresponds to the three-dimensional subspace

V3. Then projective lines in the projective plane PV3 which pass through

the point PV1 are represented by the following matrix :(
1 λ a2 + λb2 + µc2 a3 + λb3 + µc3 µ

0 α αb2 + βc2 αb3 + βc3 β

)
.

The equation p12 = p03 induces the equations a2 + b3 = −µc2 and c3 = λc2,

which determines a family of lines in lines in Y, parametrized by λ and µ.

Clearly, this is the blow-up map (c2, λ, µ) 7→ (c2, c3, a2 + b3) along the locus

Σ = zero(c2, c3, a2 + b3) in this local coordinates.

Lemma 4.3.2. The moduli space of lines F1(Y) is smooth.
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Proof. As it is appeared in Proposition 4.3.1, the reduced induced scheme

F1(Y)red is the smooth blow-up of the irreducible variety so it is again irre-

ducible. So it is enough to show that F1(Y) is a reduced scheme. We note

that any line L in Y is locally a complete intersection. Consider any line

L ⊂ Y. Then, from the following natural exact sequence of normal bundles

0 → NL/Y → NL/G → NY/G|L = OL(1) → 0, we compute the expected di-

mension of F1(Y) as h0(NL/Y) − h1(NL/Y) = 6. But the moduli space F1(Y)

has dimension 6 at the closed point L by Proposition 4.3.1. Therefore, we

obtain that F1(Y) is locally a complete intersection from [61, Theorem 2.15].

Hence we obtain that F1(Y) is a Cohen-Macaulay scheme. Furthermore we

can use the following fact that any Cohen-Macaulay and generically reduced

scheme is reduced ([69, page 49-51]). Therefore, it is enough to show that

h1(NL/Y) = 0 for a certain projective line L in Y, which is represented by the

row span of the following matrix :(
1 0 0 0 0

0 s t 0 0

)
.

We can check this by direct calculation. It implies that F1(Y) is smooth at

the point L and therefore smooth at the open set containing the point L,

therefore generically smooth, hence reduced. In summary, we proved that

the Fano variety of lines F1(Y) = F1(Y)red ∼= blΣGr(3, 5) is smooth.

Proposition 4.3.3. ([50, Section 4.4]) We can write the Fano variety of

projective planes F2(Y) as a disjoint union F3,12 (Y) t F2,22 (Y), where F3,12 (Y)

parametrizes σ3,1-type planes in Y and F2,22 (Y) parametrizes σ2,2-type planes

in Y. The first component F3,12 (Y) is isomorphic to the blow-up of the projec-

tive space P4 at the point y0 and F2,22 (Y) is isomorphic to the smooth quadric

threefold Σ.

Proof. First, we can observe that the sub-locus F2,22 (Y) of σ2,2-planes in Gr(3, 5)

is equal to the quadric threefold Σ from the proof of Lemma 4.3.2.

99



Chapter 4. Compactifications for Rd(Y
m)

On the other hand, consider the morphism ψ : F3,12 (Y)→ P4 assigning the

vertex. Let y = [1 : a1 : a2 : a3 : a4] a point in P4 and a projective line ` ∈ G
passing through the point y is represented by the following matrix :(

1 a1 a2 a3 a4

0 b1 b2 b3 b4

)
.

Then the equation p12 − p03 induces a linear equation b3 = a1b2 − a2b1,

and therefore, defines a unique three-dimensional linear space Λ = P3 ⊂ P4.
Then the pair (y,Λ) determines a unique plane in F3,12 , which is the inverse

image ψ−1(−y) of y.

By calculating over all affine charts, one can check that ψ−1(y) is a single

point if y 6= [0 : 0 : 0 : 0 : 1] =: y0 and ψ−1(y0) is the set of planes represented

by pairs (y, zero(y4)), y ∈ zero(y4) ∼= P3.

We can directly check that ψ is the blow-up of the projective space P4 at

the point y0 by explicit local chart computation. For example, let us consider

the following local chart :

{([a0 : a1 : a2 : a3 : 1], [c0 : c1 : c2 : c3 : c4])|a0c0 + a1c1 + a2c2 + a3c3 + c4 = 0}

of F(1, 4, 5) ⊂ Gr(1, 5)×Gr(4, 5) ∼= P4 × (P4)∗.

On the other hand, for a σ3,1-plane in Y represented by a pair (y,Λ)

where λ is defined by a linear equation c0x0+· · ·+c4x4 = 0, the equation p12−

p03 = 0 induces the equation a1c2−a2c1−a0c3+a3c0 = 0. In summary, the

equation for F3,12 (Y) in this local chart is equivalent to the matrix equation :

rank

(
a3 −a2 a1 −a0 0

c0 c1 c2 c3 c4

)
= rank

(
a3 −a2 a1 −a0

c0 c1 c2 c3

)
= 1.

This clearly implies that F3,12 (Y) ∼= bl0C4. By the same argument as in the

proof of Lemma 4.3.2, we can show that the moduli space F2(Y) of projective
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planes is reduced and thus we complete the proof.

4.3.2 Hilbert scheme of conics H2(Y
5) in Y5

By using the geometry of projective lines and planes in Y5, we construct

birational morphisms connecting H2(Y
5) and its projective models in a sim-

ilar manner as in the diagram (4.1). The technically important point in our

argument is the description of blow-up space under clean intersection condi-

tion. [18, Definition-Proposition 3.4].

We denote U ↪→ O⊕5 the tautological sub-bundle on the Grassmannian

Gr(4, 5). We define

K := ker{∧2U ↪→ ∧2O⊕5 → O} (4.4)

the bundle K as the kernel of the composition of the above sequence where

the second map in the above sequence is induced from the equation p12−p03

(cf. [62, Proposition B.6.1]). We can check that K is locally free by direct

rank computation of the composition map. We define S(Y) := Gr(3,K) and

then we have S(Y) ⊂ S(G) = Gr(3,∧2U) by definition.

Next, we recall that T(G) = OG(3,U) ⊂ S(G) in Proposition 4.2.2, is

isomorphic to the disjoint union F(1, 4, 5)tF(3, 4, 5) of the two flag varieties.

Then we define T 3,1(G) := F(1, 4, 5) and T 2,2(G) := F(3, 4, 5). We observe that

the space S(G) can be written by the following incidence variety :

S(G) = {(U,V4) |U ⊂ ∧2V4} ⊂ Gr(3,∧2C5)×Gr(4,C5).

Then we have the natural embedding T 3,1(G) t T 2,2(G) ↪→ S(G) constructed

in the following way.

(1) For a pair (V1, V4) ∈ T 3,1(G) (V1 is a 1-dimensional vector space rep-
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resenting a vertex point of σ3,1-plane),

(V1, V4) 7→ (W,V4)

where W = ker(∧2V4 � ∧2(V4/V1))(= V1 ∧ V4) is the 3-dimensional

vector space. In this case, (V1, V4) determines a σ3,1-type plane.

(2) For a pair (V3, V4) ∈ T 2,2(G),

(V3, V4) 7→ (∧2V3, V4).

In this case, V3 determines a σ2,2-type plane.

Above embedding T(G) ↪→ S(G) induces an isomorphism F(1, 4, 5)tF(3, 4, 5)
=: T(G)3,1 t T 2,2(G)

∼=−→ OG(3,U) = T(G). From now on, we identify the

blow-up locus T(G) with T(G)3,1 t T 2,2(G) via this isomorphism. We define

the intersection T(Y) := S(Y) ∩ T(G) in S(G).

Proposition 4.3.4. When we define T 3,1(Y) := T 3,1(G)∩T(Y) and T 2,2(Y) :=

T 2,2(G)∩ T(Y), then T(Y) is the disjoint union of irreducible connected com-

ponents T 3,1(Y) t T 2,2(Y) such that

1. T 3,1(Y) ∼= F3,1(Y) and

2. T 2,2(Y) is isomorphic to a fiber bundle on the smooth quadric threefold

Σ(= F2,2(Y)) with fibers isomorphic to P1.

Proof. The first part just comes from the definition. The second part ob-

tained by some direct calculation via the following composition map

T 2,2(Y)
ι
↪→ F(3, 4, 5)

p−→ Gr(3, 5).

We can show that the image (p ◦ ι)(T 2,2(Y)) = Σ which is, in fact, equal

to the smooth quadric threefold Gr(2, V04 )∩H appeared in Proposition 4.3.3
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by some direct calculation. Here we let V04 = span〈e0, e1, e2, e3〉 and H =

zero(p12 − p03) is the restriction of H in P(∧2V04 ). We can prove this by

direct computation for each affine chart. For example, consider an element

(V3, V4) ∈ F(3, 4, 5) and P(V3) ∈ Gr(3, 5) be the plane represented by the

row span of the following matrix :1 0 a2 a3 0

0 1 b2 b3 0

0 0 c2 c3 1

 .
Then, by direct calculation, we can check that (∧2V3, V4) ∈ K|V4 if and only

if it satisfies c2 = c3 = a2 + b3 = 0. We can do the same computation in

other affine charts, so we have the conclusion.

Remark 4.3.5. Part 2 of the above proposition can also be explained in this

way. Elements of T 2,2(Y) are pairs (V3, V4) ∈ F(3, 4, 5) such that the σ2,2-

plane determined by V3 is contained in Y. Therefore, T 2,2(Y) is fibered over

Σ, whose fiber over V3 ∈ Σ is Gr(1,C5/V3). Therefore, it is a P1-fibration

over Σ.

On the other hand, we can check that the natural projection from the

intersection part T(Y) ⊂ T(G) = F(1, 4, 5) t F(3, 4, 5) → Gr(4, 5) is a fiber

bundle on the image of the projection. We will focus on this fiber bundle

structure in subsection 4.3.3. Here we introduce the following result we will

use now.

Proposition 4.3.6 (Proposition 4.3.11). The intersection part T(Y) = S(Y)∩
T(G) is isomorphic to a P1 t P1-bundle over Gr(3, 4) which is linearly em-

bedded in the Grassmannian Gr(4, 5).

Lemma 4.3.7. We have :

TT(Y),P = TS(Y),P ∩ TT(G),P
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for all P ∈ T(Y).

Proof. Consider the following exact sequences of tangent bundles :

0 // TT(Y),P //
� _

��

TT(G),P //
� _

��

NT(Y)/T(G),P
//

f

��

0

0 // TS(Y),P // TS(G),P // NS(Y)/S(G),P
// 0.

(4.5)

To prove the lemma, it is enough to show that the horizontal map f natu-

rally induced from the diagram (4.5) is an isomorphism. First, we assume

that P ∈ T 3,1(Y). Then, by direct computation, we can observe that there is

a following commutative diagram :

NT(Y)/T(G),P

∼= //

f

��

H0(OH(1))

NS(Y)/S(G),P

∼= // Hom(V3,C).

(4.6)

where the plane P is written by P = (V1, V4) ∈ T 3,1(Y) = F3,1(Y), V3 :=

ker(∧2V4 → ∧2(V4/V1)), and H := P(V3) is the projective plane in P4 =

PV . The first horizontal isomorphism in the diagram (4.6) induced from the

normal bundle sequence

0→ NH/Y → NH/G → NY/G|H ∼= OH(1)→ 0,

and the fact that h1(NH/Y) = 0 by Proposition 4.3.3. The second horizontal

isomorphism in the diagram obtained from the following correspondence :

NS(Y)/S(G),P = NGr(3,5)/Gr(3,6),P
∼= Hom(V3,∧

2V4/V3)/Hom(V3,K|V4/V3)
∼= Hom(V3,C)

which is induced by the equation (4.4). In summary, we obtain the proof of
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the lemma.

Remark 4.3.8. We can check the above lemma 4.3.7 in a different way.

By [68, Lemma 5.1] and since T(G), S(Y) and T(Y) are smooth, which will

be checked later, the clean intersection is equivalent to the scheme-theoretic

intersection, IT(Y) = IS(Y)+ IT(G). We compute the locus T(Y) in the following

section 4.3.3, and scheme-theoretic intersection in the following sections 4.3.4

by direct local chart computation, which accompanies lots of linear algebra

and brute force. So we obtain a new proof of Lemma 4.3.7.

By Lemma 4.3.7 and Fujiki-Nakano criterion [76, Main Theorem], [32],

we obtain the following main theorem of this Chapter.

Theorem 4.3.9. Recall the space H2(Y), Hilbert scheme of conics in Y = Y5.

Then H2(Y) is a blow-down of S̃(Y), which is a blow-up of S(Y) := Gr(3,K)
:

S̃(Y)

Φ
##

Ξ
||

S(Y) H2(Y),

(4.7)

where Ξ is the blow-up along T(Y) and Φ is the blow-up along the locus

of conics contained in σ2,2-type planes. Furthermore, H2(Y) is irreducible,

smooth variety and has dimension 10.

Proof. By Lemma 4.3.7, the blow-up space S̃(Y) is isomorphic to the strict

transform of S(Y) along the blow-up Ξ : H2(Gr(2,U)) −→ S(Gr(2, 5)) defined

in Proposition 4.2.2 ([68, Lemma 5.1]). Moreover, we can easily show that

the restriction of the normal bundle of the exceptional divisor H2(Gr(2,U))
onto the exceptional divisor of S̃(Y) is O(−1) (cf. [18, Proposition 3.6]). So,

we can apply Fujiki-Nakano criterion([76, Main Theorem]), that we conclude

that the space obtained by blow-down is smooth. Thus we can conclude that

the Hilbert scheme H2(Y) is smooth if we can show that H2(Y) is reduced
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and irreducible. Moreover, we can directly check that H2(Y) is irreducible

from the diagram (4.7). Also, we can show that H2(Y) is reduced in the

same manner as we used in the proof of Lemma 4.3.2. Hence we complete

the proof.

4.3.3 Duality between T 3,1(Ym) and T 2,2(Ym) for m = 4, 5, 6

It is well-known that T(G) is equal to OG(3, 6) = P3 t P3-bundle over

Gr(4, 5) as we already mentioned in Proposition 4.2.2 and [16, Lemma 3.9],

and each P3 are set of σ2,2-planes and σ3,1-planes with an envelope informa-

tion. Furthermore, we can check that T(Y4) = P1 t P1 where each P1 are

set of σ2,2-planes and σ3,1-planes with an envelope information, and T(Y5) is

P1 t P1-bundle over Gr(4, 5) where each P1 are set of σ2,2-planes and σ3,1-

planes, by direct local chart computations.

So, it is natural to think about there exist some kind of duality between

σ2,2-planes and σ3,1 planes. In fact, there is a representation-theoretic duality

between σ2,2 and σ3,1-planes in Gr(2, 4) ⊂ P5 from S. Hosono and H. Takagi’s

paper.

Proposition 4.3.10. [46, (4.5)] Let W be a 4-dimensional vector space.

Then planes in Gr(2, 4) ⊂ P5 are elements of Gr(3,∧2W) = Gr(3, 6) ⊂
P(∧3(∧2W)) = P(S2W ⊗ det(W)⊕ S2W∗ ⊗ det(W)⊗2).

Then the set of σ2,2-type planes is identified with P(W∗) and embeds to

P(S2W∗) as a Veronese embedding, and the set of σ3,1-type planes is identi-

fied with P(W) and embeds to P(S2W) as a Veronese embedding.

The above proposition express the duality between T 3,1(G) and T 2,2(G).

We can express it more simply. Over a rank 4 subspace V4 ∈ Gr(4, 5) of

C5, the fiber T 3,1(G) = F(1, 4, 5) is identified by the pairs (V1, V4), where V1

is a 1-dimensional subspace of V4, so that the fiber is isomorphic to P(V4).
On the other hand, the fiber T 2,2(G) = F(3, 4, 5) is identified by the pairs
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(V3, V4), where V3 is a 3-dimensional subspace of V4, hence the fiber is iso-

morphic to P(V4)∗. Therefore, there is a duality between a projective space

and its dual projective space.

In this section, we explain dualities in T(Y5) and T(Y4). In fact, all dual-

ities in this section arise in a similar manner as above, i.e. a duality between

a projective space and its dual projective space. We fix a basis {e0, e1, e2, e3, e4}

of C5.

Proposition 4.3.11 (Duality of T 3,1(Y5) and T 2,2(Y5)). T(Y5) is a P1 t P1-
bundle over Gr(3, 4) linearly embedded in Gr(4, 5), where the linear embed-

ding is given by the 1-1 correspondence between 3-dimensional subspaces

in C5/〈e4〉 and 4-dimensional subspaces in C5 containing 〈e4〉. Consider the

rank 4 skew-symmetric 2 form Ω := p12 − p03 on C5, where pij are Plücker

coordinates on ∧2C5. Then, for a 4-dimensional subspace V4 ∈ Gr(3, 4) ⊂
Gr(4, 5) of C5 in the sublocus, the restriction Ω|V4 becomes a rank 2 singular

2-form Ω|V4 on V4. Then the fiber of T 3,1(Y5) ⊂ F(1, 4, 5) over V4 canonically

identified with P(kerΩ|V4)
∼= P1 ⊂ P(C5) and the fiber of T 2,2(Y5) ⊂ F(3, 4, 5)

over V4 canonically identified with P((C5/kerΩ|V4)
∗) ∼= P1 ⊂ P((V4)∗).

