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Abstract

Storing digital data in DNA 1is the process of encoding digital data into
DNA sequences, synthesizing and storing these. Recently, the platform has
been emerged with the possibility to supplement the current backup data storage
with infrequent access, due to its physical advantages compared to conventional
storage media. First, DNA can be maintained for centuries, which is in contrast
to conventional storage media that require power supply or be rewritten for data
retention. Second, DNA has physical information density that can store
hundreds of petabytes (PB, 10" bytes) per gram, thousands of times higher than
conventional storage method. The major goal of previous research on DNA-
based data storage was to improve data encoding algorithms for reducing data
error or loss. Design rules for Data to DNA encoding and error correction
functions were suggested.

The next step towards DNA-based data storage is to reduce the cost for
storing the data and enable the practical use. Current cost for DNA-based data
storage is about 3500 USD per storing 1 MB of data storage. As a first step to
practical implementation, this dissertation shows the possibility of reducing the
cost of DNA- based data storage by 50% by increasing the amount of data that
can be stored per synthesized DNA, i.e., the information capacity, above the

previous theoretical maximum. The proposed idea is to use degenerate bases,
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which are mixes of the four encoding nucleotides, as additional encoding
characters with the DNA encoding characters A, C, G and T. I propose a
completely novel approach utilizing a synthetic process, whereas the existing
studies were algorithmic optimizations and simple demonstrations.

Using the proposed idea, I demonstrated and simulated the total process
of the DNA-based data storage, including Data to DNA encoding, molecular
biology-based DNA handling and DNA sequence to Data decoding. From this,
the theoretical maximum information capacity, which is equivalent to log, value
of the number of encoding characters, is increased from log,4 to log>15 (bit/nt)
by adding 11 degenerate bases to the original four encoding characters. The
DNA length required for storing data was experimentally reduced by more than
half compared to that of the 4 character-based system. Also, from the simulation
and cost projection, the cost of storing 1 MB is projected to be reduced by 50%
compared to the previous cost. The data writing or DNA synthesis cost is
decreased because the length of DNA required to store data is reduced to less
than half.

Since the method only needs minor modifications of the encoding and
DNA synthesizing processes, it can be applied to nearly all proposed DNA-
based data storage methodologies and could increase the economic efficiency.
Therefore, it is expected that the proposed idea and the demonstration could be

utilized for practical implementation of DNA-based data storage.
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Chapter 1. Introduction

In this chapter, increasing demand for data storage and the DNA-based
data storage that currently being studied as an alternative storage method will
be described. After that, information capacity, which is essential for practical
use of the DNA-based data storage will be introduced. Finally, the subject of
this dissertation, new methodology of DNA-based data storage with increased

information capacity will be presented.
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1.1. Increasing Demand for Data Storage

The research group IDC predicted that the human-generated data is
growing exponentially every year, reaching 163 zettabytes (ZB, 10*! bytes) in
2025, which is ten times the 16.1ZB of data generated in 2016 (Figure 1.1
(a))[1]. Also, about 30% of the data is related to the continuity of our daily life,
and it is critical to areas such as the medical application and commercial air
travel. They must be stored on a variety of media and, if necessary, additional
backups are also required. However, because the amount of data produced is so
large and rapidly growing, there are technical limitations in conventional
storage media developed to date. For example, in 2040, researchers forecasted
that memory demand exceeds the global silicon supply, assuming that all
memory is stored in flash-based memory for instant access[2].

About 50% of this surplus data is classified as Cold data[1], [3]. Cold data
is infrequently accessed data that includes the historical data, or backup of the
photo or document that people have used. An extreme example of this cold data
is ‘The Square Kilometer Array (SKA)’ of the NASA. According to NASA's
article (https://www.skatelescope.org/amazingfacts/), this multi-radio telescope
built in Australia and South Africa will generate 10 times as much data as the
global internet traffic every day. In case of cold data, different criteria are
required for storage when compared to the frequently accessed data. As shown

in Figure 1.1 (b), the expected storage life for cold data should be longer
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compared to that of other types of data. Also, there should be minimum
maintenance for cost saving such as electricity and space. Also, since the data

is not accessed frequently, the access speed does not need to be fast[4].

(@) (b)

Figure 1.1 Increasing demand for data storage: (a) Annual size of the data
created. The values up to the year of 2016 are actual values, and the values after
that are predicted by the IDC[1]. Zettabyte: 10?! bytes; (b) The requirements
model for cold data storage. SLA means service level agreement between the
customer and customer and service provider[4]. The figure has been modified

from the previous research[1], [4].



1.2. DNA-based Data Storage

1.2.1. DNA as the Nature's Data Storage Medium

0.34nm

| |

2nm
Figure 1.2 Structure and size of double-stranded DNA.

Before mankind store information, nature's life saved information, copied
it, shared it with cells, and transmitted it to posterity. Nature stores genetic
information using nucleic acid, usually DNA. DNA consists of two single
strands hybridized to form a double strand, and the DNA consists of a 2 nm
diameter, 0.34 nm high cylindrical base connected to each other (Figure 1.2).
In humans, the length of the genome is about 3 billion base pairs, and if one
base can encode 2 bits, the genome can hold data equivalent to a text file of 725
MB. Human cells store this data in nuclei with a diameter of about 6um. It is
capable of storing 5 petabits per square inch and is a thousand times the storage
density of hard drives that are currently in commercial use. In addition, the
DNA replication and error recovery is performed by enzymes with a size of

several tens of nanometers or less. In this process, negligible amount of energy
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is used, when compared to that from other systems. From this, DNA is the most

energy-efficient data storage platform with highest data density.

1.2.2. DNA-based Data Storage

DNA-based data storage is a new concept of the data storage that
converting digital data of 0,1 into a DNA base of A, C, G, and T, synthesizing
the DNA sequence and used as a storage medium (Figure 1.3(a),(b))[2], [S]—
[11]. The structure of a typical DNA-based data storage is shown in Figure 1.2
(b). Because of the limited length that can be synthesized in DNA synthesis
technologies and sequenced in DNA sequencing technologies, information
cannot be stored in a single DNA molecule. Instead, the information is divided
into several pieces and an address is assigned. Both ends of the DNA are
attached with sequencing and adapters for DNA amplification.

DNA-based data storage has two major advantages when compared to
existing data storage media. First, the retention time of DNA is very long, and
no other treatment for maintenance is required during storage. For example,
43,000 years old DNA from remains of a woolly mammoth extracted in high
quality from ice[12]. Aside from extremely low-temperature condition like ice,
DNA is reported to be intact for more than 2000 years in 18 °C with chemical
treatment[13]. As can be seen in Figure 1.3 (b), the duration is orders of
magnitude longer than that of existing data storage media[14]. In addition, if

the DNA is properly sealed in the container, there is no need for additional
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maintenance or electricity supply for storage, which is advantageous over
existing media that require electrical supply. Second, DNA has high physical
information density of petabyte (PB, 10'° bytes) per gram. Ideal DNA-based
data storage is to store binary data (0,1) in a single DNA base position (A, C,
G, or T) and single base pair with a volume of 0.3 nm tetrahedron can store 2
bits. This means that DNA has about thousand times higher information density
compared to flash memory and about one million times higher physical
information density than a hard disk (Figure 1.3 (b)). Based on these advantages,
DNA-based data storage is expected to be used in cold data storage in near
future.

The concept of DNA-based data storage has been proposed since early
2000[15]. Even when the synthesis and analysis methods of DNA used for
storage were not established, the structure of the storage method and its
advantages were first introduced. After that, actual implementation of the
storage method has been demonstrated in the year of 2012 as the throughput
and price of DNA synthesis and analysis have recently dropped[5].

However, DNA-based data storage has cost problem before it can be
practically used. This is due to the high cost of reading and writing data when
using DNA. The process of writing data to DNA includes the encoding of DNA
and the chemical synthesis of this DNA, and the reading process includes DNA
reading using next-generation sequencing (NGS) and its computational

decoding. Among these, the major percentage of the cost is the data writing.
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Currently, the storage cost of storing a 1MB using DNA-based data storage is
about 3500 USD and 99%, of which is the cost of data writing. Previous studies
have suggested that DNA-based data storage can be used practically when data
writing prices are about 100 times cheaper[6]. A more detailed analysis of the

amounts of the cost will be described in Chapter 5.
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been modified from the previous research articles [14], [16].



1.2.3. Information Capacity of DNA-based Data Storage

Currently, approaches to increase the practicality of DNA-based data
storage include decreasing the cost of DNA synthesis and increasing
information capacity. In this dissertation, I focused on the increase of
information capacity among these two methods. Information capacity is the
amount of information that can be stored in one base position. Thus, if the
information capacity increases, the length of the DNA to be synthesized when
storing the data is reduced, thereby reducing the price.

However, DNA-based data storage, which converts digital data of binary
form 0,1 into DNA 4-base system consisting of A, C, G, and T, has a limit of
information capacity of 2bit/ nt. The information capacity that can be achieved
if encoding with system of N encoding characters (or base) consisting of binary

system is as follows.

Information capacity = log, N (bit/nt)

In addition, as described in Chapter 2.1, the highest information capacity
of the previous studies achieved 1.57 bit /nt, so dramatic cost reduction is not
possible even if information capacity of 2.00 bit/nt is achieved. In this
dissertation, I propose a method to increase information capacity by adding
additional encoding characters other than A, C, G, and T to data to DNA

encoding.
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1.3. Main Concept: Addition of Degenerate Bases to DNA-based

Data Storage for Higher Information Capacity

As described in the last section, DNA-based data storage has advantages
that traditional storage media does not have, but it is problematic because of its
high cost. For practical implementation of DNA data storage, there is a need for
research on DNA-based data storage that focuses on the fundamental problem
of reducing the cost of all aspects of this technology. To meet this demand, by
increasing information capacity, the goal of this thesis is to decrase the data
writing price, which is the biggest portio of the cost of DNA-based data storage.

