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Abstract

Guidance Laws to Control Impact Angle and Time

for Missiles with Field-of-View Constraint

Hyeong-Geun Kim

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Homing guidance aims at guiding a missile to its intended target using information

acquired from an on-board seeker. In real applications of homing guidance laws, a field-of-

view restriction of the missile seeker is a significant issue because maintaining the seeker

lock-on condition is an important task for acquiring the target information. Especially,

when implementing advanced guidance laws to impose terminal constraints on impact angle

and time, considering the field-of-view constraint is particularly essential since the curved

trajectory may let the seeker’s look angle exceed the confined field-of-view limit.

This dissertation presents guidance laws whose contributions are classified into three

parts: i) impact angle control guidance law with the field-of-view constraint, ii) impact

time control guidance law with the field-of-view constraint, and iii) impact angle and time

control guidance law with the field-of-view constraint.

First, an impact angle control guidance law that confines the missile look angle during

homing in order not to exceed a seeker’s field-of-view limit is proposed. A sliding surface

variable whose regulation guarantees the interception of a stationary target at the desired

impact angle is designed, and the guidance law is derived to make the surface variable go

to the sliding mode. Using a magnitude-limited sigmoid function in the surface variable,

the proposed law prohibits the look angle from exceeding the specified limit during the

entire homing. This capability to confine the missile look angle is valuable when a seeker’s

field-of-view is restricted, since imposing the terminal impact angle constraint demands the
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missile to fly a curved trajectory. Furthermore, the proposed law only needs the line-of-sight

angle and look angle among the target information. Thus, the proposed law can easily be

implemented into a homing missile equipped with a structurally simple passive strapdown

seeker. Theoretical analysis in this part indicates that the proposed law accomplishes the

impact angle constraint without violating the look angle limit although it only uses the

information of bearing angles.

Second, a guidance law that achieves the desired impact time without violating the

seeker’s field-of-view limit is presented. For the development of the law, kinematic conditions

for impact time control are defined, and the backstepping control-based approach is adopted

for the satisfaction of the conditions. The missile look angle is utilized as a virtual control

input for the backstepping structure, and its magnitude is limited by a prescribed limit by

restricting the controller gain. Consequently, the impact time constraint can be achieved

with satisfying the look angle limit under the proposed law. Since few papers considering

the field-of-view limit under the impact time control are available in open literature, the

capability to confine the seeker’s look angle with achieving the desired impact time is the

main contribution of this part.

Finally, a guidance law for impact angle and time control with taking into account

the field-of-view constraint is developed. Basically, the law in this part is formed as a

look angle-limited impact angle control guidance law that has an additional guidance gain.

Since the length of the trajectory under this law is calculated as a function of this gain, the

terminal impact time can be controlled by adjusting the gain. As a result, the proposed

guidance law in this part can intercept the stationary target at the desired impact angle

and time with satisfying the field-of-view limit. The proposed law is expected to achieve

the accurate performance in real applications owing to its closed-loop structure without

using any numerical routine such as off-line optimization or the shooting method.

To evaluate the performance of the proposed laws, numerical simulations are conducted

for each part. The results demonstrate that the proposed laws accomplish the desired

terminal tasks with preventing the look angle from exceeding the prescribed limit.
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1
Introduction

1.1 Background and motivations

The deployment of precision-guided munitions (PGM) is essential in modern warfare in

order to augment lethality against enemy forces and minimize collateral damage. Guided

missiles are the most representative PGM, and have been utilized for a great deal of warfare

since its development in World War II. For an accuracy of the guidance, a manner of guiding

the missile to the intended target, referred to as missile guidance, is necessary. Especially,

as the missile approaches the target, a guidance method called homing guidance where the

missile with on-board seeker autonomously yields the command to its own control surface

is effective in improving the measurement accuracy.

Proportional navigation (PN) guidance, given the primary objective of the missile is to

intercept the target with zero miss distance, has been widely used as one of the well-known

homing guidance [1]. PN guidance is based on the property that the pursuer maintaining

a constant line-of-sight (LOS) is on the collision path against the target. Thus, simply

structured to nullify the LOS rate with a proportional gain called navigation constant,
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PN guidance is able to achieve the interception. Furthermore, PN guidance with a nav-

igation constant of three has optimality for minimizing the steering energy and terminal

miss distance against the stationary target [2]. Namely, PN guidance yields satisfactory

performance with the simplicity in implementation.

Advances in anti-air defense systems, such as close-in weapon system (CIWS) or elec-

tronic countermeasure (ECM), pose a great challenge in increasing lethality and surviv-

ability of the homing guided missiles. Simple PN guidance with a fixed navigation constant

is insufficient for overcoming the defense systems since its only goal is to nullify the zero

effort miss. In this regard, to enable the execution of an additional task for incapacitating

the defensive system of the target becomes an important issue.

To impose terminal constraints such as impact angle and time would be an effective

solution against the defensive system. Control of the impact angle enables the missile to

select the desired collision way at the terminal stage of the homing so that the destruction to

the weak point of the armored target can be fulfilled. Imposing the impact time constraint

can also be a useful strategy because it facilitates a salvo attack in which multiple missiles

attack the same target simultaneously. Since the self-defensive system on the ship is limited

in the number of missiles it can defend simultaneously, the survivability of each missile is

enhanced. For these reasons, there have been plenty of studies about impact angle control

guidance [3–22] and impact time control guidance [23–34]. Much research on the guidance

laws that involve both impact angle and time constraint is also available in open literature

[35–40].

For the successful homing guidance, the seeker’s lock-on to the target should be main-

tained until the interception because the guidance state information is acquired from the

on-board seeker. Under PN guidance, the seeker look angle continually decreases as the

missile approaches the stationary target since the LOS rate is forced to be nullified, so

there is no need to seriously consider the maintenance of the lock-on condition.

On the contrary, the implementation of advanced guidance laws involving impact angle

and time constraints requires the careful consideration of the seeker’s field-of-view (FOV)
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limit because the curved trajectory may let the seeker’s look angle exceed the confined

FOV limit. In particular, when the missile is equipped with a strapdown seeker which has

a narrow FOV compared with a gimbal seeker, this consideration is an essential task in

terms of maintaining the seeker lock-on condition. As a result, for the successful homing

guidance against targets having defensive systems, it is effective to develop guidance laws

that takes into account the FOV limit with terminal constraints such as impact angle and

time.

1.2 Literature survey

In this section, the survey of books, papers, and other resources associated with this research

is presented. The related studies are classified into the following three parts considering the

subjects of this dissertation: i) impact angle control guidance, ii) impact time control

guidance, iii) impact angle and time control guidance.

1.2.1 Impact angle control guidance

Fulfillment of the impact angle is a significant requirement for land-attack or anti-ship mis-

siles because it allows the missile to attack the weak point of an armored target by adjusting

the collision direction. For anti-air missiles, imposing the impact angle constraint would also

be an effective strategy owing to its capability to determine the collision geometry. Over

the past few decades, many guidance laws that impose the terminal impact angle have been

developed by virtue of these advantages since the first attempt in [3]. Particularly, various

recent studies about impact angle control guidance focuses practical issues such as limited

field-of-view (FOV) constraint or restriction of available target information. In accordance

with the main topic of this dissertation, FOV-constrained guidance laws, the survey of this

subsection also concentrates on the impact angle control guidance laws considering FOV

limit.

The previous works about impact angle control guidance considering the confined FOV
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limit can be classified into two categories of methods based on linearized dynamics [12–15]

and nonlinear approaches [16–20]. In common linear methods, the guidance law is designed

as a polynomial form of time-to-go or relative range. In [12], a guidance law made up

of time-to-go polynomial is developed in order to achieve the desired impact angle with

zero terminal command. With linearization of the flight path angle, the entire look angle

profile of the closed-loop under the law in [12] is obtained as a polynomial form, which

enables the user to modulate the maximum magnitude of missile look angle by adjusting

a set of gains in advance. A guidance law in [13] is formulated as a sum of the time-to-go

polynomial guidance command of [12] and an additional term proportional to the cross

range. In this way, the homing missile moves with an oscillatory trajectory normal to the

desired collision course, which allows the target observability to be enhanced compared

with the conventional time-to-go polynomial guidance. Like the work in [12], adjusting the

polynomial gains beforehand also enables to confine the maximum missile look angle [13].

Unlike the laws in [12] and [13] explained above, which pre-calculate the maximum

magnitude of the look angle based on the closed-loop trajectory solution, a guidance law

in [14] directly handles the look angle constraint during the homing phase by adopting

the optimal control theory. Utilizing the optimal control theory considering the inequality

constraint of the state variable given by [41], the law in [14] can prevent the seeker look

angle from exceeding the prescribed value. As an advanced version of the work in [14], a

range-to-go weighted optimal guidance law is developed in [15]. Similar to [14], the optimal

control theory is applied considering the state variable inequality constraint in order to

fulfill the impact angle control guidance without violating the FOV limit. The range-to-go

is additionally multiplied in the performance index of the control energy, so the terminal

command converges to zero unlike the law in [14].

The laws in [12–15] mentioned above, derived based on the linearized engagement kine-

matics, require the knowledge of the relative range between the missile and target because

all these laws are expressed as functions of time-to-go or range-to-go. When the missile

system is equipped with a passive sensor such as an infrared seeker or a passive sonar,
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however, the range information is difficult to measure in real time. In this regard, several

nonlinear guidance laws utilizing the characteristics of the pure proportional navigation

(PPN) guidance or biased pure proportional navigation (BPPN) guidance which does not

require the accurate measurement of the relative range have been proposed.

Multi-phase composite guidance scheme, whose capability to control the terminal impact

angle is studied by the authors in [21] and [22], switches the navigation constant or biased

term during the homing in order to achieve the desired tasks. Based on this multi-phase

structure, several impact angle control guidance laws involving the FOV constraint are

addressed. The authors in [16] propose a two-phase guidance scheme composed of the PPN

guidance and BPPN guidance. Since the closed-loop solution under the two-phase law is

obtained in this paper, the desired duties of satisfying the terminal impact angle without

violating the look angle limitation can be accomplished by adjusting the integral of the bias

profile. However, a selection of the bias profile is proceeded by trial and error in order not

to violate the limited FOV condition because a specific condition for limiting the look angle

is not given analytically in this work. As an improved version of the law in [16], two types

of laws, i.e. switched-gain PPN (SGPPN) and switched-bias PPN (SBPPN), are designed

in [17]. These two laws provide specified conditions that guarantee the satisfaction of the

look angle constraint, so the desired tasks can be achieved more readily compared with the

law in [16]. The study in [18] deals with not only the look angle constraint but also the

acceleration command limitation by developing a BPPN guidance law that switches the

bias term. The designed BPPN law with the navigation constant of N > 2 also achieves

zero terminal command since the bias term converges to zero at the terminal stage. The

work in [19] proposes a look angle constrained guidance law that considers the limited

acceleration constraint. Similar to the works in [16] and [17], the navigation gains for

satisfying the desired constraints are calculated by numerical solving. By the fact that the

PPN with N = 1 maintains the look angle as a constant, the switched-gain PPN law in [20]

satisfies the constraints on the impact angle and look angle with a change of the navigation

constant from N = 1 to N = Ns ≥ 2.

5



The above composite guidance laws in [16–18, 20] except for [19] do not involve the

range information in their command. Although the law in [19] requires the knowledge of

relative range for embodying the switching scheme, the measurement of the range is not

necessary for its implementation since an observer estimating the range is also developed

with the guidance law. Therefore, the laws in [16–20] are useful when the guided system

is equipped with a passive sensor or jammed by an electronic attack such as an electronic

countermeasure (ECM) because the range information is not required.

1.2.2 Impact time control guidance

The impact time control is an effective strategy, for it facilitates a salvo attack where

multiple missiles attack the same target simultaneously. Since the self-defensive system on

the ship is limited in the number of missiles it can defend simultaneously, the survivability of

each missile is enhanced in salvo attack. That is, control of the impact time when employing

multi missiles can allow lethal attack despite the presence of the anti-air defensive system.

One of the initial efforts that assign the impact time constraint to the missile guid-

ance law is given by [23]. The authors of [23] formulate the linearized suboptimal problem

constrained by the terminal miss distance and desired impact time. The closed-form solu-

tion of the proposed problem, which is utilized as the guidance command, is obtained as a

combination of PN guidance law and the feedback term that aims to regulate the impact

time error. In [24], a cooperative PN-based guidance law using time-varying navigation

gain is designed. The proposed law conjugates a concept of time-to-go variance, thereby

enabling multiple missiles to perform many-to-one engagement without specified desired

impact time. The laws in [23] and [24] are derived based on the linearized engagement

dynamics with the small angle assumption. The accuracy of such guidance laws can be

deteriorate under the presence of influential nonlinearity such as large heading error.

The authors of [25–30] design impact time control guidance laws based on the nonlin-

ear engagement dynamics for ensuring the performance under diverse engagements. The

guidance laws in [25–28] fulfill the impact time control by letting the estimated time-
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to-go converge to the desired time-to-go. These laws can guarantee a wide range of the

capture region with an acceptable command in virtue of their exact formulation without

linearizations. Especially, the laws in [26] and [27] are extended to engagements involving a

non-stationary and non-maneuvering target using the concept of the predicted interception

point (PIP) method first represented in [26]. In [29], an expected impact time is accurately

calculated using the beta function, and a guidance law is developed to make the expected

impact time equal to the desired impact time. Expressions of the achievable minimum and

maximum impact times are also derived based on the analysis of the proposed law. The

work in [30] combines the PN guidance law and a feedforward control term composed of the

impact time error based on nonlinear formulation. Similar to [26] and [27], the law in [30]

is also extended to a non-stationary moving target utilizing the PIP technique.

Taking advantage of the explained impact time control guidance laws allows the multiple

missiles to carry out a salvo attack that can incapacitate the defensive system of the target.

In the implementation, however, there is the possibility that the missile loses the target from

the seeker’s FOV since imposing the impact time constraint may give rise to the curved

trajectory of the missile. Therefore, an impact time control guidance law that considers

the seeker’s FOV limit is required from the implementation point of view. There are some

studies that consider the FOV limit as well as the impact time constraint [31–34].

In [31], a switching logic that keeps the missile look angle within the maximum limit is

proposed. Applying this logic to the impact time control guidance law of [23], the guidance

scheme developed in [31] can prevent the look angle from exceeding the seeker’s FOV

limit. However, the switching logic-based law brings about a sudden change in its guidance

command, which is undesirable from a practical point of view. To overcome this drawback,

the authors in [32] and [33] utilize a continuous cosine-based function to limit the look

angle without using the switching logic. Especially, the law presented in [33] can keep the

look angle from violating the maximum FOV limit in the presence of uncertain autopilot

lag. In [34], an impact time control guidance law that ensures the monotonic decrease of

the look angle is proposed. Thereby, the look angle does not exceed the initial value during
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the entire homing phase, so the constraint on FOV is also satisfied by letting the initial

look angle be within the maximum bounds.

1.2.3 Impact angle and time control guidance

A salvo attack with fulfilling the impact angle control enhances effectiveness of the coopera-

tion since each missile can aim at weak parts of the target. It also prevents from the missiles

colliding each other owing to the capability to adjust the collision directions. Despite these

advantages of controlling the impact angle and time simultaneously, there are not many

related studies while much research that only considers the impact angle or impact time is

available in open literature.

One of the pioneering works that involve the terminal impact angle and time constraint

is addressed in [35]. In this work, an impact angle control law is designed based on the

optimal control theory and extended into an impact angle and time control law by using a

time-to-go estimation. The guidance law proposed in [36] is a downrange-based polynomial

function with three coefficients. The coefficients are calculated to satisfy the desired ter-

minal constraints: zero miss distance, desired impact angle, and desired impact time. The

laws in [35] and [36] are designed based on the linearized engagement dynamics under the

small angle assumption of the missile flight path angle. Although the linearization makes

it easier to derive and analyze the guidance laws, the performance of such guidance laws

can be degraded in the engagement situations when it is difficult to apply the small angle

assumption.