Proof. Consider an arbitrary 4-dimensional vector space V4 ∈⊂ Gr(4, 5). We

can observe that rank Ω|V4 ≥ 2 Since we have rankΩ = 4 and rankΩ ≤
rankΩ|V4 +2. If rankΩ|V4 = 4, then there cannot exist a vector v ∈ C5 such

that v is orthogonal to V4 with respect to the 2-form Ω. Hence there does

not exist any σ3,1-plane contained in the fiber of T(Y5) on V4. Moreover,

there cannot exist a 3-dimensional subspace V3 ⊂ V4 of V4 such that Ω|V3 =

0 since we have rankΩ|V4 ≤ rankΩ|V3+2. Therefore, there is no σ3,1-plane in

the fiber of T(Y5) over V4. In summary, the fiber of T(Y5) over V4 is empty

whenever rankΩ|V4 = 4.

Next, consider the case when rankΩ|V4 = 2. Assume that V ∩ kerΩ =

V ∩ 〈e4〉 = 〈0〉. Then, since Ω = p12 − p03 descent to the rank 4 skew-

symmetric 2-form Ω on quotient space V/〈e4〉. Since V4 ∩ 〈0〉 = 0, we can
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easily observe that the natural isomorphism φ : V4
∼=→ V/〈e4〉 preserves skew-

symmetric two forms, i.e. φ∗Ω = Ω|V4 . Therefore rankΩ|V4 = 4, which is

a contradiction. Thus we have 〈e4〉 ⊂ C5. Conversely if 〈e4〉 ⊂ C5 = kerΩ,

then we have rankΩ = 2. Therefore rankΩ|V4 = 2 if and only if V4 ∈
Gr(3, 4) ⊂ Gr(4, 5), where Gr(3, 4) ⊂ Gr(4, 5) is a linear embedding given

by the 1-1 correspondence between 3-dimensional subspaces in C5/〈e4〉 and

4-dimensional subspaces in C5 containing e4.

Moreover, the fiber of T 3,1(Y5) ⊂ F(1, 4, 5) over V4 ∈ Gr(3, 4) ⊂ Gr(4, 5)

is represented by pairs (p, V4) such that Ω(p, V4) = 0. Therefore, the fiber

is canonically identified with P(kerΩ) ∼= P1 ⊂ P(C5).
The fiber of T 2,2(Y5) ⊂ F(3, 4, 5) over V4 is represented by pairs (V3, V4)

such that V3 ⊂ V4, Ω|V3 = 0. Assume that V3 ∩ kerΩ|V4 = 1. Then there

is a natural isomorphism φ : V3/(V3 ∩ kerΩ|V4)
∼=→ V4/kerΩ|V4 . Then, when

we denote by Ω the induced 2-form on V4/kerΩ|V4 , and Ω ′ be the induced

2-form on V3/(V3 ∩ kerΩ|V4), we can observe that φ∗Ω = Ω ′. But we have

rankΩ ′ = 0 since rankΩ|V3 = 0 and rankΩ = 2 since rankΩ|V4 = 2, which

leads to the contradiction. Therefore, we have kerΩ|V4 ⊂ V3. Conversely, if

kerΩ|V4 ⊂ V3, then it is clear that rankΩ|V3 = 0. Therefore, the fiber is

canonically identifed with P((V/kerΩ|V4)
∗) ∼= P1 ⊂ P((C5)∗).

Proposition 4.3.12 (Duality in T 3,1(Y4) and T 2,2(Y4)). T(Y4) is a double

cover over P1 ∼= Gr(1, 2) ⊂ Gr(4, 5), with 2 connected components, where

Gr(1, 2) ⊂ Gr(4, 5) is a linear embedding given by 1-1 correspondence be-

tween 1-dimensional subspaces in C5/〈e0, e1, e4〉 and 4-dimensional subspaces

in C5 containing 〈e0, e1, e4〉. Let Ω1 := p12− p03, and Ω2 := p13− p24 be the

skew-symmetric 2-forms on C5.
Then, the fiber of T(Y4) over V4 ∈ Gr(1, 2) is a 2 point set, one point

is the fiber of T 3,1(Y4) ⊂ F(1, 4, 5) over V4 defined by a pair (kerΩ1|V4 ∩
kerΩ2|V4 , V4), and the other point is a fiber of T 2,2(Y4) ⊂ F(3, 4, 5) over V4

defined by a pair (kerΩ1|V4 + kerΩ2|V4 , V4).
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Proof. From the proof of the previous proposition, we can obtain that rankΩ1

and rankΩ2 ≥ 2, and the fiber of T(Y4) over V4 is empty if rankΩ1|V4 or

rankΩ2|V4 is 4. Therefore, it enough to consider the case that rankΩ1|V4 =

rankΩ2|V4 = 2.

Assume that kerΩ1|V4 = kerΩ2|V4 . Since 〈e4〉 ⊂ kerΩ1|V4 and 〈e0〉 ⊂
kerΩ2|V4 , we have kerΩ1|V4 = kerΩ2|V4 = 〈e0, e4〉. Then, for an element

ae1+be2+ ce3 ∈ V4, we have c = b = 0 from the relation Ω1|V4 = Ω2|V4 = 0

which contradicts to the fact that V4 is a 4-dimensional vector space. There-

fore kerΩ1|V4 and kerΩ2|V4 cannot be equal.

Next, consider the case when kerΩ1|V4∩kerΩ2|V4 = 〈v〉, i.e. 1-dimensional

vector space generated by v ∈ C5. If we write v = a0e0 + · · · + a4e4, then

from the condition that Ω1(v, e0) = Ω2(v, e4) = 0, we have b2 = b3 = 0.

Therefore we conclude that 〈e0, e1, e4〉 ⊂ V4. Conversely, if 〈e0, e1, e4〉 ⊂ V4,
then we can observe that kerΩ1|V4 ⊂ 〈e0, e1, e4〉, kerΩ2|V4 ⊂ 〈e0, e1, e4〉 in

the same manner. Therefore we have kerΩ1|V4 ∩ kerΩ2|V4 is a 1-dimensional

vector space. Hence, the locus where kerΩ1|V4 ∩ kerΩ2|V4 is 1-dimensional

is the image of the linear embedding Gr(1, 2) ⊂ Gr(4, 5), given by the 1-

1 correspondence between 1-dimensional subspaces in C5/〈e0, e1, e4〉 and 4-

dimensional subspaces in C5 containing 〈e0, e1, e4〉.
Furthermore, when we consider a 4-dimensional subspace V4 ∈ Gr(1, 2) ⊂

Gr(4, 5) of C5, the fiber T 3,1(Y4) ⊂ F(1, 4, 5) over V4 is represented by a

pair (kerΩ1|V4 ∩ kerΩ2|V4 , V4), and the fiber T 2,2(Y4) ⊂ F(3, 4, 5) over V4 is

represented by a pair (kerΩ1|V4 + kerΩ2|V4 , V4).

It is obvious that the fiber of T(Y4) is empty over the 4-dimensional sub-

space V4 of C5 where kerΩ1|V4 ∩ kerΩ2|V4 = 〈0〉.

We conclude this subsection with the following result about the Fano va-

riety of planes in the hyperplane section of the Grassmannian Gr(2, 2n)∩H.

We can show this in a similar manner we proved Proposition 4.3.11. This re-

sult will be used when we discuss the birational geometry of Hd(Gr(2, 2n)∩
H) in Chapter 6 using the result of Chung, Hong, and Kiem [18].
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Proposition 4.3.13 (Fano variety of planes in Gr(2, 2n)∩H). Fano variety

of planes F2(Gr(2, 2n) ∩H) is smooth.

Proof. Similar to the Gr(2, 5) case, σ2,2-planes in Gr(2, 2n) are parametrized

by the Flag variety F(3, 4, 2n) and σ3,1-planes in Gr(2, 2n) are parametrized

by the Flag variety F(1, 4, 2n). Then F2(Gr(2, 2n)∩H)) is a the sublocus of

F(3, 4, 2n) t F(1, 4, 2n), we denote it by T 2,2H t T 3,1H . We want to determine a

sublocus ZH ⊂ Gr(4, 2n) where T 2,2H t T 3,1H supported on.

Then, when we fix a (2n − 1)-vector space V2n−1 ⊂ C2n, then by the

proof of Proposition 4.3.11, we can easily observe that for any 4-dimensional

vector space V4 ⊂ V2n−1, V4 ∈ ZH if and only if ZH contains the kernel of

the skew-symmetric form ΩH|V2n−1
. Since H is a general hyperplane section,

H has rank 2n, so ΩH|V2n−1
has rank 2n − 2 and the kernel kerΩH|V2n−1

is

1-dimensional. So when we consider a Grassmannian Gr(2n − 1, 2n) and a

rank (2n−1)-tautological bundle U , we can have the following fiber diagram

:

Gr(3,U/kerΩH|V2n−1
)

�q

����

� �

linear

ι // Gr(4,U) = F(4, 2n− 1, 2n)

p

��

ZH
� � // Gr(4,C2n)

where the upper horizontal arrow is a linear embedding, hence its image

is smooth in Gr(4,U). Since tautological bundle U has local trivialization,

p is a fibration. Therefore ZH is also smooth. Furthermore, by the proof

of Proposition 4.3.11, we can observe that T 2,2H t T 3,1H is a P1 t P1-bundle

over ZH, hence it is smooth. Moreover, in a similar manner to the proof of

Proposition 4.3.4, T 3,1H is isomorphic to the Fano variety of σ3,1-type planes

F3,1(Gr(2, 2n))∩H and T 2,2H is a locally trivial P1-fibration over the Fano va-

riety of σ2,2-type planes F2,2(Gr(2, 2n)∩H). Therefore F3,1(Gr(2, 2n))∩H and

F2,2(Gr(2, 2n) ∩H) are both smooth.
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4.3.4 Scheme-theoretic intersection of S(Y) and T(G)

In this subsection, we compute the scheme-theoretic intersection of S(Y)

and T(G), i.e. IT(Y),S(G) = IS(Y),S(G) + IT(G),S(G). By presenting the defining

equation of T(Y), the smoothness of T(Y) is proved. By Proposition 4.2.2[16,

Lemma 3.9], we know that T(G) is an OG(3, 6) ∼= P3tP3-bundle over Gr(4, 5),

σ3,1-planes and σ2,2-planes corresponds to each disjoint P3. Denote them by

T(G)2,2 and T(G)3,1. Since they are disjoint, we can consider them inde-

pendently, i.e. it is enough to show that IT(Y)2,2,S(G) = IS(Y),S(G) + IT(G)2,2,S(G),

IT(Y)3,1,S(G) = IS(Y),S(G) + IT(G)3,1,S(G) where T(Y)2,2 := T(G)2,2 ∩ S(Y),
T(Y)3,1 := T(G)3,1 ∩ S(Y).

We first state the Cauchy-Binet formula here, which is useful for further

calculations :

Proposition 4.3.14 (Cauchy-Binet). [53, Example 2.15] Let A be a n×m
matrix and B be a m×n matrix where n ≤ m. Then we have the following

formula for the determinant of the matrix AB :

det(AB) =
∑

S∈([m]
n )

detA[n],S · detBS,[n]

where [m] = 1, 2, ...,m is a set and
(
[m]
n

)
is a set of n combinations of ele-

ments in [m].

For n = 2,m = 3 case, we can check the following corollary by direct

calculation :

Corollary 4.3.15. [8, Example 4.9] Let A be a 2 × 3 matrix and B be a

3× 2 matrix. Let [A]0, [A]1 be a row vector of A and [B]0, [B]1 be a column

vector of B. Then we have :

detAB = ([A]0 × [A]1) · ([B]0 × [B]1)

where ′× ′ is a cross product defined in C3.
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We check IT(Y)2,2,S(G) = IS(Y),S(G) + IT(G)2,2,S(G) for affine local charts. Con-

sider a chart for S(G). Since S(G) is Gr(3, 6)-bundle over Gr(4, 5), we should

consider chart for Λ ∈ Gr(4, 5) and F ∈ Gr(3, 6) = Gr(3,∧2Λ). There are 5

standard charts for Λ ∈ Gr(4, 5) :

Λ =


1 0 0 0 a

0 1 0 0 b

0 0 1 0 c

0 0 0 1 d

 , Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 , Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 ,

Λ =


1 a 0 0 0

0 b 1 0 0

0 c 0 1 0

0 d 0 0 1

 and Λ =


a 1 0 0 0

b 0 1 0 0

c 0 0 1 0

d 0 0 0 1

 .
But in the first chart :

Λ =


1 0 0 0 a

0 1 0 0 b

0 0 1 0 c

0 0 0 1 d


the equation of Y5 : p12 − p03 has no solution. Furthermore, Since the sym-

metry interchanging the index 1, 2 and 0, 3 does not change the equation

p12 − p03, it is enough to consider the following two chart of Gr(4, 5) :

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 and Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .

Let us start with the first chart :
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Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 .
Let q01, ..., q23 be a coordinate of a fiber of ∧2U over this chart, where U
is a tautological rank 4 bundle over Gr(4, 5). Then we have p12 − p03 =

−aq01 − q02 + cq12 + dq13. By Proposition 4.3.11, T 2,2(Y) is a fibration over

Gr(3, 4) linearly embedded in Gr(4, 5), whose images are Λ ∈ Gr(4, 5) such

that e4 ∈ Λ. Therefore, we have equation d = 0 in IT(Y)2,2 .

Next, σ2,2-plane corresponds to P2-plane in PΛ ∼= P3 ⊂ P4 must one be

of the following form(i.e. it correspond to the row space of the matrix R ·Λ)

:

R =

1 0 0 α

0 1 0 β

0 0 1 γ

or
1 0 α 0

0 1 β 0

0 0 γ 1

or
1 α 0 0

0 β 1 0

0 γ 0 1

or
α 1 0 0

β 0 1 0

γ 0 0 1

 .

Therefore, the intersection of S(Y) and T(G) arises only in the following

three charts for fibers F ∈ Gr(3,∧2Λ) :

F =


01 02 03 12 13 23

1 0 e 0 f g

0 1 h 0 i j

0 0 k 1 l m

, F =

01 02 03 12 13 23

1 e 0 f 0 g

0 h 1 i 0 j

0 k 0 l 1 m

,

F =


01 02 03 12 13 23

e 1 0 f g 0

h 0 1 i j 0

k 0 0 l m 1

and F =


01 02 03 12 13 23

e f g 1 0 0

h i j 0 1 0

k l m 0 0 1


113



Chapter 4. Compactifications for Rd(Y
m)

where the upper indices are indices of Plücker coordinates. Let us start with

the first chart :

F =

1 0 e 0 f g

0 1 f 0 i j

0 0 g 1 l m

 ,
In this case, we can easily observe that a σ2,2-plane contained in this

chart must correspond to the row space of a matrix of the form :

RΛ =

1 0 0 α

0 1 0 β

0 0 1 γ

 ·Λ.
For a matrix M, we let Mj

i be a matrix obtained from M by deleting

i-th row and j-th column. From the equation p12 − p03 = 0, and since d =

0 for σ2,2-planes in T(Y)2,2, using corollary 4.3.15, we can observe that the

equation for T(Y)2,2 in this chart is ([R4]i × [R4]j) · ([Λ54]1 × [Λ54]
2 − [Λ54]

0 ×
[Λ54]

3) = ([R4]i × [R4]j) · (c, 1,−a) = 0 for all 0 ≤ i < j ≤ 2. Then, since

([R4]0 × [R4]2) = (0,−1, 0), we have no solution. Therefore, the intersection

of T(G) and S(Y) does not happens in this chart.

Next, we consider the second chart :

F =

1 e 0 f 0 g

0 f 1 i 0 j

0 g 0 l 1 m


then we can easily observe that a σ2,2-plane contained in this chart must

correspond to the row space of a matrix of the form :

RΛ =

1 0 α 0

0 1 β 0

0 0 γ 1

 ·Λ.
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In the same manner we can show that ([R4]i×[R4]j)·([Λ54]1×[Λ54]2−[Λ54]
0×

[Λ54]
3) = ([R4]i× [R4]j) · (c, 1,−a) = 0 for all 0 ≤ i < j ≤ 2 is the equation for

T(Y)2,2 in this chart under the condition d = 0. By direct calculations, we

have γ = 0, αc+ β+ a = 0.

We observe that this σ2,2-plane which correspond to the row space of the

matrix RΛ correspond to the following matrix form in the chart of F :1 β 0 −α 0 0

0 γ 1 0 0 α

0 0 0 γ 1 β


In summary, we obtain the full description of the equation of T(Y)2,2 in the

chart :

IT(Y)2,2 = 〈g, i, k, f+ j, e−m,h, l, d,−fc+ e+ a〉.

On the other hand, from the equation −aq01−q02+cq12+dq13, we have

:

IS(Y) = 〈−a− e+ cf,−h+ ci,−k+ cl+ d〉.

And clearly the equation for T(G)2,2 is given by :

IT(G)2,2 = 〈g, i, k, f+ j, e−m,h− l〉.

Therefore, we can check the following clean intersection by direct calcu-

lation :

IT(G)2,2 + IS(Y) = IT(Y)2,2 .