This dissertation aims to increase the information capacity of DNA-based
data storage by using additional base for data to DNA encoding (Figure 1.4 (a)).
The required condition for additional encoding character used is; 1) synthesis
and analysis of encoding character should be possible with current technology
and 2) cost of encoding characters should be same as current bases. In this
dissertation, I use degenerate bases as a candidate. Degenerate base is defined
as a mixture of A, C, G, and T at a specific base position. For example, if a
particular DNA sequence is ‘CWA’ and W is a degenerate base with mix of A
and T, then the DNA molecule of "CAA’ and ‘CTA’ are presented. If 11
degenerate bases are added to four base types and used for encoding, the
theoretical information capacity is increased by about 2 times to log>15 = 3.90

bit/nt (Figure 1.4(b)). As a result, the length of the DNA to be synthesized
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through the specific data is reduced to hal

reduced by half. In addition, it is possible

f, the DNA synthesis price is also

to create different degenerates by

adjusting the ratio between degenerate base ratios and it is possible to achieve

infinite information capacity by separating them through analysis.

(a) 15 encoding characters
O
ACGT
o +
01000010011010010100 Didital data to RYM.VDR
11100100010101001100  DNA _ _
4 encoding characters
O
ACET
(b) _ . _
r— log,15 =3.90 bit /nt ——  Additional encoding characters
= shorten DNA length
; 3 Increased information
= I capacity limit —_— GHGDBRADCEKG
3 |
2
§ log,4 = 2 bit /nt
& m @
=2 (81 (101111 AAGCAGCCATG
L]
E T g W CACCCATA
o
= [f]
0

Figure 1.4 The main concept and the resulting increase in information capacity:

(a) Adding the degenerate base(red) as extra encoding characters to digital data

to DNA encoding; (b) Information capacity limit is increased from previous

2.0bit/nt to 3.90bit/nt and DNA length for storing the specific data ia shortened.

The dots in the graph describe the information capacity in previous research,

and the numbers indicate the corresponding reference. This figure has been

modified from the previous research[17].
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1.4. Outline of the Dissertation

In this dissertation, the concept is verified through both wet-lab
experiment and simulation. In Chapter 2, previous DNA-based data storage
methods are described and compared in terms of information capacity and cost.
After that, the detailed introduction of degenerate bases is followed. In Chapter
3, a demonstration of the concept, from design of the storage and molecular
biology-based experiment for handling and sequencing DNA to DNA to data
decoding is covered. In Chapter 4, a simulation work to see if it could be
actually scaled up will be demonstrated. Finally, Chapter 5 discusses how the
proposed approach can actually improve the field by improving information

capacity and cost, and how it can be developed in the future.
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Chapter 2. Background of the Dissertation

In this chapter, an introduction of previous DNA-base data storage
methods including data to DNA encoding algorithm, error correction code are
covered. Also, comparison of these methods regarding information capacity
and cost is described. Finally, the detailed introduction of degenerate bases as

additional encoding characters is followed.
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2.1. Previous DNA-based Data Storage Methods

2.1.1. The Nature of DNA to be Considered as Storage Media

In order to use DNA in data storage, it must reflect the constraints that
arise in synthesizing and manipulating it. The constraints that occur in these
two processes are the main source of errors in data storage and correcting or
avoiding them should be reflected in the encoding algorithm of the DNA-based
data storage.

Currently, the phosphoramidite method is generally used to synthesize
DNA as oligonucleotide form. In this method, the designed DNA sequence is
synthesized by serial chemical linking of the phosphoamidite corresponding to
one nucleotide from 3 prime to 5 prime(Figure 2.1)[18]. From this, since the
probability that each nucleotide can be successfully chemically linked is 99.5%,
a yield of about 30% is obtained in synthesizing an oligonucleotide of about
200 nt. In addition, DNA that fails to link can be filtered by various methods of
purification, but a large amount of DNA is left and a error occurs as the length
of DNA is shorter than the design (deletion). In addition, unnecessary
nucleotides are allocated in the linking process, or additional DNA is attached
to cause insertion or substitution errors. Of these, the major error is deletion,
which is about 50% of the total DNA molecule when synthesized at about 200
nt. In order to solve this problem, the synthesis length of the DNA should be

reduced to about 150 or a new synthesis technique should be developed.
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Coupling Efficiency (X 21 7|§ +&)
99.5% 99.5% 99.5% 71 §22 ol

BITATA! 20009

..._o

36.7%

99.5% 99.0% 98.5% 98.0%

Figure 2.1 A simplified diagram of the DNA synthesis method.

Since the oligonucleotide is a single strand form when synthesized, it is
necessary to carry out an amplification process using DNA polymerase (PCR,
Polymerase Chain Reaction). This amplification is also necessary when
copying data or when increasing the amount for analysis. During the
amplification, the homopolymer (i.e. repetition of a specific DNA sequence
such as AAAAA...) or GC contents (the ratio of base G and C in the entire
sequence) in the DNA sequence in this process causes the amplification to be
inefficient[19], [20]. This inefficient amplification will only occur in a small
number of fragments in DNA library, resulting in un-even profile between
fragments during the amplification process and leading to loss of data. In
addition, in certain NGS methods homopolymer DNA exhibit a high error rate
during sequencing[21]. Generally, it is known that amplification efficiency is
guaranteed when the homopolymer length is 3 nt or less and the GC contents

are between 30% and 60%. Previous studies have shown that very low
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amplification efficiencies are found in other GC contents[19]. This is because
small amounts of efficiency change can be seen to be very large in a tens of
cycles of the PCR cycle since other molecules increase exponentially in the
process.

In addition, if there is a high similarity between DNA molecules,
interactions between molecules can lead to unwanted DNA assemble or low
amplification efficiency. As a method to solve this problem, it has been

proposed to amplify single molecules into wells or emulsions[22].

2.1.2. Data to DNA Encoding Algorithms

The first step in DNA-based data storage is to convert binary data
consisting of 0,1 into DNA bases consisting of A, C, G, and T. The most basic
encoding method is to convert 2-bit digital data to 4 variables, A, C, G, and T,
such as 00=A, 01=C, 10=G, and 11=T, but this method is not actually used since
the homopolymer could be generated and GC contents could not be controlled.
To solve these problems, various data to DNA encoding algorithms have been
proposed. First, an encoding method based on random DNA generation has
been introduced. George Church group proposed an encoding method that
randomly matches 0 to A or C and 1 to T or G[5]. From this method, even if
there is data to be repeated, the homopolymer does not occur. Also, DNA
fountain, which extracts a fragment of data according to the random seed,

encode 00, 01, 10, and 11 corresponding to A, C, G, and T, respectively, and
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discard it if homopolymer or high GC contents and re-extracting the fragment
according to the seed, was proposed (Figure 2.2 (a))[10].

Also, rather than a method based on this random extraction, it was also
suggested to create a DNA codon made of 3 bases and match the data (Figure
2.2 (b))[7]. This method places the last base on the DNA codon differently than
the previous one so that no more than 3 bases of homopolymer are generated
when the codons are connected. All encoding methods were designed to control
the length of the homopolymer in the designed DNA fragment, but only the

DNA fountain technique was able to control the GC content.

17 W e i T



(a) _ (b)
sognentaton  oodoooMoNoNoNcoEo 000 B0
Random selection
Bitwise addition (mod 2)

Attach random seed
Droplet formation
Caonvert to DNA

Reject invalid seq

Figure 2.2 Various data to DNA encoding algorithms: (a) Schematic of the DNA
fountain[10]; (b) DNA codons made with the DNA wheel and corresponding
47-digit numbers[7]. The figure has been modified from the previous

research[7], [10].

2.1.3. Error Correcting Methods for DNA-based Data storage

DNA libraries are decoded through the process including synthesis,
amplification, and sequencing, and the entire process has certain amounts of
errors. In general, the error rate of Microarray-based DNA synthesis used in
DNA-based data storage is 1% and error rate of in NGS is 0.1%][23]. Also, in
the synthesis and amplification process, fragments may be lost in the library as
mentioned in previous chapter.

The first approach to this error is to increase the copy of DNA per a
fragment. This method can reduce the number of amplification, so even if there
is uneven amplification efficiency between fragments, it can minimize

fragment loss. In addition, even if there are errors that can occur during

=
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synthesis and amplification, information of additional copies can be made to
compare the same data to reduce errors. In the same vein, it is also possible to
correct the error by making the amount of DNA read through sequencing much
larger than the number of fragments.

By another approach, researchers attempted to correct errors by an
algorithmic approach (Figure 2.3). The most basic way to do this is to create
repetition by putting the same data into multiple fragments (Figure 2.3 (a))[6].
In this method, the ability of error correction varies depending on how many
times the specific data is repeated. However, in this simple repetition, the same
DNA sequence is present in multiple fragments, which can lead to unwanted
hybridization between the fragments in the amplification process of the DNA.
Also, if a particular DNA sequence pattern has low efficiency for amplification,
the data correspond to the pattern can be lost, even in multiple fragments. To
solve this problem, methods for creating new fragments through computation
of different fragments have been introduced. As shown in Figure 2.3 (b),
creating a new fragment by XOR calculation the data of two different fragments
was proposed[8]. A Reed-Solomon error correction was also introduced, in
which redundancy data is generated by multiplying data by a matrix (Figure 2.3
(c), (d))[7]. In the case of the XOR technique, two pieces of the three fragments
are used to recover the data. However, the error correction capability cannot be
adjusted. For the Reed-Solomon technique, the error correction capability can

be adjusted according to the length of the redundancy such as:
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2e + f < length of the redundancy

e:number of errors, f:number of erasures.