To guarantee the guidance performance under various engagement situations, other

guidance laws derived from nonlinear engagement dynamics have been proposed. In [37],

sliding mode control (SMC) is used for deriving the guidance law against a non-stationary

target. The impact angle is constrained by tracking the desired LOS angle using second-

order SMC. The profile of the desired LOS angle involves the extra parameter which is

tuned to satisfy the impact time constraint through off-line optimization. The authors

in [38] propose the optimal guidance law to satisfy the impact angle and time constraints.
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The guidance law is derived by solving a two-point boundary value problem (TPBVP) with

constraints based on a nonlinear engagement kinematics. PN-based guidance laws presented

in [39] takes into account a practical requirement such as FOV and acceleration limit as

well as the impact angle and time constraints. The guidance parameters for achieving

the designated tasks are found by a numerical routine. The laws in [37–39] satisfies a

wide range of the capture region owing to their capability to handle nonlinearity. For

the implementation, however, an optimization routine is required, which demands longer

computation time in comparison with the analytic approaches.

1.3 Research objectives and contributions

This dissertation proposes field-of-view constrained guidance laws whose contributions are

divided into three parts: i) impact angle control guidance law, ii) impact time control

guidance law, iii) impact angle and time control guidance law. In this section, the research

objectives and contributions of each part are described.

1.3.1 Impact angle control guidance law with field-of-view con-

straint

This part proposes an impact angle control guidance law that restricts the seeker look

angle within the prescribed limits. The proposed law is designed to be implemented under

bearings-only measurements, which means that the produced command does not involve

any information of the relative range and LOS rate. Compared with the previously pub-

lished studies related to the impact angle control considering the FOV constraint in [12–20],

the proposed work in this study has the following contributions. First, the developed law

does not demand any knowledge of the time-to-go or relative range unlike the existing

linear methods in [12–15]. Therefore, the proposed law can easily be implemented onto a

missile equipped with a passive seeker. Furthermore, the proposed law does not involve the

LOS rate information unlike the existing PN-based nonlinear approaches in [16–20]. That
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is, just bearings-only measurement without estimating the relative range or LOS rate is

enough for the implementation of the proposed guidance law, so it provides advantages

of jamming avoidance and low development cost by allowing a structurally simple sensor

such as a strapdown passive seeker. In addition, the application of the proposed law does

not require numerical computation during the entire homing unlike several laws in recent

studies [14,15,17,19]. Thus, an issue of performance reduction caused by lack of calculation

time or capacity needs not be considered when employing the guidance law. Analytic proofs

and numerical simulations for the proposed law are also included in this part. The results

demonstrate that the proposed law accomplishes the impact angle constraint without vi-

olating the maximum look angle limit although it only uses the information of bearing

angles.

1.3.2 Impact time control guidance law with field-of-view con-

straint

An impact time control guidance law considering the missile seeker’s FOV limit is presented.

Two error variables, which aim to achieve the homing and impact time control respectively,

are introduced, and the guidance law is derived by regulating the defined variables based

on backstepping control. The proposed law utilizes a missile look angle as a virtual control

input of the backstepping structure. The law is designed to restrict the magnitude of the

missile look angle by confining the virtual controller’s gain, thereby satisfying the limited

FOV condition. Here, since the virtual look angle is designed as a continuously differentiable

function, the derived guidance law can prevent the violation of the FOV limit without using

discrete switching logic unlike the approach in [31]. In addition, minimum and maximum

impact times that can be achieved sufficiently by the proposed law is investigated. By

theoretically proving that the developed law can satisfy any impact time between the

calculated minimum and maximum bounds, the analysis of the achievable impact time in

this part provides a meaningful discussion for the implementation. Numerical simulations
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against a stationary target are carried out, and the result demonstrates the validity of the

proposed guidance law.

1.3.3 Impact angle and time control guidance law with field-of-

view constraint

A guidance law that considers the field-of-view limit as well as the terminal impact angle

and time constraint is proposed. Prior to dealing with both the impact angle and time

constraints, a look angle constrained guidance law that only involves the impact angle

constraint is firstly designed. Since the remaining trajectory under this law is formulated

as a function of a gain used in the guidance command, the time-to-go until the interception

is adjustable. Therefore, the developed impact angle control guidance law can also control

the terminal impact time. The proposed law can also prevent the look angle from exceeding

the maximum FOV, which is not considered in almost recent studies [35–38]. Since imposing

the impact angle and time constraints brings about the curved trajectory, this capability

to confine the look angle is valuable. Furthermore, the proposed law is derived without

requiring the small angle assumption of the flight path angle unlike the existing linear

approaches in [35] and [36]. Hence, the guidance accuracy is ensured for various impact

angles under the proposed law. Although the existing nonlinear methods in [37–39] can also

achieve the accurate performance owing to their exact formulations without linearizations,

numerical routine such as off-line optimization or shooting method is required for the

application of these laws. On the contrary, the proposed law can be implemented without

using any numerical routine, so more feasible for real applications in comparison with

the laws in [37–39]. The effectiveness of the proposed guidance law is demonstrated by

simulations.
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1.4 Thesis organization

The remainder of this paper is composed of as follows. In Chapter 2, a look angle constrained

impact angle control guidance law for homing missiles with bearings-only measurements is

presented. In Chapter 3, an impact time control guidance law that also prohibits the look

angle from exceeding the maximum limit is introduced. In Chapter 4, a guidance law that

controls both the impact angle and time with satisfying field-of-view constraint is proposed.

In Chapter 5, the primary results and contributions of this paper are summarized.
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2
Impact Angle Control Guidance

with Field-of-View Constraint

This chapter presents an impact angle control guidance law that confines the missile look

angle during homing in order not to exceed a seeker’s field-of-view limit. A sliding surface

variable whose regulation guarantees the interception of a stationary target at the desired

impact angle is designed, and the guidance law is derived to make the surface variable go

to the sliding mode. Using a magnitude-limited sigmoid function in the surface variable,

the proposed law prohibits the look angle from exceeding the specified limit during the

entire homing. This capability to confine the missile look angle is valuable when a seeker’s

field-of-view is restricted, since imposing the terminal impact angle constraint demands the

curved trajectory to the missile. Furthermore, the proposed law can be implemented under

bearings-only measurements because the command does not involve any information of the

relative range and line-of-sight rate. Numerical simulations are conducted to demonstrate

the validity of the proposed law. The contents of this chapter are also available in the open

literature of [42].
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Figure 2.1: Two-dimensional engagement geometry for a stationary target

2.1 Problem statement

This section gives the nonlinear dynamics of the planar engagement against a stationary

target to formulate the guidance problem for impact angle control. Figure 2.1 illustrates the

two-dimensional geometry for the engagement between the missile and target denoted as M

and T respectively. The frame XIOIYI represents the inertial coordinate, and VM , γM and

aM denote the speed, flight path angle and normal acceleration of the missile respectively.

σM is the look angle defined as the angle between the LOS and missile heading under the

assumption that the angle of attack is small enough to be neglected. R and λ mean the

relative range and LOS (line-of-sight) angle between the missile and target. Based on the

variables defined in Fig. 2.1, the governing equations are expressed as

Ṙ = VR (2.1a)

Rλ̇ = Vλ (2.1b)
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where VR and Vλ represent the relative velocity component of the target to the missile along

and perpendicular to the LOS respectively as

VR = −VM cosσM (2.2a)

Vλ = −VM sinσM . (2.2b)

Since the normal acceleration aM is applied to the missile velocity vector, the equation of

the flight path angle is written as

γ̇M =
aM
VM

(2.3)

The design objective of the guidance law is to intercept the target with the desired impact

angle without violating the prescribed look angle limits, which is expressed mathematically

as

R(tf ) = Rf (2.4a)

γM(tf ) = γd (2.4b)

|σM(t)| ≤ σmax
M ≤ π/2 ∀t ∈ [0, tf ] (2.4c)

where tf , Rf , γd and σmax
M are the final time, acceptable maximum miss distance, desired

impact angle and prescribed look angle limit. Furthermore, the bearings-only measurement

of the missile is assumed in this work. Therefore, the guidance law is designed to achieve

the constraints in (2.4) using only the LOS angle and look angle without involving the LOS

rate and relative range.

2.2 Design of impact angle control guidance law

This section introduces the kinematic conditions for achieving the impact angle control

without violating the FOV constraint during the homing, and presents a sliding mode-

based guidance law to satisfy the formulated conditions.
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2.2.1 Kinematic conditions for impact angle control guidance

The collision path on which the missile moves toward the target along the LOS is achieved

by nullifying the missile look angle as

σM = 0 (2.5)

In addition, choosing the collision path whose direction is equal to the desired impact angle

guarantees the satisfaction of impact angle constraint, which is equivalent to

λ = γd. (2.6)

Therefore, fulfilling the both conditions (2.5) and (2.6) always ensures the interception at

the desired impact angle, so the following surface variable is defined to achieve the desired

tasks:

S (σM , λ) = e2 − k1sgmf(e1, φ1) (2.7)

where the variables e1 and e2 are introduced to satisfy the conditions in (2.5) and (2.6) as

e1 =λ− γd (2.8a)

e2 =σM , (2.8b)

and the sigmoid function sgmf(·) is defined as

sgmf(x, φ) =
x√

x2 + φ2
(2.9)
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The user chosen parameters k1 and φ1 are constants such that

0 < k1 < σmax
M <

π

2

0 < φ1. (2.10)

Then, the regulation of the S defined in (2.7) yields

d

dt

(
1

2
e21

)∣∣∣∣
S=0

=e1λ̇

∣∣∣∣
S=0

=− VM
R
e1 sin {k1sgmf(e1, φ1)}

<0 ∀e1 ∈ R− {0} (2.11)

where the inequality (2.11) is obtained by the fact that 0 < k1 ≤ π/2 from (2.10). Thus, the

variable e1 approaches zero, which also enables e2 → 0 from (2.7). Here, to guarantee the

achievement of the desired conditions (2.5) and (2.6) indisputably, it should be additionally

verified that e1 goes to zero before homing is over. The analysis about this issue of finite

time convergence is dealt with in section 2.3-C.

Also note that the proposed surface variable S consists only of the look angle and

LOS angle. It accords with the design requirement to implement under the bearings-only

measurement. From now on, we denote the surface variable as S (σM , λ) or S (σM(t), λ(t))

when the dependence on σM and λ needs to be emphasized. Otherwise, we denote as S for

brevity. In the next subsection, a sliding mode-based guidance law that stabilizes S at the

origin is designed based on the Lyapunov stability theory. The condition in (2.4c) is also

taken into account during the design process in order to satisfy the FOV constraint.
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2.2.2 Derivation of guidance law

From (2.1) and (2.3), the dynamics of S in (2.7) is obtained as

Ṡ =
aM
VM

+ ∆ (2.12)

where the unknown term ∆ composed of the LOS rate is

∆ = −
[
1 + k1

∂

∂e1
{sgmf(e1, φ1)}

]
λ̇ (2.13)

and its magnitude is bounded as

|∆| ≤VM
Rf

{
1 + k1

φ2
1

(e21 + φ2
1)

3/2

}
|sinσM |

,
VM
Rf

f2(σM , λ) (2.14)

The term f2(σM , λ) represents

f2(σM , λ) =

{
1 + k1

φ2
1

(e21 + φ2
1)

3/2

}
| sinσM |. (2.15)

Based on the dynamics in (2.12), I propose a sliding mode guidance law for the convergence

of S as follows:

aM = −
{
VM
Rf

f2 (σM , λ) + k2

}
VMsgn (S) (2.16)

where k2 is a positive constant and sgn(·) represents the signum function. In this work, the

finite time convergence of S is required since the desired conditions (2.5) and (2.6) should

be achieved before the interception to fulfill the impact angle control. Therefore, sliding

mode control is appropriate for designing the guidance law owing to its capability to allow

finite time convergence.
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Note that the proposed command in (2.16) does not include any variable of the LOS rate

or range because S and f2(σM , λ) in (2.16) are composed of only the look angle and LOS

angle as shown in (2.7) and (2.15). Therefore, just bearings-only measurement is enough

for the implementation of the proposed guidance law.

Now, the closed-loop dynamics of S is obtained by substituting (2.16) into (2.12) as

follows:

Ṡ = −
{
VM
Rf

f2 (σM , λ) + k2

}
sgn(S) + ∆. (2.17)

Since achieving the sliding mode S = 0 enables the interception of the stationary target at

the designated impact angle as shown in subsection 2.2-A, the stability of S = 0 is verified

using the closed-loop dynamics of (2.17) in next section 2.3.

2.3 Analysis of the proposed law

This section substantiates that the proposed guidance law satisfies the desired constraints

through three subsections. In subsection 2.3-A, it is confirmed that the look angle does

not violate the prescribed FOV constraint under the proposed law. In subsection 2.3-B,

the stability of S at the origin is analyzed based on the closed-loop dynamics to verify the

performance of the proposed law. Subsection 2.3-C examines the finite time convergence

of e1 and e2 to investigate whether the proposed law achieves the kinematic conditions for

the impact angle control before the interception.

2.3.1 Look angle analysis

To check whether the proposed law satisfies the FOV constraint, let us analyze the dynamics

of the look angle σM under the proposed law as follows:

Theorem 2.1. Consider the guidance law in (2.7) and (2.16) with the parameter k1 sat-

isfying (2.10). Then, for all initial conditions satisfying |σM(0)| ≤ σmax
M , the look angle is
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always bounded as

|σM(t)| ≤ σmax
M ∀t ≥ 0. (2.18)

Proof. Consider a compact set A , {σM : |σM | ≤ σmax
M } for the proof. Now, on σM = σmax

M ,

the time derivative of σM is rewritten as

σ̇M

∣∣∣∣
σM=σmax

M

=
aM
VM
− λ̇
∣∣∣∣
σM=σmax

M

=−
{
VM
Rf

f2(σ
max
M , λ) + k2

}
sgn
(
S (σmax

M , λ)
)

+
VM sinσmax

M

R
(2.19)

In (2.19), S(σmax
M , λ) is always positive because k1 is chosen as (2.10). Furthermore, from

(2.15), the term f2(σ
max
M , λ) in (2.19) is bounded from below as

f2(σ
max
M , λ) > sinσmax

M . (2.20)

Substituting (2.20) into (2.19) yields

σ̇M

∣∣∣∣
σM=σmax

M

<−
(
VM
Rf

sinσmax
M + k2

)
+
VM sinσmax

M

R
(2.21)

Applying R ≥ Rf to inequality in (2.21) leads to

σ̇M

∣∣∣∣
σM=σmax

M

< −k2 (2.22)

Likewise, on σM = −σmax
M , the following is also satisfied:

σ̇M

∣∣∣∣
σM=−σmax

M

> k2 (2.23)

Consequently, the proposed law makes the set |σM(t)| ≤ σmax
M invariant, which proves

(2.18).
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Theorem 2.1 verifies that the proposed guidance law in (2.16) achieves |σM(t)| ≤ σmax
M

if the initial condition satisfies |σM(0)| ≤ σmax
M . That is, the proposed law keeps the missile

look angle within the prespecified FOV limit until the interception.

2.3.2 Stability analysis

In order to verify the performance of the proposed law, this subsection investigates the

stability of the surface variable S in (2.7). For the investigation, the closed-loop dynamics

in (2.17) is analyzed as follows:

Theorem 2.2. Consider the dynamics of the surface variable (2.17). Then, the surface

variable S(t) reaches zero in a finite time tr that is bounded as

tr ≤
|S (σM(0), λ(0))|

k2
(2.24)

Proof. For the proof, consider the Lyapunov candidate function as

V =
1

2
S2. (2.25)

From (2.17), the time derivative of V is obtained as

V̇ = S

[
−
{
VM
Rf

f2(σM , λ) + k2

}
sgn(S) + ∆

]
(2.26)

Using (2.14) into (2.26) gives

V̇ ≤−
{
VM
Rf

f2(σM , λ) + k2

}
|S|+ VM

Rf

f2(σM , λ)|S|

=− k2
√

2V (2.27)

which implies that S is bounded and origin of the closed-loop dynamics in (2.17) is asymp-
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totically stable. Furthermore, from [43], integrating the inequality (2.27) over [0, t] yields

V 1/2(t) ≤ − 1√
2
k2t+ V 1/2(0), (2.28)

which implies that V (t) goes to zero in a finite time tr bounded as

tr ≤
√

2V 1/2(0)

k2
=
|S (σM(0), λ(0))|

k2
. (2.29)

Theorem 2.2 shows that the sliding mode S = 0 is achieved in a finite time. From

(2.7) and (2.11), hence, the proposed guidance law in (2.16) makes the errors e1 and e2

approach zero. However, for achieving the homing and impact angle conditions in (2.5) and

(2.6) conclusively, e1 and e2 have to go to zero before the interception. Thus, in the next

subsection, the finite time convergence of e1 and e2 is analyzed to prove the validity of the

proposed guidance law.