Next, we consider the third chart :

F =

e 1 0 f g 0

h 0 1 i j 0

k 0 0 l m 1

 .
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Then we can easily observe that a σ2,2-plane contained in this chart must

correspond to the row space of a matrix of the form :

RΛ =

1 α 0 0

0 β 1 0

0 γ 0 1

 ·Λ.
Then in the same manner, we can calculate IT(Y)2,2 , IS(Y) and IT(G)2,2 by

direct calculation :

IT(Y)2,2 = 〈g, i, k, f− j, e−m,h, l, d, fc− 1− ea〉
IS(Y) = 〈−ae+ cf+ dg− 1,−ah+ ci+ dj,−ak+ dl+ dm〉
IT(G)2,2 = 〈g, i, k, f− j, e−m,h+ l〉

Therefore we can check the clean intersection IT(Y)2,2 = IS(Y) + IT(G)2,2 by

direct calculation.

At last, we consider the fourth chart :

F =

e f g 1 0 0

h i j 0 1 0

k l m 0 0 1

 .
Then we can easily observe that a σ2,2-plane contained in this chart must

correspond to the row space of a matrix of the form :

RΛ =

α 1 0 0

β 0 1 0

γ 0 0 1

 ·Λ.
Then in the same manner, we can calculate IT(Y)2,2 , IS(Y) and IT(G)2,2 by
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direct calculation :

IT(Y)2,2 = 〈g, i, k, f− j, e+m,h, l, d, c− f− ae〉
IS(Y) = 〈−ae+ c− f,−ah+ d− i,−ak− l〉
IT(G)2,2 = 〈g, i, k, f− j, e+m,h− l〉

Therefore we can check the clean intersection IT(Y)2,2 = IS(Y) + IT(G)2,2 by

direct calculation.

In summary, we checked the clean intersection IS(Y)+IT(G)2,2 for the chart

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 ∈ Gr(4, 5).

and all charts for F ∈ Gr(3,∧2Λ).

We can also check the clean intersection for the second chart :

Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .
But the computation proceeds exactly in the same manner as the case of

first chart so we do not write it down here.

Next, we can also check clean intersection at T(Y)3,1. We should check

IT(Y)3,1,S(G) = IS(Y),S(G) + IT(G)3,1,S(G).

We first consider an open chart for S(G). Same as in the case of T(Y)2,2,
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it is enough to consider 2 chart for Λ :

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 and Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .

Let us start with the first chart :

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 .

Let q01, ..., q23 be a coordinate of a fiber of ∧2U over this chart. Then we

have p12 − p03 = −aq01 − q02 + cq12 + dq13.

Next, by Proposition 4.3.11, T 3,1(Y) is a fibration over Gr(3, 4) linearly

embedded in Gr(4, 5), whose images are Λ ∈ Gr(4, 5) such that e4 ∈ Λ.

Therefore, we have equation d = 0 in IT(Y)3,1 . Furthermore, by Proposition

4.3.11, a pair (x,Λ) ∈ T 3,1(G) over Λ contained in T 3,1(Y) if and only if the

vertex x must be contained in the projectivized kernel of the 2-form (−ap01+

cp12 + dp13 − p02), which is equal to P1 = P〈(c, 1,−a, 0), (0, 0, 0, 1)〉.
Therefore, we should consider two types of the vertex x :

x = (c, 1,−a, s) and x = (sc, s,−sa, 1)

where s ∈ k.

Let us start with the first vertex type :

x = (c, 1,−a, s).

Then, the corresponding σ3,1-plane is spanned by (c, 1,−a, s)∧ (1, 0, 0, 0),
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(c, 1,−a, s) ∧ (0, 0, 1, 0), (c, 1,−a, s) ∧ (0, 0, 0, 1). So we can rewrite it by a

following 3× 6-matrix : 1 −a s 0 0 0

0 c 0 1 0 −s

0 0 c 0 1 −a

 .
Thus, intersection of S(Y) and T(G)3,1 only occurs in the following chart of

F :

F =

1 e f 0 0 g

0 h i 1 0 j

0 k l 0 1 m

 .
Therefore, we have IT(Y)3,1 = 〈f+ j, e−m, e+ a, h− l, c− h, g, i, k, d〉.

On the other hand, σ3,1-plane contained in this chart of F is defined by

the vertex of the form :

x = (α, 1, β, γ)

which correspond to the following 3× 6-matrix :1 β γ 0 0 0

0 α 0 1 0 −γ

0 0 α 0 1 β

 .
Thus, we have IT(G)3,1 = 〈f+ j, e−m,h− l, g, i, k〉.

Furthermore, from the equation −aq01−q02+ cq12+dq13, we obtain the

equation for S(Y), i.e. IS(Y) = 〈−a − e, c − h, d − k〉. Finally, we can check

the clean intersection IT(Y)3,1 = IT(G)3,1 + IS(Y) by direct calculation.

Next, we consider the second vertex type :

x = (sc, s,−sa, 1)

Then, the corresponding σ3,1-plane is spanned by (sc, s,−sa, 1)∧ (1, 0, 0, 0),

119



Chapter 4. Compactifications for Rd(Y
m)

(sc, s,−sa, 1)∧(0, 1, 0, 0), (sc, s,−sa, 1)∧(0, 0, 1, 0). So we can rewrite it by

a following 3× 6-matrix : s −sa 1 0 0 0

−sc 0 0 −sa 1 0

0 −sc 0 −s 0 1

 .
Thus, intersection of S(Y) and T(G)3,1 only occurs in the following chart of

F :

F =

e f 1 g 0 0

h i 0 j 1 0

k l 0 m 0 1

 .
Therefore, we have IT(Y)3,1 = 〈f− j, h− l, e+m,g, i, k, f+ ea, l− cm, d〉.

On the other hand, σ3,1-plane contained in this chart of F is defined by

the vertex of the form :

x = (α,β, γ, 1)

which correspond to the following 3× 6-matrix : β γ 1 0 0 0

−α 0 0 γ 1 0

0 −α 0 −β 0 1

 .
Thus, we have IT(G)3,1 = 〈f − j, h − l, e +m,g, i, k〉. Furthermore, from the

equation −aq01 − q02 + cq12 + dq13, we obtain the equation for S(Y), i.e.

IS(Y) = 〈−ae− f+ eg,−ah− i+ cj+d,−ak− l+ cm〉. Finally, we can check

the clean intersection IT(Y)3,1 = IT(G)3,1 + IS(Y) by direct calculation.

In summary, we checked the clean intersection IS(Y) + IT(G)3,1 = IT(Y)3,1 for

120



Chapter 4. Compactifications for Rd(Y
m)

the chart

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 .
We can also check the clean intersection for the second chart :

Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .
But the it proceeds exactly in the same manner as the case of first chart so

we do not write it down here.

In summary, we checked the clean intersection of S(Y) and T(G) in S(G)

by direct calculation.

Proposition 4.3.16. For Fano 5-fold Y := Y5 = Gr(2, 5)∩H, S(Y) and T(G)

cleanly intersect in S(G), i.e. we have :

IT(Y) = IT(G) + IS(Y).

4.4 Fano 4-fold Y4

In this section, we denote by Y = Y4 the smooth Fano 4-fold defined by

the intersection of the image of the Grassmannian Gr(2, 5) under the Plücker

embedding into P(∧2C5) = P9 with two general hyperplanes H1, H2. We de-

note pij the Plücker coordinates. For explicit computations, we may assume

that :

H1 = {p12 − p03 = 0}, H2 = {p13 − p24 = 0}.

We use the same strategy as the case of Fano 5-fold Y5 to show the
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smoothness of Hilbert compactification H2(Y
4). So we should first study Fano

variety of projecctive planes in the Fano 4-fold Y = Y4.

The results on projective planes and lines in the Fano 4-fold Y are due to

Todd [97]. We also introduce elementary proofs for the convenience of the

reader. On the other hand, our result on the Hilbert scheme of conics seems

to be new.

4.4.1 Fano varieties of lines and planes in Y4

First, we introduce the results for the Fano variety of projective lines and

planes in the Fano 4-fold Y. The results introduced in this section are due

to Todd [97].

Lemma 4.4.1. [97] There is a unique σ2,2-plane in the Fano 4-fold Y. In

other words, there is a unique projective plane Π ⊂ P4 such that every line

` ⊂ Π, which are considered as elements of Gr(2, 5), is contained in Y.

Proof. Consider the following affine open chart(
1 0 a2 a3 a4

0 1 b2 b3 b4

)

of the Grassmannian Gr(2, 5). In this chart we have p12−p03 = −a2−b3 and

p13−p24 = −a3−a2b4+a4b2. Therefore, finding the plane Π is equivalent to

finding pair of linearly independent linear equations in variables x0, · · · , x4
such that both (1, 0, a2, a3, a4) and (0, 1, b2, b3, b4) satisfy the two equations.

By direct calculation, we can check that the unique pair of linear equations

satisfying the above condition is (x2 = 0, x3 = 0). By doing same chart

calculations for other affine open charts, we conclude that {x2 = x3 = 0} ⊂ P4

determines the unique σ2,2-plane Π.

Remark 4.4.2. The plane Π ⊂ P4 in Lemma 4.4.1 plays a crucial role in

the structure of the Fano 4-fold Y4 ([87, Section 3], [27, Section 3] and [33]).
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We recall that a σ3,1-plane is a set of projective lines in a 3-dimensional

linear space P3 ⊂ P4 which pass through a fixed point p. We call p the

vertex of the σ3,1-plane.

Lemma 4.4.3. [97] There is a 1-dimensional family of σ3,1-planes in the

Fano 4-fold Y whose vertices lies on a smooth conic C0 in the plane Π ⊂ P4.
Other σ3,1-planes in Y does not exist.

Proof. Consider a σ3,1-plane with a vertex (1, a1, a2, a3, a4). Then a point in

the plane is represented by the following matrix :(
1 a1 a2 a3 a4

0 b1 b2 b3 b4

)
.

We have p12 − p03 = a1b2 − a2b1 − b3 and p13 − p24 = a1b3 − a3b1 − a2b4 +

a4b2, and these two equations are linear in (b1, b2, b3, b4). These two linear

equations in (b1, b2, b3, b4) are linearly dependent if and only if

rank

(
a2 −a1 1 0

−a3 a4 a1 −a2

)
= 1.

This condition hold if and only if a2 = a3 = 0 and a21 + a4 = 0. The first

equation implies that vertices of σ3,1-planes in Y contained in the plane Π =

{x2 = x3 = 0} ⊂ P4 in Lemma 4.4.1 and the second equation says that the

vertices of σ3,1-planes in Y lies on the smooth conic C0 := {x21 + x
4x0 = 0} in

Π. Through the similar computations for all other local charts, we complete

the proof.

Corollary 4.4.4. The Fano variety of projective planes in the Fano 4-fold

Y is isomorphic to the smooth conic C0 t {Π}.

Proposition 4.4.5. [97] Let H1(Y) = F1(Y) be the Hilbert scheme(or the

Fano variety) of lines in the Fano 4-fold Y = Y4. Then the Hilbert scheme
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H1(Y) is isomorphic to the blow-up space of P4 at the smooth conic C0 ⊂ Π
which is defined in Lemma 4.4.3.

Proof. We recall that an arbitrary line L in the Grassmannian G = Gr(2, 5)

is a set of lines in P4 contained in a projective plane P ⊂ P4 which pass

through a fixed point p ∈ P. The point p is said to be the vertex of the line

L. Assigning each line L to its vertex p gives the following morphism :

ψ : H1(Y) ⊂ H1(G) = Gr(1, 3, 5) −→ Gr(1, 5) = P4.

By the proof of Lemma 4.4.3, for a point p /∈ C0, the Schubert variety

σ3,1(p) with Y along a line. If p ∈ C0, the Schubert variety σ3,1(p) intersects

with Y along the σ3,1-plane in Y. Thus we conclude that ψ−1(p) is a single

point for a point p /∈ C0 and ψ−1(p) is a projective plane P2 for a point

p ∈ C0.
By local chart computation similar as in the proof of Proposition 4.3.1,

we can to show that the map ψ is the blow-up map along the smooth conic

C0. Also, using the same argument as in Lemma 4.3.2, we can check that

the Hilbert scheme(or the Fano variety) H1(Y) is reduced. So we complete

the proof.

Proposition 4.4.6. We denote C∨
0 ⊂ H1(Y) the dual conic which is the set

of projective tangent lines of C0 in the plane Π ⊂ P4.
Let L ∈ H1(Y) be an arbitrary projective line in the Fano 4-fold Y. Then

the normal bundle NL/Y of L in Y is isomorphic to O⊕2L ⊕OL(1) if L /∈ C∨
0

and NL/Y is isomorphic to OL(−1)⊕OL(1)
⊕2 if L ∈ C∨

0 .

Proof. Consider a line L the dual projective space Π∨ ⊂ Y with a vertex

p = (1, a1, a2, a3, a4). Then the point in the Schubert variety σ3,1(p) is rep-

resented by the following matrix :(
1 a1 a2 a3 a4

0 x1 x2 x3 x4

)
.
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Since x2 = x3 = 0 is the equation for Π, a2, a3, b2, b3 are coordinates of the

fiber of the normal bundle NΠ∨/G|L. Since a2, a3 has homogeneous degree 0

and x2, x3 has homogeneous degree 1, we have NΠ∨/G|L
∼= O⊕2L ⊕ OL(1)

⊕2.

Moreover, the two equations p12−p03 and p13−p24 give us homomorphisms

O⊕2L ⊕OL(1)
⊕2 → O(1)⊕2,

(a2, a3, x2, x3) 7→ (a1b2 − a2x1 − x3, a1x3 − a3x1 − a2x4 + a4x2).

If a4+a
2
1 6= 0, then we can observe that the kernel of this homomorphism is

O⊕2L . If a4 + a
2
1 = 0, then the kernel is OL(−1)⊕OL(1). The equation a4 +

a21 = 0 is exactly same to the equation for the smooth conic C0. Because the

normal bundle NL/Π∨ is isomorphic to OL(1), the normal bundle sequence

0→ NL/Π∨ → NL/Y → NΠ∨/Y |L → 0 splits, i.e. NL/Y ∼= OL(1)⊕NΠ∨/Y |L. We

can do same computations for other open charts. So we obtain the proof.

4.4.2 Hilbert scheme of conics H2(Y
4) in Y4

In this section, we construct birational morphisms which connects H2(Y
4)

and its projective models in a similar manner as in the diagram (4.1). The

next theorem is an analogue of Theorem 4.3.9 in the case of Fano 4-fold Y4.

Theorem 4.4.7. We denote H2(Y) the Hilbert scheme of conics in the Fano

4-fold Y = Y4. Let U be the tautological sub-bundle on the Grassmannian

Gr(4, 5). We define

K := ker{∧2U ↪→ ∧2O⊕5 → O⊕2}
as the kernel of the composition of the above sequence where the second

arrow in the above diagram is induced from the equations p12 − p03 and

p13 − p24. Then H2(Y) is a blow-down of S̃(Y), which is a blow-up of the
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relative Grassmannian bundle S(Y) := Gr(3,K) :

S̃(Y)

Φ
##

Ξ
||

S(Y) H2(Y).

(4.8)

where Ξ is the blow-up along T(Y) := T(G) ∩ S(Y) and Φ is the blow-up

along the locus consists of conics contained in σ2,2-type planes. Furthermore,

H2(Y) is a smooth, irreducible variety with dimension 7.

Proof. We can fill in the proof in a similar manner as in Proposition 4.3.9

so we omit here.

4.4.3 Scheme-theoretic intersection of S(Y) and T(G)

We show scheme-theoretic intersection of S(Y) and T(G) here, so we can

show clean intersection by [68, Lemma 5.1], so we have another proof of the

clean intersection in the case of Fano 4-fold Y4.

First we consider charts for S(G). Since S(G) is Gr(3, 6)-bundle over

Gr(4, 5), we should consider chart for Λ ∈ Gr(4, 5) and F ∈ Gr(3, 6) =

Gr(3,∧2Λ).

There are 5 standard charts for Λ ∈ Gr(4, 5) :

Λ =


1 0 0 0 a

0 1 0 0 b

0 0 1 0 c

0 0 0 1 d

 , Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 , Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 ,
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Λ =


1 a 0 0 0

0 b 1 0 0

0 c 0 1 0

0 d 0 0 1

 and Λ =


a 1 0 0 0

b 0 1 0 0

c 0 0 1 0

d 0 0 0 1

 .
By Proposition 4.3.12 we know that T(Y) is the double cover over the

linear embedding P1 ∼= Gr(1,C4/〈e0, e1, e4〉) ⊂ Gr(4, 5). Therefore, The in-

tersection between T(G) and S(Y) only occurs in the following two charts :

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 and Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .

and a = b = d = 0 contained in the equations of T(Y) in both cases, i.e.

a, b, d ∈ IT(Y). Since T(Y) = T(Y)2,2
∐
T(Y)3,1, we can consider each part

independently. We consider the clean intersection at T(Y)3,1 first.

First, consider the first chart :

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1

 .