Depending on the ratio of the size of the Reed-Solomon block to the
information block size, the error correction capability and the information
capacity are traded-off. For the experiments reported so far, researchers have

experimentally confirmed the optimal amount of error correction.
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Figure 2.3 Various error correction for DNA-based data storage: (a) Simple
redundancy-based error correction design[6]; (b)XOR based error correction
design[8]; (c)Redundancy generation based a Reed-Solomon error correction
method; (d) Error correction skimetic based a Reed-Solomon method[7]. The

figure has been modified from the previous research[7], [8].
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2.14. Comparison of DNA Storage Encoding Schemes and

Experimental Results

Table 2.1 summarizes the major researches on DNA-based data storage
proposed. As can be seen in the table, the early studies suggested had no error
correction function, or even there was, it failed to recover the data completely.
Since the stability of information storage has been established, various studies
have been carried out to scale up DNA-based data storage to store large
amounts of data or to increase its efficiency.

There are two criteria for the efficiency. The first is how much information
(bit) can be put into a designed nucleotide(nt) or DNA base. This is called
information capacity in this dissertation and is expressed in units of bit / nt.
The total data stored is divided by the total number of nucleotides designed.
The second criterion is how much data can be stored in unit weigh. This is
called physical information density and is expressed in byte/g. In the ideal
situation, only a single DNA molecule per fragment designed is needed for
storage, so multiplying the information capacity by the molecular weight of the
nucleotide could yield the value. However, due to the loss of DNA while
amplification and the error rate of synthesis, data recovery is not possible when
stored as monomolecules, and hundreds of DNA molecule per designed
fragments generally stored. Therefore, this factor should also be reflected.

The minimum NGS coverage is the amount of sequencing used to achieve
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the criteria for DNA-digital data storage, expressed as a multiple of the total
number of fragments. Generally, the larger the NGS coverage, the larger the
amount of data, so the error rate can be reduced and the fragment with fewer

numbers through uneven amplification can be identified.

Church et | Goldman Grass et | Bornholt Blawat et Erlgi;h Organick
al. et al. al. et al. al. ;n Lo et al.
ielinski
Error correction Fountai
method No Rep RS Rep RS N RS
Information 0.6 0.19 1.16 0.57 1.18 1.57 0.81
capacity (bit/nt) ' ' ’ ’ ' ’ '
Physical
information 128 2.25 25 - - 214 -
density
(Pbytes/g)
Input data
(Megabytes) 0.65 0.75 0.08 0.15 22 2.15 200.2
Full recovery N N Y N Y Y Y
Number of 54898 | 153335 | 4991 | 151,000 . 72,000 13
oligonucleotides million million
Minimum NGS
coverage 3,000x 51x 372x 40x 160x 10.5x S5x
(average)

Table 2.1 Comparision between methods (Rep, Repetiotion method. RS, Reed-
Solomon error correction): Full recovery indicates information was recovered.

Megabyte : 10 bytes, Pbyte : Peta byte, 10'° bytes.
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2.1.5. Comparison of Cost of DNA-based Data Storage Methods

Previous research has increased the stability of DNA-based data storage
methods through various methodologies and enabled the complete storage and
restoration of data. However, the field of DNA-based information storage faces
problems regarding the practical storage of a large amount of information due
to the high cost of synthesizing DNA. At present, the cheapest cost for DNA
synthesis reported is 0.05 US dollar per 100 nt[10], and the sequencing cost is
0.0000012 US dollars per 100 nt[24]. and the sequencing price is several ten
thousand times cheaper[25]. In addition, with the current development of NGS
technology, sequencing prices have been decreasing by 1/10 every year for few
years while synthesis rate is much slower
(http://www.synthesis.cc/synthesis/2016/03/on_dna and transistors), so that
the difference between them is likely to increase.

The price of writing and reading in a DNA-based data storage can be
obtained by applying the information capacity and minimum NGS average
described in Table 2.1 by the DNA synthesis and sequencing prices,
respectively. As a result, the most affordable price of DNA-based data storage
today is about 3500 US dollars to store 1MB (Figure 2.3)[10]. As shown in the
Figure 2.3, even after the data to DNA encoding algorthm was developed and
full recovery of the data from the DNA was achieved, there was no dramatic

decrease of the cost of the storage.
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DNA synthesis ( 0.05% / 100nt)

DNA sequencing (0.0000012% / 100nt)

Organick et al.

Grass et al.

|
|
|
|
1
I

Blawat et al.

Erlich and Zielinsk i

Cost for writing 1MB ($)

6,000 4,000 2,000 0 0 25

75
Cost for reading 1MB ($)

100

Figure 2.4 Cost comparision between DNA-based data storage methods: Of the

proposed studies in the past, only describe the price of recovering data from

DNA perfectly. The price was calculated by comparing the number of

nucleotides synthesized and the amount of NGS from each study and

multipying that with the cheapest synthesizer and analyst in the current

market[ 10], [24]. This figure has been modified from the previous research[17].
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2.2. Addition of Encoding characters for Higher Information

Capacity

In this dissertation, I propose a method to increase information capacity
by adding additional characters other than A, C, G, and T to data to DNA
encoding. The ideal additional characters as the restriction that it can be
synthesized, amplified and analyzed using existing platforms and the cost
should be the same. In that manner, the addition of the encoding characters
could increase not only the information capacity, but also cost-based practicality.

Examples of such additional character’s candidates include bases whose
biochemical properties have been changed from A, C, G or T, such as the
methylation modification to the base C or the phosphorothioate addition
between the base and the base in addition to the basic base. However, DNA
amplification efficiency using an enzyme is not low or modification may be lost
during amplification. In addition, it has been reported that unnatural bases such
as RNA base, Z, P, dNaM, dm5SICS, isoC, and isoG other than ACGT[26]
(Figure 2.6) are synthesized and amplified through an enzyme, which can be
used for additional characters. However, these bases are not suitable for use in
DNA based storage because they cannot be analyzed by NGS. Also, even if this
is possible, the mentioned examples have the disadvantage that the synthesizing
cost is expensive compared to the existing ones.

As an example of an additional encoding character, researchers previously
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introduced chemical treatment-enabled additional bases[27]. By motivated by
the fact that deamination of C to uracil (U) could not applied for the 5-metyl
modified C, when treated by the bisulfite ion catalyzed hydrolytic, they use the
5-metyl modification as a new encoding character (Figure 2.5(a)). After the
chemical treatment, only un-modified C was changed to T since the base U will
be supplemented with A while PCR (Figure 2.5(b)). However, since there are
only few types of modification that be used, and the synthetic cost of the
modified DNA is more than 10-fold expensive than the normal one, this could
not be practically used. From this, researchers tried to use this as a

cryptographic system, rather than large-scale data storage system.

dNaM-d5SsICS isoC isoG

Figure 2.5 Example of unnatural bases and its chemical structure.
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Figure 2.6 A chemical treatment-enabled additional bases for DNA-based data
storage: (a) Base C is chaged to T, after NaHSOs treatmentl; (b) By utilze 5-
metyl modified C, which is not affected from NaHSO3, encoding character set

for DNA-based data storage has been expanded.

2.2.1. Degenerate Base

In this dissertation, I propose to use degenerate base as a new encoding
character. A degenerate base is a mixture of A, C, G, and T at a specific base
position. For example, if a particular DNA sequence is ‘CWA’ and W is a
degenerate base with mix of A and T, then the DNA molecule of "CAA’ and
‘CTA’ are presented. There are total of 11 degenerate bases and their names are
defined by IUPAC (International Union of Pure and Applied Chemistry)

(Figure 2.6 (a))[28]. Also, if the ratio between the bases that make up the
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degenerate base could be adjusted, ideally an infinite encoding character can be
created.

The chemical DNA synthesis method that is currently used is to make long
DNA molecules by sequentially connecting blocks corresponding to a single
base[18]. In addition, the method is not a monomolecular synthesis, and it
produces 10° or more identical molecules even when synthesized at the smallest
scale[29]. Therefore, the degenerate base can be synthesized by mixing the
block elements corresponding to the base combination in the conventional DNA
synthesis process. In the case of sequence analysis with NGS, the number of
NGS reads per fragment is increased to confirm the degenerate base, and there
is no change in the platform. In the aspect of the cost, since the NGS cost for
the DNA is small enough to be ignored, the cost for increased read also would
be ignored. This will be discussed in Chapter 5. In addition, in the case of
column or ink-jet base DNA synthesis[29], which is most conventional
platforms, there is no additional amount of chemical spent and ideally there is

no increase in the cost.
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(a)
GHGDBRADCKG

GAGGGAAACTG
GCGTCGAGCGG
GTGGCAATCGG
GTGAGGAGCTG

GCGATAAACGG
GAGTTGATCTG

(b) Synthesis without additional cost

Degenerate bases

GHGDBERADCKG

Symbol | Base mix Symbol | Base mix
R A, G - AC T
CT B C,G T
M A C v AC G
K G T D AGT
S C.G N AC,GT
w AT
[ Synthesis direction : 3'to &'

Figure 2.7 Degenerate base and its synthesis: (a) Left : A examples of

degenerate base, Right : The symbol of degenerate bases defined by [UPAC[28];

(b) Synthesis skimetic for oligonucleotide including degenerate base. This

figure has been modified from the previous research[17].
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Chapter 3. Addition of Degenerate Bases to DNA-

based Data Storage

In this chapter, a design of the DNA for data storage, experiment approach
to handle the DNA for the demonstration of the concept of adding a degenerate
base to the DNA-based data storage method will be described. First, this chapter
deals with the encoding method of converting digital data into DNA including
degenerate bases. Second, chemical synthesis of DNA, its amplification, and
sequencing methods will be described. Finally, a method of decoding digital
data from sequencing data and its results will be introduced. Through this

chapter, hundreds of kb of data was stored in DNA and restored successfully.
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3.1. Digital Data to DNA Encoding Method

The DNA codon method was used in this dissertation to convert the binary
data consisting of 0,1 into the degenerate base containing DNA. Due to the
nature of the degenerate base, the GC contents may change in one base place,
so the fountain method to control the GC contents of fragments in the design
was not used. In addition, molecular biologic methods, not algorithmic methods,
were used to uniformly amplify molecules with various GC contents variants
resulting from fragment design, which is covered in Chapter 3.2.