2.3.3 Convergence analysis of error variables e1 and e2

From Theorem 2.2 in section 2.3-B, it is deduced that the convergence speed of S can be

made faster by increasing the user-chosen parameter k2. Furthermore, as shown in (2.11),

it has already been proven that e1 and e2 converge to zero after S = 0 is achieved. However,

unlike S whose convergence speed can be made arbitrarily faster, the convergence speed of

e1 is limited since the magnitude of the parameter k1, related to the convergence of e1, is

restricted as shown in (2.10). Thus, it is necessary to verify that e1 and e2 go to zero before

the end of the homing in order to guarantee the success of the desired tasks.

This subsection investigates the dynamics of e1 to prove the finite time convergence

of e1 and e2 under S = 0. For the convergence analysis, the following lemma is obtained

priorly.

22



Lemma 2.1. Let f : [−1, 1]→ R be a function such that

f(x) = sin(kx) (2.30)

where the constant k is chosen as 0 < k ≤ π
2
. Then, the function f satisfies

{
f(x) ≥ xf(1) if x ∈ [0, 1] (2.31a)

f(x) ≤ xf(1) if x ∈ [−1, 0] (2.31b)

Proof. Let us prove the case f(x) ≥ xf(1) because the other case can be proved by the

same way. In the domain x ∈ [0, 1], f is a concave function since the second derivative of

f is given by

d2f

dx2
(x) = −k2 sin(kx) ≤ 0. (2.32)

Therefore, from the definition of the concave function, it is satisfied that

f ((1− t)x1 + tx2) ≥ (1− t)f(x1) + tf(x2) (2.33)

for any x1, x2 and t ∈ [0, 1]. Substituting 0 and 1 into x1 and x2 in (2.33) respectively yields

f(t) ≥ tf(1), (2.34)

which accords with the inequality property in (2.31a).

Now, for the convergence analysis of e1 and e2, the following Theorem 2.3 is presented.

Theorem 2.3. After the sliding mode S = 0 is achieved, the variables e1 and e2 in (2.8a)

and (2.8b) converge to zero as the distance between the missile and target R goes to zero.
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Proof. For the proof, the following Lyapunov candidate function is introduced:

V1 =
1

2
e21. (2.35)

First, let us prove the boundedness of e1. On S = 0, the time derivative of V1 is given by

V̇1

∣∣∣∣
S=0

=− VM sinσM
R

e1

∣∣∣∣
S=0

=− VM
R

sin {k1sgmf(e1, φ1)} e1

=− VM
R

sin

{
k1

e1√
e21 + φ2

1

}
e1

≤0. (2.36)

where the condition of k1 in (2.10) is used. The result in (2.36) signifies that e1 is bounded

after S converges, so there exists a positive constant emax
1 such that |e1(t)|S=0 ≤ emax

1 . Then,

from (2.36), it is obtained that

V̇1

∣∣∣∣
S=0

≤ −VM
R

sin

{
k1

e1√
(emax

1 )2 + φ2
1

}
e1. (2.37)

In (2.37), the relative range R satisfies R ≤ VM tgo = VM(tf − t) where tgo and tf denote the

remaining time-to-go and impact time of the missile respectively, since R is the shortest

distance between the missile and target. Furthermore, by Lemma 2.1, the sine term in

(2.37) satisfies


sin

{
k1

e1√
(emax

1 )2 + φ2
1

}
≥ (sin k1)

e1√
(emax

1 )2 + φ2
1

if e1 ≥ 0 (2.38a)

sin

{
k1

e1√
(emax

1 )2 + φ2
1

}
≤ (sin k1)

e1√
(emax

1 )2 + φ2
1

if e1 ≤ 0 (2.38b)
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Accordingly, using these properties yields

V̇1

∣∣∣∣
S=0

≤− sin k1
tgo

e21√
(emax

1 )2 + φ2
1

≤− 2 sin k1√
(emax

1 )2 + φ2
1

V1
tgo
, (2.39)

which implies

V1(t)

∣∣∣∣
S=0

≤ V1(0)

(
tgo
tf

) 2 sin k1√
(emax

1 )2+φ21 . (2.40)

The inequality in (2.40) implies that V1(t) goes to zero as t approaches tf , which also

yields lim
t→tf

e2 = 0 because e2 = k1sgmf(e1, φ1) on S = 0. Therefore, if the regulation of

S is achieved, both e1 and e2 converge to zero as the missile approaches the stationary

target.

Theorem 2.2 implies that the sliding mode can be achieved before the end of the homing

by adjusting the gain k2. Theorem 2.3 indicates that achievement of the sliding mode makes

e1 and e2 converge to zero before the end of the homing since the homing is terminated

when the relative R goes to zero. Consequently, the error variables e1 and e2 can be made

zero before the end of the homing, which verifies that the proposed guidance law in (2.16)

can satisfy the kinematic conditions in (2.5) and (2.6) during the homing. That is, the

interception with the desired impact angle can be achieved under the proposed law.

From Theorem 2.3, it is verified that the proposed guidance law in (2.16) satisfies the

kinematic conditions in (2.5) and (2.6) during the homing. That is, the interception with

the desired impact angle can be achieved under the proposed law.

2.4 Simulation results

This section evaluates the performance of the proposed guidance law by carrying out numer-

ical simulations. In subsection 2.4-A, the validity of the proposed guidance law for various
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terminal impact angles and field-of-view (FOV) constraints is demonstrated. In subsection

2.4-B, the proposed guidance law is compared with other FOV-constrained impact angle

control guidance laws. In subsection 2.4-C, the performance of the proposed law in practical

applications is examined using a realistic interceptor model.

When the proposed law is applied, to avoid the chattering caused by the discontinuity,

the signum function sgn(·) in (2.16) is approximated as the following continuous hyperbolic

tangent function [9, 10, 27]:

tanh(ax) = 2

(
1

1 + exp−2ax
− 1

2

)
(2.41)

Applying such an approximation makes the variable converge to the ideal sliding mode

with slight deviation which is approximately in inverse proportion to a [44]. The value of

a as a = 10 is used in this paper.

In addition, the acceleration command of the missile is saturated within ±10g, and the

homing is terminated when the relative range R is less than or equal to 0.5 m in all the

scenarios. The parameters used in the proposed guidance law are listed in Table 2.1.

Table 2.1: Simulation setting

Parameters Values
Initial position of the missile (xM(0), yM(0)) (0, 0) km
Position of the stationary target (xT (0), yT (0)) (10, 0) km
Initial missile look angle σM(0) 15 deg
Missile speed VM 250 m/s
Missile acceleration limits |aM |max 10 g†

Guidance gains
k1 = σmax

M − 0.01, k2 = 10, Rf = 0.5
φ1 = 0.15, φ2(0) = 0.002, kφ = 0.01

† g means the gravitational acceleration, i.e., g = 9.81 m/s2.

26



2.4.1 Performance analysis of the proposed law

For the simulations of the performance analysis, this subsection considers two scenarios.

The first scenario deals with engagements for different impact angle constraints with a fixed

look angle limitation of σmax
M = 45◦. The second scenario considers engagements for a fixed

impact angle constraint of γd = −60◦ with various look angle limitations.

The results of the first scenario are presented as Figs. 2.2a∼d. In the figures, the re-

sults for the desired impact angles of −30◦, −60◦, −90◦ and −120◦ are represented by the

triangular, inverted triangular, rectangular and circular patterned-lines respectively.

Under the proposed guidance law, the missile intercepts the target for all the cases

as illustrated by Fig. 2.2a. Specifically, figure 2.2b shows that the proposed law achieves

the sliding mode with the lateral acceleration not exceeding ±10g. Owing to using the

hyperbolic tangent function in (2.41) instead of the discontinuous signum function in the

guidance command, it is seen that the convergence of S is obtained without undesirable

high-frequency chattering. Since the sliding mode is achieved, both the errors e1 and e2 also

approach zero as shown in Fig. 2.2c. In particular, it is observed that e1 and e2 converge

to zero before the interception as proven by Theorem 2.3 in section 2.3-C. Accordingly,

the upper row of figure 2.2d provides the result that the proposed law achieves the desired

impact angle for all the cases.

The trajectories in figure 2.2a also show that the missile takes a longer bypass as the

higher impact angle is demanded. Nevertheless, the lower row of figure 2.2d shows that

the look angle does not violate the prescribed limit σmax
M = 45◦ for all the cases under the

proposed guidance law. This result accords with Theorem 2.1 in section 2.3-A.

Figures 2.3a∼d provide the simulation results of the second scenario. Likewise, the

results with the look angle limits of 15◦, 30◦, 45◦ and 60◦ are denoted as the triangle,

inverted triangle, square and circle patterned-lines respectively in each figure.

Figure 2.3a demonstrates that the proposed law achieves the interception under all the

considered FOV limits. Like the first scenario, the surface variable converges near zero
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at the initial stage, and then the error variables e1 and e2 also approach zero before the

interception as shown in Figs 2.3b and 2.3c. As a result, it is observed by the upper row of

Fig. 2.3d that the desired impact angles can be achieved for all the cases.

Figure 2.3a also shows that the curvatures are different from one another although the

terminal impact angle is same in all the four cases. It is because all the four missiles fly

under the differently prescribed values of the look angle constraints as given in the lower

graph of Fig. 2.3d. This result demonstrates that the proposed guidance law can restrict

the maximum look angle as desired, as proven in Theorem 2.1.
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Figure 2.3: Simulation results for a fixed impact angle constraint of γd = −60◦ with various
look angle limitations

30



2.4.2 Performance comparison with other guidance laws

In this subsection, the proposed law is compared with other impact angle control guidance

laws that consider the FOV limit called ROG (range-to-go weighted optimal guidance law)

and TPPN (two-stage pure proportional navigation guidance law) developed in [15] and [20]

respectively. ROG and TPPN are linear and nonlinear dynamics-based laws respectively,

and both of them are the most recently developed laws among related research at the time

of this study. These laws are generated as the following forms:

ROG [15] : (2.42)

aM =


−(N + 3)V 2

M

(
σMR−σmax

M R1

RN+3−RN+3
1

)
RN+1 + µR

N

V 2
M

{
1−

(
N+3
N+2

) (RN+2−RN+2
1

RN+3−RN+3
1

)}
for R1 < R ≤ R0

VM λ̇ for R2 < R ≤ R1

−V 2
M

R
{(N + 2)(N + 3)σM + (N + 1)(N + 2)(γd − γM)} for Rf < R ≤ R2

TPPN [20] : (2.43)

aM =

 VM λ̇
switches at λ = γd + σM (0)

(Ns−1)NsVM λ̇

In (2.42) and (2.43), we set the parameters N and Ns as N = 1 and Ns = 3 respectively.

Both settings ensure satisfaction of the impact angle and look angle constraints, and are

also used in [15] and [20] respectively. Values of the other parameters such as µ, R1 and R2

in (2.42) are determined by initial conditions and the value of N .

As a simulation setting for the performance comparison, the desired impact angle is

fixed as γd = −60◦ and the FOV limit of σmax
M = 30◦ is applied for all three guidance laws.

The initial conditions in Table 2.1 are also considered for the guidance laws except that the

initial look angle for TPPN is set to be 30◦ instead of 15◦. It is because TPPN is designed

so that it tries not to exceed the FOV limit by maintaining the initial look angle during

the first phase as explained in detail in [20]. That is, the engagement conditions in this

subsection are set to make the look angles under all the laws are constrained by the same
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limit, i.e. σmax
M = 30◦, for fair comparison.

Figures 2.4a∼d give the results for an impact angle constraint of γd = −60◦ with a

look angle limitation of σmax
M = 30◦ under three different guidance laws. The results under

ROG, TPPN and the proposed law are denoted as the triangle, inverted triangle and circle-

patterned line respectively.

Figure 2.4a shows that all the three guidance laws intercept the stationary target with

similar trajectories. The terminal constraints on the terminal impact angle of γd = −60◦

are also achieved without violating the look angle limit of σmax
M = 30◦ under all the laws as

presented by Figs. 2.4b and 2.4c.

Figure 2.4d provides the guidance commands under three laws. At the initial stage of

the homing, TPPN generates a smaller guidance command compared with the other laws

because it does not need to change the look angle as shown in Fig. 2.4c. This property

of TPPN to maintain its initial look angle prevents the command from saturating at the

initial stage. However, to achieve this property requires that the missile be launched at

a deviated look angle from the target. Furthermore, since TPPN switches the navigation

constant for achieving the desired impact angle, there must be an undesirable discontinuity

in the guidance command as shown in Fig. 2.4d.

Unlike TPPN, both ROG and the proposed guidance law generate continuous com-

mands. In particular, ROG produces the acceleration command of more modest amplitude

than the other two laws except for at the initial stage, which results from its optimality

property as described in detail in [15]. However, as shown in (2.42), the implementation of

ROG needs values of transition points R1 and R2, which requires a numerical computation

process. Hence, not enough iterations caused by lack of calculation time or capacity can

result in performance degradation when employing ROG. Moreover, as shown in (2.16),

(2.42) and (2.43), ROG necessitates the information of the relative range R while TPPN

and the proposed law does not. That is, measurement or estimation of R is required for

the implementation of ROG unlike TPPN and the proposed law.

In contrast, the result in Figs. 2.4a∼c shows that the proposed law can fulfill the impact
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angle control without violating the prescribed look angle limit although its implementation

does not require the information of LOS rate and relative range. Figure 2.4d shows that the

proposed law produces a large command at the initial stage to make S converge to zero,

but the generated command is continuous and not large after the initial stage. That is, the

practical application of the proposed law is more helpful to restricted guidance scenarios

where only bearing angles are measurable in comparison with other existing laws.
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2.4.3 Performance analysis in a realistic scenario

This subsection carries out engagement simulations considering rotational dynamics of the

missile to evaluate the performance of the proposed law in realistic applications. Involving

the aerodynamics and gravitation, the lateral maneuvering acceleration is produced by the

aerodynamic lift as

aM =
L(α, δ)

m
(2.44)

and the angle-of-attack α is governed by the rotational motion as

α̇ =q − L(α, δ)−mg cos γM
mVM

, θ̇ = q

q̇ =
M(α, q, δ)

Iyy
, δ̇ =

δC − δ
τδ

. (2.45)

θ, q, δ and δC represent the pitch angle, pitch rate, canard deflection and command of the

canard deflection respectively. L(·) and M(·) mean the lift force and pitching moment, and

m, Iyy and τδ denote the mass, moment of inertial with respect to the pitch axis and time

constant of the canard dynamics. The detailed aerodynamic model for the lift force and

pitch moment in (2.45) is described in [45] and [9].

Based on the realistic model, the same scenario in Fig. 2.2 is applied, so the desired

impact angles of −30◦, −60◦, −90◦ and −120◦ with the fixed look angle limitation of 45◦

are considered. Since the angle-of-attack is not neglected in this realistic scenario, the look

angle defined as the angle between the LOS and missile heading is re-expressed as

σactM =θ − λ

=σM + α. (2.46)

In order not to violate the FOV limit, the restriction of the actual look angle in (2.46)

is required as |σactM | ≤ 45◦. To achieve the actual restriction for σactM , σM in the guidance
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command (2.16) is restricted with a safety margin εσ, i.e., |σM | ≤ 45◦ − εσ. From (2.46),

it is reasonable that the maximum value of the angle-of-attack is selected as the safety

margin. In general missile configurations, the angle-of-attack is approximately proportional

to the lateral acceleration caused by the lift force as

α ≈ m

QSrefCLα
aM (2.47)

where m, Q, Sref , and CLα denote the mass, dynamic pressure, reference area, and co-

efficient of lift to angle-of-attack. Substituting aM = amax
M = 10 g into (2.47) yields the

maximum angle-of-attack, and it is calculated as αmax = 4.425◦ in this case. Accordingly,

we choose the safety margin as εσ = 4.5◦ for this simulation in this subsection. In addition,

to compensate the gravitational effect in vertical plane, the term g cos γM is added to the

original command in (2.16).