Let q01, ..., q23 be a coordinate of a fiber of ∧2U over this chart. Then we

have p12 − p03 = −aq01 − q02 + cq12 + dq13 and p13 − p24 = −aq03 + q12 −

bq13 − cq23.

Each σ3,1-plane in T(Y)3,1 which correspond to the vertex x ∈ PΛ ⊂ C5

such that (−q02+ cq12)(x, y) = 0, (q12− cq23)(x, y) = 0(here, we consider qij

as a skew-symmetric two form) for all y ∈ Λ, because we have a = b = d = 0

in T(Y)3,1. Then, by direct calculation, we can check that the sigma σ3,1-

plane correspond to the vertex x contained in T(Y)3,1 if and only if it satisfies
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the equations :

(
x0 x1 x2 x3

)
0 −ay1 −y2 0

ay0 0 cy2 dy3

y0 −cy1 0 0

0 −dy1 0 0

 = 0

and
(
x0 x1 x2 x3

)
0 0 0 −ay3

0 0 y2 −by3

0 −y1 0 −cy3

ay0 by1 cy2 0

 = 0.

for all y = (y0, y1, y2, y3) ∈ Λ. Thus, we conclude that x = [−c2 : −c : 0 :

1] ∈ PΛ. Then, the corresponding σ3,1-plane is spanned by (−c2,−c, 0, 1)∧

(1, 0, 0, 0), (−c2,−c, 0, 1) ∧ (0, 1, 0, 0), (−c2,−c, 0, 1) ∧ (0, 0, 1, 0). So we can

rewrite it by a following 3× 6-matrix :−c 0 1 0 0 0

c2 0 0 0 1 0

0 c2 0 c 0 1

 .
Thus, intersection of S(Y) and T(G)3,1 only occurs in the following chart of

F :

F =

e f 1 g 0 0

h i 0 j 1 0

k l 0 m 0 1

 .
In this chart, we can compute the ideal of T(Y)3,1 :

T(Y)3,1 = 〈a, b, d, g, i, k, f, j, e+m,h− l, h− c2, e+ c〉

On the other hand, σ3,1-plane contained in this chart of F is defined by
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the vertex of the form :

x = (α,β, γ, 1)

which correspond to the following 3× 6-matrix : β γ 1 0 0 0

−α 0 0 γ 1 0

0 −α 0 −β 0 1

 .
Thus, we have IT(G)3,1 = 〈f− j, e+m,h− l, g, i, k〉.

On the other hand, from the equations −aq01 − q02 + cq12 + dq13 and

−aq03 + q12 − bq13 − cq23, we obtain ideal for S(Y) :

IS(Y) = 〈−ae− f+ cg,−ah− i+ cj+ d,−ak− l+ cm,−a+ g, j− b,m− c〉

Thus, we can check the clean intersection IT(Y)3,1 = IS(Y) + IT(G)3,1 in the first

chart of Λ by direct calculation.

Next, consider the second chart :

Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .

Let q01, ..., q23 be a coordinate of a fiber of ∧2U over this chart. Then

we have p12−p03 = −bq01−cq02−dq03+q12 and p13−p24 = −aq01+cq12+

dq13 − q23.

Then, in the same manner as in the first chart case, we can show that

σ3,1-plane in T(Y)3,1 correspond to the vertex x = [1 : c : 0 : −c2] ∈ PΛ. The

corresponding σ3,1-plane is spanned by (−c2,−c, 0, 1)∧(0, 1, 0, 0), (−c2,−c, 0, 1)∧

(0, 0, 1, 0), (−c2,−c, 0, 1) ∧ (0, 0, 0, 1). So we can rewrite it by a following
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3× 6-matrix : 1 0 0 0 c2 0

0 1 0 c 0 c2

0 0 1 0 c 0

 .
Thus, the intersection of S(Y) and T(G)3,1 only occurs in the following chart

of F ∈ Gr(3,∧2Λ) :

F =

1 0 0 e f g

0 1 0 h i j

0 0 1 k l m

 .
In this chart, we can compute the ideal of T(Y)3,1 :

T(Y)3,1 = 〈a, b, d, g, i, k, e,m, h− l, f− j, h− c, f− c2〉

On the other hand, σ3,1-plane contained in this chart of F is defined by

the vertex of the form :

x = (1, α, β, γ)

which correspond to the following 3× 6-matrix :1 0 0 −β −γ 0

0 1 0 α 0 −γ

0 0 1 0 α β

 .
Thus, we have IT(G)3,1 = 〈g, i, k, f− j, h− l, e+m〉.

On the other hand, from the equations −bq01 − cq02 − dq03 + q12 and

−aq01 + cq12 + dq13 − q23, we obtain ideal for S(Y) :

IS(Y) = 〈−b+ e,−c+ h,−d+ k,−a+ ce+ df− g, ch+ di− j, ck+ dl−m〉

So, we can check the clean intersection IT(Y)3,1 = IS(Y) + IT(G)3,1 in the second

chart of Λ by direct calculation. In summary, we checked clean intersection
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at T(Y)2,2

Next, we check clean intersection at T(Y)2,2. Let us start with the first

chart for Λ :

Λ =


1 0 a 0 0

0 1 b 0 0

0 0 c 1 0

0 0 d 0 1


Next, σ2,2-plane corresponds to P2-plane in PΛ ∼= P3 ⊂ P4 must one be of

the following form(i.e. it correspond to the row space of the matrix R ·Λ) :

R =

1 0 0 α

0 1 0 β

0 0 1 γ

or
1 0 α 0

0 1 β 0

0 0 γ 1

or
1 α 0 0

0 β 1 0

0 γ 0 1

or
α 1 0 0

β 0 1 0

γ 0 0 1

 .
Therefore, intersection of S(Y) and T(G)2,2 arises only in the following

four charts of F:

F =


01 02 03 12 13 23

1 0 e 0 f g

0 1 h 0 i j

0 0 k 1 l m

, F =

01 02 03 12 13 23

1 e 0 f 0 g

0 h 1 i 0 j

0 k 0 l 1 m

,

F =


01 02 03 12 13 23

e 1 0 f g 0

h 0 1 i j 0

k 0 0 l m 1

and F =


01 02 03 12 13 23

e f g 1 0 0

h i j 0 1 0

k l m 0 0 1


where the upper indices are indices of Plücker coordinates. Let us start with

the first chart :

F =

1 0 e 0 f g

0 1 f 0 i j

0 0 g 1 l m

 ,
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In this case, we can easily observe that σ2,2-plane contained in the inter-

section of T(Y)2,2 and this chart must correspond to the row space of the

matrix :

RΛ =

1 0 0 α

0 1 0 β

0 0 1 γ

 ·Λ.
We observe that this σ2,2-plane which correspond to the row space of the

matrix RΛ correspond to the following matrix form in the chart of F :1 0 β 0 −α 0

0 1 γ 0 0 −α

0 0 0 1 γ −β


But, in this case, the equations −aq01 − q02 + cq12 + dq13 and −aq03 +

q12 − bq13 − cq23 does not have solutions since we have a = b = d = 0 on

T(Y)2,2. Therefore, we can show that intersection of S(Y) and T(G)2,2 does

not happens in the chart for F :

F =

1 0 e 0 f g

0 1 h 0 i j

0 0 k l l m

 .

In the similar manner, we can also show that no intersection of S(Y) and

T(G)2,2 does not happens in the chart for F :

F =

e f g 1 0 0

h i j 0 1 0

k l m 0 0 1

 .

Therefore, it is enough to consider only two chart for F. Let us start with
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the following chart for F :

F =

1 e 0 f 0 g

0 h 1 i 0 j

0 k 0 l 1 m

 .
In this case, we can easily observe that a σ2,2-plane contained in this

chart must correspond to the row space of a matrix of the form :

RΛ =

1 0 α 0

0 1 β 0

0 0 γ 1

 ·Λ.
Then, by the equation −aq01−q02+cq12+dq13 and −aq03+q12−bq13−

cq23, we can observe that this σ2,2-plane contained in T(Y)2,2 if and only if

it satisfies the following matrix equations :

− a[R]0 × [R]1 + c[R]1 × [R]2 + d[R]1 × [R]3 − [R]0 × [R]2 = 0 and

[R]1 × [R]2 − a[R]0 × [R]3 − b[R]1 × [R]3 − c[R]2 × [R]3 = 0

Since we already have a = b = d = 0 satisfied in T(Y)2,2, by Proposition

4.3.12, the above equations reduce to :

c[R]1 × [R]2 − [R]0 × [R]2 = 0 and

[R]1 × [R]2 − c[R]2 × [R]3 = 0

Therefore, we have :

c(−γ, 0, α) − (0, 0, 1) = 0

(−γ, 0, α) − c(1, 0, 0) = 0

Thus, there is no solution for these equations. So intersection of T(G)2,2 and
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S(Y) does not occur in this chart of F.

So, in summary, we checked the clean intersection IT(Y)2,2 = IS(Y) + IT(G)2,2
in the first chart of Λ and all chart of F. We can also check the clean in-

tersection in the second chart for Λ :

Λ =


1 0 0 a 0

0 1 0 b 0

0 0 1 c 0

0 0 0 d 1

 .
in the same manner, as we used in the case of the first chart of Λ. But since

all process is parallel, we do not write it down here. In summary, we obtain

the following result.

Proposition 4.4.8. For Fano 4-fold Y := Y4 = Gr(2, 5) ∩H1 ∩H2, S(Y) and

T(G) cleanly intersect in S(G), i.e.

IT(Y) = IT(G) + IS(Y).

4.5 Fano threefold Y3

We can also apply arguments in previous sections on the case of Fano

threefold Y3. Applying similar methods as in the previous sections, we re-

prove well-known results on the moduli space of projective lines and conics.

For concrete local chart computations, we let

H1 = {p12 − p03 = 0}, H2 = {p13 − p24 = 0}, H3 = {p14 − p02 = 0}.

Proposition 4.5.1. [30, Lemma 3.3] The Hilbert scheme of lines F1(Y) in

the Fano 3-fold Y is isomorphic to P2.

Proof. Consider the projection F1(Y) ⊂ Gr(1, 3, 5) → Gr(1, 5). Then this

map assigns each line to its vertex. Then for a vertex p = [a0 : a1 : a2 : a3 :
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a4], a line in the Gr(2, 5) whose vertex is p lies in the Fano 3-fold Y if and

only if

rank


a3 0 a2

a2 a3 a4

−a1 −a4 −a0

−a0 −a1 0

0 a2 −a1

 ≤ 2.

The rank condition determines the ideal of the image of the projection map

Im(F1(Y)) in Gr(1, 5) = P4, which is is given by

〈a1a2a3+a0a23−a22a4+a3a24, a32−a1a23−a2a3a4, a1a22+a0a2a3−a1a3a4, a0a22+a21a3,
a21a2 + a0a1a3 + a0a2a4, a0a1a2 + a

2
0a3 + a

2
1a4 + a0a

2
4, a

3
1 − a

2
0a2 + a0a1a4〉.

It is well-known that the zero set of the above ideal is isomorphic to P2,
which is a projection of the Veronese surface ([84, Theorem 1.1]). We note

that Im(F1(Y)) ∼= P2 contains the smooth conic C0 appeared in Proposition

4.4.5. Thus F1(Y) = BlC0
Im(F1(Y)) ∼= P2.

The following theorem is an analogue of Theorem 4.3.9 in the case of

Fano threefold Y3.

Theorem 4.5.2. [30, Lemma 3.3] The Hilbert scheme H2(Y) of conics in the

Fano 3-fold Y is isomorphic to the Grassmannian Gr(4, 5) ∼= P4.

Proof. In a similar manner as in the proof of Lemma 4.4.1, we can easily

check that there is no plain contained in Y. Moreover, we define

K := ker{∧2U ⊂ ∧2O⊕5 → O⊕3}
as the kernel of the above composition map where U is the tautological bun-

dle on Gr(4, 5) and the second arrow is induced from the three linear equa-

tions (p12 − p03 = 0, p13 − p24 = 0, p14 − p02 = 0) of the Fano 3-fold Y. Then

135



Chapter 4. Compactifications for Rd(Y
m)

we can easily show that the rank of K is 3 by direct calculation so that

K is a vector bundle. Hence we obtain isomorphisms H2(Y)red ∼= S(Y) ∼=

Gr(4, 5). In a same manner as in the proof of Lemma 4.3.2, we can also

prove H2(Y)red = H2(Y).
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Chapter 5

Compactifications of the moduli

spaces of degree 3 smooth

rational curves inN

The results presented in this chapter are based on the results obtained

joint with Chung in [20].

We studied that there are two irreducible component R3(0) and R3(1)

of R3(N ) in Chapter 3, Proposition 3.1.3. In this chapter, we study their

Kontsevich compactification. For the definition of the stable map space and

Kontsevich compactification, see Chapter 4, Section 4.1.

But since R3(0) is a fiber bundle over Pic0(X), whose fiber over a line

bundle L ∈ Pic0(X) is an open subscheme of the degree 3 map space

Hom3(P1,PExt1(L, L−1(−x))), Kontsevich compactification of this space is al-

ready well-known by Kiem-Moon [56]. So we concentrate on the Kontsevich

compactification of the component R3(1) here. Let M0(N , d) be the stable

map space of genus zero, degree d stable maps with no marked points. Here,

the degree of the map is defined via the very ample divisor Θ on N . We

denote R3(1) ⊂M0(N , 3) by Λ1 := R3(1).
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5.1 Notations

In this chapter, let us fix some notations as follows.

- X: a smooth projective curve with genus g ≥ 4 over C.

- x: a fixed point of X.

- N : Moduli space of rank 2 stable vector bundles on the smooth pro-

jective curve X with a fixed determinant line bundle OX(−x).

- VdL := Ext1(L, L−1(−x)) where d is a dimension of the vector space,

(VdL )
s is the sublocus of Ext1(L, L−1(−x)) parametrizing extensions which

have stable rank 2 vector bundles in their middle terms. Therefore, by

Riemann-Roch formula, Ext1(L, L−1(−x)) = VgL if L ∈ Pic0(X) and

Ext1(L, L−1(−x)) = Vg+2L if L ∈ Pic1(X).

- Pg−1L := PVgL for a line bundle L ∈ Pic0(X) and (Pg+1L )s := P(Vg+2L )s,

where (Vg+2L )s is the sublocus of Ext1(L, L−1(−x)) parametrizing exten-

sions which have stable rank 2 vector bundles in their middle terms.

We sometimes abbreviate Pg−1L by Pg−1 if there is no confusion on the

choice of the line bundle L. Also, we sometimes abbreviate Pg+1L by (re-

spectively, (Pg+1L )s) by Pg+1 (respectively, (Pg+1)s) if there is confusion

on the choice of the line bundle L ∈ Pic1(X). Moreover, also sometimes

abbreviate stable locus of PVg+2L := (PVg+2L )s by (Pg+1)s, when there is

no confusion on the choice of the line bundle L ∈ Pic1(X).

5.2 Review of the resolution of unstable locus

(Pg+1L )us

To understand the compactification Λ1 of the component R3(1), whose

elements are lines, i.e. degree one map f : P1 → (Pg+1L )s, we should under-
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stand what happens that these lines get close to the unstable locus, (Pg+1L )us,

because boundary elements of Λ1 arise in this kind of limits. So what we

should do first is to determine the unstable locus (Pg+1L )us. In fact, Castravet

already studied about this unstable locus in [13, Section 2.2], [12, Section

2.1]. The following result directly follows from the simple observation of the

proof of [13, Lemma 2.1].

Proposition 5.2.1. [13, Proof of Lemma 2.1] For a degree 1 line bundle L ∈
Pic1(X), the unstable locus P(Ext1(L, L−1(−x)))us = (Pg+1L )us is isomorphic to

the image of the following morphism, induced by the complete linear system

:

i = |L2(x)⊗ KX| : X ↪→ Pg+1L

where KX is a canonical line bundle of the curve X.

We note that L2(x)⊗KX is very ample, therefore i is a closed embedding,

so we can identify the unstable locus with the smooth projective curve X. In

the upcoming contents, we will reinterpret the unstable locus using elemen-

tary modification we introduced in Chapter 3, Definition 3.1.1, which will

give us some geometric intuition about the rational map ΨL : Pg+1L → N .

5.2.1 Some remarks about the rational map ΨL : Pg+1L 99K

N

Let us recall the definition of the elementary modification in Chapter 3.

Recall the sequence 3.1, which gives the elementary modification

0 −→ Evp −→ E
vp−→ Cp −→ 0.

Then let us assume that E = ξ ⊕ ξ ′ decomposes to line bundles ξ and ξ ′

on the curve X. If [vp] ∈ C∗ = P1 \ {[1 : 0], [0 : 1]}, we can easily check the

elementary modifications Evp are isomorphic to each other. Thus, we can

introduce the following definition.
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Definition 5.2.1. We define the rank 2 vector bundle on the curve X as

follows :

(ξ⊕ ξ ′)p := (ξ⊕ ξ ′)vp

for any vp ∈ C∗ = P1 \ {[1 : 0], [0 : 1]}. This vector bundle is well-defined

since elementary modifications (ξ⊕ξ ′)vp are all isomorphic to each other for

different choice of vp ∈ C∗ = P1 \ {[1 : 0], [0 : 1]}.