The factor to be considered in generating the DNA codon is how long it
will allow homopolymer. Previous studies have shown that increasing the
length of the homopolymer beyond 4 nt causes enzyme slippage in the PCR[20].
It is also reported that the error rate of NGS increases when the length of the
homopolymer longer than 4 nt or more[21]. Based on this, a codon that allowed
only 3 nt homopolymer was generated. First, all kinds of codons consisting of
3 nt were made. After that, the codon that has same base in second and third
position of it. If this method is used, even if the codons are arranged
successively, only homopolymers having 3 bases or less will be presented. Also,
in the case of degenerate bases, if homopolymer was present the oligo was not
used, by considering all possible base combinations. In this way, a total of 750
codons were created. This is more than 15 times the codon of 48 without the

degenerate base. Finally, encoding was performed by associating two codons
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with 19 bits of digital data.

3.1.1. Design of the DNA library for storage

As a pilot study, a DNA fragment of 85 nt was designed, and 40 nt is the
adapter size for DNA amplification, so the actual length used for the data to
DNA encoding design is 45 nt. The adapter sequence was made by trimming
the sequencing primer of the NGS platform (Illumina), that way it could be used

both in amplification and sequencing. Sequence of the adaptor is below:

Forward adaptor: ACACGACGCTCTTCCGATCT

Reverse adaptor: AGATCGGAAGAGCACACGTC

42nt, or 14 codons is the length to which data is allocated, and addresses
are assigned to the remaining 3nt (Figure 3.1). Addresses corresponded to 48
codons without degenerate base. The reason why the degenerate base is not
addressed in the address is because it is necessary to classify the read using the
address to find the degenerate base. This will be covered in Section 2.3. In this
study, the text file of Figure 3.2 was converted for the pilot test. Its size is 854

bytes and 45 DNA sequences are generated (Table 3.1).
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(@) Address
Adapter f Encoded Data  Adapter

NGS , Classifying
by address

(b)

Read1 ...CGAGGGAAACTG. ..
Read2 ...CGCGTCGAGCGG. ..
Read3 ...CGTGGCAATCGG. ..
Read4 ...CGTGAGGAGCTG. ..
Read5 ...CGCGATAAACGG...
Read6 ...CGAGTTGATCTG. ..

Confirmed . . . CGHGDBRADCEKG, . .

Figure 3.1 Structure of the DNA library. This figure has been modified from the

previous research[17].

o ® BiNEL.txt — EHEE ~

National University. Professor Sunghoon Kwon's group is operated since
2006.

Current members :

Jinwoo Hyun, HongKeun Oh, Keum Hee Hwang

Alumni:

Figure 3.2 The text file used for encoding in the pilot demonstration. The
content of the text file is a member list of the research group, BiNEL

(http://binel.snu.ac.kr).
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Frag
ment
numb
er

Sequence

ACACGACGCTCTTCCGATCTACADYRTKCSATRTCACRRTADTCKGWTW
CCYGDWSYTMTTGRAYAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTCCAYCWNWCMWSWGYMSAGMGBTGRWC
KASSDCTYABTMYKCGCDAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTTCAAAKCABNGYYYACAGCTVWYGDGWR
TRRTCNMTKCRNCGRGMAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTGCAKSWDSWNGABKMYWCVCDHTRYHG
GCTDCWTGHNSADCACCGAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTATAWSWWTAAWSDMGHGMNAGCTMCYG
WMTMWCRCGYCGNKMYTAAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTCTAMTRYCWRTSNAYYKCTAY WKMNWSBT
SVMTWWSTDCCTGVYGAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTTTASHGHGMNTSAWSKGCWDCAAKTTMB
ASAYACKCTYACTGKGHAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTGTABGWKCKGGCMTVSGABWGATMDABT
TRCCDGGADGAWVTYYAAGATCGGAAGAGCACACGTC