Figure 2.5 presents the simulation results for the realistic scenario. The results for the

desired impact angles of γd = −30◦, −60◦, −90◦ and −120◦ are denoted as the triangle,

inverted triangle, square and circle patterned-lines respectively. As shown in Figs. 2.5a and

2.5b, the missile intercepts the stationary target at the desired impact angle for all cases.

From Figs. 2.5c and 2.5d, it is confirmed that the proposed law satisfies the look angle

limit of σactM = 45◦ with feasible lateral accelerations for all the desired impact angles. Figure

2.5c also shows that the actual look angle defined as (2.46) reaches its peak momentarily at

the initial stage of the homing for every case. This large demand on the actual look angle

is caused by the fact that the large requirement on the lateral acceleration at the initial

stage shown in (2.5d) induces the large angle-of-attack. Nevertheless, the actual look angle

does not violate the prescribed limit since the proposed law restricts the ideal look angle

σM with the safety margin εσ as described above.
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Figure 2.5: Simulation results in a realistic scenario
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3
Impact Time Control Guidance

with Field-of-View Constraint

This chapter proposes a guidance law that achieves the desired terminal impact time with-

out violating a seeker’s field-of-view (FOV) limit. In order to derive the guidance law,

kinematic conditions for impact time control are defined, and the backstepping control

technique is applied for the satisfaction of the conditions. As a virtual control input for

the backstepping structure, the missile look angle, which represents the angle between the

line-of-sight and missile heading vector, is used and its magnitude is limited by a prescribed

limit. Then, the seeker’s look angle can also be confined within a specific range because the

seeker look angle is mainly determined by the difference between the line-of-sight (LOS)

and the heading vector. This capability to confine the seeker’s look angle with achieving the

desired impact time is the main contribution of the paper. To evaluate the performance of

the proposed law, numerical simulations are conducted for various engagement scenarios.

The contents of this chapter are also available in the open literature of [47].
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Figure 3.1: Two-dimensional engagement geometry for a stationary target

3.1 PROBLEM FORMULATION

This section presents the dynamics of the missile-target engagement in order to formulate

the guidance problem about impact time control. As shown in Fig. 3.1, let us consider a

two-dimensional engagement geometry in the inertial coordinate frame XIOIYI . In the Fig.

3.1, R and λ denote the relative range and LOS (line-of-sight) angle between the missile and

target which are represented by the points M and T respectively. Also, VM , aM , γM and

σM denote the speed, normal acceleration, flight path angle and look angle of the missile,

respectively. Then, the governing equations of the engagement dynamics are expressed in

terms of R and λ as follows:

Ṙ = VR (3.1a)

Rλ̇ = Vλ (3.1b)

where VR and Vλ are relative velocity components of the target with respect to the missile

along and normal to the LOS respectively, and can be expressed as

VR = −VM cosσM (3.2a)

Vλ = −VM sinσM . (3.2b)
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It is assumed that the maneuvering acceleration of the missile is applied normal to the

velocity vector, so the equation about the flight path angle is given by

γ̇M =
aM
VM

. (3.3)

In this problem, the missile acceleration aM is used as the control input of the guidance

problem. Therefore, to develop the guidance command aM that enables the missile to

intercept the target at the desired impact time is the design objective in this study.

3.2 IMPACT TIME CONTROL GUIDANCE LAW WITH

CONSTRAINED FIELD-OF-VIEW LIMITS

In this section, the suitable kinematic conditions for satisfying the desired terminal con-

straints are established, and the impact time control guidance law is designed based on the

proposed conditions.

3.2.1 Kinematic conditions for impact time control guidance

This subsection includes the kinematic conditions that allow the missile to intercept the

target at the desired impact time without needing to perform the time-to-go estimation.

Furthermore, the field-of-view limitation of the missile’s seeker is considered by setting

bounds to the look angle.

A basic concept for the interception to a stationary target is to make the missile move

toward the target along the LOS, which can be expressed mathematically as

Vλ = 0 (3.4a)

VR < 0. (3.4b)
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The homing conditions in (3.4) can be converted into a single condition:

σM = 0. (3.5)

That is, satisfying the condition in (3.5) guarantees the missile to be on the collision path

against the target.

The impact time constraint is achieved if the actual remaining time-to-go tgo is equal

to the desired time-to-go tdgo, which is expressed as

tgo = tdgo (3.6)

where the desired time-to-go tdgo is defined as tdgo = td−t. Unlike tdgo whose value is explicitly

determined, the actual time-to-go tgo is difficult to be calculated accurately under general

engagement situations. However, on the collision path satisfying (3.5), the time-to-go is

certainly determined as

tgo

∣∣∣∣
σM=0

=
R

VM
(3.7)

since the missile flies straight to the target. Then, from (3.6) and (3.7), a condition for

satisfying the desired impact time on the collision path can be formulated as

R =Rd

,VM t
d
go. (3.8)

That is, if the missile on the collision path approaches the target with satisfying (3.8), the

impact time constraint in (3.6) is achieved. Therefore, satisfaction of both conditions in

(3.5) and (3.8) guarantees the interception of the target at the desired impact time.

To consider the FOV limits in the guidance problem, the look angle between the LOS

and missile heading vector needs to be limited because it almost determines the seeker look
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angle. Particularly when the angle-of-attack of the missile is small enough to be neglected,

the seeker look angle becomes approximately equal to the look angle σM . Therefore, in

order to handle the FOV limits, the limitation of the missile look angle is considered as

follows:

|σM | ≤ σmax
M ≤ π/2 (3.9)

where σmax
M is the acceptable maximum value of the missile look angle. In this problem,

it is assumed that the condition in (3.9) represents the FOV limits from neglecting the

angle-of-attack dynamics.

As a result, fulfilling the proposed kinematic conditions in (3.5), (3.8) and (3.9) guar-

antees that the missile intercepts the target at the desired impact time without violating

the FOV limits. In the next subsection 3.2.2, the guidance law is designed to satisfy these

kinematic conditions.

3.2.2 Guidance law design

As explained in the previous subsection 3.2.1, the design objective for deriving the guid-

ance law is the fulfillment of two equality conditions in (3.5) and (3.8) under keeping the

inequality condition in (3.9). In order to satisfy the proposed kinematic conditions, error

variables can be defined intuitively as

e1 = Rd −R

= VM t
d
go −R (3.10a)

e2 = σM . (3.10b)

By regulating both the error variables in (3.10), the homing and impact time conditions in

(3.5) and (3.8) respectively can be satisfied. The fulfillment of the inequality condition in

(3.9) will be confirmed in section 3.3.
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For the regulation of both variables, however, only the single command aM is used

as a control input, which implies that the system can be underactuated if the two error

dynamics subject to the single control input are decoupled. To analyze this problem, let us

take the time derivative of the error variables in (3.10) as follows:

ė1 = −VM + VM cosσM (3.11a)

ė2 = −λ̇+
aM
VM

. (3.11b)

where d
dt

(
tdgo
)

= −1 is used to obtain (3.11a). It can be observed that the error dynamics

in (3.11) are in strict-feedback form. Furthermore, the origin of (e1, e2) can be an equilib-

rium point because e2 = 0 allows ė1 = 0. Applying the backstepping control technique,

accordingly, makes it possible to regulate both e1 and e2 by stabilizing e1.

For the application of the backstepping control, let us define new error variables as

z1 = VM t
d
go −R (3.12a)

z2 = σM − σdM (3.12b)

where σdM is the desired look angle that serves as a virtual control input for achieving the

convergence of z1. Taking the time derivative of the proposed error variables in (3.12) leads

to

ż1 = −VM + VM cosσM (3.13a)

ż2 = −λ̇− σ̇dM +
aM
VM

. (3.13b)

Based on the dynamics in (3.13), the virtual control input and guidance law for the stability
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of z1 and z2 at the origin can be proposed as follows.

σdM = cos−1 (1− k1sgmf(z1)) (3.14a)

aM =aeqM + aconM (3.14b)

where

aeqM =VM

(
λ̇+ σ̇dM

)
(3.15a)

aconM =− k2VMsgn(z2), (3.15b)

and the sigmoid function sgmf(·) is chosen as

sgmf(x) =

 − 1
2φ3
x3 + 3

2φ
x if |x| ≤ φ

sgn(x) else
. (3.16)

The controller gains k1, k2 and parameter φ are selected as positive constants. Here, it can

be easily shown that the sigmoid function in (3.16) is continuously differentiable and has

boundedness properties such that

|sgmf(x)| ≤ 1 (3.17a)∣∣∣∣ ddx (sgmf(x))

∣∣∣∣ ≤ 3

2φ
. (3.17b)

These properties are used to analyze the guidance law in section 3.3. The signum function

sgn(·) in (3.15b) and (3.16) is defined as

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(3.18)
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In this problem, it is assumed that the relative range R, LOS angle λ, LOS rate λ̇ and

look angle σM are available by using a gimbal seeker and inertial navigation system (INS).

Based on these measurements, the time derivative of the desired look angle σ̇dM in (3.15a)

can be calculated as

σ̇dM =
d

dt

(
cos−1 (1− k1sgmf(z1))

)
=

k1
sinσdM

(−VM + VM cosσM)
d

dz1
sgmf(z1)

=
k1

sinσdM
(−VM + VM cosσM)

(
− 3

2φ3
z21 +

3

2φ

)
(3.19)

which is a function of R and σM from the definitions of z1 and σdM in (3.12a) and (3.14a)

respectively. Therefore, the guidance command proposed in (3.14) and (3.15) consists of

measurable state variables.

Also, note that the desired look angle command in (3.14a) involves the arc cosine func-

tion cos−1(·) whose domain for yielding a real value is [−1, 1]. Hence, it is necessary to

analyze whether its argument (1− k1sgmf(z1)) in (3.14a) belongs to [−1, 1]. The analysis

is included in section 3.3.

Now, the closed-loop dynamics can be obtained by substituting (3.14) into (3.13):

ż1 =− k1VMsgmf(z1) + VM
cosσM − cosσdM

σM − σdM
z2 (3.20a)

ż2 =− k2sgn(z2). (3.20b)

As explained earlier, the regulation of the variables z1 and z2 guarantees the interception

of the target at the desired impact time. Accordingly, the stability of (z1, z2) at the origin

is analyzed based on the closed-loop dynamics of (3.20) in section 3.3.
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3.3 ANALYSIS OF THE PROPOSED GUIDANCE LAW

In this section, it is verified that the desired constraints are satisfied under the law. Prior

to the performance analysis of the proposed law, the guidance command is investigated to

examine the singularity problem in subsection 3.3.1. Based on the Lyapunov theory, the

stability of the overall closed-loop dynamics is analyzed in subsection 3.3.2. To confirm

whether the proposed law prevents the violation of the FOV limits, the look angle dynam-

ics is also investigated in subsection 3.3.3. Besides, the achievable domain of the desired

impact time under the proposed law is estimated in subsection 3.3.4 to be helpful in real

applications.

3.3.1 Guidance command analysis

For the implementation of the law, the proposed guidance command should not include

any non-computable term such as singular or imaginary. In this subsection, thus, a few

suspected terms in the developed command are checked.

Since the desired look angle command σdM in (3.14a) involves cos−1(·), the term (1 −

k1sgmf(z1)) should be in [−1, 1], which is satisfied by the following conditions:

0 ≤ k1 ≤ 2 (3.21)

0 ≤ z1(t). (3.22)

Because the controller gain k1 is chosen by the user, the condition in (3.21) can be achieved

readily. Now, let us analyze the satisfaction of the condition in (3.22). Let z1,f be the

maximum acceptable error of z1, obtained by (3.12a) with the maximum allowable miss

distance, and tz2=0 be the reaching time of z2(t) which means the minimum time achieving

z2(t) = 0 ∀t ≥ tz2=0.

Theorem 3.1. For all initial conditions satisfying |z1(0)− z1,f | /(2VM) > tz2=0, the error

variable z1(t) in (3.20) is always larger than or equal to zero, i.e., z1(t) ≥ 0 ∀t ≥ 0.
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Proof. From (3.13a), the reaching time of z1(t), tz1=z1,f which means the minimum time

achieving |z1(t)| ≤ z1,f , has the following relationship.

tz1=z1,f ≥
|z1(0)− z1,f |∣∣∣∣max

σM
ż1

∣∣∣∣ =
|z1(0)− z1,f |

2VM
> tz2=0. (3.23)

The result of (3.23) implies that z1(t) = 0 does not occur before z2(t) = 0, which also

signifies that z1(t) = 0 always involves z2(t) = 0. Hence, the time derivative of z1 when

z1(t) = 0 is obtained as

ż1(t)
∣∣∣
z1=0

= ż1(t)
∣∣∣
z1=0,z2=0

= 0. (3.24)

Therefore, z1(t) cannot decrease below zero, which means z1(t) ≥ 0 for all t ≥ 0.

From the closed-loop dynamics of z2(t) in (3.20b), the reaching time of z2(t), denoted

as tz2=0 in Theorem 3.1, can be calculated as tz2=0 = |z2(0)|/k2. The condition in (3.22),

therefore, can be accomplished by satisfying the initial condition of

|z1(0)− z1,f |
2VM

>
|z2(0)|
k2

. (3.25)

As a result, the arc cosine term can be implemented without any non-computability issue.

Besides, the equivalent component of the command in (3.15) contains the term σ̇dM

expressed as

σ̇dM =
k1ż1

sinσdM

d

dz1
sgmf(z1), (3.26)

which necessitates to check the possibility of sinσdM = 0. As it will be described later in

section 3.3.3, the controller gain k1 is chosen to satisfy

0 ≤ k1 < 1− cosσmax
M . (3.27)
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Thus, from the definition of σdM in (3.14a), sinσdM = 0 implies σdM = 0 which involves z1 = 0.

In Theorem 3.1, it has already been proven that z1(t) = 0 involves z2(t)
(
= σM − σdM

)
= 0.

Therefore, σ̇dM when sin σdM = 0 is calculated as

lim
sinσdM→0

˙σdM = lim
σM→0

k1VM (cosσM − 1)

sinσM

d

dz1
sgmf(z1) = 0, (3.28)

which shows sinσdM = 0 does not cause the divergence of σ̇dM . Furthermore, it has already

been confirmed that the derivative of sigmoid function, d(sgmf(z1))/dz1, is bounded as

shown in (3.17). Therefore, there exists no singularity problem in the term σ̇dM . In the

proposed guidance law, to conclude, there is no non-computable term that could deteriorate

the guidance performance drastically.

3.3.2 Stability analysis

In order to verify the stability of the closed-loop dynamics in (3.20), let us consider the

Lyapunov candidate function as

V =
1

2
z21 +

β2

2
z22 . (3.29)

where β is the positive constant which acts as a scaling factor. Now, the stability of the

Lyapunov candidate function in (3.29) can be analyzed as follows.

Theorem 3.2. Consider the error dynamics (3.20) and the Lyapunov candidate function

V in (3.29). Given any η > 0, for all initial conditions satisfying V (0) ≤ η, there exists a

controller gain k2 such that V (t) ≤ η ∀t ≥ 0 and the error signals z1 and z2 can be made

to converge to zero eventually.

Proof. For the proof, let us consider the compact set A := {(z1, z2) : z21 + β2z22 ≤ 2η} such

as [49]. Then, |z1| and |z2| have maximum values, say zmax
1 and zmax

2 respectively on A.
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Besides, taking the time derivative to the defined candidate function in (3.29) leads to

V̇ = z1ż1 + β2z2ż2. (3.30)

Substituting the closed-loop dynamics (3.20) into (3.30) gives

V̇ = −k1VMsgmf(z1)z1 − β2k2 |z2|+ VM
cosσM − cosσdM

σM − σdM
z1z2. (3.31)

In (3.31), the term (cosσM − cosσdM)/(σM − σdM) satisfies that∣∣∣∣cosσM − cosσdM
σM − σdM

∣∣∣∣ =

∣∣∣∣(cos(σM − σdM)− 1) cosσdM − sin(σM − σdM) sinσdM
σM − σdM

∣∣∣∣
≤

√{(
cos(σM − σdM)− 1

)2
+ sin2(σM − σdM)

}{
cos2 σdM + sin2 σdM

}
∣∣σM − σdM ∣∣

=

∣∣∣2 sin
(
σM−σdM

2

)∣∣∣∣∣σM − σdM ∣∣ ≤ 1. (3.32)

Substituting the result of (3.32) and the property of |zi| ≤ zmax
i ∀i ∈ {1, 2} on V (z1, z2) = η

into (3.31) yields

V̇ ≤ −k1VMsgmf(z1)z1 − β2|z2|
(
k2 −

VMz
max
1

β2

)
(3.33)

Since the term sgmf(z1)z1 is a positive definite function of the variable z1, it follows that

V̇ < 0 ∀ (z1, z2) ∈ A− {0} (3.34)

if the gain k2 satisfies k2 > VMz
max
1 /β2. Here, because zmax

1 is the maximum value of |z1|

on A, we have zmax
1 ≤

√
2η. Therefore, let us fix k2 so as to satisfy k2 > VM

√
2η/β2 for

achieving (3.34). Then, V ≤ η is an invariant set, i.e., V (t) ≤ η ∀t > 0 when V (t = 0) ≤ η.