Furthermore, when L ∈ Pic1(X), we can easily observe that there is a

short exact sequence :

0→ L−1(−x)→ (L⊕ L−1(p− x))p → L→ 0

and (L⊕ L−1(p− x))p is a non-split vector bundle.

From the above definition, it is natural to consider a morphism from the

curve X to a PExt1(L, L−1(−x)). But it is unclear what this morphism ex-

actly is. The following lemma gives an answer to this question.

Lemma 5.2.2. (cf. [96, (3.4)] and [4, Section 3]) Consider

f : X→ Pg+1L = PExt1(L, L−1(−x)), p 7→ (L⊕ L−1(p− x))p

the map defined as the elementary modification. Then the map f coincide

with the map induced from the following complete linear system :

i = |L2(x)⊗ KX| : X ↪→ Pg+1L

where KX is the canonical line bundle of X.

Proof. We first note that it was shown in [96, (3.4)] that the map i coincide

with the map g : X→ PH1(Λ−1) =M0 (Λ = L2(x)) where M0 is the moduli

space parametrizing pairs of stable bundles on the curve X and their sections.

Here, the map g is given by g : X = PW → PH1(L−2(−x)) where W is a line
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bundle on the curve X and g(p) = PH0(L−2(−x)|p) ∈ PH1(L−2(−x)) (See

the last paragraph in [96, 329p]). In fact, we get this map by taking the

projectivization of the map µ in the short exact sequence in the following

0→ Ext1(L|p, L
−1(−x))

µ→ Ext1(L, L−1(−x))
γ→ Ext1(L(−p), L−1(−x))→ 0.

(5.1)

Here, we get (5.1) by applying the functor Hom(−, L−1(−x)) to the following

exact sequence :

0→ L(−p)→ L→ L|p → 0.

Since we have Ext1(L|p, L
−1(−x)) = C, it is enough to check γ(f(p)) =

L(−p) ⊕ L−1(−x) to prove g(p) = f(p). Therefore, what we have to show

is the following :

γ(f(p)) = (L⊕ (L−1(p− x))p ⊕L L(−p) ∼= L(−p)⊕ L−1(−x). (5.2)

We can easily observe that the left hand side fit to the following pull-back

diagram :

0 // L−1(−x) // (L⊕ L−1(p− x))p ⊕L L(−p) //

��

L(−p) //
� _

��

// 0

0 // L−1(−x) // (L⊕ L−1(p− x))p // L // 0.

Using the above pull-back diagram, we can show the isomorphism (5.2) as

follows. Since isomorphism is a local property, it is enough to show locally.
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Consider any open set U ⊂ X, then we have :

((L⊕ L−1(p− x))p ⊕L L(−p))(U)
= {((s1, s2), s3)|(s1, s2) ∈ ((L⊕ L−1(p− x))p(U), s3 ∈ L(−p)(U), s1 = s3}
∼= {(s1, s2) ∈ ((L⊕ L−1(p− x))p(U)|s1 ∈ L(−p)}
∼= {(s1, s2) ∈ L(U)⊕ L−1(p− x)(U))|as1(p) + bs2(p) = 0, s1(p) = 0}
∼= {(s1, s2) ∈ L(U)⊕ L−1(p− x))(U)|s1(p) = s2(p) = 0}
∼= {(s1, s2) ∈ (L(−p)⊕ L−1(−x))(U)}.

Here, we can observe that the third isomorphism obtained directly follows

from the definition of the elementary modification, and the fourth isomor-

phism follows since we should choose vp = [a : b] ∈ C∗ such that ab 6= 0.

Remark 5.2.3. deg(f(X)) = 2g+ 1.

Proposition 5.2.4. ([96, 4]) For a line bundle L ∈ Pic1(X), consider

ΨL : Pg+1L 99K N

the rational map induced from the middle term of the universal extension

sequence of the projectivized extension group PExt1(L, L−1(−x)). Then we

have following properties for the map ΨL :

(1) The base locus of the rational map ΨL is identified with the curve X

(Lemma 5.2.2). By taking the blow-up of Pg+1L along the base locus X,

we obtain a regular morphism

Ψ̃L : BlXPg+1L (:= P̃L) −→ N .
which is an extension of ΨL.

(2) The fiber of the exceptional divisor E over a point p ∈ X of the blow-

up morphism π is isomorphic to Pg−1, exactly coincides with the degree

142



Chapter 5. Compactification for R3(N )

0 extension type space Pg−1L(−p). Therefore, each fiber of the exceptional

divisor linearly embedded into N via the map Ψ̃L.

(3) If the map ΨL is injective and H0(L2(x)) = 0 for some L ∈ Pic1(X),

then the morphism Ψ̃L is a closed embedding for the line bundle L.

P̃L

Ψ̃L

!!

π
��

Pg+1L

ΨL // N .

Proof. We follow the notations in [96]. So if we let Λ = L2(x) we have the

short exact sequence 0 → OX → E → L2(x) → 0. Furthermore, we have

P̃L
∼=M1 where the space M1 parametrizes pairs (s, E) such that the bundle

E is stable and s ⊂ H0(E) is a section of E. ([96]). Part (1) follows from

Lemma 5.2.2 and [96, (2.1)]. Part (2) obtained from part (2) of [4, Theorem

1]. In part (3), injectiveness of the map Ψ̃L follows from [96, (3.20)] since we

have H0(E) = C. We note that the map Ψ̃L is in fact equals to the forgetful

map (s, E) 7→ E where s ⊂ H0(E). Therefore, the induced tangential map

TΨ̃L∗ : T[(s,E)]P̃L → T[E]N identified with the last morphism in the following

exact sequence ([96, (2.1)]) :

0→ Ext0(E, E)→ H0(E)→ T[(s,E)]P̃L
TΨ̃L∗−→ T[E]N .

Since we have Ext0(E, E) = C and H0(E) = C, we deduce that the extended

map Ψ̃L is an embedding.

We note that the conditions in the item (3) of the above proposition are

satisfied for the the line bundle L which satisfies the property defined in the

following. (cf. Lemma 5.2.11).

Definition 5.2.2. We call a line bundle L non-trisecant if H0(L2(x)) = 0,

otherwise, we call L trisecant.
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Furthermore, we can interpret non-tresecant condition in a geometric way

using the following corollary.

Corollary 5.2.5. ([45, Lemma 5.1]) Let L ∈ Pic1(X) be a line bundle. Then

we have the followings :

(a) For the curve X ⊂ Pg+1L (embedded in Pg+1L by the linear system |L2(x)⊗
KX|), there exist a line in Pg+1L which is trisecant to X if and only if :

L2(x) ∼= OX(p+ q+ r)( equivalently, H0(L2(x)) 6= 0) (5.3)

for some points p, q, r on the curve X. Then there exist a trisecant line

` which intersect with the curve X on the points p, q, r. If p = q, then

` is tangent to X at the point p. Also, if p = q = r, then ` is tangent

to X at the point p and it intersect with X on p with multiplicity 3.

(b) Let us assume that the curve X is not trigonal and also not hyperel-

liptic. Then the points p, q, r on the curve X which satisfies the equa-

tion (5.3) are uniquely defined. Therefore there is unique trisecant line

passing through the points p, q, r.

Proof. Part (a) : Assume that there is a trisecant line ` and let ` ∩ X =

{p, q, r}(intersection points p, q, r need not to be distinct). So we can write

` = pqr. Since the line ` is trisecant, in the similar manner as in the Propo-

sition 5.2.7, we can observe that the line ` is identified with the projectivized

kernel of the morphism δ1 in the following diagram :

Ext0(L, L−1(−x))→ Ext0(L(−p− q− r), L−1(−x))→ Ext1(L|p+q+r, L
−1(−x))→ Ext1(L, L−1(−x))

δ1→ Ext1(L(−p− q− r), L−1(−x))→ 0.

Since the first term of the diagram is zero, the dimension of the kernel of δ1

is 2(since pqr is the line `), and the dimension of Ext1(L|p+q+r, L
−1(−x)) is 3,

we deduce that the dimension of Ext0(L(−p−q−r), L−1(−x)) ∼= H0(L−2(−x)⊗
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OX(p+q+ r)) is equal to 1. Thus we obtain L−2(−x)⊗OX(p+q+ r) ∼= OX.

Therefore we obtain that L2(x) ∼= OX(p+ q+ r).

Conversely, consider a line bundle L which satisfies the equation (5.3).

Then, we take the functor Hom(L,−) in the following short exact sequence

:

0→ L−1(−x)→ L−1(p+ q+ r− x)→ L−1(p+ q+ r− x)|p+q+r → 0,

so we have the following long exact sequence.

Ext0(L, L−1(p+ q+ r− x))→ Ext0(L, L−1(p+ q+ r− x)|p+q+r)→ Ext1(L, L−1(−x))

δ2→ Ext1(L, L−1(p+ q+ r− x))→ Ext1(L, L−1(p+ q+ r− x)|p+q+r) = 0.

(5.4)

Since the final term of the above sequence is clearly zero, we obtain

dim(Ext1(L, L−1(−x))) = g+2 and dimExt1(L, L−1(p+q+r−x)) = dimExt1(L, L)

= g by (5.3). Therefore we have dim kerδ2 = 2. Furthermore, since the map

δ2 is in fact equal to the composition of the map δ1 and a natural isomor-

phism Ext1(L(−p − q − r), L−1(−x)) ∼= Ext1(L, L−1(p + q + r − x)), we con-

clude that kerδ2 = kerδ1. Thus, the vector space kerδ2 is the affine cone ̂̀ of

the sub-linear space ` = pqr ⊂ Pg+1, which is turned out to be a line. By

definition, we have X ∩ ` = p+ q+ r.

Part (b) : Assume that there exist three points s, t, u(such that s+ t+

u 6= p + q + r) on the curve X which satisfies L2(x) ∼= OX(s + t + u). Then

we have OX(p+ q+ r− s− t− u) ∼= OX. But this says that the curve X is

hyperelliptic or trigonal.

Remark 5.2.6. We note that the non-trisecant condition H0(L2(x)) = 0 is

general for degree 1 line bundles L ∈ Pic1(X) by Riemann-Roch theorem,

since our curve X satisfies g(X) ≥ 4. In my joint work paper [20], we as-

sumed that g(X) ≥ 3, but if g(X) = 3, then for degree 1 line bundle L,
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H0(L2(x)) 6= 0. So If g(X) = 3, non-trisecant condition is not general con-

dition. So we changed the genus condition to be g(X) ≥ 4. This part was

advised by Atanas Iliev.

5.2.2 Geometry of lines in Pg+1 meeting X

In this section, we make a more precise description of the line pq :=

〈f(p), f(q)〉 which pass through the points p, q in the curve X embedded

in Pg+1 = PVg+2L for a line bundle L ∈ Pic1(X) via the map f. Since this

kind of lines appear as a component of a boundary curve of Λ1, this precise

description helps us to understand the structure of the boundary of Λ1.

If two points p and q coincides, then pp denotes the projective line tan-

gent to X at the point f(p) in the projective space Pg+1L . For a point t ∈ X
on the curve X, we have the image f(t) (see Lemma 5.2.2) which fits into

the exact sequences as follows :

0→ L−1(−x)→ f(t) = (L⊕ L−1(t− x))t → L→ 0.

Proposition 5.2.7. Let M := L⊕ L−1(p+ q− x). Then the punctured line

pq \ {p, q} is parametrized by rank 2 vector bundles obtained by double ele-

mentary modifications, (Mvp)vq(= (Mvq)vp) which fit into the following short

exact sequence:

0 −→ (Mvp)vq −→M
(vp⊕vq)−→ Cp ⊕ Cq −→ 0.

Here vp ∈ C∗ ⊂ P(H0(M|p)
∨) = P1 and vq ∈ C∗ ⊂ P(H0(M|q)

∨) = P1.

Proof. By diagram chasing, we can check that the vector bundle obtained by

the double elementary modification exactly coincide with the kernel of the

morphism vp ⊕ vq.
First we describe the pq ⊂ Pg+1L in an algebraic way. Applying the func-

tor Hom(−, L−1(x)) to the exact sequence 0→ L(−p− q)→ L→ L|p+q → 0,
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we have the following long exact sequence :

0 = Ext0(L(−p− q), L−1(−x))→ Ext1(L|p+q, L
−1(−x))

i→ Ext1(L, L−1(−x))

j→ Ext1(L(−p− q), L−1(−x))
ϕ
∼= Ext1(L, L−1(p+ q− x))→ 0

where ϕ is the natural isomorphism tensoring the line bundle O(p+q) and

the first identity holds because of degree reasons.

So we claim that the image of PExt1(L|p+q, L
−1(−x)) in PExt1(L, L−1(−x)) =

Pg+1L is equal to the line pq. To prove this, we first show that the line

PExt1(L|p+q, L
−1(−x)) ⊂ Pg+1 is parametrized by bundles comes from dou-

ble elementary modifications. Let E ∈ Ext1(L|p+q, L
−1(−x)). Then the image

i(E) of the bundle E fits into the exact sequence in the following

0→ L−1(−x)→ i(E)→ L→ 0.

We have ϕ(j(i(E))) = L−1(p+q−x)⊕L, which means that we can construct

the push-out diagram as follows

0 // L−1(−x) //

_�

��

i(E) //

a

��

L // 0

0 // L−1(p+ q− x) // L−1(p+ q− x)⊕ L // L // 0.

(5.5)

Then we obtain the following exact sequence using some diagram chasing

0→ i(E)
a−→ L−1(p+ q− x)⊕ L vp⊕vq−→ Cp+q → 0 (5.6)

where p1 ◦ a is a surjection and the map p1 : L ⊕ L−1(p + q − x) → L is

the natural projection to the first summand. Furthermore, it is trivial that

p1 ◦ a is a surjection if and only if vp, vq 6= [1 : 0] .

On the contrary, consider a rank 2 vector bundle E fits into the short

exact sequence (5.6) where the map p1◦a is surjective. Then we can observe
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that the vector bundle E fits into the commutative diagram (5.5) using the

snake lemma.

As a result, extensions arises as a form of (5.6) where vp 6= [1 : 0] and

vq 6= [1 : 0] are elements of Ext1(L|p+q, L
−1(−x)). Next, we can check that the

vector bundle correspond to f(p) (resp. f(q)) which is obtained by elemen-

tary modification fits into the diagram of (5.6) where vp ∈ C∗ and vq = [0 : 1]

(resp. vq ∈ C∗ and vp = [0 : 1]). Hence, when p 6= q, then we have f(p) 6=
f(q) and f(p) and f(q) lie on the linear space PExt1(L|p+q, L

−1(−x)) ⊂ Pg+1L

which coincide with the line pq by definition.

We can observe that the extension group Ext1(L|2p, L
−1(−x)) is equal to

limit of the family of extension groups Ext1(L|p+q, L
−1(−x)) when p approaches

to q. So we obtain the same conclusion for the case of p = q.

Next, we specify which vector bundles are contained in the following in-

tersections of the projectivized extension groups :

1. PVgζ ∩ PVgη for ζ, η ∈ Pic0(X).

2. P(Vg+2ζ )s ∩ PVgη for ζ ∈ Pic1(X) and η ∈ Pic0(X).

3. P(Vg+2ζ )s ∩ P(Vg+2η )s for ζ, η ∈ Pic1(X).

It should be noted that these intersections arise in the moduli space of vector

bundle N . Case (1) is already covered in [77, 6.19]. PVgζ and PVgη cleanly

intersect at a point or their intersection locus is empty. Thus we concentrate

on the case (2) and (3).

Proposition 5.2.8. For line bundles ζ ∈ Pic1(X) and η ∈ Pic0(X), vector

bundles in P(Vg+2ζ )s ∩ PVgη ⊂ N arise in one of the following forms :

i) If ζ ⊗ η ∼= O(p + q − x), for some points p, q ∈ X, then the image of

P(Vgζ )s ∩ PVgη and the image of pq \ {p, q} are exactly the same in N .

ii) Otherwise, we have P(Vg+2ζ )s ∩ PVgη = ∅
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Proof. Consider a bundle E in the intersection P(Vg+2ζ )s∩PVgη . Then we have

the following diagram :

0 // ζ−1(−x)
a // E

b //

=
��

ζ // 0

0 // η−1(−x)
c // E

d // η // 0.

If d ◦ a=0, then we can see that d factors through E
b→ ζ. But in this

case, since deg (ζ) = 1 > deg (η) = 0 we have d = 0 and it leads to the

contradiction. Hence the map d◦a is injective. Furthermore, since the degree

of the map η is 0 and the degree of ζ−1(−x) is −2, we obtain Coker(d◦a)) =
Cp+q for p, q ∈ X. Hence we have ζ−1(−x) ∼= η(−p− q). Next, consider the

diagram in the following

0 0

0 // ζ−1(−x) // η
r //

OO

Cp+q

OO

// 0

0 // ζ−1(−x)
a // E

b //

d

OO

ζ //

s

OO

0

η−1(−x)

c

OO

η−1(−x)

b◦c

OO

0

OO

0

OO

.