ACACGACGCTCTTCCGATCTAGABKARCGHWSDWCTTCWACACKCMKV
GWGRYRGTGGTACRAYRAGATCGGAAGAGCACACGTC

10

ACACGACGCTCTTCCGATCTCGABKAMAGSWCBRCCRTNDCVTMYRTV
DCDGATAYDSANWCDASAGATCGGAAGAGCACACGTC

11

ACACGACGCTCTTCCGATCTTGADCKHRYHGYCMGNSWVTSBTGRTMK
ASBSARCGVSTVCAAABAGATCGGAAGAGCACACGTC

12

ACACGACGCTCTTCCGATCTGGAVMKHTCRBABTACASHWSVMTSYRYA
SHTRKWSTWSBCABKMAGATCGGAAGAGCACACGTC

13

ACACGACGCTCTTCCGATCTAACCAKMGMNTSCGWRAKSTAGGYTSTCG
WTCKGGHTMGATGGCDAGATCGGAAGAGCACACGTC

14

ACACGACGCTCTTCCGATCTCACRY GAAYHCTRGCKCRMCDCTMTCTVR
TBTACYADATATGNGYAGATCGGAAGAGCACACGTC

15

ACACGACGCTCTTCCGATCTTACDKCDGTVAGSTRGGHBGTKATVYAVMT
TRCCKARSTSAGRYAAGATCGGAAGAGCACACGTC

16

ACACGACGCTCTTCCGATCTGACTCWVBAWGYVYRCASGABBTGDGTBS
WDTGMYAGCKMSTCHGAGATCGGAAGAGCACACGTC

17

ACACGACGCTCTTCCGATCTATCKYRVAYKTSMMTRCTVHGHTRDWCVM
TTRCVYAKATNBAYCKAGATCGGAAGAGCACACGTC

18

ACACGACGCTCTTCCGATCTCTCAMKSAKWTSHCWHGMRSTMRYMYAG
TRHRTYSATTGWKCBMTAGATCGGAAGAGCACACGTC

19

ACACGACGCTCTTCCGATCTTTCTCWDBAGGCNTVHGMGVTTMKDGHV
RTYKCCKAACTCTGCRTAGATCGGAAGAGCACACGTC

20

ACACGACGCTCTTCCGATCTGTCDKCNMTDVTMCAHCGTAYHRYGKCRS
TSGABYGNAKBAKMWCAGATCGGAAGAGCACACGTC

21

ACACGACGCTCTTCCGATCTAGCDKCVTRAWSVCRHTAKWGVTMAGWY
AYKMTKGTHTAATRVTCAGATCGGAAGAGCACACGTC

22

ACACGACGCTCTTCCGATCTCGCWAKMWSKRYKGCHGMKVTKYRRATT
CGGGHMKMDWGYATKDCAGATCGGAAGAGCACACGTC

23

ACACGACGCTCTTCCGATCTTGCDKCDGTVAGVYGCCGNAKBCKVRYYS
WKTSBYGHAKKDCMGCAGATCGGAAGAGCACACGTC

=
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24

ACACGACGCTCTTCCGATCTGGCHCWACDRWGBTADGTRGAHTGHKMK
ASKMTHWSWCRWSAHAGAGATCGGAAGAGCACACGTC

25

ACACGACGCTCTTCCGATCTAATYCKMGTTTCYGMTASWSABCKTTMKM
TNABBYGNAKBAKMWCAGATCGGAAGAGCACACGTC

26

ACACGACGCTCTTCCGATCTCATTCKRKMNBAWSWWCTNHGVMTSYRD
MTHYGBRYKTASMTVMGAGATCGGAAGAGCACACGTC

27

ACACGACGCTCTTCCGATCTTATCGTSTMTWSTTAAKCGSWKAYKCGYS
WAWSVACSTRATRBTCAGATCGGAAGAGCACACGTC

28

ACACGACGCTCTTCCGATCTGATWCKGACNBAWSWWCTNHGDCTYGW
RSWKRCRCGYVTVRTGGMAGATCGGAAGAGCACACGTC

29

ACACGACGCTCTTCCGATCTACTWCKSTCTWSYTASTAAWSGMKDCTDS
ABGHVWSBCTTRTSTMAGATCGGAAGAGCACACGTC

30

ACACGACGCTCTTCCGATCTCCTTCWDBAMTSBAKHTAWASGMKGKCG
DCNCKSYRAACSTMGACAGATCGGAAGAGCACACGTC

31

ACACGACGCTCTTCCGATCTTCTWAKBYAKYGYSTYSAMASYRYVTVDR
YTGCGWCHTMADCKCRAGATCGGAAGAGCACACGTC

32

ACACGACGCTCTTCCGATCTGCTYCWSACVBAYKCCASHWSAGAKGCYA
YKMTARTRKCMKCARYAGATCGGAAGAGCACACGTC

33

ACACGACGCTCTTCCGATCTAGTTCWVBAWTSHCWHGMKCGDTMTAGD
MTBYGDWSHTANCAHCTAGATCGGAAGAGCACACGTC

34

ACACGACGCTCTTCCGATCTCGTYCWVACNGAKGYTRTRCDKYRDKCSD
CTTRSMKNGWNCARTGAGATCGGAAGAGCACACGTC

35

ACACGACGCTCTTCCGATCTTGTCAKMYATWSVCADTAHCTVCKDRYSD
CTTRHMKYTCVRTBTMAGATCGGAAGAGCACACGTC

36

ACACGACGCTCTTCCGATCTGGTTCKKAKHCTGGCTATRABCTRTSTBTS
VMTGSWGGHMTCTWGAGATCGGAAGAGCACACGTC

37

ACACGACGCTCTTCCGATCTAAGDKCVGTBAGVGABTMHMGHRYCKCV
RTMKCBYGNAKGTGDBAAGATCGGAAGAGCACACGTC

38

ACACGACGCTCTTCCGATCTCAGTCWDBAGGCNTVHGMKVTKYRAKMK
ASCSAMYANTAWAGSTGAGATCGGAAGAGCACACGTC

39

ACACGACGCTCTTCCGATCTTAGVKCBABBCGGKCKGWHMKKYRATCD
SAVITVMRCRWSBAKMWCAGATCGGAAGAGCACACGTC

40

ACACGACGCTCTTCCGATCTGAGWAKYWSCWSSABHGMVSTGMKKCTC
DCWGATTMHTCGRTGMTAGATCGGAAGAGCACACGTC

41

ACACGACGCTCTTCCGATCTACGCGTWTMVASHSWTVTKMTWGYGABN
SAATAVWSTCTVRTDGMAGATCGGAAGAGCACACGTC

42

ACACGACGCTCTTCCGATCTCCGSGMHKATRCHKMCAGNABHCWSATAT
CGSWWSANGCGRTCDCAGATCGGAAGAGCACACGTC

43

ACACGACGCTCTTCCGATCTTCGSHGVSAHCTRGCMKCBKARKAWRYDS
AMGWYSATTGHRCKTGAGATCGGAAGAGCACACGTC

44

ACACGACGCTCTTCCGATCTGCGNAYMWSHTSYKMGGABVTWAYWCGY
ATYYABYAAHGVCAAABAGATCGGAAGAGCACACGTC

45

ACACGACGCTCTTCCGATCTATGVMKHTCSACNCRCASMABRKAWRYDS
AMGWCSAVGTASTVTMAGATCGGAAGAGCACACGTC

Table 3.1 Sequence list of the designed DNA library for data storage.
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3.2. Amplification and Sequencing of DNA library

The DNA corresponding to the designed fragment was purchased from the
Macrogen (Seoul, South Korea), by using a column-based synthesizer. From
this, there was no cost increase for the DNA according to the provider, when
compared to the non-degenerate base only sequence. The synthesized DNA was
collected into a tube and diluted to a concentration of 800 molecules per
fragment at 1 ul. In the case of library amplification, the KAPA library
preparation kit from the KAPA bioscience was used, by following previous
studies have shown that KAPA library preparation kit is suitable for amplifying
various libraries of GC content[30], [31]. In addition, all amplification
procedures were performed using qPCR to prevent excessive amplification.

Sequences of the forward and reverse primer are:

Multiplexing Read 1 Sequencing Primer (Forward)
ACACTCTTTCCCTACACGACGCTCTTCCGATCT
Multiplexing Read 2 Sequencing Primer (Reverse)

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

The amplified samples were then analyzed using the Illumina Miniseq

with a 300cycle pair-end read protocol.
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3.3. Decoding of the Data from the Sequencing Data

The raw data resulting from the sequencing is the fastq file of the pair-end
reads. The PEAR algorithm was used to stitch this pair-end reads. After that,
NGS reads with the appropriate lengths, same as the designed fragment since
one could not know the place of the insertion or deletion and the read with
different length could not be properly aligned. There could be the clustering
method to solve the problem and this will be discussed in Chapter 5.4.1.

Finally, the duplicated reads were deleted. This can eliminate the bias
effect of amplifying only specific fragments. The number of reads and its ratio
to the raw data is described in Table 3.2. Here, the amount of heterogenecous
read is dramatically smaller than that of raw data. This is because the
sequencing data is excessively large, resulting in a redundant read. It can be
inferred that recovery of data may be possible by further reducing the amount

of data, which is covered in Chapter 3.3.2.

Before Assemble 162707 100%
Assemble 158260 97%
Length filter 127082 78%
Heterogeneous reads 26675 16%

Table 3.2 Number of read and its ratio to the raw data, that acquired from each

step. This table has been modified from the previous research[17].
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3.3.1. Determination of Degenerate Base

To determine the degenerate base in sequencing data, there must be a
criterion that can be used to determine whether the ratio of base calls is error or
degenerate. For this, the process of obtaining the criterion for determining the
degenerate base by checking the distribution of ratio of A-C-G-T in each
aligned position such as yellow bar of Figure 3.1 (b) has been proceeded. Figure
3.3 is the scatter plot of the normalized ratio. 15 clusters for 15 characters
including 4 bases and 11 degenerate bases could be decided by k-mean
clustering algorithm or heuristically. The determined characters were identical
to the designed base without error.

However, If the type of degenerate base used in encoding is not known or
when there is a large amount of data, the use of clustering algorithms may be
limited or slow. For this reason, a process to simplifying determination process
is proposed. Proposed method performs clustering to check whether the base
call in the ratio is an error or an intended from the design. First, draw a
histogram of the ratios of each base. The leftmost part with a very small ratio
less than 0.1 in the histogram can be judged as an error (Figure 3.4). To separate
it the first inflection point of a graph was find as a decision line. From this, the
left side of this decision line was considered as not intended base for design and
the right side was considered as the intended base for design. Finally, the base

could be determined by combining of the intended base. For example, in a
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position, if ratio of A, G and T is over its decision line and C is not, the

determined base will be the D, according to Figure 2.6 (a).

‘A’  Ratoof T

0 0204 06 08 1

e

Figure 3.3 Scatter plot of the ratio of bases in the same position. Degenerate

base could be determined. This figure has been modified from the previous
research[17].
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3.3.2. Decoding Result and Down-sampling of Sequencing Data

By comparing the DNA sequence after the degenerate base determination
with the original design, the error rate of this platform was calculated. The
sequence extracted using raw NGS data was the same as the design, so there
was no error. Then, NGS raw data was reduced by random down sampling to
judged how small data could be extracted without error. NGS depth is the
number of NGS read divided by the total number of fragments designed. The
number of reads from the raw data is 162707, which has a depth of 3600x.
Ideally, if there is no degenerate base and there is no error, all data must be read
with a depth of 1x. However, it has been reported that data can be recovered
with error correction by minimum depth of 5x as in Table2.1. Figure 3.5 shows
the error rate according to NGS depth. The mean and standard deviation were
obtained through five random sampling. As shown in this figure, at least 250x
depth was enough to restore data without error. Also, it can be seen in Table 3.3
that the amount of duplicate readings decreased through down sampling. In
other words, it can be seen that the depth of the NGS was excessively higher
than the number of molecules in the sample. Also, in this experiment, since
there is no error correction, it is not possible to correct a single error that
occurred after 250x, which can be solved by adding an error correction in the

next chapter.
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Figure 3.5 Error rate due to sequencing coverage. The standard deviation (s.d.)

of the experimental results were obtained by repeating the random sampling 5

times. The error bars represent the s.d. This figure has been modified from the

previous research[17].

3500x 250x
Before Assemble 162707 100% 11250 100%
Assemble 158260 97% (llg?g; 97%
Length filter 127082 78% (83810532) 78%
Heterogeneous reads 26675 16% (721343'78) 64%

Table 3.3 Number of read and its ratio to the unfiltered data, that acquired from

each step. 3500x is the raw data, and 250x is the data obtained through five

random downsampling. The parentheses are the standard deviation. This table

has been modified from the previous research[17].
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Figure 3.6 is a box plot of the GC contents that can be observed in each
fragment design due to the degenerate bases. Figure 3.6 (a) shows the GC
contents that can be observed in the design and 3.6 (b) is the GC contents
observed in the experimental results. Since the sampling size (~592x, according
to the number of heterogeneous reads) is significantly smaller than the almost
10° variables that can be derived from the designed fragment, quantitative
analysis was not possible. However, averages of GC contents from the
experimental result were found to be similar to the design. To solve this problem,
read number of all individual sequences was normalized, by the read value
when assuming the even representation of sequence in the designed fragment.
After that, the average representation of the sequences in each GC contents was
plotted (Figure 3.7(a)). From the figure, when the GC contents were between
30 and 60%, there was no uneven representation, but in out of the range, uneven
amplification was confirmed. Also, there is dramatically high representation of
few fragments with GC contents around 80%, which tendancy is different from
the data of previous research[19]. However, this does not seem to be meaningful
because the amount of data is less than 10. But even so, more than half of the
sequences within the designed fragment are within the range, so decoding was

possible. A simulation approach to this is discussed in Chapter 4.
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Figure 3.6 Box plot of GC contents variants due to the degenerate bases from

each fragment designed: (a) GC contents from the design; (b) GC contents from

the experiments.
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Figure 3.7 (a) Nomalized read number of the sequences from the NGS data,

according to GC contents. The closer the value is to 1, the smaller the effect of

the uneven representation. (b) Experimental data follows the tendancy of

previous research. The figure has been modified from the previous research

[19].
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The results obtained through this pilot experiments are summarized in

Table 3.4. When comparing this study with the most efficient study reported,

information capacity and physical information density have more than doubled.