Therefore, the inequality (3.34) holds for all V (0) ≤ η and all t > 0. Furthermore, (3.34)
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indicates that the error variables z1 and z2 will approach to zero as time goes on. As a

result, it can be said that the error signals z1 and z2 can also be made to converge to zero

eventually.

Theorem 3.2 signifies that (z1, z2) in (3.20) converges to the origin. For the impact

time control, however, the convergence of z1 and z2 in a finite time is required since flight

time is limited. Thus, the following two corollaries are supplemented in order to verify the

convergence in a finite time.

Corollary 3.1. The error variable z2(t) converges to zero at finite time tz2=0 as

tz2=0 =
|z2(0)|
k2

. (3.35)

Proof. From Theorem 3.2, we know that z2(t) converges to zero eventually. Before the

convergence, from (3.20b), we have

d

dt

(
z22
)

= −2k2

√
z22 (3.36)

Integrating (3.36) over the interval 0 ≤ τ ≤ t gives the following [43]:

|z2(t)| = −k2t+ |z2(0)| , (3.37)

which implies that z2(t) goes to zero at finite time tz2=0 = |z2(0)| /k2.

Corollary 3.2. For any real number ε ∈ (0, φ), the error variable z1(t) converges within

[−ε, ε] at a finite time instant tz1=ε bounded as

tz1=ε ≤
|z2(0)|
k2

+
VM td −R(0)− φ

k1VM
+

φ

3k1VM
log

(
3φ2 − ε2

2ε2

)
. (3.38)

Proof. From Theorem 3.2, the error variable z1(t) is proven to satisfy lim
t→∞

z1(t) = 0, which

means the following [50]: For any real number ε > 0, there exists a finite time instant tz1=ε
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such that |z1(t)| < ε ∀t > tz1=ε. Also, tz1=ε can be selected to satisfy |z1(tz1=ε)| = ε by

intermediate value theorem since z1(t) is continuous as shown in (3.12a) and (3.13a).

Then, in order to investigate the finite time tz1=ε, let us divide the time interval [0, tz1=ε]

with respect to the properties of z1 and z2 as follows:
z1 > φ, z2 6= 0 for 0 ≤ t < tz2=0 (3.39a)

z1 > φ, z2 = 0 for tz2=0 ≤ t < tz1=φ (3.39b)

z1 ≤ φ, z2 = 0 for tz1=φ ≤ t ≤ tz1=z1,f (3.39c)

where tz2=0 is the reaching time of z2 defined in Corollary 3.1 and tz1=φ is the time when

z1 = φ. Since z1 is monotone decreasing, tz1=φ is unique. The positive constant φ is the

controller parameter in the sigmoid function of (16) such that z1(t) = φ is the moment

when the sigmoid function is changed from the signum function to the polynomial form.

First, [0, tz2=0], the time interval for the convergence of z2, is obtained as (3.35) in

Corollary 2.1. Next, the interval [tz2=0, tz1=φ] has the following relationship:

tz1=φ − tz2=0 =

∫ tz1=φ

tz2=0

dz1
ż1

=
z1(tz1=φ)− z1(tz2=0)

−k1VM

≤ z1(0)− φ
k1VM

=
VM td −R(0)− φ

k1VM
. (3.40)

Finally, from (3.16), z1 dynamics in the interval [tz1=φ, tz1=ε] is written as

ż1 =
k1VM
2φ3

z1
(
z21 − 3φ2

)
, (3.41)

and the boundary conditions are given by

z1(tz1=φ) = φ, z1(tz1=ε) = ε (3.42)

where non-negativity of z1(t) proved by Theorem 3.1 is used. From (3.41) and (3.42), the
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solution of z1(t) in the interval [tz1=φ, tz1=ε] is expressed as

z1(t) =

√
3φ√

1 + 2 exp
{

3k1VM
φ

(t− tz1=φ)
} , (3.43)

and from (3.43), the interval [tz1=φ, tz1=ε] is obtained as

tz1=ε − tz1=φ =
φ

3k1VM
log

(
3φ2 − ε2

2ε2

)
. (3.44)

To put together (3.35), (3.40) and (3.44), the reaching time of z1, which is equivalent to

the convergence time within [−ε, ε], has the following relationship:

tz1=ε = tz2=0 + (tz1=φ − tz2=0) + (tz1=ε − tz1=φ)

≤ |z2(0)|
k2

+
VM td −R(0)− φ

k1VM
+

φ

3k1VM
log

(
3φ2 − ε2

2ε2

)
. (3.45)

which proves Corollary 3.2.

Corollary 3.1 and 3.2 verify that the proposed guidance law in (3.14) achieves |z1| ≤ ε

and z2 = 0 in a finite time for any small value of ε > 0. Therefore, the homing and impact

time conditions in (3.5) and (3.8) can be satisfied under the guidance law in (3.14).

3.3.3 Look-angle analysis

In this subsection, it is confirmed that the look-angle under the proposed law does not

exceed the prespecified value by checking whether the FOV limits condition in (3.9) is

satisfied. In order to verify the condition in (3.9), let us analyze the dynamics of the missile

look angle σM .

Theorem 3.3. Consider the closed-loop dynamics (3.20b) and the controller gain k1 sat-
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isfying

0 ≤ k1 ≤ 1− cosσmax
M − ε1 (3.46)

where ε1 is the positive constant smaller than 1 − cosσmax
M . For all initial conditions sat-

isfying |σM(0)| ≤ σmax
M , there exists a controller gain k2 such that |σM(t)| ≤ σmax

M for all

t ≥ 0.

Proof. Let us consider the compact set B := {σM : |σM | ≤ σmax
M }. Then, in the set B, the

following always holds:

|σM | ≤ σmax
M . (3.47)

Also, because z1 is non-negative as proven in Theorem 3.1 and σdM is defined as (3.14a), we

have

cosσdM =1− k1sgmf(z1) ≤ 1 (3.48a)

cosσdM =1− k1sgmf(z1) ≥ 1− k1 (3.48b)

where the property 0 ≤ sgmf(z1) ≤ 1 for z1 ≥ 0 shown in (3.16) and (3.17a) are used.

Then, from (3.46) and (3.48), cos σdM satisfies

cosσmax
M + ε1 ≤ cosσdM ≤ 1, (3.49)

which leads to

cos−1(1) ≤
∣∣σdM ∣∣ ≤ cos−1 (cosσmax

M + ε1) . (3.50)
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Since ε1 is chosen to satisfy 0 < ε1 + cosσmax
M < 1 as described after (3.46), we obtain

0 ≤
∣∣σdM ∣∣ ≤ cos−1 (cosσmax

M + ε1)

< cos−1 (cosσmax
M )

=σmax
M . (3.51)

Now, for the proof of Theorem 3.3, consider the square function of the look angle as

VσM =
1

2
σ2
M . (3.52)

From (3.15), taking the time derivative to the above VσM in (3.52) leads to

V̇σM = σM

(
aM
VM
− λ̇
)

= σM
(
−k2sgn(z2) + σ̇dM

)
(3.53)

From (3.26), the term σ̇dM in (3.53) is expressed as

σ̇dM = −k1VM
1− cosσM

sinσdM

d

dz1
sgmf(z1) (3.54)

Here, the term (1− cosσM) / sinσdM is continuous for all σM and σdM satisfying (3.47) and

(3.51) because the result in (3.28) implies the continuity at sinσdM = 0. Therefore, from

extreme value theorem, the term (1 − cosσM)/ sinσdM has minimum and maximum values

in the set B. In addition, the term d(sgmf(z1))/dz1 is always bounded as shown in (3.17).

In summary, there exists a positive constant σ̇d,max
M that satisfies

∣∣σ̇dM ∣∣ ≤ σ̇d,max
M (3.55)
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Now, on σM = σmax
M , V̇σM in (3.53) has the following relationship:

V̇σM

∣∣∣∣
σM=σmax

M

≤ −σmax
M

{
k2sgn(σmax

M − σdM)− σ̇d,max
M

}
(3.56)

The selection of the gain k2 satisfying k2 > σ̇d,max
M yields

V̇σM

∣∣∣∣
σM=σmax

M

≤ 0. (3.57)

Likewise, on σM = −σmax
M , we obtain

V̇σM

∣∣∣∣
σM=−σmax

M

≤ −σmax
M

{
k2sgn(σmax

M + σdM)− σ̇d,max
M

}
≤ 0. (3.58)

As a result, |σM(t)| ≤ σmax
M is an invariant set under the proposed law, which means

|σM(t)| ≤ σmax
M ∀ t ≥ 0.

From Theorem 3.3, it can be verified that the look angle σM achieves |σM(t)| ≤ σmax
M

for the initial condition satisfying |σM(0)| ≤ σmax
M under the choice of k1 such as (3.46) and

k2 satisfying k2 > σ̇d,max
M . This result implies that the condition for FOV limits in (3.9)

can be fulfilled. To conclude, the proposed guidance law can prevent the violation of the

prespecified FOV limits during the homing.

3.3.4 Discussion about achievable impact time

In common missile guidance problems in which the interceptor’s longitudinal acceleration

is unavailable, the achievable impact time is physically restrictive. Particularly, because

of the consideration of the FOV limits, the restriction becomes severe in this problem

compared with other approaches that do not take into account the FOV limits. In this

regard, the discussion about achievable impact time under the proposed law is helpful for
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real applications.

In virtue of the look angle limits, the closing velocity is also confined under the proposed

law, so a simple necessary condition for the achievable desired impact time can be calculated

as follows:

R(0)

VM
=

R(0)

|VR|max

≤ td ≤
R(0)

|VR|min

=
R(0)

VM cosσmax
M

(3.59)

Namely, in order to fulfill the homing and impact time control simultaneously, the desired

impact time should be selected to satisfy the condition in (3.59). However, the satisfaction

of (3.59) does not imply the success of the tasks. This subsection investigates the sufficient

condition, i.e., the minimum and maximum achievable desired impact times, by analyzing

the closed-loop dynamics.

3.3.4.1 minimum achievable impact time

Since the longitudinal acceleration is unavailable in the missile model of this chapter, as

commonly assumed in many literature [12–37], the desired time-to-go should be greater

than or equal to the remaining time-to-go on the collision course, which can be expressed

mathematically as

tdgo = (td − t) ≥
R

VM
. (3.60)

The expression in (3.60) is, in fact, equivalent to the condition of z1(t) ≥ 0 by definition

of z1, and Theorem 3.1 in the subsection 3.3.1 has already given the sufficient condition

for achieving z1(t) ≥ 0: the satisfaction of initial condition in (3.25). In other words, the

condition in (3.25) is the sufficient condition for obeying (3.60). The expression in (3.25)

can be rewritten as

td >
R(0) + z1,f

VM
+

2 |z2(0)|
k2

, (3.61)
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which means that the proposed guidance law can achieve any desired impact time greater

than the right-hand side of (3.61) and smaller than the maximum achievable impact time

to be analyzed in the next subsection.

3.3.4.2 maximum achievable impact time

In the process of analyzing the minimum achievable impact time in the subsection 3.3.4.1,

the property that z1 should converge more slowly than z2 in order to satisfy (3.60) was

utilized. For analyzing the maximum achievable impact time, the similar concept is also

used. As explained in the section 3.2.1, the convergence of z1 and z2 in a finite time enables

the missile to intercept the target at the desired impact time. In other words, the conver-

gence of z1 and z2 before the desired impact time suffices. From Corollary 3.1, it is known

that the convergence time of z2 can be decreased deliberately by adjusting the gain k2. On

the contrary, it is difficult to freely reduce the convergence time of z1 because Corollary

3.2 shows that tz1=ε in (3.38) is determined dominantly by the gain k1 whose maximum

bounds are restricted as given by (3.46). Therefore, the convergence time of z1 is focused

to consider the maximum achievable impact time.

In the section 3.3.1, z1,f is defined as the maximum acceptable error of z1, which is

obtained by (3.12a) with the maximum allowable miss distance. That is, substituting ε =

z1,f in (3.38), the maximum bounds of the convergence time for achieving |z1(t)| ≤ z1,f can

be calculated as follows:

tz1=z1,f ≤
|z2(0)|
k2

+
VM td −R(0)− φ

k1VM
+

φ

3k1VM
log

(
3φ2 − z21,f

2z21,f

)
(3.62)

where tz1=z1,f is the convergence time for |z1(t)| ≤ z1,f . Then, the sufficient condition for

preventing the desired impact time from exceeding the maximum achievable impact time
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is given by

tz1=z1,f ≤
|z2(0)|
k2

+
VM td −R(0)− φ

k1VM
+

φ

3k1VM
log

(
3φ2 − z21,f

2z21,f

)
≤td, (3.63)

which is rewritten as

td ≤
R(0) + φ

VM(1− k1)
− k1|z2(0)|
k2(1− k1)

− φ

3VM(1− k1)
log

(
3φ2 − z21,f

2z21,f

)
. (3.64)

The result in (3.64) implies that the desired impact time less than or equal to the right-hand

side can be achievable if the condition in (3.61) is also satisfied. In conclusion, it can be

said that the desired impact time satisfying both (3.61) and (3.64) is sufficiently achieved

under the proposed law.

Remark 3.1. For a given desired impact time td, if the controller gain k1 satisfies (3.64),

the impact time constraint can be achieved sufficiently. That is, from (3.64), the sufficient

condition about k1 for achieving a given desired impact time can be deduced. If k1 is selected

as k1 = 1− cosσmax
M − ε1, the sufficient condition for satisfying (56) is given by

cosσmax
M + ε1 ≤

R(0) + φ

VM td
− |z2(0)|

k2td
− φ

3VM td
log

(
3φ2 − z21,f

2z21,f

)
, (3.65)

which is rewritten as

σmax
M ≥ cos−1

(
R(0) + φ

VM td
− |z2(0)|

k2td
− φ

3VM td
log

(
3φ2 − z21,f

2z21,f

)
− ε1

)
. (3.66)

This result implies that the given desired impact time td can be achieved under the proposed

law if the acceptable maximum value of the missile look angle satisfies (3.66).
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3.4 SIMULATION RESULTS

In this section, the performance of the proposed guidance law is demonstrated through three

subsections involving numerical simulations. Subsection 3.4.1 evaluates the validity of the

proposed law in various engagement scenarios against a stationary target. Subsection 3.4.2

compares the proposed law with other guidance laws that take into account the constraint

on impact time. To examine the performance in realistic applications, subsection 3.4.3

carries out a salvo attack simulation with a realistic interceptor model.

When the proposed law is applied, the signum function sgn(·) in the command may

produce undesirable chattering due to the discontinuity. To alleviate this problem and

generate acceptable guidance command, the signum function in the control component in

(3.15b) is approximated by the continuous sigmoid function used in [10] as follows:

sgmf2(x) = 2

(
1

1 + exp−ax
− 1

2

)
, a > 0. (3.67)

Such an approximation enables the convergence with slight deviation from the ideal slid-

ing mode. As verified in [44], the deviation is inversely proportional to the parameter a

approximately, and a is selected as 10 in this work.

The acceleration command of the missile is confined within ±10 g where g represents

Table 3.1: Simulation setting

Parameters Values
Initial missile position (xM(0), yM(0)) (0, 0) km
Stationary target position (xT (0), yT (0)) (10, 0) km
Initial missile flight path angle γM(0) 30 deg
Missile speed VM 250 m/s
Missile acceleration limits |aM |max 10 g†

look angle limits σmax
M 50, 60◦

Controller gains
k1 = 1− cosσmax

M − 10−3, k2 = 1
φ = 200

† g denotes the acceleration of gravity, i.e., g = 9.81 m/s2.
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the gravitational acceleration and the simulations are terminated when the relative range

is less than or equal to 0.1 m in all the engagements. The controller gains used in the

simulations are listed in TABLE. 3.1.