(5.7)

Then, one can observe that Coker(d ◦ a) is isomorphic to Coker(b ◦ c), and

this observation leads to the following diagram :

0 // ζ−1(−x)
a // E

b //

=
��

ζ // 0

0 // ζ(−p− q)
c // E

d // ζ−1(p+ q− x) // 0.
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From the above diagram, we can construct the morphism in the following

b⊕ d : E→ ζ⊕ ζ−1(p+ q− x).

Then, we also construct the following commutative diagram :

0 // Cp+q ∆ // Cp+q ⊕ Cp+q
g

// Cp+q // 0

0 // E
b⊕d

//

s◦b

OO

ζ⊕ ζ−1(p+ q− x)

s⊕r

OO

// C3 //

h

OO

0

(5.8)

where the map g is defined to be g(z,w) := z−w. Because the map g◦(s⊕r)
is surjective, the map h is also surjective. We can observe that the degree

of the coherent sheaf C3 is 2 and supported at {p, q}, so we deduce that h

is an isomorphism.

As a result, the vector bundle E fit into the following short exact se-

quence :

0 // E
b⊕d
// ζ⊕ ζ−1(p+ q− x)

vp⊕vq
// Cp+q // 0, (5.9)

where vt ∈ C∗ for some t ∈ {p, q}. We note that the the class of vp and vq

should not be [1 : 0] ∈ P1 or [0 : 1] ∈ P1 since the morphism b and d are both

surjective. Conversely, if a vector bundle E satisfy the conditions mentioned

above, then it is easy to show that E is contained in P(Vg+2ζ )s ∩ PVgη when

η ∼= ζ−1(p+q−x). Hence, we have the conclusion from Proposition 5.2.7.

Proposition 5.2.9. Let M := L⊕ L−1(p+ q+ r− x). Then the scraped lin-

ear space pqr \ {pq ∪ qr ∪ pr} is parametrized by rank 2 vector bundles ob-

tained by triple elementary modifications, ((Mvp)vq)vr(= ((Mvp)vr)vq = · · · =
((Mvr)vq)vp) which fit into a short exact sequence of the following form

0 −→ ((Mvp)vq)vr −→M
(vp⊕vq⊕vr)−→ Cp ⊕ Cq ⊕ Cr −→ 0.

Here, vp ∈ C∗ ⊂ P(H0(M|p)
∨) = P1, vq ∈ C∗ ⊂ P(H0(M|q)

∨) = P1 and
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vr ∈ C∗ ⊂ P(H0(M|r)
∨) = P1.

Proof. First, we can check that vector bundles obtained by the triple ele-

mentary modifications exactly correspond to vector bundles which are ker-

nels of the morphisms vp ⊕ vq ⊕ vr by diagram chasing.

First, we describe the pqr ⊂ Pg+1L in an algebraic way. By applying the

functor Hom(−, L−1(x)) to the exact sequence 0 → L(−p − q − r) → L →
L|p+q+r → 0, we have the following long exact sequence :

Ext0(L(−p− q− r), L−1(−x))→ Ext1(L|p+q+r, L
−1(−x))

i→ Ext1(L, L−1(−x))

(5.10)

j→ Ext1(L(−p− q− r), L−1(−x))
ϕ
∼= Ext1(L, L−1(p+ q+ r− x))→ 0

(5.11)

where ϕ is induced by twisting the line bundle O(p + q + r) and we can

check the first identity using degree reasons. So we claim the following

PExt1(L|p+q+r, L
−1(−x)) = pqr.

To prove this claim, we first show that the line PExt1(L|p+q+r, L
−1(−x)) ⊂

Pg+1 is represented by bundles comes from triple elementary modifications.

Let E ∈ Ext1(L|p+q+r, L
−1(−x)). Then the image i(E) of the bundle E fits

into the following exact sequence:

0→ L−1(−x)→ i(E)→ L→ 0.

Because ϕ(j(i(E))) = L−1(p + q + r − x) ⊕ L, we can consider the push-out
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diagram as follows

0 // L−1(−x) //

_�

��

i(E) //

a

��

L // 0

0 // L−1(p+ q+ r− x) // L−1(p+ q+ r− x)⊕ L // L // 0.

(5.12)

By diagram chasing, one can check that there is an exact sequence in the

following

0→ i(E)
a−→ L−1(p+ q+ r− x)⊕ L vp⊕vq⊕vr−→ Cp+q+r → 0 (5.13)

where the composition p1 ◦a is surjective for the projection p1 : L⊕L−1(p+
q + r − x) → L into the first factor. Furthermore, it is obvious that the

composition p1 ◦ a is a surjection if and only if vp 6= [1 : 0], vq 6= [1 : 0] and

vr 6= [1 : 0].

On the contrary, we assume that the rank 2 vector bundle E fits into the

short exact sequence (5.13) such that the map p1 ◦ a is a surjection. Then

we can easily show that the vector bundle E fits into the push-out diagram

(5.12) using the snake lemma.

As a result, extensions appeared as a form of (5.13) where vp 6= [1 : 0],

vq 6= [1 : 0] and vr 6= [1 : 0] are the elements of Ext1(L|p+q+r, L
−1(−x)).

Next, we can easily check that bundles correspond to pq (resp. qr, pr)

obtained by elementary modification fits into the diagram of (5.13) where

vr = [0 : 1] and vp, vq ∈ P1 \ [1 : 0] (resp. vp = [0 : 1] and vq, vr ∈ P1 \ [1 : 0],
vq = [0 : 1] and vp, vr ∈ P1 \ [1 : 0]). Hence, when p, q, r are all distinct,

three points f(p), f(q), f(r) are also distinct and they lie on the linear space

PExt1(L|p+q+r, L
−1(−x)). If f(p), f(q), f(r) are colinear, then the line bundle

L is trisecant by Corollary 5.2.5. Therefore, we have dimExt0(L(−p − q −

r), L−1(−x)) = 1 in the sequence (5.10). Therefore by dimension counting,

we conclude that P(Ext1(L|p+q+r, L
−1(−x))/Ext0(L(−p−q−r), L−1(−x))) has
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dimension 1, i.e. a projective line. If f(p), f(q), f(r) is not colinear, than

dimExt0(L(−p − q − r), L−1(−x)) = 0 by 5.2.5 and therefore we conclude

that PExt1(L|p+q, L
−1(−x)) is a projective plane, and therefore f(p), f(q), f(r)

spans the projective plane. So, in both cases, f(p), f(q), f(r) spans the lin-

ear space PExt1(L|p+q, L
−1(−x)) so we can write it by pqr. In summary,

The bundles obtained by triple elementary modifications parametrizes the

scraped linear space pqr \ {pq ∪ qr ∪ pr}.
Since the extension groups Ext1(L|2p+q, L

−1(−x)), Ext1(L|3p, L
−1(−x)) are

equal to the limits of the extension groups Ext1(L|p+q+r, L
−1(−x)) by taking

p → q, and q → r, we obtain the same conclusion for the case of p = q.

Here, ppq is the linear space spanned by the projective tangent line of the

curve X at p and the point r, and ppp is the osculating plane of the curve

X at the point p.

Proposition 5.2.10. Let ζ ∈ Pic1(X) and η ∈ Pic1(X), [ζ] 6= [η]. Then bun-

dles in the intersection P(Vg+2ζ )s∩P(Vg+2η )s ⊂ N arise as one of the following

types :

i) If ζ⊗η ∼= O(p+q+ r−x), for some points p, q, r ∈ X, then the image

of P(Vg+2ζ )s∩P(Vg+2η )s and the image of pqr\{pq∪qr∪pr} are exactly

the same in N . Here, pqr is the linear space in P(Vg+2ζ ) spanned by

points p, q, r.

ii) Otherwise, we have P(Vg+2ζ )s ∩ P(Vg+2η )s = ∅

Proof. The proof proceeds in the similar manner as 5.2.8. Consider a bun-

dle E in the intersection P(Vg+2ζ )s ∩ P(Vg+2η )s. Then we have the following

diagram :

0 // ζ−1(−x)
a // E

c //

=
��

ζ // 0

0 // η−1(−x)
b // E

d // η // 0.

If d ◦ a=0, then we can see that d factors through E
c→ ζ. But in this

case, since deg (ζ) = 1 = deg (η) = 1, we have ζ ∼= η and it leads to the
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contradiction. Hence the map d ◦ a is injective. By degree reason, we have

Coker(d ◦ a) = Cp+q+r for points p, q, r ∈ X. Hence we have ζ−1(−x) ∼=

η(−p−q− r). In the same manner, we can show that c ◦b is also injective.

Next, consider the following commutative diagram :

0 0

0 // ζ−1(−x) // η
r //

OO

Cp+q+r

OO

// 0

0 // ζ−1(−x)
a // E

c //

d

OO

ζ //

s

OO

0

η−1(−x)

b

OO

η−1(−x)

c◦b

OO

0

OO

0.

OO

(5.14)

From the above diagram, we can observe that Coker(d ◦a) is isomorphic to

Coker(c ◦ b), and this fact leads to the following diagram :

0 // ζ−1(−x)
a // E

c //

=
��

ζ // 0

0 // ζ(−p− q− r)
b // E

d // ζ−1(p+ q+ r− x) // 0.

Thus, we can construct the following map

b⊕ d : E→ ζ⊕ ζ−1(p+ q+ r− x).
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Then, we can also construct the following commutative diagram :

0 // Cp+q+r ∆ // Cp+q+r ⊕ Cp+q+r
g

// Cp+q+r // 0

0 // E
c⊕d

//

s◦c
OO

ζ⊕ ζ−1(p+ q+ r− x)

s⊕r

OO

// C3 //

h

OO

0

(5.15)

where the map g is defined to be g(z,w) := z−w. Because the map g◦(s⊕r)
is a surjection, the map h is also a surjection. We have the degree of the

coherent sheaf C3 is 3 and supported at {p, q, r}, so we deduce that h is an

isomorphism.

As a result, the vector bundle E fit into the following short exact se-

quence :

0 // E
c⊕d

// ζ⊕ ζ−1(p+ q+ r− x)
vp⊕vq⊕vr

// Cp+q+r // 0, (5.16)

where vt ∈ C∗ for each t ∈ {p, q, r}. We note that the classes of vp, vq and

vr should not be in {[1 : 0], [0 : 1]} ⊂ P1 since the morphism c and d are both

surjective. Conversely, if a vector bundle E satisfy the conditions mentioned

above, then it is easy to show that E is contained in P(Vg+2ζ )s ∩ P(Vg+2η )s

when η ∼= ζ−1(p + q + r − x). Hence, we obtain the proof from Proposition

5.2.9.

For classifying stable maps in the space P̃L, we will use the following

result in Corollary 5.2.12, which computes the degree of the map given by

the composition P1 f→ (Pg+1L )s
ΨL−→ N from some geometric information.

Lemma 5.2.11. For elements α 6= β ∈ (PVg+2L )s, we have ΨL(α) = ΨL(β)

if and only if the points α,β ∈ PVg+2L = Pg+1L lie in a trisecant line of the

curve X ⊂ Pg+1L .
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Proof. Let us assume that ΨL(α) = ΨL(β), then we have :

α : [ 0 // L−1(−x)
a // E

c // L // 0 ]

β : [ 0 // L−1(−x)
b // E

d // L // 0 ].

If the composition d ◦ a = 0, then the map a should factors through the

map L−1(−x)
b→ E. Therefore the map a should be a scalar multiplication

on L−1(−x), so we have a = λb for some λ ∈ C∗. Again since d ◦ a = 0,

d factored by the quotient map d and the descent map from L to L, which

should be an isomorphism. Thus d is a scalar multiplication on L, so we

obtain d = λ ′c for some λ ′ ∈ C∗. This means the extension classes α and

β are equal, which is a contradiction. Therefore the composition d ◦ a is

not zero. Thus the map d ◦ a is an injection, which says that the coherent

sheaf Coker(d ◦ a) is equal to the skyscraper sheaf Cp+q+r for three points

p, q, r ∈ X. Then we observe that L−1(−x) is isomorphic to L(−p − q − r),

which means that L2(x) ∼= OX(p + q + r). In a similar manner, we can also

check that c ◦ b 6= 0. Then, there exist a trisecant line ` of X in Pg+1L which

intersects with the curve X on the points p, q, r by Corollary 5.2.5. Next,

consider the map c ⊕ d : E → L ⊕ L. Using the same argument used to

construct the diagram (5.15), we obtain Coker(c⊕ d) = Cp+q+r. Then, look

at the commutative diagram in the following

0 // L−1(−x)
_�

a

��

d◦a // L_�

0⊕id
��

// Cp+q+r // 0

0 // E
c⊕d

// L⊕ L // Cp+q+r // 0.
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Using the snake lemma, we obtain the commutative diagram in the following

0 // L−1(−x)
_�

d◦a
��

a // E_�

c⊕d
��

c // L // 0

0 // L // L⊕ L // L // 0.

Since L ∼= L−1(p + q + r − x), we can check that α and β are elements of

the projectivized kernel of the map δ2 in (5.4). Thus by Corollary 5.2.5, we

have α and β are contained in the trisecant line ` of the curve X ⊂ Pg+1L .

Next, we check the necessary condition. To show this, it is enough to

check that a trisecant line ` of the curve X contracts to a point when we

take its image in the moduli space N . Consider any trisecant line ` of X

such that ` intersect with X at the points p, q, r. Then we have ` = pq.

There is a long exact sequence

0→ Ext0(L−1(p+ q− x), L)→ Ext0(L−1(p+ q− x), L|p+q)→
Ext1(L−1(p+ q− x), L(−p− q))

δ3−→ Ext1(L−1(p+ q− x), L)→ Ext1(L−1(p+ q− x), L|p+q) = 0, (5.17)

which is obtained by applying the functor Hom(L−1(p + q − x),−) to the

exact sequence 0→ L(−p− q)→ L→ L|p+q → 0.

We can consider equivalence classes of elements of kerδ3 as a subset of

Pg−1
L−1(p+q−x)

= PVg
L−1(p+q−x)

, which are represented by the following short exact

sequence :

[0→ L(−p− q)→ E→ L−1(p+ q− x)→ 0].

In a similar manner as in the proof of Proposition 5.2.7, we can show that

the vector bundle E fits into the following short exact sequence :

0 // E
b⊕d
// L⊕ L−1(p+ q− x)

vp⊕vq
// Cp+q // 0 (5.18)
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where the map d is surjective. Hence by Proposition 5.2.7, the extension

classes represented by the above short exact sequence corresponds to points

in the punctured line pq \ {p, q}. On the contrary, we can show that a rank

2 vector bundle E which fits into the short exact sequence (5.18) where the

map d is surjective corresponds to the equivalence classes of the kernel of

the map δ3 by some diagram chasing. Hence we conclude that the image of

pq \ {p, q} in N is a single point if and only if dim kerδ3 ≤ 1.
Thus, by the equation (5.17), we have :

kerδ3 ∼= Ext0(L−1(p+q−x), L|p+q)/Ext0(L−1(p+q−x), L) ∼= C2/H0(L2(x)(−p−q)).

However, since L2(x)(−p− q) ∼= OX(r), the claim holds.

Corollary 5.2.12. If the projective line ` ⊂ Pg+1L intersects the curve X ⊂
Pg+1L with multiplicity m. Then ι : ` \ (` ∩ X) → N is a degree 3 −m map

for m = 0, 1, 2, 3.

Proof. m = 0 : This case is trivial because the degree of the map ΨL is 3.

m = 1 : It is clear that deg ι ∈ {0, 1, 2}. If deg ι = 0, then the image of

`\(`∩X) by the map ι is a single point in the moduli space N . Hence by the

Lemma 5.2.11, ` is a line trisecant to the curve X, which is a contradiction.

If deg ι = 1, then by [17], ι should factors through the space Pg−1M = PVgM
for a line bundle M ∈ Pic0(X). Therefore, by Corollary 5.2.8, we obtain that

the line ` intersect X two times, which is a contradiction. Hence we conclude

that deg ι = 2.

m = 2: We may assume that ` intersect with X at p, q and we can write

` = pq. Because the line ` is not trisecant, we have H0(L2(x)(−p − q)) = 0

by Proposition 5.2.5. Hence by the proof of Lemma 5.2.11, we can observe

that the map ι : `→ N factors through the space Pg−1
L−1(p+q−x)

. Thus we have

deg ι = 1 since we already know that ΨL−1(p+q−x) is a linear embedding.

m = 3 : We assume that ` intersect with X on p, q, r. By Lemma 5.2.11,

the image of ` by the map ι is a single point in N . Hence the degree of the
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map ι is 0.

Remark 5.2.13. Recall the case of m = 1 in Corollary 5.2.12. Since the

degree of the map ι is 2, the closure ` := ι(` \ (` ∩ X)) is a smooth conic in

the moduli space N . By [54, Proposition 3.6], ` becomes a Hecke curve or a

smooth conic in Pg−1M for a line bundle M ∈ Pic0(X). In the latter case, the

line ` intersects with X at a point r, and ` \ r ⊂ (PVg+2L )s ∩ PVgM for a line

bundle M ∈ Pic0(X), which contradicts to the part i) of Proposition 5.2.8.

Therefore the line ` is a Hecke conic of the moduli space N .