However, the size of the encoded data is very small when compared with the

existing studies, and the scalability of the platform cannot be confirmed.

. Physical Number Minimum
Error Information . .
. . information Full of NGS
correction capacity . Input data .
method (bit/nt) density recovery | oligonuc | coverage(
(Pbytes/g) leotides average)
Erlich 215
and Fountain 1.57 214 M -b " Y 72,000 10.5x
Ziclinski (Megabytes)
This N 337 485 854 (b Y 45 250
research : (bytes) X

Table 3.4 Summary of the result. The result is compared with Erlich and

Zielinski[10], that achieved both highest information capacity and physical

information density. This table has been modified from the previous

research[17].
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34. Microarray-derived DNA Pool Based DNA-based Data

Storage

To supplement the lack of scalability as mentioned in the results of Chapter
3.3, a new experiment was conducted. To do this, hundreds of thousands of
DNA must be synthesized. In addition, there should be the method, or algorithm
to handle errors and losses that may occur during handling of many types of
DNA. First, the column base synthesis that used for the demonstration is a
method to synthesize tens of nano moles of molecules for one designed
fragment. However, this synthesis method is not suitable for synthesizing large
amounts of DNA because the synthesis price is $0.05-0.15 per nucleotide. To
solve this, the synthesis method had been changed to a DNA-microarray-based
synthesis method, which is about 100 times lower than the column-based
synthesis method. However, this method has a drawback that the error rate is
higher than that of the conventional method. Also, there may be a loss of
fragment due to uneven amplification that occurs when a large number of
designed fragments is contained in a pool and amplified. In order to solve

problems mentioned above, error correction was included in the design aspect.
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3.4.1. Design and experiment of the DNA library for storage

For the microarray-derived DNA oligopool synthesis, B3 Synthesizer
DNA microarray synthesizer (Customarray Inc. USA) was used. Due to the
limitations of the synthesizer, there were design limitations in this
demonstration. First, the synthesizer was unable to mix the phosphoramidite
during synthesis. So, to use degenerate base, a line of mixed phosphoramidites
should be added. Since the synthesis platform had only six lines, we only used
two degenerate bases. Also, maximum synthesis length was about 160nt, which
is shorter than DNA library that other reports used.

From this, I encoded the thumbnail image of Hunminjeongum Manuscript
(or Hunminjeongum Haerye, Figure 3.8), which is the UNESCO memory of
the world registered documented heritage submitted by Republic of Korea in
1997. Image file was resized to 692 x 574 and the file size was 135,393 bytes.
I used W (mix of A, T) and S (mix of C, G). Each 7-bit data is matched to a
DNA codon consisting of three combinations of alphabets from six. The three-
nucleotide codon is designed so that the whole sequence does not contain more
than three repeating nucleotides, including those in the degenerative parts, same
as chapter 3.1.1. The encoded information is divided into fragments of 111 nt,
and an address composed of three address DNA codons, total length of 9 nt is
assigned thereto. Each fragment is supplemented with an adapter in chapter

231.1 for amplification and sequencing.
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4183 fragments in total were generated from the data fragmentizing. After
that, I also add Reed-Solomon based error correction (Figure 3.9). I designed 9
redundancy fragments in every 118 information fragments to correct 4 false
information or 9 missing information in maximum. Also, 5 redundancy
fragments were added in block of 53 fragments to correct 2 false information
or 5 missing information in maximum. Finally, 4503 DNA fragments can be
designed.

Designed DNA library was synthesized using 12k microarray following
standard protocol provided (Customarray Inc. USA). After that, the synthesized
library was quantitated using qPCR. Relative sample quantification was
accomplished by interpolation from a standard curve, generated from DNA
samples of known concentration. From this, the synthesized DNA library has
the 438 molecules per fragment, in 1ul of sample (1974204 molecules, standard
deviation: 81696). A sample of 1ul was treated in the same manner as in Chapter

3.2.
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Figure 3.8 The thumbnail image of Hunminjeongum Manuscript (or
Hunminjeongum Haerye), which used for encoding. The size of file is 135,393
bytes.
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Figure 3.9 Stucture of the DNA library. Error could be corrected with the Reed-
Solomon (RS) based redundancy. This figure has been modified from the

previous research[17].
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3.4.2. Experimental Result and PCR bias analysis

The process for determinizing the degenerate base is the same as Chapter
3.3.1. Figure 3.10 shows the clustering results of W and S in the A-T or G-C
domain. Since the coupling efficiency during synthesis varies for each base, by
type and position in the growing oligonucleotide, the intermediate ratio of the
nucleotides analyzed was not equivalent, or their average was not 0.5. The
information was successfully recovered from raw data with an NGS depth of
about 1250x. The results of filtered reads in each step for decoding are shown
in table 3.5. Unlike the initial demonstration, the number of reads is reduced by
about half when filtering the length of the appropriate DNA, which is the effect
of deletion during DNA synthesis. Since twice the length of the DNA was used
when compared with the initial demonstration, indicating that the deletion

errors resulting from synthesis have accumulated.

53 W e i T



o8t | :
! 1
- o ! !
5 i O '
2 ) | :
- - : !
P & 0.4 | :
1
02} ! |
A --------------------- I " C
0 . A 0 ..
0 0.2 0.4 0.6 0.8 1 ] 0.2 0.4 0.6 0.8 1
Ratio of A Ratio of C
(to total reads in the same position) (to total reads in the same position)

Figure 3.10 Scatter plot of the ratio of bases in the same position. Domain was
limited to A-T or C-G to determine the degenerate base, W or S. This figure has

been modified from the previous research[17].

Before Assemble 5847136 100%
Assemble 5660429 97%
Length filter 2928269 50%
Heterogeneous reads 1083343 19%

Table 3.5 Number of read and its ratio to the unfiltered data, that acquired from

each step. This table has been modified from the previous research[17].
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In order to determine the minimum amount of NGS data that is most
efficient in recovering the data, recovery of the data through down sampling
has been carried out. Figure 3.11 shows error rate of sequenced base pairs in
fragments of sampled heterogeneous read depth when the respective decision
boundary is applied. The read depth of 25 or more shows error rate of 0.5% or
less, which is lower than the combination of the synthesis error and the
sequencing error when the normal microarray-derived DNA oligopool is used.
However, due to the synthesis and amplification bias, each fragment had
uneven read depth, even if the NGS coverage was increased. From this reason,
the average error rate of the synthesized library according to NGS coverage was
converged to ~0.07% in 500x (Figure 3.12). I also have recovered the data in
10 cases out of 10 random down-sampling the NGS coverage to 250x.

Also, when the number of filtered leads per sampling step is checked in
Figure 3.13, It can be seen that the number of heterogeneous reads converges
to about 200x, which means that the amount of data available is limited since

400 per molecule fraction of the sample used in the experiment.
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Figure 3.11 Error rate of sequenced base pairs in fragments of specific
heterogeneous read depth. The standard deviations(s.d.) were obtained by
repeating the random sampling 5 times. The error bars represent the s.d. This

figure has been modified from the previous research[17].
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Figure 3.12 Error rate due to sequencing coverage. The standard deviation (s.d.)
of the experimental results were obtained by repeating the random sampling 5

times. The error bars represent the s.d. This figure has been modified from the
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previous research[17].
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Figure 3.13 Number of read that acquired from each step, according to the NGS
coverage of the raw NGS data. The standard deviation (s.d.) of the experimental
results were obtained by repeating the random sampling 5 times. The error bars

represent the s.d. This figure has been modified from the previous research[17].
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To determine the tendency for uneven amplification between fragments,
the number of NGS reads actually used for decoding in each fragment was
obtained and its probability density histogram is shown in figure 3.14. Past
studies have estimated the distribution at other depths by fitting the distribution
of read obtained at a specific depth to a negative binomial function[10]. Even
though each histogram plot is a match to a negative binomial plot, which

follows equation:
r+x—1y .
y=f(xlr,p)=< N )p (1-p)

However, the approach seems to be not possible, as the number of
heterogeneous readings and the associated histogram mean tend to be saturated

for depths greater than 500x.
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Figure 3.14 Profile of uneven representation of fragments could be seen in the
probability density histogram. Red, negative binomial fit. This figure has been

modified from the previous research[17].