3.4.1 Performance analysis of the proposed law

This subsection demonstrates the performance of the proposed guidance law by conducting

numerical simulations which involve various engagement scenarios. With various desired

impact times and two different look angle limitations, the detailed parameter values used

in simulations are listed in TABLE. 3.1. In all the simulations, the engagement terminates

when the relative range R is less than 0.1 m.

Figure 3.2 shows the simulations results for three different impact time constraints

with look angle limitation of σmax
M = 50◦. The results for the desired impact times of

tmin
d (= 40.68 s), 50 s and tmax

d (= 54.06 s) are illustrated by the triangle-patterned-line,

inverted triangle-patterned-line and square-patterned-line respectively. The minimum and

maximum achievable impact times of tmin
d and tmax

d are calculated to satisfy (3.61) and

(3.64) where z1,f , the maximum acceptable error of z1, is selected as z1,f = 0.01.

As illustrated by Fig. 3.2a, the proposed guidance law achieves the interception of the

stationary target for all three cases. The terminal impact time errors in all three cases

satisfy |tf − td| ≤ 1× 10−3 sec.

Figure 3.2b shows the convergence of z1 and z2 which guarantees the accomplishment

of the interception of the target at the desired impact time as verified in section 3.2.2.

Especially, the convergence of z1 and z2 is achieved when td = tmin
d and td = tmax

d , which

gives validity to the analysis of achievable impact time investigated in section 3.3.4.

As expected, the upper plot of figure 3.2a shows that the missile makes a longer detour

as the desired impact time increases. This results in the increase of the look angle, but the

look angle does not exceed the prescribed value as proved in the section 3.3.3 and confirmed

in fig. 3.2c.

Figure 3.3 provides the results for four different values of impact time constraints with
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the look angle limitation of σmax
M = 60◦. Likewise, the results for the impact time constraints

of tmin
d (= 41.03 s), 50 s, 60 s and tmax

d (= 68.93 s) are denoted by the triangle, inverted

triangle, square and circle-patterned-line respectively. Similar to the results in Fig. 3.2, the

minimum and maximum achievable impact times tmin
d and tmax

d are determined to satisfy the

conditions (3.61) and (3.64). We can see that the maximum achievable impact time tmax
d of

this case when σmax
M = 60◦ is increased compared with tmax

d of the case when σmax
M = 50◦. It is

physically obvious because the limitation of detour curvature is alleviated as the maximum

possible look angle increases. Mathematically, the increase of tmax
d results from following

the increased σmax
M which determines the right-hand side of (3.64).

Figure 3.3a demonstrates that the proposed guidance law fulfills the interception of

the target for all four cases. Furthermore, the resulting impact time errors in all the cases

satisfy |tf | ≤ 1 × 10−3. That is, it can be said that the proposed law achieves the impact

time control for every considered case.

Similar to Fig. 3.2b, figure 3.3b shows the convergence of z1 and z2, which verifies

the fulfillment of the impact time control theoretically. Furthermore, the discussion about

minimum and maximum achievable domain of impact time , given in 3.3.4, is demonstrated

by the results about the convergence of z1 and z2 when td = tmin
d and td = tmax

d .

The look angle histories in Fig. 3.3c also show that the proposed law prevents the missile

from violating the pre-set FOV limit. We can observe that the look angle does not exceed

the prespecified value of 60◦ for every considered case. This property about look angle

restriction is shown noticeably compared with other existing impact time control guidance

law, which will be given by next subsection 3.4.2.
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Figure 3.2: Simulation results for different impact time constraints with look angle limi-
tation of σmax

M = 50◦: triangle-patterned-line, inverted triangle-patterned-line and square-
patterned-line represent the results for td = tmin

d (= 40.68 s), 50 s and tmax
d (= 54.06 s)

respectively.
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Figure 3.3: Simulation results for different impact time constraints with look angle lim-
itation of σmax

M = 60◦: triangle-patterned-line, inverted triangle-patterned-line, square-
patterned-line and circle-patterned-line represent the results for td = tmin

d (= 41.03 s), 50 s,
60 s and tmax

d (= 68.93 s) respectively.
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3.4.2 Performance comparison with other guidance laws

For an effective analysis of the proposed guidance law, the performance is compared with

other existing laws that aim to control impact time against a stationary target called Lya-

ITCG (lyapunov-based impact time control guidance law) and PN-ITCG (proportional

navigation-based impact time control guidance law) represented in [25] and [30] respectively.

As an engagement scenario, the same initial condition considered in 3.4.1 are used with the

desired impact time of 60 s. The desired constraint of look angle is fixed as σmax
M = 60◦.

Lya-ITCG can guarantee a wide range of the capture region with an acceptable com-

mand owing to its exact nonlinear formulation, so this law is suitable for engagements

requiring large heading angle errors. PN-ITCG is appropriate when maneuverable energy

of the missile is restricted because it is designed to minimize the guidance effort based

on the optimal control theory. However, when the missile is equipped with the seeker with

reduced FOV, these two laws have difficulty fulfilling the homing since the constraint about

reduced FOV is not considered. In particular, the difficulty becomes severe when an engage-

ment requires a large detour to satisfy the desired impact time constraint. This subsection

illustrates such an engagement in fig. 3.4.

Figure 3.4 shows the simulation results for td = 60 s under three different guidance laws.

The results under Lya-ITCG, PN-ITCG and proposed law are illustrated by the triangle,

inverted triangle and square-patterned-line respectively. As shown in Fig. 3.4a, all the three

guidance laws achieve the interception of the stationary target. The terminal impact time

errors in all three cases satisfy |tf − td| ≤ 1× 10−3 sec.

In order to fulfill the impact time control, all three laws let the missile make a detour,

which results in the increase of the look angle in the initial phase as illustrated in 3.4b.

Particularly, the look angles under Lya-ITCG and PN-ITCG increase to about 119◦ and 78◦

respectively exceeding σmax
M = 60◦, which may cause the missile seeker to lose the target.

In comparison, it can be seen that the look angle under the proposed law does not exceed

the prescribed value until the interception although its magnitude approaches maximum
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limit. Hence, it can be confirmed that the proposed law can prevent the violation of the

FOV limits.

Figure 3.4c represents the guidance commands under three guidance laws. Owing to

its optimality of PN component, PN-ITCG generates the acceleration command of modest

amplitude during the entire homing. On the contrary, Lya-ITCG and the proposed law

generate a large command in the initial phase due to requiring the convergence of error.

Furthermore, the proposed law generates a large command once more in the middle phase.

It is related with earlier convergence of σM = 0 than other laws.
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Figure 3.4: Simulation results for impact time constraint of 60 s under different guid-
ance laws: triangle-patterned-line, inverted triangle-patterned-line and square-patterned-
line represent the results of Lya-ITCG, PN-ITCG and proposed law respectively.
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3.4.3 Salvo attack in a realistic engagement

Although the proposed guidance law is derived with the assumption of constant missile

speed, real implementations require the consideration of time-varying speed because of

aerodynamic and gravitational effects. Therefore, it is necessary to check the achievement

of the desired duties such as homing and impact time control under the proposed law

in more realistic settings. To confirm the performance of the law more unquestionably,

this subsection conducts the salvo attack simulation that takes into account the realistic

interceptor model first introduced in [51] and utilized in [26].

Considering the thrust, aerodynamics and gravitation, the missile speed varies with

V̇M =
T −D
m

− g sin γM (3.68)

and the dynamics of flight path angle in (3.3) is replaced by

γ̇M =
aM − g cos γM

VM
(3.69)

where T is the longitudinal thrust, D the aerodynamic drag force, m the missile mass, and

g the gravitational acceleration respectively. To model the boost phase with a fuel-injection

Table 3.2: Simulation setting for salvo attack

M1 M2 M3 M4
Initial position (xM(0), yM(0)) (0, 0) km (−2, 1) km (2,−3) km (19,−2) km
Initial flight path angle γM(0) 30◦ 20◦ 70◦ 150◦

Initial speed VM(0) 250 m/s 270 m/s 280 m/s 240 m/s
Acceleration limits |aM |max 10 g
Desired impact time td 50 sec
Look angle limits σmax

M 60◦
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at the initial stage, the thrust and mass are considered as

T =


33000 0 ≤ t ≤ 1.5

7500 1.5 ≤ t ≤ 8.5

0 8.5 ≤ t

(3.70)

m =


135− 14.53t 0 ≤ t ≤ 1.5

113.205− 3.31t 1.5 ≤ t ≤ 8.5

90.035 8.5 ≤ t

. (3.71)

The drag is modeled as

D = CD0QSref +
Kim

2a2M
QSref

(3.72)

where CD0, Ki, Q and Sref denote the zero-lift drag coefficient, induced drag coefficient,

dynamic pressure and reference area respectively. The exact values and expressions of these

parameters and variables are included in [51].

In addition to the velocity model in (3.68)∼(3.72), it is also assumed that the lateral

maneuvering acceleration aM is generated by the aerodynamic lift force as

aM =
L(α, δ)

m
(3.73)

and the rotational motion is given by

α̇ =q − L(α, δ)

mVM
, θ̇ = q

q̇ =
M(α, q, δ)

Iyy
, δ̇ =

δC − δ
τδ

(3.74)

where α, θ, q and δ denote the angle of attack, pitch angle, pitch rate and canard deflection

angle respectively. L(·) and M(·) represent the lift force and pitching moment, and m and
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Iyy are the mass and moment of inertia with respect to the pitch axis. δC and τδ represent

the command of the canard deflection angle and time constant of the actuator dynamics.

As specific expressions for the lift force L(·) and pitch moment M(·), the aerodynamic

model used in [45] and [9] is applied.

Using the realistic model described above, the salvo attack scenario in which four missiles

denoted as M1, M2, M3 and M4 respectively are employed against a single stationary

target located at (10, 0) km is performed. The specific initial values of the missiles are

listed in TABLE. 3.2.

Figure 3.5 provides the simulation results for the salvo attack. The results of M1, M2,

M3 and M4 are represented by the triangle-patterned-line, inverted triangle-patterned-line,

square-patterned-line and circle-patterned-line respectively. First of all, figure 3.5a shows

that all four missiles intercept the stationary target. Furthermore, the terminal impact

times of missiles M1 ∼ 4 are 50.039 s, 49.980 s, 50.041 s and 50.050 s respectively, which

indicates the impact time error is within 5× 10−2 s for every missile.

Due to the consideration of boost phase, we can observe that the speeds of missiles rise

steeply at the initial stage as shown in Fig. 3.5c, and decrease after the fuel injection is

finished because the drag is applied dominantly.

Although this variation of the speed is not involved in the guidance law design, figure

3.5b shows that the proposed law satisfies the constraint of FOV limit for every missile. It

is because the selection of gain k2 with large enough value can allow the missile look angle

not to exceed the prescribed value as shown in (3.56) and (3.58) despite the presence of

uncertainties. In conclusion, the proposed law holds the validity in spite of the presence of

undesigned effects: the variation of the speed in this case.
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Figure 3.5: Simulation results for the salvo attack

70



4
Impact Angle and Time Control Guidance

with Field-of-View Constraint

In this chapter, a guidance law that considers the field-of-view limitation as well as the

terminal impact angle and time constraints is proposed. In order to develop the guidance

law, a desired look angle that satisfies the field-of-view limitation and terminal impact angle

constraint is first designed. Since the desired look angle is shaped to involve an additional

guidance gain that determines the length of the trajectory, the terminal impact time can be

controlled by adjusting the gain. The guidance law is derived so as to stabilize the actual

look angle to the desired look angle based on the sliding mode control method. As a result,

the proposed law in this chapter can intercept the stationary target at the desired impact

angle and time with satisfying the field-of-view constraint. The proposed law is expected

to achieve the accurate performance in real applications owing to its analytic formulation

without using any numerical routine such as off-line optimization or the shooting method.

The effectiveness of the proposed guidance law is demonstrated by numerical simulations.
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Figure 4.1: Two-dimensional engagement geometry for a stationary target

4.1 Problem formulation

This section states engagement dynamics of a missile against a stationary target in order

to set a framework for impact angle and time control guidance. Figure 4.1 shows the

two-dimensional engagement geometry of the missile and target denoted by M and T

respectively in the inertial frame of XIOIYI . In Fig. 4.1, R and λ represent the relative

range and line-of-sight (LOS) angle of the target with respect to the missile. VM , aM , γM

and σM denote the speed, normal acceleration, flight path angle and lead angle of the missile

respectively. Especially, with the assumption that the angle of attack is small enough to

be neglected, σM is approximated as the look angle which represents the included angle

between the LOS and missile heading. This paper focuses on limiting the look angle σM

since it mainly determines the viewing angle of the seeker.

The kinematic equations that governs the engagement are given by

Ṙ =VR (4.1a)

Rλ̇ =Vλ (4.1b)

where VR and Vλ are relative velocity components of the target with respect to the missile.
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VR and Vλ each represent the component along and normal to the LOS respectively as

VR =− VM cosσM (4.2a)

Vλ =− VM sinσM . (4.2b)

To steer the desired direction, the missile generates the maneuvering acceleration aM normal

to the velocity vector. Thus, the equations of the flight path angle is expressed as

γ̇M =
aM
VM

. (4.3)

This paper proposes an impact angle and time control guidance law that prohibits the look

angle within the maximum limit, so the design goals are written as

∃ tf > 0 : R(t) > 0 ∀t ∈ [0, tf ) and R(tf ) = 0 (4.4a)

γM(tf ) = γd (4.4b)

tf = td (4.4c)

|σM(t)| ≤ σmax
M < π/2 ∀t ∈ [0, tf ] (4.4d)

where tf , γd, td and σmax
M mean the final time, desired impact angle, desired impact time

and prescribed maximum look angle. The conditions in (4.4a), (4.4b), (4.4c) and (4.4d) are

related to the homing, impact angle, impact time and field-of-view constraints respectively.

Achieving all these conditions is a difficult problem since only the normal acceleration

is used as guidance command. To deal with this problem, a look angle constrained impact

angle control guidance law that does not consider the impact time constraint is first designed

in section 4.2. This law is extended to an impact angle and time control guidance law based

on the calculation of remaining time-to-go in section 4.3.
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4.2 Impact angle control guidance law with look angle con-

straint

In this section, an impact angle control guidance law with a free impact time is designed as

the groundwork for developing the guidance law that controls both the impact angle and

time. In subsection 4.2.1, a look angle profile that guarantees the interception at the desired

impact angle without violating the look angle constraint is first introduced. An impact angle

control guidance law that tracks the desired look angle profile is then developed using the

lyapunov stability theory in subsection 4.2.2.

4.2.1 Look angle shaping based on nonlinear formulation

Against a stationary target, nullifying the look angle enables the homing of the missile.

In addition, approaching the target over the collision path of the desired way ensures the

fulfillment of impact angle control. Therefore, the error variable for the impact angle control

can be defined as follows:

e1 = λ− γd (4.5)

Regulating the error variable e1 in (4.5) guarantees the interception at the desired impact

angle since the collision path in the desired direction is achieved. Differentiating (4.5) with

respect to the relative range, we have

de1
dR

=
tanσM
R

. (4.6)

Based on (4.6), let the desired profile of the look angle be defined as

σdM = k1sat

(
e1
φ1

)
(4.7)
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where sat(·) is the saturation function such that sat(x) = x if |x| ≤ 1 and sat(x) =sgn(x)

otherwise. Also, k1 and φ1 are guidance parameters and chosen to satisfy the followings:

0 < k1 ≤ σmax
M <

π

2
, 0 < φ1 (4.8)

Note that the magnitude of the desired look angle σdM is limited as
∣∣σdM ∣∣ ≤ k1 ≤ σmax

M .

It makes the designed profile be within the maximum limits. From (4.1a) and (4.2a), fur-

thermore, it is deduced that the relative range is strictly decreasing if the look angle is

within (−π/2, π/2). Hence, after achieving σM = σdM , the homing and FOV constraints in

(4.4a) and (4.4d) can be satisfied. The controller to achieve σM = σdM is designed in next

subsection 4.2.2.