5.3 Stable maps in the moduli space N

5.3.1 Conjectural picture

In Chapter 3, Proposition 3.1.3, we reviewed about the classification of

irreducible components of R3(N ) studied by Castravet in [13, 54]. In this

section, we study the compactification Λ1 of the component R3(1) of R3(N )

as we announced at the beginning of the chapter. By 5.2.4, we know that

the rational map ΨL : Pg+1L 99K N extends to the regular map Ψ̃L : P̃L → N ,

which is an embedding when L is a non-trisecant. Since we can find a limit

of a family of lines P1 → (Pg+1L )s which getting close to the unstable locus

in P̃L = BlXPg+1L .

Next, consider a relativization of the space P̃L. Consider a universal line

bundle L on Pic1(X) × X. Let p1, p2 are projections from Pic1(X) × X to

Pic1(X) and X. We define projective bundle PExt1(L,L−1(−({x}×Pic1(X)))) :=

(p1)∗(L2({x}×Pic1(X)). Then in a similar manner, we can show that the un-

stable locus of PExt1(L,L−1(−({x}×Pic1(X)))) is isomorphic to X×Pic1(X)

embedded in PExt1(L,L−1(−({x}×Pic1(X)))) via the complete linear system

|L2 ⊗ (p2)
∗KX|.

Then, similar to the Proposition 5.2.4, we conjecture that there is an
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extended morphism :

BlX×Pic1(X)PExt1(L,L−1(−(x× Pic1(X)))) := P̃
Ψ̃−→ N . (5.19)

In summary, we have a conjectural diagram :

P̃L

��

// BlX×Pic1(X)PExt1(L,L−1(−(x× Pic1(X)))) := P̃

q

��

Ψ̃ // N

{L} �
�

// Pic1(X)

Thus we have the following morphisms of stable maps :

M0(P̃L, β)
i //M0(P̃, β)

j
//M(N , 3)

where β is the homology class which is an l.c.i pull back of homology class

of line blow-up morphism π : P̃L → Pg+1L .

Our first goal is to figure out which types of nodal curves are contained

in the boundary of Λ1. Since coarse moduli spaces of the stable map spaces

are projective, j is proper. Therefore the image of j contains the component

Λ1 since the image of j contains lines in Pg+1L \ X for arbitrary L ∈ Pic1(X)

and the image of j is closed.

Therefore, it is enough to study which types of nodal curves are con-

tained in M0(P̃, β). We also conjecture that for the projection q : M0(P̃, β)→
Pic1(X), its fiber over a line bundle L ∈ Pic1(X) is equal to M0(P̃L, β). So it

is enough to study which types of nodal curves are contained in the bound-

ary of M0(P̃L, β) for each L ∈ Pic1(X), under this conjectural picture. There-

fore the study of stable map spaces M0(P̃L, β) and the study of the irre-

ducible component Λ1 is closely related.

Furthermore, for any smooth rational map f : P1 deg 1−→ P(Ext1(L, L−1(−x)))s
ΨL−→ N ∈ R3(1), we assign a line bundle L ∈ Pic1(X). Then by Proposition
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5.2.10, any line or conic, or twisted cubic cannot be contained in the inter-

section of two different Pg+1L (since intersections only arises on stable part),

so we can observe that this line bundle L is unique for each rational map

f. Therefore, we can conjecture that there is a morphism R3(1) → Pic1(X).

Moreover, by observing nodal curves in M0(P̃L, β), where the homology class

β = π∗[line] ∈ H2(P̃L) is the l.c.i pull-back of the homology class of a pro-

jective line in Pg+1L , we can guess further that there may be a morphism :

p : Λ1 → Pic1(X). (5.20)

On the other hand, for a non-trisecant line bundle L ∈ Pic1(X), we recall

that the extended morphism Ψ̃L : P̃L → N is a closed embedding by Propo-

sition 5.2.4. therefore the induced morphism of stable maps M0(P̃L, β) →
M0(N , 3) is a closed embedding. We also conjecture that the conjecture

morphism p compatible with the morphisms j and q.

Then we can expect that the fiber of the morphism p over the non-

trisecant line bundle L, p−1(L) is isomorphic to the irreducible component

of M0(P̃L, β), which is a closure of the locus of lines in (Pg+1L )s = P̃L \ E,

where E is the exceptional divisor of P̃L.

Therefore, based on this conjectural picture, we focus on the study of

the stable map space M0(P̃L, β) in this thesis, for a non-trisecant degree

1 line bundle L. Furthermore, if we let U ⊂ Pic1(X) be the open subset

of non-trisecant degree 1 line bundles, then we expect that Λ1 ×Pic1(X) U

is isomorphic to an irreducible component of M0(P̃, β) ×Pic1(X) U which is

expected to has a fiber bundle structure over U with fiber isomorphic to

M0(P̃L, β). From now on, we fix L to be a degree 1 non-trisecant line bundle.
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5.3.2 Stable maps in the blow-up space P̃L

In this subsection, we work on the following moduli space

M0(P̃L, β) (⊂M0(N , 3))

of genus zero stable maps of degree 3, which is embedded in M0(N , 3). We

start from the topological classification of genus zero stable maps in P̃L with

homology class β.

Lemma 5.3.1. Stable maps correspond to the closed points in the stable

map space M0(P̃, β) are classified by one of the following types. Recall that

π : P̃L → Pg+1L is the blow-up morphism.

1. Projective lines in Pg+1L \X. Stable maps of this type form 2g-dimensional

open sublocus in M0(P̃L, β).

2. Union of the strict transformation of a projective line in Pg+1L that in-

tersects X on a point p and a projective line in the exceptional fiber of

the point p, π−1(p) = Pg−1L(−p). Stable maps of this type form (2g − 1)-

dimensional locally closed sublocus in M0(P̃L, β).

3. Union of the strict transformation of a line in Pg+1L that intersects X

on two distinct points p, q, a line in in the exceptional fiber π−1(p) =

Pg−1L(−p), and a projective line in another exceptional fiber π−1(q) = Pg−1L(−p).

Stable maps of this type form (2g−2)-dimensional locally closed sublo-

cus in M0(P̃L, β).

4. Union of the strict transformation of a projective line in Pg+1L that in-

tersects X on two distinct points p, q and a stable map of degree two

in the exceptional fiber π−1(p) = Pg−1L(−p). Stable maps of this type form

2g-dimensional locally closed sublocus in M0(P̃L, β).
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5. Union of the strict transformation of a projective line in Pg+1L which is

tangent to the curve X on a point p and a stable map of degree two

in the exceptional fiber π−1(p) = Pg−1L(−p). Stable maps of this type form

(2g− 1)-dimensional closed sublocus in M0(P̃L, β).

Proof. We already know that H2(P̃L) ∼= Z ⊕ Z such that (1, 0) correspond

to the homology class of the l.c.i.(locally complete intersection morphism)

pull-back π∗[line] and (0, 1) correspond to the homology class of a projective

line in the exceptional fiber π−1(p). Hence the homology class of the strict

transform ˜̀ of a line ` ⊂ Pg+1 that intersects the curve X with multiplicity

m is (1,−m). Then we can classify stable maps in the blow-up space P̃L

using the equivalent conditions of the non-trisecant property of the curve

X appeared in Corollary 5.2.5. The dimension counting is not difficult. For

instance, we calculate the dimension of the sublocus of type (4) stable maps.

We can observe that the locus of type (4) stable maps is a fibration over

the base space X× X \∆. Let F be the fiber space of the fibration. Then F

parametrizes stable maps of degree two in the projective space Pg−1 which

pass through a fixed point. Then the space F is irreducible by [59] and [43,

Chapter III, Corollary 9.6]. Thus, the dimension of locus of type (4) of stable

maps is equal to 2+ dimZ = 2+ (2g− 2) = 2g.

Next, we can consider the stable map space M0(P̃L, β) locally as a zero

locus of a regular section of a vector bundle on a smooth space by the proof

of [55, Corollary 4.6]. Therefore, we can observe that all irreducible com-

ponents of the space M0(P̃L, β) have the dimension greater or equal than∫
β=π∗[line]

c1(TP̃L
) + dimP̃L − 3 = 2g. Now we introduce the main result of

this Chapter.

Theorem 5.3.2. The stable map space M0(P̃L, β) has two irreducible com-

ponents B1 and B2 such that:

1. B1 parametrizes projective lines in Pg+1L \ X. Moreover, the union of

subloci of types (1)-(3) and (5) stable maps is equal to the closure B1.
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2. B2 parametrizes the union of a smooth conic in the exceptional divi-

sor of P̃L and strict transformation of a projective line ` intersect on

a point for a projective line ` which intersects the curve X with multi-

plicity 2 (Thus ` can be a tangent line of X). Moreover, the union of

subloci of stable maps of types (4) and (5) is equal to the closure B2.

In particular, the intersection B1 ∩ B2 is equal to the sublocus of the type

(5) stable maps of Lemma 5.3.1.

We note that component B1 is expected to be equal to p−1(L) where p

is the conjectural morphism (5.20). For the proof of this theorem, we start

by the computing the obstruction spaces of the type (4) stable maps.

Lemma 5.3.3. Consider a projective line ` ⊂ P̃L where π(`) intersects with

X at two distinct point p, q. Then we have the following formula for the the

normal bundle N`/P̃L
of the projective line ` in P̃L

N`/P̃L

∼= O`(−1)⊕(g−2) ⊕O`(−1)⊕O`(1) or O`(−1)⊕(g−2) ⊕O⊕2` .

Proof. Consider a line `0 in Pg+1 which cleanly intersecting the curve X at

two distinct points p, q. We denote ` be the proper transform of the projec-

tive line `0 for the blow-up morphism π : P̃L = BlXPg+1 → Pg+1. From the

proof of [58, Lemma 1], we observe that the normal bundle N`/P̃L
fits into

the short sequence in the following

0→ π∗N`0/Pg+1 ⊗O(−E)|` → N`/P̃L
→ Cp ⊕ Cq → 0.

where the map N`/P̃L
→ Cp ⊕ Cq is locally constructed by the following(cf.

[34, Appendix B.6.10] way.

Consider T1, ..., Tg+1 a local coordinate of Pg+1 around the point p so such

that locally we have I`0/Pg+1 = 〈T1, T3, ..., Tg+1〉, IX/Pg+1 = 〈T2, T3, ..., Tg+1〉.
Thus, we have a local coordinate t1, t2, x3, ..., xg+1 of P̃L around the point

p̃ which is the lift of p in ` such that π ◦ T1 = t1, π ◦ T2 = t2, π ◦ Ti =
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t2 ◦ xi for 3 ≤ i ≤ g + 1. Hence we obtain π∗I`0/Pg+1 = π∗〈t1, t3, ..., tg+1〉 =
〈t1, t2x3, ..., t2xg+1〉. Therefore, locally we conclude that 〈t2〉 is the defining

ideal of the exceptional divisor E of P̃L. Thus we observe that there is the

following exact sequence :

0→ I`/P̃L
· IE/P̃L

→ π∗I`0/Pg+1 → π∗I`0/Pg+1/I`/P̃L
· IE/P̃L

→ 0.

By taking pull-back of above sequence on the projective line `, we have the

following short exact sequence

0→ I`/P̃L
/I2
`/P̃L
⊗OP̃L

(−E)→ π∗(I`0/Pg+1/I2`0/Pg+1)
∂̃p−→ Cp → 0

where the map ∂̃p is given by the differentiation of the tangent vector ∂
∂t1

in

the tangent space TpP̃L. By taking dual of this sequence, we obtain a map

N`/P̃L
→ Cp. In a similar manner, we can also define a map N`/P̃L

→ Cq.
Since we have N`0/Pg+1 = O`0(1)⊕g and O(−E)|` = O`(−2), we complete

the proof.

Similar to the cases of other Fano varieties, normal bundle of the projec-

tive lines in the blow-up space can be classified in a geometric method as

follows.

Corollary 5.3.4. If two projective tangent lines TpX and TqX are coplanar

(respectively, skew lines), then N`/P̃L

∼= O`(−1)⊕(g−1) ⊕ O`(1) (respectively,

N`/P̃L

∼= O`(−1)⊕(g−2) ⊕O⊕2` ).

Proof. We easily obtain the conclusions by computations using local coordi-

nates in a similar manner as in the proof of Lemma 5.3.3.

Next, consider a smooth conic Q contained in the exceptional divisor E.

Then the conic Q should be contained in some exceptional fiber Pg−1 of the
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projective bundle E = P(NX/Pg+1)→ X, we can observe that :

NQ/E
∼= NQ/Pg−1 ⊕NPg−1/E|Q

∼= (OQ(2)⊕OQ(1)⊕(g−3))⊕OQ

because H1(OQ(i)) = 0 for i = 1, 2. Hence we have the following normal

bundle sequence :

0→ NQ/E → NQ/P̃L
→ NE/P̃L

|Q ∼= OQ(−1)→ 0, (5.21)

which implies the following isomorphism

NQ/P̃L

∼= (OQ(2)⊕OQ(1)⊕(g−3))⊕OQ ⊕OQ(−1). (5.22)

Proposition 5.3.5. Let [C] ∈ B2 be a stable map of the form C = ` ∪
Q, which is the union of a projective line ` in P̃L and a smooth conic Q

in the exceptional divisor, cleanly intersecting on a point z. Then we have

H1(NC/P̃L
) = 0.

Proof. By construction, C is a nodal curve. Hence, the conormal sheaf of C

in the blow-up space N∨

C/P̃L
:= IC/P̃L

/I2
C/P̃L

is locally free. Then, from two

exact sequences in the following

• 0→ N∨

C/P̃L
→ ΩP̃L

|C → ΩC → 0 and

• 0→ O`(−1)→ OC → OQ → 0,

we obtain the following commutative diagram :

Ext1(ΩC,OC) //

����

Ext1(ΩP̃L
,OC) //

∼=

��

Ext1(N∨

C/P̃L
,OC) //

��

0

Ext1(ΩC,OQ) // Ext1(ΩP̃L
,OQ) // Ext1(N∨

C/P̃L
,OQ) // 0.

Since the curve C = `∪Q has the unique nodal point z, we have Ext1(ΩC,OC) ∼=
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C. Moreover, Ext2(ΩC,O`(−1)) = 0 implies the surjectiveness of the first

vertical map. By Lemma 5.3.6, we check the second vertical map H1(TP̃L
|C) ∼=

Ext1(ΩP̃L
,OC)→ Ext1(ΩP̃L

,OQ) ∼= H1(TP̃L
|Q) = C is an isomorphism. There-

fore the claim is true whenever H1(NC/P̃L
|Q) = 0. Next, consider the follow-

ing structure sequence :

0→ N∨

C/P̃L
|Q → N∨

Q/P̃L

∂z→ Cz → 0

where the map ∂z is given by the differentiation of the tangent vector Tz`.

We can show this by the following local computation. We can choose lo-

cal coordinates x1, ..., xg+1 of P̃L around the point z where locally we have

IQ/P̃L
= 〈x2, x3, ..., xg+1〉, I`/P̃L

= 〈x1, x3, ..., xg+1〉. Then, we obtain IC/P̃L
=

〈x1x2, x3, ..., xg+1〉. Hence, we have the following short exact sequence :

0→ IC/P̃L
→ IQ/P̃L

→ IQ/P̃L
/IC/P̃L

→ 0

By taking pull-back to the smooth conic Q, we obtain the sequence :

0→ IC/P̃L
/IC/P̃L

|Q → IQ/P̃L
/I2
Q/P̃L

→ Cz → 0

Here, we can observe the map IQ/P̃L
/I2
Q/P̃L

→ Cz is given by the differentia-

tion of the tangent vector Tp` since it kills the local coordinates x1, x3, ..., xg+1.

Then we can show that the composition map OQ(1) ∼= N∨

E/P̃L
|Q ⊂ N∨

Q/P̃L

r→
Cp(see (5.21).) is not zero since the projective line ` transversally inter-

sects the exceptional divisor E. Therefore we easily show that N∨

C/P̃L
|Q ∼=

OQ(s)⊕N∨
Q/E for some point s ∈ Q. Because H1(OQ(−s)) = H1(NQ/E) = 0,

we completes the proof.

Lemma 5.3.6. (cf. [54, Lemma 6.4]) Consider the following long exact se-

quence :

H0(TP̃L|`)⊕H0(TP̃L|Q)
α→ H0(TpP̃L)→ H1(TP̃L|C)→ H1(TP̃L|`)⊕H1(TP̃L|Q)→ 0.
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which comes from the structure sequence 0 → OC → O` ⊕ OQ → Cp →
0. Then the first map α is surjective and therefore we have H1(TP̃L|C) ∼=

H1(TP̃L|Q) ∼= C.