Finally, a summary of the overall experiment results is shown in Table 3.6.
This experiment shows that the information capacity and physical information
density increase by more than twice as much as the highest reported in past,
while storing up to several hundred kilobytes of data. In particular, in the
previous studies, it was mentioned that thousands of molecules per designed
fragment were required for storage. However, through this experiment, it could
be shown that information can be recovered even with a much smaller number

of molecules.
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Number of 15 6

encoding Charaters

Input data 854byte | 135Kbyte

Number of

oligonucleotides 45 450

Minimum NGS Highest
coverage (average) 250 250 reported
Net information

capacity (bit/nt) 3.37 2 13
Physical density

(Pbytes/q) 772 485 | 214

Table 3.6 Summary of the result. The result is compared with Erlich and
Zielinski[10], that achieved both highest information capacity and physical
information density. This figure has been modified from the previous

research[17].
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Chapter 4. Simulation Approach for Error Rate
Analysis and Cost Projection of Platform in
Scaled-up Data Storage
In this chapter, a simulation approach to the concept of adding a
degenerate base to the DNA-based data storage method is described. The error

rate of the platform in terms of NGS coverage for data recovery when various

types of degenerate bases are simulated, in a large scale of the data.
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4.1. Monte-Carlo Simulation for Error Rate Analysis

In addition to the experimental results, the error rate of the platform in
terms of NGS coverage for data recovery when various types of degenerate
bases are simulated. Monte Carlo methods are used for the simulation, which
is used to obtain numerical results with repetitive random sampling. For this, in
this chapter, random generation of data and its encoding, and random
generation of NGS data are performed. To do this, it is necessary to determine
what probability distribution the sequencing data followed. Through the results
of Chapter 3, call frequency of each fragment designed was analyzed and
confirmed that it follows the negative binomial distribution. However, the
distribution of bases randomly called from a specific degenerate base position
was not confirmed. To do this, the base call at the degenerate base location in
the NGS data in Chapter 2.4 was analyzed. First, the fragments with more than
50 read calls were selected and 50 reads from every fragment were randomly
sampled. A histogram of the elements that form the degenerate base was plotted
(Figure 4.1). From this, the probability distribution follows the binomial

distribution (red line), which is the equation:

Pe) = p* (1 =py ().n =50

This can be considered to be the probability that the blocks corresponding
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to each base are binomially connected during DNA synthesis. Also, from the
fitted distribution, we could extract value p, which was used from the
simulation. As mentioned in the Chapter 3, the average of the base occurrence
comprising degenerate base was not equal, due to the coupling efficiency is

different between each base[32].
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Figure 4.1 Occurrence of base calls that comprises a degenerate base. Blue:

histogram, Red: Fitted binomial graph. This figure has been modified from the

previous research[17].
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The platform was modeled using Monte Carlo simulation. First,
simulation using the data that used in Chapter 3 was proceeded, to see if the
simulation results are reliable. First, we generated the sequencing results, when
assuming there is no uneven representation of the data. The fragment encoded
in the experiment was used as an input. After that, sequencing results for the
determined number of reads was generated, using the random generation
following the binomial probability distribution. Also, error base was generated,
following the binomial distribution and p= 2%. After generation of the data, the
error rate was confirmed. The result is described in Figure 4.2. Simulation
results were similar when compared to the error rate of even sampling in actual
experimental data. After that, the uneven distribution (Figure 3.14) obtained in
the experiment was applied in the simulation. As a result, an error rate similar
to that of the actual test results was confirmed (Figure 4.3). Based on these

results, a simulation using an additional degenerate base was proceeded.
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Figure 4.2 The error rate per base pairs according to read coverage of fragments,
on which the reads were randomly and uniformly generated in simulation. The
experiment data is from Figure 3.11. This figure has been modified from the

previous research[17].
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Figure 4.3 The error rate per base pairs according to read coverage of fragments,
when applying uneven representaion profile applied. The experiment data is

from Figure 3.12. This figure has been modified from the previous research[17].
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Based on the data, the error rate per base pair of the models by using 10
various sets of degenerate bases, or all degenerate base was simulated. First,
data was encoded after the generation of random data correspond to the one
fragment. The length of the fragment used in the simulation was 200nt with a
20nt adaptor that used in the experiment at both ends. 12nt was assigned to the
address and the data was stored in 148nt. The encoding procedure was same as
described in Chapter 3. After the encoding, the NGS data was generated
following uneven representation of the fragments, by applying the probability
density of Figure 3.14. In the sequencing results, the base corresponding to the
degenerate base are generated with binomial and the mutual probability was
assumed as the same. Also, error base was generated, following the binomial
distribution and p= 2%. In order to reflect the difference of amplification
efficiency according to GC contents, only the read with the GC contents
between 40% and 60% was generated. Decoding was proceeded as described
in Chapter 3 and error value was obtained.

In the simulation, the extended degenerate bases sets, which were
specified by two nucleotides with different ratios (e.g., W1 for A:T=3:7 and W2
for A:T=7:3) was also introduced and expanded the number of encoding
characters to 21. For determining the extended degenerate base, the decision
was proceeded by comparing the ratio between the two bases. For example, if
the base is classified as W, if the ratio of T is bigger than W, it considered as

WI1. In all simulation, the error rate was obtained by repeated encoding and
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decoding of tens of gigabytes.

Figure 4.4 is the error rate of the system, when there is no uneven
representation between the designed fragments. Also, Figure 4.5 is the error rate
with the uneven representation of the fragments. The use of various types of
degenerate bases increases the error rate but the trend of decreasing error rate
is shown with increasing NGS coverage.

As an additional experiment, random 100MB of the data was generated
and decoded for ten times. In NGS depth of 1300x or more, decoding of 100
MB with 10% error correction of Reed-Solomon proceeded without error. From
this, information capacity of 2.67 and 3.05 bit/nt were achieved, when using 15

and 21 encoding characters.
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m— A C, G, T, W, S (6) - Simulation
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Figure 4.4 The error rate per base pairs according to read coverage of fragments,
on which the reads were randomly and uniformly generated in simulation. The
experiment data is from Figure 3.11. This figure has been modified from the

previous research[17].

.
70 ¥ ..-'I\-f -.‘:.Tr' I__.



Error rate per base

1073 k

N} £
LSS &
NGS coverage

— A C, G, T, W, S (6) - Experiment
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Figure 4.5 The error rate per base pairs according to read coverage of fragments,
when applying uneven representaion profile applied. The experiment data is

from Figure 3.12. This figure has been modified from the previous research[17].
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Chapter 5. Conclusion and Discussion

In this chapter, the information capacity and cost achieved through
experiments and simulations in this dissertation will be discussed. In addition
to this, how this method can be applied to existing DNA-based data storage
algorithms to increase efficiency is discussed. Finally, future works that can
develop the proposed method or topics on other problems of DNA-based data

storage will be presented.
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5.1. Comparison of the Result with Previous Works

From the result of Chapter 3 and 4, we achieved highest information
capacity, when compared to the previous researches (Figure 5.1, Table 5.1). |
achieved 3.38 bit/nt experimentally, which is higher than the simulation result
of 3.05bit/nt, because there is no error correction code assuming a large-scale
experiment and the number of nucleotides assigned to the address is short. Even
though the result from the simulation is lower than its theoretical maximum, it
was more than doubled when compared to those of previously reported DNA-
based data storage methods. Also, as mentioned in the previous chapter, the
amount of NGS depth is several hundred times larger than previous works,

when storing information of similar amount.
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4 1 Experiment

3.37 bit/bt  Simulation
o 3.05 bit/bt

3t o

—— Previous limit ——

[7] [5] [10] [11]
11 18] * 8 N

6]

Information capacity (bit / nt)
N

Figure 5.1 Information capacity achieved in this dissertation and comparision
between capacity from previous researches. The dots in the graph describe the
information capacity in previous research, and the numbers indicate the
corresponding reference. This figure has been modified from the previous

research[17].
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Erlich
Grass et | Blawat and Organic This work This work
al. etal. Zielinsk | ketal (Experiment) (Simulation)
i
Error Fountai
correction RS RS O‘iln a1 RS RS RS
method
Information
capacity 1.16 1.18 1.57 0.81 3.37 3.05
(bit/nt)
Physical
1nf0rmat10n 95 ) 214 ) 775 )
density
(Pbytes/g)
Input data
(Megabytes) 0.08 22 2.15 200.2 854byte 100
Number of 1 13
oligonucleotid 4,991 e 72,000 o 45 -
o million million
Minimum
NGS 372x 160x 10.5x 5x 250x 1300x
coverage
(average)

Table 5.1 Comparision between methods (Rep, Repetiotion method. RS, Reed-

Solomon error correction): 10° bytes, Pbyte : Peta byte, 10'° bytes.

75

S =g kg



5.2. Cost Projection of the Platform

As shown in previous chapters, proposed method doubled information
density when compared to the previous researches, although the proposed
method requires higher NGS coverage. However, the sequencing technology
has a rapid speed of development and the current DNA sequencing cost per base
is approximately 50,000 times lower than the synthesis cost per base, when
applying the synthesis cost based on the cost of column-based DNA synthesis
reported in Erlich and Zielinski[10] and the DNA sequencing cost reported by
K. Wetterstrand[24].

The cost of the storage is projected, when assuming the 1MB of the data
is stored (Figure 5.2). The cost of synthesis can be determined by dividing IMB
by the information capacity and finding the number of nucleotides needed to be
synthesized. For the projection, I used the information capacity of the
simulation in Chpater 4.1, which can be used as large-scale data storage. First,
since the information capacity does not reflect adapters on both ends of
fragment, the value of 160/200 should be multiplied. The cost then can be
calculated by number of nucleotide and the synthesis cost per nucleotide. Also,
NGS cost could be estimated by multiplying the estimated number of
nucleotides and the NGS coverage and its cost. When calculating NGS cost,
2000x depth is applied assuming extreme coverage. Finally, the cost of

proposed platform is 2052 USD/1MB when using 15 encoding characters and
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1795 USD/1MB when using 21 encoding characters, which is approximately
half of the previous minimum of $3555/1MB. Also, NGS cost is less than 5%
of synthesis cost. The price of DNA synthesis used here is a pool-based DNA
synthesis, and since it is a column-based synthesis, minor modification of the
synthesis machine will allow the use of degeneration base. From this, the

expected price will be realized in real terms.
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DNA synthesis ( 0.05% / 100nt) DNA sequencing (0.0000012$ / 100nt)

Organick et al.
Grass et al.
Blawat et al.

Erlich and Zielinsk

....................