Next, it is verified whether the proposed σdM guarantees the satisfaction of impact angle

constraint. Substituting (4.7) into (4.6) yields

de1
dR

=


tan k1
R

for |e1| > φ1 (4.9a)

1

R
tan

(
k1
φ1

e1

)
for |e1| ≤ φ1 (4.9b)

Solving the equations in (4.9a) and (4.9b), we obtain

e1(R) =


e1(R0) + log

(
R

R0

)tan k1

for |e1| > φ1 (4.10a)

φ1

k1
sin−1

{
sin

(
k1
φ1

e1(R1)

)(
R

R1

)k1/φ1}
for |e1| ≤ φ1 (4.10b)

where R0 and R1 are relative ranges at the beginning of each interval, i.e., R0 = R(t = 0)

and |e1(R1)| = φ1. The solutions in (4.10a) and (4.10b) shows that e1 is strictly decreasing

since R is also strictly decreasing. Furthermore, (4.10b) indicates that e1 goes to zero when

R = 0. As a result, the proposed look angle profile in (4.7) guarantees that the missile

intercepts the target at the designated impact angle without violating the maximum look

angle constraint.
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Note that the desired tasks in (4.4a), (4.4b) and (4.4d) are guaranteed regardless of the

magnitude of φ1 which determines the look angle profile as shown in (4.7). This parameter

φ1 is utilized to achieve the desired impact time in the section 4.3

4.2.2 Design of the guidance law to follow the look angle profile

To substantialize the property of the designed profile σdM , it is necessary to make the

actual look angle σM converge to σdM . In this subsection, the controller that achieves the

convergence is derived based on the sliding mode technique. A sliding surface variable to

track the desired look angle is defined as

S = σM − σdM . (4.11)

Taking the time derivative to (4.11) yields

Ṡ =
aM
VM
− λ̇− σ̇dM . (4.12)

From (4.12), a sliding mode guidance law that stabilizes S at zero is designed as follows:

aM = VM

(
λ̇+ σ̇dM

)
− k2VMsgn(S) (4.13)

where k2 is a positive constant that determines the convergence speed of S. Since the closed

loop dynamics of S under applying the guidance law in (4.13) is given by

Ṡ = −k2sgn (S) , (4.14)

the sliding mode is achieved in a finite time tr as follows [43]:

tr =
|S(0)|
k2

(4.15)
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In order to fulfill the desired tasks, the surface variable S has to converge before the

interception. Therefore, the reaching time tr should be faster than the final time tf , so the

parameter k2 should be chosen to satisfy

k2 ≥
|S(0)|
tf

. (4.16)

Then, the proposed guidance law in (4.13) guarantees the interception at the desired impact

angle since the actual look angle tracks the designed look angle profile in (4.7) before the

interception.

Unlike these terminal constraints of the interception and impact angle, the look angle

constraint is not guaranteed by the convergence of S because it should be satisfied during

the entire homing as shown in (4.4d). To confirm whether the proposed guidance law in

(4.13) achieves the look angle constraint in (4.4d), the magnitude of the look angle σM is

investigated as follows

Theorem 4.1. For all initial conditions satisfying |σM(0)| ≤ σdM , the look angle is bounded

during the entire homing as follows:

|σM(t)| ≤ σmax
M ∀t ∈ [0, tf ]. (4.17)

Proof. Let us consider the compact set B , {σM : |σM | ≤ σmax
M } for the proof. From (4.13),

the dynamics of σM under the proposed guidance law is expressed as

˙σM =
aM
VM
− λ̇

=σ̇dM − k2sgn (S)

=k1
d

de1

{
sat

(
e1
φ1

)}
ė1 − k2sgn (S)

=− k1VM sinσM
R

d

de1

{
sat

(
e1
φ1

)}
− k2sgn (S) . (4.18)
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Then, on σM = σmax
M , taking the time derivative of σM gives

σ̇M

∣∣∣∣
σM=σmax

M

=− k1VM sinσmax
M

R

d

de1

{
sat

(
e1
φ1

)}
− k2sgn

(
σmax
M − σdM

)
. (4.19)

Since d {sat (e1/φ1)} /de1 = 1/φ1 if |e1| ≤ φ1 and d {sat (e1/φ1)} /de1 = 0 otherwise, we

obtain

σ̇M

∣∣∣∣
σM=σmax

M

≤− k2sgn
(
σmax
M − σdM

)
=− k2sgn

(
σmax
M − k1sat

(
e1
φ1

))
≤0 (4.20)

where the property 0 < k1 ≤ σmax
M in (4.8) is used. In a similar way, on σM = −σmax

M , we

have

σ̇M

∣∣∣∣
σM=−σmax

M

=
k1VM sinσmax

M

R

d

de1

{
sat

(
e1
φ1

)}
− k2sgn

(
−σmax

M − σdM
)

≥k2sgn
(
σmax
M + σdM

)
≥0. (4.21)

The results of (4.20) and (4.21) verifies that B is an invariant set, which proves (4.17).

Theorem 4.1 indicates that the look angle is bounded within the prescribed limit during

the entire homing. As a result, the guidance law in (4.13) achieves that the missile intercepts

the target at the desired impact angle without violating the look angle constraint.
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4.3 Impact angle and time control guidance law with look

angle constraint

Note that the desired tasks in (4.4a), (4.4b) and (4.4d) are achieved regardless of the

magnitude of φ1 which determines the look angle profile as shown in (4.7). It means that

the entire trajectory and time-to-go under the developed law can be adjusted as desired

by selecting an appropriate value for φ1. Based on this property, remaining time-to-go

is calculated in subsection 4.3.1, and an impact angle and time control guidance law is

designed using the time-to-go calculation in subsection 4.3.2.

4.3.1 Calculation of time-to-go

In our formulation where the missile flies at a constant speed, the remaining time-to-go at

the current time is calculated as follows:

tgo =
L

VM
=

1

VM

∫ current

final

dL (4.22)

where L is the remaining flight path of the missile. Since the flight path and relative range

vary over time as dL/dt = −VM and dR/dt = −VM cosσM respectively, the time-to-go in

(4.22) is expressed as

tgo =
1

VM

∫ R

Rf=0

secσMdR̃ (4.23)

for R̃ ∈ [0, R]. After the convergence of S, from (4.7) and (4.10), σM in (4.23) is obtained

as

σM(R̃) =

k1 for
∣∣∣e1(R̃)

∣∣∣ > φ1 (4.24a)

sin−1
{
α(R1)R̃

β
}

for
∣∣∣e1(R̃)

∣∣∣ ≤ φ1 (4.24b)
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where

α(R1) = sin

(
k1
φ1

e1(R1)

)
1

Rβ
1

, β =
k1
φ1

(4.25)

and R1 in (4.24) and (4.25) is the relative range at e1(R) = φ1 and calculated as follows

from (4.10a):

R1 = R0 exp

(
φ1 − e1(R0)

tan k1

)
(4.26)

Now, let us calculate the time-to-go by substituting (4.24) into (4.23). First, when |e1(R)| >

φ1, the condition of |e1(R)| > φ1 is equivalent to R > R1 since |e1(R)| is monotone increas-

ing for R from (4.10). Thus, the time-to-go when |e1(R)| > φ1 is rewritten as

tgo(R) =
1

VM

∫ R

R1

secσMdR̃ +
1

VM

∫ R1

Rf

secσMdR̃. (4.27)

Substituting (4.24) into (4.27) yields

tgo(R) =
1

VM

∫ R

R1

sec k1dR̃ +
1

VM

∫ R1

Rf

1√
1− sin2 σM(R̃)

dR̃

=
sec k1
VM

(R−R1) +
1

VM

∫ R1

0

1√
1− α2 (R1) R̃2β

dR̃ (4.28)

The second term in (4.28) is rewritten as

1

VM

∫ R1

0

1√
1− α2 (R1) R̃2β

dR̃ =
R1

2β (sin k1)
1/β VM

∫ R1

0

2β (sin k1)
1/β

R1

√
1− α2 (R1) R̃2β

dR̃ (4.29)
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By using a parameter η defined as η = α2(R1)R̃
2β = sin2 k1

(
R̃/R1

)2β
, we have

1

VM

∫ R1

0

1√
1− α2 (R1) R̃2β

dR̃ =
R1

2β (sin k1)
1/β VM

∫ η(R1)

0

(sin k1)
1/β R̃

R1η
√

1− η
dη

=
R1

2β (sin k1)
1/β VM

∫ η(R1)

0

1

η
√

1− η

(
sin2 k1

R̃2β

R2β
1

) 1
2β

dη

=
R1

2β (sin k1)
1/β VM

∫ η(R1)

0

η1/2β

η
√

1− η
dη

=
R1

2β (sin k1)
1/β VM

B

(
η(R1);

1

2β
,
1

2

)
=

R1

2β (sin k1)
1/β VM

B

(
sin2 k1;

1

2β
,
1

2

)
(4.30)

where B (·; ·, ·) is the incomplete beta function. As a result, tgo when |e1(R)| > φ1 is

calculated as

tgo =
sec k1
VM

(R−R1) +
R1

2β (sin k1)
1/β VM

B

(
sin2 k1;

1

2β
,
1

2

)
=

sec k1
VM

(R−R1) +
R1φ1

2k1 (sin k1)
φ1/k1 VM

B

(
sin2 k1;

φ1

2k1
,
1

2

)
(4.31)

When |e1(R)| ≤ φ1, the time-to-go is given by

tgo(R) =
1

VM

∫ R

Rf

secσMdR̃. (4.32)

Applying a calculation technique similar to (4.28) ∼ (4.31) into (4.32), the time-to-go when

|e1(R)| ≤ φ1 can be obtained as follows:

tgo =
R

2β |sinσM |1/β VM
B

(
sin2 σM ;

1

2β
,
1

2

)
=

Rφ1

2k1

∣∣∣sin( k1φ1 e1)∣∣∣φ1/k1 VMB
(

sin2

(
k1
φ1

e1

)
;
φ1

2k1
,
1

2

)
(4.33)
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To sum up, the time-to-go under the guidance law in (4.13) is calculated as

tgo =


sec k1
VM

(R−R1) +
R1φ1

2k1 (sin k1)
φ1/k1 VM

B

(
sin2 k1;

φ1

2k1
,
1

2

)
for |e1(R)| > φ1(4.34a)

Rφ1

2k1

∣∣∣sin( k1φ1 e1)∣∣∣φ1/k1 VMB
(

sin2

(
k1
φ1

e1

)
;
φ1

2k1
,
1

2

)
for |e1(R)| ≤ φ1,(4.34b)

which is also expressed by using the series as

tgo =



sec k1
VM

(R−R1) +
R1

VM

∞∑
n=0

(2n)!

22n
(

1 + 2n k1
φ1

)
(n!)2

sin2n k1 for |e1(R)| > φ1(4.35a)

R

VM

∞∑
n=0

(2n)!

22n
(

1 + 2n k1
φ1

)
(n!)2

sin2n

(
k1
φ1

e1

)
for |e1(R)| ≤ φ1.(4.35b)

Ignoring the higher order term after sin2n(·) and applying the approximation of sin
(
k1
φ1
e1

)
≈

k1
φ1
e1, the approximated time-to-go is obtained as

tgo =



sec k1
VM

(R−R1) +
R1

VM

1 +
sin2 k1

2
(

1 + 2 k1
φ1

)
 for |e1(R)| > φ1 (4.36a)

R

VM

1 +

(
k1
φ1
e1

)2
2
(

1 + 2 k1
φ1

)
 for |e1(R)| ≤ φ1. (4.36b)

Note that the estimated time-to-go in (4.36) is controllable by adjusting the value of φ1.

Based on this property, a proper value for φ1 is found in next subsection 4.3.2 for the impact

time control.

4.3.2 Impact time control based on time-to-go calculation

In the previous subsection 4.3.1, it was verified that the time-to-go under the proposed

guidance law is a function of the parameter φ1. To achieve the impact time constraint,
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therefore, the process to find a proper value of φ1 is investigated in this subsection.

φ1 that guarantees the impact time control can be obtained by solving the following

equation:

tgo (φ1) =tdesgo

,td − t (4.37)

Since the time-to-go tgo has two different expressions depending on the values of e1 and φ1

as shown in (4.36), the process to calculate the solution of φ1 for the impact time control

can be complicated. To simplify the process, the following theorem is introduced.

Theorem 4.2. Consider tgo,1(φ1) and tgo,2(φ1) defined as

tgo,1(φ1) =
R

VM

1 +

(
k1
φ1
e1

)2
2
(

1 + 2 k1
φ1

)
 for all φ1 > 0 (4.38)

tgo,2(φ1) =


sec k1
VM

(R−R1) + R1

VM

(
1 + sin2 k1

2
(
1+2

k1
φ1

)
)

for 0 < φ1 < |e1|

R
VM

(
1 +

(
k1
φ1
e1

)2

2
(
1+2

k1
φ1

)
)

for φ1 ≥ |e1|
(4.39)

Let φ∗1 and φ∗∗1 be the solutions of tgo,1(φ1) = tdesgo and tgo,2(φ1) = tdesgo respectively. Then φ∗1

and φ∗∗1 satisfy sat (e1/φ
∗
1) = sat (e1/φ

∗∗
1 ).

Proof. First, let us investigate the solution φ∗1 prior to the proof. From (4.38), the solutions

satisfying tgo,1(φ
∗
1) = tdesgo is obtained as

φ∗1 =



k1Re
2
1

2
(
VM tdesgo −R

)
+
√

4
(
VM tdesgo −R

)2
+ 2Re21

(
VM tdesgo −R

) (4.40a)

k1Re
2
1

2
(
VM tdesgo −R

)
−
√

4
(
VM tdesgo −R

)2
+ 2Re21

(
VM tdesgo −R

) . (4.40b)
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The solution in (4.40b) satisfies

k1Re
2
1

2
(
VM tdesgo −R

)
−
√

4
(
VM tdesgo −R

)2
+ 2Re21

(
VM tdesgo −R

)
=

k1Re
2
1

2
∣∣VM tdesgo −R∣∣ (sgn

(
VM tdesgo −R

)
−
√

1 +
Re21

2(VM tdesgo −R)

)
≤0, (4.41)

which implies that more than one solution for φ∗1 cannot exist.

Now, let us prove the theorem in two cases: 0 < φ∗1 < |e1| and φ∗1 ≥ |e1|. First, if

0 < φ∗1 < |e1|, the solution satisfying φ∗1 ≥ |e1| does not exist by the result of (4.40) and

(4.41). Then, φ∗∗1 satisfying φ∗∗1 ≥ |e1| also does not exist because tgo,1(φ1) = tgo,2(φ1) when

φ1 ≥ |e1|. Consequently, the solution φ∗∗1 also satisfies 0 < φ∗∗1 < |e1| when 0 < φ∗1 < |e1|.

If φ∗1 ≥ |e1|, it is obvious that the solution φ∗∗1 is obtained as φ∗∗1 = φ∗1 ≥ |e1| since

tgo,1(φ1) = tgo,2(φ1) when φ1 ≥ |e1| as shown in (4.38) and (4.39). As a result, φ∗1 and φ∗∗1

satisfy sat (e1/φ
∗
1) = sat (e1/φ

∗∗
1 ) in both cases.

When the guidance law in (4.13) is implemented, the parameter φ1 is used to compose

σdM as a form of sat (e1/φ1), which is shown in (4.7). Therefore, Theorem 4.2 signifies that

solving the equation tgo,1 (φ1) = tdesgo is sufficient to obtain the solution of φ1 satisfying (4.37)

for the implementation of the proposed guidance law. The solutions of tgo,1 (φ1) = tdesgo are

given by (4.40), and (4.41) in Theorem 4.2 reveals that the solution in (4.40b) is invalid

since it is proved as negative. Therefore, we have the substantive solution as

φ1 =
k1Re

2
1

2
(
VM tdesgo −R

)
+
√

4
(
VM tdesgo −R

)2
+ 2Re21

(
VM tdesgo −R

) . (4.42)

That is, choosing the parameter φ1 as (4.42) enables the impact time control.
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4.4 Numerical simulation

In this section in which two subsections are included, the validity of the proposed guidance

law is demonstrated through numerical simulations. In subsection 4.4.1, the proposed law

is simulated for various engagement scenarios to evaluate the performance. In subsection

4.4.2, the proposed law is compared with other guidance laws that consider the impact

angle and time constraints.