Proof. Since the line ` and the exceptional divisor E transversally intersect

on the point p, we have TpP̃L
∼= Tp` ⊕ TpE. From H0(TP̃L|`) = H0(T`) ⊕

H0(N`/P̃L
), we observe that the map :

H0(TP̃L|`)� H0(Tp`) (5.23)

is surjective because of the positive degree part H0(T`) = H0(O`(2)).
On the other hand, we obtain H0(TP̃L|Q) = H0(TPg−1|Q)⊕H0(NPg−1/P̃L

|Q)

from Q ⊂ Pg−1 ⊂ E. Then we can easily check that the projection to the

first summand

H0(TPg−1|Q)� H0(TpPg−1)

is a surjection. Moreover, with some calculation, we can easily show that

NPg−1/P̃L
|Q ∼= OQ⊕OQ(−1) where NPg−1/E|Q = OQ and hence the positive de-

gree part H0(NPg−1/P̃L
|Q) = H0(NPg−1/E|Q) maps to H0(NPg−1/E,p) = C. There-

fore we check the following map

H0(TP̃L|Q) = H0(TPg−1|Q)⊕ H0(NPg−1/P̃L
|Q)

� H0(TpPg−1)⊕ H0(NPg−1/E,p) = H0(TpE) (5.24)

is surjective. Moreover, By (5.23) and (5.24), we check the map α is sur-

jective. The last isomorphisms obtained from the equation (5.22) and the

Lemma 5.3.3.

Finally, we are ready to prove Theorem 5.3.2, our main theorem.

Proof of Theorem 5.3.2. We can easily observe that the locus B1 is isomor-

phic to an open subset in the Grassmannian Gr(2, g+ 2) that parametrizes
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projective lines in Pg+1 which do not intersect the curve X. So we have B1 is

irreducible. Moreover, we already know that B2 is irreducible by the proof

of Lemma 5.3.1. By Lemma 5.3.1, B1 and B2 both have the expected di-

mension 2g. Furthermore, there does not exist other irreducible component

whose dimension is greater or equal than 2g ([55, Proof of corollary 4.6]).

So we conclude that B1 and B2 are all irreducible components of the stable

map space M0(P̃L, β). Since the loci of type (1), (2) and (3) stable maps

are not included in B2, they must be contained in the component B1. More-

over, the loci of type (4) and (5) stable maps should be in component B2

by definition.

Since every irreducible component in the stable map space M0(P̃L, β) has

expected dimension 2g, we conclude that M0(P̃L, β) is locally a complete

intersection through the proof of [55, Corollary 4.6]. When the point p ap-

proaches to the point q, a type (3) stable map degenerates to a union of

the strict transformation of a projective line in Pg+1 that is tangent to the

curve X and a singular conic in the exceptional fiber π−1(p) ∼= Pg−1, which is

a type (4) stable map. Therefore we have B1 ∩ B2 6= ∅. Furthermore, since

there exists only two irreducible components B1 and B2, we can show that

their intersection B1∩B2 is pure dimensional with dimension 2g−1 by using

Hartshorne’s connectedness theorem([41, Theorem 3.4]).

Through the proof of Proposition 5.3.5, we can check that a type (4) sta-

ble map (4) which has smooth conic component has no obstruction. Thus

it corresponds to a smooth closed point in the moduli space. Therefore it is

not possible to be an element of the intersection B1 ∩ B2. Also, the sublo-

cus consists of type (4) stable maps which have singular conic component

is (2g − 2)-dimensional, and the sublocus consists of type (5) stable maps

is (2g − 1)-dimensional and clearly irreducible. In summary, we obtain the

conclusion that the intersection B1∩B2 consists of type (5) stable maps.
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Chapter 6

Further questions and research

6.1 Hilbert space of conics for hyperplane sec-

tions of Grassmannians Gr(2, n) for general

n

By the result of Piontkowski and Van de Ven, Chapter 2, Proposition

2.6.7, we know that the automorphism group of the hyperplane section

Gr(2, 2n) ∩H is Sp(2n,C)/Z2 and it acts on Gr(2, 2n) ∩H homogeneously.

Using this group action, we want to use the result of Chung, Hong and Kiem

[18]. But we cannot sure Gr(2, 2n)∩H is a homogeneous variety. Instead, we

can check that Gr(2, 2n)∩H satisfies the condition (1) − (4) in [18, Lemma

2.1], which is necessary to use the machinery in the paper. We state the

conditions as follows :

Lemma 6.1.1. [18, Lemma 2.1] Let X be a projective homogeneous variety,

fix a projective embedding φ : X→ Pk, and define OX(1) := φ∗OPk(1). Then

we have the following.

1. H1(P1, f∗TX) = 0 for every morphism P1 → X
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2. Let us define the moduli space of lines with one marked point M0,1(X, 1)

to be :

M0,1(X, 1) := {(f : P1 → X, p ∈ P1) | deg f∗OX(1) = 1}.

Then the evaluation morphism ev :M0,1(X, 1)→ X at the marked point

p is smooth.

3. The Fano variety of planes F2(X) in X is smooth.

4. The defining ideal IX of X ⊂ Pk is generated by quadric polynomials.

Since Gr(2, 2n)∩H is a homogeneous variety. Therefore it automatically

satisfies the condition (1) and (2) of [18, Lemma 1.4]. We checked that

Gr(2, 2n) ∩ H satisfies the condition (3), the smoothness of the Fano va-

riety of planes, in Chapter 4, Proposition 4.3.13. Moreover, the condition

(4), that the defining ideal of the variety X in the projective embedding

X ⊂ Pk is generated by quadratic equations, is automatically satisfied since

Gr(2, 2n)∩H is a hyperplane section of the Grassmannian. The defining ideal

of the Grassmannian in the Plücker embedding is generated by quadratic

equations [93, Chapter I, Section 4, Example 1]. Therefore, we can use [18,

Theorem 3.7, Theorem 4.11 and Theorem 4.16], to study the birational ge-

ometry of Hilbert scheme of conics H2(Gr(2, 2n)∩H) and Hilbert scheme of

twisted cubics H3(Gr(2, 2n) ∩H) on the hyperplane section Gr(2, 2n) ∩H.

For other cases, Gr(2, 2n)∩H1∩H2, Gr(2, 2n+1)∩H, Gr(2, 2n+1)∩H1∩
H2, there are lots of geometric structure including automorphism groups and

their orbits classified by Piontkowski and Van de Ven, which we introduced

in Chapter 2. In the case of Gr(2, 2n + 1) ∩ H, Gr(2, 2n + 1) ∩ H1 ∩ H2,
geometry comes from center point and center curves looks interesting. So we

expect that these geometric structures may help us to study Hilbert scheme

of conics on these spaces.

On the other hand, for the case of Gr(2, 6) ∩ H and Gr(2, 6) ∩ H1 ∩ H2,
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we can directly use our key blow-up blow-down diagram in Chapter 5, (4.7)

again :

S̃(Y)

Ξ
##

Φ
||

S(Y) H2(Y),

since we can compute blow-up and blow-down locus a by direct local chart

computation in Gr(2, 6)∩H and Gr(2, 6)∩H1∩H2 in the same manner. We

expect that we can show the smoothness of Hilbert schemes H2(Gr(2, 6)∩H)
and H2(Gr(2, 6) ∩H1 ∩H2).

6.2 Conjectural picture in Chapter 5

The conjectural picture in Chapter 5 is not verified yet. But we are quite

sure about the existence of the conjectural morphisms in Chapter 5, (5.19)

BlX×Pic1(X)PExt1(L,L−1(−(x× Pic1(X)))) := P̃
Ψ̃−→ N ,

and (5.20) :

p : Λ1 → Pic1(X).

But we still have no idea how to construct it explicitly.

Moreover, for a projection

q : M0(P̃, β)→ Pic1(X),

it is not clear that the fiber of q over L ∈ Pic1(L), q−1(L) is isomorphic to

M0(P̃L, β) since there can be a limit of a family of lines in (Pg+1L )s, varying

the line bundle L ∈ Pic1(X).

Then, consider a component Brel,1 of M0(P̃L, β) the closure of the locus of

lines in (Pg+1L )s where L runs over all elements in Pic1(X). Let U ⊂ Pic1(X),
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which is a locus of non-trisecant line bundles. Then we cannot be sure that

elements of Brel,1 ×Pic1(X) U consists of stable maps of types (1), (2), (3), (5)

in Chapter 5, Lemma 5.3.1.

So completing this conjectural picture is a task we should do afterwards.

6.3 Classify all topological types of stable maps

in Λ1

Although we classified all topological types of stable maps in M0(P̃L, β)

in Chapter 5, it is still unclear these are all topological types of stable maps

in Λ1. One reason is that the conjectural picture is not completed yet, and

the other reason is that we only studied non-trisecant line bundle cases.

Let us assume that we succeed to complete the conjectural picture in

Chapter 5, Section 5.3.1, then we conclude that elements of Λ1 ×Pic1(X) U,

which is the surjective image of Brel,1 ×Pic1(X) U consists of stable maps of

types (1), (2), (3), (5) in Chapter 5, Lemma 5.3.1. Then we should study

topological types of stable maps in Λ1 ×Pic1(X) Pic1(X) \U, which is covered

by the image of M0(P̃L, β) where a line bundle L runs over L ∈ Pic1(X) \U,

which is the locus of trisecant line bundles. Therefore we should study topo-

logical types of stable maps in the moduli space M0(P̃L, β) for a trisecant

line bundle L to complete the classification of stable maps in the component

Λ1 ⊂M0(N , 3).

6.4 Hilbert compactifications for R3(N )

In this thesis, we only considered the Kontsevich compactification of a

moduli of smooth rational curves R3(N ) in N . In [54], the authors con-

sidered Kontsevich compactification M0(N , 2) and Hilbert compactification

H2(N ) of the degree 2 smooth rational curves R2(N ) and related them by
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blow-ups and contractions. So we want to consider the Hilbert compactifi-

cation of the component R3(1) either, and find a birational relation with the

Kontsevich compactification Λ1.

6.5 Generalization to Moduli space of vector bun-

dles with even determinants

Although we only considered Moduli space N of rank 2 stable vector

bundles with odd determinant on the smooth projective curve X over C with

genus g ≥ 4, by the results in Chapter 2, Subsection 2.6.1, it is also mean-

ingful to consider the even determinant case, let us denote this moduli space

by Ne. Drezet-Narasimhan [29] showed that it has a Picard group isomor-

phic to Z, generated by generalized Theta divisor Θ. Furthermore, Brivio-

Verra [6] showed that Θ is very ample if g(X) ≥ 3 and X is not hyperelliptic.

So we can define a degree of a rational curve via the projective embedding

given by the very ample divisor Θ. So it is reasonable to consider a Hilbert

scheme of lines, smooth conics and twisted cubics in this space Ne. Unfortu-

nately, this space is singular on the locus of strictly semi-stable bundles, we

cannot consider stable map space on Ne, but the existence of the singular

locus may lead to an interesting phenomenon, and it will be interesting to

observe relations with these Hilbert schemes with the Hilbert schemes in N ,

the moduli space bundles with odd determinant.

6.6 Generalization to the moduli space of sym-

plectic vector bundles

Furthermore, there are various examples of moduli space of vector bun-

dles with additional structures, for examples, moduli space of symplectic vec-

tor bundles. We state the definition.
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Definition 6.6.1 (Moduli space of symplectic vector bundles). A rank 2n

symplectic vector bundle E on a variety V is defined by the following data :

(i) A local trivialization on an open cover {Ui}i∈I of V , E|Ui
= Ui × kn.

(ii) A transition morphism ϕij : Ui ∩ Uj × k2n → Ui ∩ Uj × k2n on each

intersection Ui ∩Uj such that its restriction to each fiber kn is an ele-

ment of Spn(k). Furthermore, transition morphisms satisfies the cocy-

cle condition ϕjk ◦ϕij = ϕik.

We denote a moduli of semi-stable rank 2n symplectic vector bundles on

a curve X as MX(Spn(k)).

.

Moduli space MX(Spn(k)) is deeply studied by the thesis of Hitching

[44]. By the result of Ramanathan [89], [90, Theorem 5.9], moduli space of

semi-stable principal G-bundle on a smooth projective connected curve over

C with genus ≥ 2, for a reductive group G is normal projective, Cohen-

Macaulay scheme. Then we can check that MX(Spn(k)) is isomorphic to the

moduli space semi-stable principal Spn(k)-bundle. Then by the result of [64],

Picard groups of moduli spaces of semi-stable principal G-bundles, for a sim-

ply connected algebraic group G is isomorphic to an infinite cyclic group Z.

For the case of G = Spn(k), by [64], MX(Spn(k)) is generated by deter-

minant bundle L on MX(Spn(k)). But it is not certain to determine the in-

teger m, that Lm becomes a very ample line bundle. So what we should to

first is to fix a polarization of the projective variety MX(Spn(k)), then we

can study Hilbert scheme of rational curves of various degrees in this moduli

space.
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géométrie algébrique, Jussieu, fév. 1992.

[66] Joseph Le Potier. Lectures on vector bundles. Cambridge University

Press, 1997.

[67] Christian Lehn, Manfred Lehn, Christoph Sorger, and Duco

Van Straten. Twisted cubics on cubic fourfolds. Journal für die

reine und angewandte Mathematik (Crelles Journal), 2017(731):87–128,

2017.

[68] Li Li. Wonderful compactification of an arrangement of subvarieties.

Michigan mathematical journal, 58(2):415–444, 2009.

[69] Eduard Looijenga. Isolated singular points on complete intersections,

volume 77. Cambridge University Press, 1984.

[70] Hideyuki Matsumura. Commutative ring theory, volume 8. Cambridge

university press, 1989.

183



BIBLIOGRAPHY

[71] Shigeru Mukai and Hiroshi Umemura. Minimal rational threefolds. In

Algebraic geometry, pages 490–518. Springer, 1983.

[72] David Mumford. Lectures on Curves on an Algebraic Surface.(AM-59),

volume 59. Princeton University Press, 2016.

[73] David Mumford, John Fogarty, and Frances Kirwan. Geometric invari-

ant theory, volume 34. Springer Science & Business Media, 1994.
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국문초록

이 논문에서 우리는 두 가지 부류의 파노 대수다양체들을 다룬다. 하나는 복

소체 위의 매끄러운 사영 곡선 위의 determinant가 고정된 2차원 벡터 다발들의

모듈라이 공간이고, 다른 한 가지 부류는 그라스마니안 다양체 Gr(2, 5)의 초평

면들의 교집합으로 나타내어지는 파노 대수다양체들이다. 먼저 우리는 이러한

파노 대수다양체들 위의 매끄러운 유리곡선들의 모듈라이 공간을 공부한다. 특

히 그라스마니안 다양체 Gr(2, 5)의 초평면들의 교집합에 대해서는, 차수가 3 이

하인 경우 매끄러운 유리곡선들의 모듈라이 공간이 유리 다양체가 됨을 보인다.

다음으로 우리는 이러한 매끄러운 유리곡선들의 모듈라이 공간의 다양한 긴

밀화를 생각한다. 매끄러운 사영 곡선 위의 determinant가 고정된 2차원 벡터

다발들의 모듈라이 공간에 대해서는, 매끄러운 유리곡선들의 모듈라이 공간을

스테이블 맵 공간안에서 긴밀화를 하여 그 긴밀화된 공간의 경계에 어떠한 원소

들이 포함될 것인지를 공부하였다. 그라스마니안 다양체 Gr(2, 5)의 초평면들의

교집합에 대해서는, 매끄러운 유리곡선들의 모듈라이 공간을 힐버트 스킴 안에

서 긴밀화를 하여 긴밀화된 공간의 쌍유리 기하학을 공부하고, 이를 통해 긴밀

화된 공간이 매끄러운 공간이 됨을 보인다.

주요어휘: 모듈라이 공간, 유리곡선, 파노 대수다양체, 힐버트 스킴, 스테이블 맵

공간, 그라스마니안, 벡터 다발들의 모듈라이

학번: 2011-20273
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학부의 장학금을 통해 많은 경제적인 도움을 받았고, 수리과학부의 행정 직원

분들께서는 저에게 친절하게 대해 주셨고 많은 도움을 주셨습니다. 다시 한 번

서울대학교와 서울대학교 수리과학부에 감사드립니다.

마지막으로는 제가 학문에 최대한 집중할 수 있도록 모든 지원을 아끼지 않

아 주시고, 항상 저를 사랑해 주시고 믿어 주신 부모님께 이루 말할 수 없는 감

사와 사랑의 마음을 전하고 싶습니다. 부모님께서 제가 가는 이 길에 무한한 신

뢰와 지지를 보내 주시지 않으셨다면, 저는 결코 지금처럼 학문에 집중할 수가

없었을 것입니다. 11년간 묵묵히 뒷바라지 해 주신 부모님께 이 논문을 바치며,

앞으로도 훌륭한 연구자, 훌륭한 사람이 될 수 있도록 힘껏 살아갈 것을 다짐해

봅니다.

190


	1 Introduction
	2 Preliminaries
	3 Moduli spaces of smooth rational curves in Fano varieties
	4 Compactifications for Rd(Ym)
	5 Compactification for R3(N )
	6 Further questions and research
	Abstract (in Korean)
	Acknowledgement (in Korean)


<startpage>16
1 Introduction 1
2 Preliminaries 11
3 Moduli spaces of smooth rational curves in Fano varieties 65
4 Compactifications for Rd(Ym) 87
5 Compactification for R3(N ) 137
6 Further questions and research 171
Abstract (in Korean) 187
Acknowledgement (in Korean) 189
</body>