' 15 Encoding characters |
1 1

| 21 Encoding characters |
1 1

) ! I This work -----* !
6,000 4,000 2,000 0 0 25 50 75 100
Cost for writing 1MB ($) Cost for reading 1MB ($)

Figure 5.2 Cost comparision between DNA-based data storage methods: Of the
proposed studies in the past, only describe the price of recovering data from
DNA perfectly. The price was calculated by comparing the number of
nucleotides synthesized and the amount of NGS from each study and
multipying that with the cheapest synthesizer and analyst in the current market.
For 15 encoding characters, A, C, G, T and all other eleven degenerate bases
were used. Additionally, A, C, G, T, [R, Y, M, K, S, W — ratio of bases mixed
of 3:7 and 7:3], H, V, D and N were used as 21 encoding characters. This figure

has been modified from the previous research[17].

5.2.1. Outlook for Practical Use of DNA-based Data Storage

In this study, [ proposed a method to reduce the price of DNA-based data
storage by half. But now, the lowered price is still much higher than the cost of
existing storage. For the method of increasing information capacity by
introducing an additional degenerate base, the increase in the efficiency may

not be significantly high because the information capacity increases as a log
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function for the encoding character. If the ratio of the 11 degenerate bases is
adjusted to increase the total number of characters to 32 and increased to 4 bit
/ nt, the DNA synthesis cost will be reduced to about 1000 $ and about 20% of
this, 200% will be the NGS cost. From this point on, NGS prices will take up a
large portion of the total cost, making it difficult to use additional degenerate
bases. In this case, an additional reduction in synthetic and analytical prices of
at least 100 times would be required, for practical use of the storage system. If
the sequencing cost has been reduced by a factor of 100 for about two years and
there is little decline in the synthesis
cost(http://www.synthesis.cc/synthesis/2016/03/on_dna and transistors), a

new synthetic technique may be needed.
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5.3. Applicability of Degenerate Bases to Other DNA-based Data

Storage Methods

In this dissertation, the degenerate base was only applied to DNA-codon-
based encoding. However, the degenerate base could further be used in other
data to DNA encoding method. In particular, in case of random matching of the
DNA[5] and modified or similar version of DNA codon methods[6], [11], the
method could be directly used. When the encoding method is changed, a
dramatic increase of the information capacity is not expected because there is
no dramatic difference in information capacity between each encoding method
even when using the 4 bases.

For the case of the DNA fountain coding[10] which has the most efficient
algorithm in terms of information capacity, since the code check the GC
contents of the fragment, the degenerate that has the variance of the GC
contents in single design could not be used directly. As an alternative, while
using the fountain code, checking all GC variants of the single design, only
passing the GC contents between 30~60% and checking the possibility of the
decoding by using the computation could be the solution. For this, the efficient
method for variant generation and filtering should be developed since there
could be more than 10" variants in the fragment longer than 100nt. Also, the
computation power, time and its cost should also be added to the consideration

of the method. Regard to this, research will be followed in near future.
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5.4. Future Works

In this dissertation, by adding degenerate bases to the data to DNA
encoding, the information capacity and physical density were more than
doubled when compared to those of previously reported DNA-based data
storage methods. To realize the projected cost, oligonucleotide pool synthesis
setup that has synthesis capability for all degenerate sequence should be
developed. Also, precisely control the ratio of the nucleotides in degenerate
base, with a low deviation of nucleotide combinations could allow the higher
information capacity.

Other than decreasing synthesis cost or increasing the information capacity,
the length limitation and quality of DNA synthesis platforms also should be
increased. Currently, there is a synthesis limit of about 200 nt, due to the low
yield of the synthesis platform, which is synthesizing DNA by linking DNA
blocks corresponding to one nucleotide one by one. If the length limit of the
synthesis increases, the nucleotide corresponding to the address can be saved,
thereby increasing the information capacity will be possible. Also, if the
lowered error rate while synthesis is possible, data can be recovered even if the
amount of error correction is reduced, which can increase the information
capacity.

In addition to the cost problem that discussed in the dissertation, there are

several problems to be solved in the near future. For example, the speed of data
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reading and writing should also be accelerated through the development of
platforms. Currently, in the case of 200 nt of DNA fragment, it takes about 2
days for data writing and a day for reading. Because all processes are done in
high-parallel manner, current platforms are appropriate for processing large
amounts of data at once, but they are not suitable for instant reading and writing
of small amounts of information. For this, the cold data described in the Chapter
1 would be appropriate, before the problem is solved.

In addition, in order to develop DNA in a way that enhances convenience,
it is necessary to overcome the material characteristics of DNA. For example,
once a DNA is stored, certain information cannot be altered or deleted. To get
a hint of a solution to this in nature, the CRISPR system[33] could be answer
to the problem, since the system has the ability to erase and replace certain part
of the gene. However, in this case, redundancy for current error correction is
also required to be deleted or modified together, for this, all error correction
codes previous introduced is not appropriate, since the redundancy is made
from the combination of the fragments. Also, unlike conventional information
storage methods that organize information in physical locations, DNA-based
storage methods store information in random pieces as a powder form. In this
case, it is difficult to find information physically. Even though the PCR can be
used to amplify specific DNA, all data should be dissolved in the solution to
recover only specific data, and the rest will be discarded. To solve this problem,

each data should be physically controllable. The physically controllable DNA
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system also could be found in the cells, that over-expresses the RNA for a
particular bio-chemical input and preserves the original DNA-based gene.

In summary, if information is stored in a biosystem such as a cell,
information can be provided according to a particular input, and the information
can be modified or deleted. While these systems cannot be achieved with
current technology, it is thought that this can be achieved by the development
of synthetic biology and system biology field.

The following chapters describe approaches that can be addressed in the

near future, on the few aspects of described problems.

5.4.1. Clustering of NGS Read for Shorter Fragment Decoding

In the NGS read filtering procedure, there is a large amount of data loss in
the process of filtering an appropriate length of NGS read. This is due to
deletion errors during DNA synthesis. Even though the length of DNA is shorter
than designed, it still has the information, the required NGS coverage could be
decreased if the shorter DNA is used for decoding. For this, clustering of NGS
read (Figure 5.3)[11] that previous research used could be utilized. The method
is rearranging the sequencing data by clustering and find the position of the
deletion. However, since proposed platform in this thesis has high sequence
heterogeneity variance in designed fragment, the modification of the clustering
algorithm would be needed. Also, since the cost of NGS is negligible, the price

drop by the clustering method will not be dramatic, the approach is not covered
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in the thesis.

Decoding

. f“i““ 11001100. 11001100..

® L ’ ’ ’ 10010100. 10010100..

e * _ 01010111..

... 01100011 01100011..

TACACT..

Sequenced Cluster Reconstruct Reverse Reverse

reads similar reads strands inner code outer code

Figure 5.3 Clustering of sequencing reads for reconstructing the strands. By
utilizing the method, shorter sequncing reads than design also could be used for

data recovery. The figure has been modified from the previous research [11].

5.4.2. Addition of Inosine Base for DNA-based Data Storage

Inosine is the base that commonly found in tRNAs. Also, it could be
synthesis using the current DNA synthesizer. The inosine is normally changing
its base as G, while PCR based amplification, since the complementary of the
base that polymerase recognize is the C. From this reason, the inosine cannot
be used as the additional base.

However, the acrylonitrile treatment could read the chemical change of the
base to not form the base pairing[34](Figure 5.4). So, by using high-fidelity
enzyme, which could skip this base, the shorter DNA fragment could be
generated by PCR amplification. From this, there is the length difference
between fragment could be generated by the chemical treatment and it could be
used as another alphabet for the DNA-based storage. Also, since the reduction

of DNA Iength also could be confirmed in the gel electrophoresis process before
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NGS or sequencing, Data could be instantly confirmed, and another application

area could be opened after future development.

11111 PCR amplification (1111
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Figure 5.4 Chemical treatment to the inosine base could lead to length change
of DNA fragment. The length difference could be used as another encoding
alphabet for DNA-based data storage. The figure has been modified from the

previous research [34].

5.4.3. Indexing of DNA on Encoded Microparticle

Even though the DNA-based data storage has its advantage in high
physical information density, since its physical form is the water-soluble
powder, the data could not be indexed in physical form. From the reason, one
could not separate the specific. Also, the original copy of the DNA would be
discarded after PCR amplification, the system is basically write once, read once
(WORO) memory. Even though the random-access based data selection method,
which utilize multiple primer set to enable PCR-based data selection, the

original copy will be discarded and chance of reselection of the data would be
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restricted.

In this chapter, I propose the microparticle-based DNA indexing method.
By attaching DNA on the micro-sized encoded particle[35], DNA could be
indexed(Figure 5.5). By using previous reported polymer based encoded
particle, which also could carry the DNA by attaching, the original copy of the
DNA could be reserved on the particle. The encoded patter, or the QR code
could be give the index of the data and the adapter sequence of the DNA library.
From this, the user could see the index by screening the QR codes and
physically select the data. I selected the micro-sized polymer particle, since the
hundreds of micrometers is the minimal size that could be seen and selected
with bare eyes.

Also, since the original copy of the DNA is linked on the particle, there
would not be the loss of the data, after the serial PCR-based amplification in
solution. From this, selective file retrieve in multiple time could be done, by
using the bead (Figure 5.6). Even if previous research claimed that the multiple
read could be done by data amplification using PCR, the uneven representation
of the data, or data bias will be accumulated and data error will be increased
during the amplification, as see in Chapter 3. From this, proposed method could
achieve the multiple read system that previous system could not, without bias

(Figure 5.7).
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Figure 5.5 Digital data is encoded and synthesis to DNA and stored in the
encoded microparticle. The QR code on the microparticle gives the brief

information of the DNA library and the adapter sequence. Scale bar : 200um.
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Figure 5.6 Selective file retrieve from proposed system.
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Figure 5.7 Multiple read of the data using the microparticle attached DNA,

without the uneven representation of the data due to the PCR bias.
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