The signum function sgn (·) in (4.13) can cause the command chattering due to its dis-

continuity. To alleviate the fluctuation and obtain a continuous feasible guidance command,

the signum function is approximated as the following hyperbolic tangent function in the

implementation.

tanh (ax) =
2

1 + exp−2ax
− 1 (4.43)

where the value of a is chosen as a = 10. The approximation of (4.43) allows the convergence

of S to be achieved by a continuous command with a deviation inversely proportional to

a from the ideal siding mode [44]. In all the scenarios of the following simulations, the

homing is performed until the relative range is less than or equal to 0.5 m, and the guidance

command of the missile is saturated at ±10 g. The detailed setting of the parameters used

in the simulations are listed in Table 4.1.

Table 4.1: Simulation setting

Parameters Values
Initial position of the missile (xM(0), yM(0)) (0, 0) km
Position of the stationary target (xT (0), yT (0)) (10, 0) km
Initial missile flight path angle γM(0) 30 deg
Missile speed VM 250 m/s
Missile acceleration limits |aM |max 10 g†

Guidance gains k1 = σmax
M − 0.01, k2 = 1

† g denotes the gravitational acceleration, i.e., g = 9.81 m/s2.
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4.4.1 Performance analysis of the proposed guidance law

To investigate the performance of the proposed law, four scenarios where the terminal

impact angle and time are constrained as (γd, td) = (−30◦, 45 s), (−45◦, 50 s), (−90◦, 60 s),

and (−120◦, 65 s) respectively with setting the look angle limitation as σmax
M = 60◦ are

considered. Figures 4.2a ∼ 4.2d illustrates the simulation results of the four scenarios under

the proposed guidance law.

Figure 4.2a shows that the proposed law fulfills the interception against the stationary

target for every case. Specifically, the proposed law achieves the impact angles and times of

(γM(tf ), tf ) = (−29.96◦, 44.99 s), (−44.98◦, 49.99 s), (−89.98◦, 59.99 s) and (−119.97◦, 64.99 s)

in the four scenarios respectively. This result means that the impact angle and time errors

are within 0.04◦ and 0.01 s respectively for all the scenarios.

Figure 4.2b shows that the proposed guidance law makes the surface variable S converge

to zero with generating the command that does not exceed ±10 g. At the early stage of

the homing in every case, the guidance law yields a relatively large acceleration, which is

due to the demand that achieves the sliding mode. After the convergence of S, there also

exists an interval where the command slightly decreases in every case. It is related with a

sudden decrease of σM which can be found in Fig. 4.2d.

Figure 4.2c provides the histories of impact angle and time errors, i.e. e1 in (4.5) and

tgo− tdesgo respectively. The exact solution for the time-to-go in (4.34) is used as tgo. First, it

is observed that e1 converges to zero as the missile approaches the target in every scenario,

which accords with the theoretical result in (4.10). The second row of Fig. 4.2c shows that

the impact time error also goes to zero before the end of the homing. Since the proposed

law uses the approximate time-to-go in (4.36) to satisfy the impact time constraint, the

accuracy of the impact time control is not always ensured during the entire homing. This is

why there is a difference between tgo and tdesgo at the early and middle stages of the homing.

However, as e1 converges to zero, the difference between the exact time-to-go in (4.34) and

the approximate one in (4.36) also becomes zero. Therefore, the convergence of the impact
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time error to zero is guaranteed at the end of the homing, which can be seen in the second

row of Fig. 4.2c.

Figure 4.2d presents the histories of the flight path angle and look angle of the missile in

each scenario. The first row of Fig. 4.2d confirms that the proposed guidance law satisfies

the impact angle constraint in all scenarios like Fig. 4.2c. The second row of Fig. 4.2d

demonstrates that the look angle does not violate the prescribed limit σmax
M = 60◦, which

accords with the theoretical verification of Theorem 4.1. In summary, the proposed law

enables the missile to intercept the stationary target at the desired impact angle and time

without violating the pre-set field-of-view limit.
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Figure 4.2: Simulation results under the proposed guidance law
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4.4.2 Performance comparison with other guidance laws in real-

istic scenarios

This subsection compares the proposed guidance law with another guidance law that is

able to control the terminal impact angle and time called MPG (multi-phase guidance

law) studied in [39]. MPG can be applied to the missile with limited FOV due to its

ability to confine the look-angle within the prescribed limit. However, MPG is vulnerable

to unexpected disturbances and uncertainties because control of the impact angle and time

is carried out as an open-loop process.

For the comparative analysis of the proposed guidance law with the existing law, this

subsection considers three scenarios where a large detour is required to satisfy the desired

impact angle and time with the presence of three different disturbances. All of three sce-

narios are aimed at achieving the desired impact angle and time of γd = −80◦ and td = 50 s

respectively with the look angle limitation of σmax
M = 45◦. A first-order transfer function is

applied between the guidance command and engagement dynamics to take into account the

autopilot delay, and the time constant of the transfer function is set to be 0.2. In addition,

considering the aerodynamics, gravitation, and controllable thrust, the missile speed and

flight path angle are assumed to vary with

V̇M =
T −D
m

− g sin γM + ∆ (4.44)

γ̇M =
aM − g cos γM

VM
. (4.45)

where T , D, m, and ∆ represent the longitudinal thrust force, aerodynamic drag, missile

mass, and disturbance caused by a longitudinal wind gust. The mass is fixed as m = 90 kg

and the drag model used in [26, 51] is adopted to formulate D in our simulation. The
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disturbance is modeled differently for each scenario as follows:

∆ =


0 for the scenario #1

+g {H(t)−H(t− 10)} for the scenario #2

−g {H(t)−H(t− 10)} for the scenario #3

(4.46)

where H(·) is the Heaviside step function; i.e., the gust influences for the first 10 seconds

in the scenarios #2 and 3. The thrust is assumed to be controllable to maintain the desired

speed V d
M = 250 m/s as

T = Teq +KP

(
V d
M − VM

)
(4.47)

where Teq is the equivalent thrust force to maintain the speed in an ideal condition and KP

is the proportional gain selected as KP = 30.

The simulation results with the speed-varying model described above are illustrated in

Figs. 4.3 ∼ 4.5 and also summarized in Table 4.2. Figures 4.3, 4.4, and 4.5 provide the

results in the scenarios #1, 2, and 3 respectively. Figs. 4.3a, 4.4a, and 4.5a show that both

laws achieve the interception in all the scenarios. In addition, as shown in the lower row

of Figs. 4.3b ∼ 4.5b, MPG and the proposed law prevent the look-angle from exceeding

the prescribed limit σmax
M = 45◦ during the entire homing although a curved trajectory is

demanded to satisfy the terminal constraints on impact angle and time. Thus, both MPG

and the proposed law can be applied when the missile is equipped with the seeker with

reduced FOV.

The results in Table 4.2 also show that the proposed law produces smaller impact angle

and time errors than MPG in every scenario. MPG achieves the interception for every case

but does not ensure accurate impact angle and time. It is because MPG is vulnerable to

uncertainties and disturbances due to the absence of a feedback process to regulate the

impact angle and time errors as described in [39]. The results of the scenario #2 and 3
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clearly show the performance degradation of MPG caused by disturbances. In the scenario

#2, the missile under MPG intercepts the target 1.433 s faster than the desired impact

time because the wind accelerates the missile during the first 10 seconds as shown in Fig.

4.4c. The opposite result arises in the scenario #3; the missile intercepts the target 0.947

s later than the requirement.

Unlike MPG, the proposed law ensures the precise impact angle and time control with

satisfying |γM(tf )− γd| ≤ 0.02◦ and |tf − td| ≤ 0.001 s. The reason for the performance

difference between MPG and the proposed law is as follows. MPG calculates the parameters

to satisfy the desired impact angle and time based on initial conditions, which is classified as

the open-loop control. On the contrary, the proposed law has the feedback loop to regulate

the impact angle and time errors e1 and tgo− tdesgo based on current state variables as shown

in (4.7) and (4.42), which is the closed-loop control. For this reason, the proposed law yields

better performance than MPG in the presence of disturbances. As a result, the proposed

law can guarantee better performance for various impact angle and time conditions in real

applications compared with the existing guidance law.
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Figure 4.3: Simulation results in the scenario #1 under two guidance laws: MPG and the
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Figure 4.4: Simulation results in the scenario #2 under two guidance laws: MPG and the
proposed law
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Figure 4.5: Simulation results in the scenario #3 under two guidance laws: MPG and the
proposed law

94



Table 4.2: Summarized results of the simulation

Scenario Guidance law
Miss distance Impact angle error Impact time error
R(tf ) [m] γM(tf )− γd [deg] tf − td [sec]

1
MPG 0.394 -1.198 -0.242

Proposed 0.389 -0.009 -0.001

2
MPG 0.391 -1.133 -1.433

Proposed 0.378 0.017 -0.001

3
MPG 0.401 -1.239 0.947

Proposed 0.268 0.015 -0.001
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5
Conclusions

In this dissertation, guidance laws for missiles with reduced field-of-view constraint are

proposed in each part composed of the following: (i) impact angle control guidance, (ii)

impact time control guidance, and (iii) impact angle and time control guidance. Each part

verifies that each proposed guidance law ensures the interception of a stationary target

without violating the prescribed field-of-view constraint while achieving the design objective

of each part through the theoretical analysis and the numerical simulations. The main

results of each study are summarized as:

• The look angle-constrained impact angle control guidance law that only uses the

bearing angles among the target information is proposed. To develop the guidance

law, the surface variable that only consists of the line-of-sight angle and look angle is

designed based on the kinematic conditions for achieving the impact angle constraint

with confining the missile look angle within the pre-specified limit. The guidance law

is derived to achieve the sliding mode of the defined surface variable. Since imposing

the terminal impact angle constraint requires the curved trajectory, this capability to

prevent the missile look angle from exceeding the prescribed limit is helpful from a
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practical standpoint. Furthermore, unlike the existing laws whose implementation de-

mands the knowledge of the relative range or line-of-sight rate, the proposed guidance

law only needs the line-of-sight angle and look angle among the target information.

Hence, the proposed law can easily be implemented into a homing missile equipped

with a structurally simple passive strapdown seeker. Both the theoretical analysis and

the numerical simulation result indicate that the proposed guidance law achieves the

desired tasks under bearings-only measurements.

• The impact time control guidance law considering the seeker’s field-of-view limits is

investigated. The proposed guidance law is motivated by the fact that implementation

of an impact time control guidance requires the consideration of the seeker’s field-of-

view limits due to its curved trajectory. To take into account the impact time control

problem, the kinematic conditions are introduced, and the guidance law is designed

in order to satisfy the conditions based on the backstepping control technique. In

the control structure, the magnitude of the missile look angle is confined within a

prescribed range by restricting the controller gain, which allows the seeker’s field-of-

view to be within specific limits as a result. Numerical simulation result demonstrates

that the proposed law allows the missile to intercept the target at the desired impact

time without violating the seeker’s field-of-view limits.

• The look angle constrained guidance law that is able to achieve the interception at the

desired impact angle and time is presented. The look angle profile that guarantees the

constraints on the desired impact angle and time is designed, and the guidance law

is structured to follow the designed look angle profile using the sliding mode control

method. Since the look angle profile is constructed to be smaller than the prescribed

limit, the proposed guidance law can ensure the terminal impact angle and time con-

ditions while preventing the look angle from exceeding the specified limit. Owing to

this capability to obey the look angle constraint, the proposed law can easily be im-

plemented to a homing missile equipped with a narrow field-of-view. In addition, the
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proposed approach fulfills the impact angle and time control through state feedback

structure, so more accurate performance is expected in real applications compared

with the existing approach based on open-loop structure. Numerical simulations are

performed and the results confirm that the proposed law yields satisfactory perfor-

mance despite the presence of disturbances.
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국 문 초 록

호밍유도법칙이란유도탄에탑재된탐색기로부터얻은정보를이용하여지정된표적으로의

유도를 수행하는 일련의 기법들을 지칭한다. 호밍 유도 법칙의 실제 적용에 있어 표적 조준

유지는 유도 정보 획득을 위해 필수적이며, 이를 위해서는 탐색기의 시야 제한을 고려하여

유도 법칙을 설계하는 것이 중요하다. 특히, 충돌각 및 충돌시간 제어 유도법칙의 구현시에

는 큰 곡률을 가지는 비행궤적이 필요하여 유도탄의 비행방향이 표적으로부터 크게 벗어날

가능성이 높아지기 때문에 탐색기의 시야각 제한 고려는 더욱 필수적이다.

본 논문에서는 탐색기의 시야각 제한을 고려한 i) 충돌각 제어 유도, ii) 충돌시간 제어

유도, iii) 충돌각 및 충돌시간 제어 유도의 세 법칙을 제안한다.

첫째, 탐색기의 시야 제한을 고려한 충돌각 제어 유도 법칙을 제안한다. 슬라이딩 모드를

만족하면 요구 충돌각으로 정지 표적에 대한 호밍이 수행되도록 슬라이딩 변수를 정의하고,

제안한 변수가 슬라이딩 평면에 도달하도록 유도 법칙을 설계한다. 출력의 크기를 제한하는

시그모이드 함수를 슬라이딩 변수 설계에 활용함으로써, 제안한 유도 법칙은 표적에 대한

지향각을 제한하면서 충돌각 제어와 호밍 유도를 수행한다. 충돌각 제어는 유도탄의 곡선궤

적을야기하고지향각은표적에대한시야를결정하므로,제안유도법칙은탐색기의시야가

제한적인 상황에 유용하다. 또한, 제안한 유도 법칙은 구현시에 시선각 및 지향각 정보만을

필요로 하기 때문에, 구조적으로 간단한 스트랩다운 탐색기가 부착된 유도탄에 쉽게 적용할

수 있다.

둘째, 다수 유도탄의 일제 동시 공격을 위한 충돌시간 제어 및 탐색기의 시야 제한 또한

고려한 유도 법칙을 제안한다. 표적 요격 및 충돌시간 구속조건에 대한 운동학 기반 조건

을 정의하고, 백스테핑 제어를 이용하여 정의한 조건을 만족하도록 유도 법칙을 설계한다.

제안한 백스테핑 제어 기반 유도 법칙은 유도탄의 지향각을 가상 제어 입력으로 이용하며,

시그모이드 함수를 이용하여 가상 제어 입력의 크기를 제한한다. 결과적으로, 설계된 유도

법칙은 시야각 제한을 위반하지 않음과 동시에 충돌시간 구속조건을 만족하도록 호밍을 수

행한다. 충돌각 제어와 마찬가지로 충돌시간 제어도 유도탄의 표적에 대한 지향각의 증가를
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야기하므로, 제안한 충돌시간 유도 법칙 또한 탐색기의 시야가 제한적인 상황에 유용하다.

마지막으로, 탐색기의 시야 제한을 고려하며 보다 효과적인 다수 유도탄의 일제 동시

공격을 가능하게 하는 충돌각 및 충돌시간 제어 유도 법칙을 제안한다. 제안 유도 법칙은

기본적으로 시야 제한을 고려한 충돌각 유도법칙의 형태로 설계되며, 추가적인 제어 이득을

갖도록 구성된다. 제안한 법칙 하에서 유도탄의 궤적이 추가 제어 이득의 함수로 계산되기

때문에,적절한값을 계산하여제어이득으로선택함으로써 충돌시간의 제어또한가능하다.

결과적으로, 제안 법칙은 시야 제한을 위반하지 않으며 충돌각 및 충돌시간 제어를 수행할

수 있다. 설계한 유도 법칙은 오프라인 최적화 등의 수치 계산을 필요로 하지 않으며 상태

변수의피드백에기반한폐루프구조이기때문에,실제적용상황에있어개루프구조의기존

기법에 비해 보다 정확한 성능이 기대된다.

제안한 유도 법칙들의 성능 평가를 위해 각 법칙에 대해 수치 시뮬레이션을 수행하였으

며, 시뮬레이션 결과는 제안한 법칙들 모두 탐색기의 시야 제한 조건을 위반하지 않으며 각

요구 구속조건들을 충족함을 보여준다.

주요어: 호밍 유도, 시야각 제한, 충돌각 제어, 충돌시간 제어

학 번: 2014-30356
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