creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Uniqueness problems of diffusion

operators on Euclidean space and on

abstract Wiener space

2018 { 8 ¥

Tor

ﬂ.‘ul
<+

-
{Jo

=0



2 A e

SECRIL WATIOMAL LIMINVERSTY



Abstract

Uniqueness problems of diffusion operators on
Euclidean space and on abstract Wiener space

Seunghyun Kang
Department of Mathematical Sciences
The Graduate School

Seoul National University

The central question discussed in this thesis is whether a given diffusion operators,
i.e., a second order linear elliptic differential operator without zeroth order term,
which is a priori only defined on test functions over some (finite or infinite dimensional
) state space, uniquely determines a strongly continuous semigroup on a corresponding
weighted LP space.

On the first part of the thesis, we are mainly focus on equivalence of different def-
initions of capacities, and removability of singularities. More precisely, let L be either
a fractional powers of Laplacian of order less than one whose domain is smooth com-
pactly supported functions on R\ ¥ of a given compact set ¥ c R? of zero Lebesgue
measure or integral powers of Ornstein-Uhlenbeck operator defined on suitable alge-
bras of functions vanishing in a neighborhood of a given closed set ¥ of zero Gaussian
measure in abstract Wiener space. Depending on the size of ¥, the operator under
consideration, may or may not be LP unique. We give descriptions for the critical

size of X in terms of capacities and Hausdorff measures. In addition, we collect some



known results for certain multi-parameter stochastic processes.

On the second part of this thesis, we are mainly focus on Neumann problems
on LP(U,p), where U c R is an open set. More precisely, let L be a nonsymmetric
operator of type Lu = ) a;;0;0;u+ ), b;0;u, whose domain is C’a New (U). We give some
results about Markov uniqueness, LP-uniqueness, relation of L'-uniqueness and con-
servativeness, uniqueness of invariant measures, elliptic regularity, etc under certain

assumption on g and on the coefficients of L.

Keywords: generalized Dirichlet forms, non-symmetric Dirichlet forms, conserva-
tiveness, diffusion processes, Neumann problem, abstract Wiener space, capacity,
Ornstein-Uhlenbeck operator, Markov uniqueness, LP-uniqueness, essential
self-adjointness, elliptic regularity, invariant measure, Hausdorff measure.
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Chapter 1  General Introduction

This thesis is based on [48, 49, 64, 65]. For this chapter, we mainly follow the book
[29]. Let U be an open subset in R%, and let A be space of test functions on U, e.g.,
A=Cg°(U). Suppose we are given a second order differential operator
d d
Lf=7% aijoid;f +Y bidif, feA,

ij=1 i=1
with measurable coefficients a;;, b; : U - R, 1 < ,5,< d, such that the matrix A =
(aij)i,; is positive definite for all z € U. We call such operators, as well as operators
of a similar type on more general ( in particular infinite dimensional ) state spaces
E, diffusion operators, cf. [29, Appendix B| for a general definition.

Besides their theoretical importance in analysis and probability, singular finite
dimensional diffusion operators occur in many applications, including in particular
stochastic mechanics. Moreover, considering singular finite dimensional diffusion op-
erators can be viewed as a pre-study for the more difficult infinite dimensional case.
The interplay between finite and infinite dimensional analysis is very powerful. We
will show some finite dimensional uniqueness problem, and try to lift some dimension
independent finite dimensional results to infinite dimensions.

Our main focus are uniqueness problems for diffusion operators on LP spaces. Let
A be a space of test functions over the corresponding state space U, e.g., A= C5°(U),
if U is an open subset of R%.

Let u be a o-finite measure on U. The measure u we choose is an invariant measure
for (L, A). Let 1 < p < oo. For the operators we are interested in, it is known that there

exists a Cy semigroup (713 )s»0 on LP(U, ) such that its generator extends the operator



(L, A). We also know that (7})¢so is sub-Markovian, i.e., 0 > Ty f > 1 u-a.e., whenever
0< f<1 pae If (T})4s0 is the only Cy semigroup on LP(U, 1) such that its generator
extends (L,A), we call (L,.A) LP unique. If (T})s»0 is the only sub-Markovian Cj
semigroup on L?(U, i) such that its generator extends (L,.A), we call (L, A) Markov
unique. Clearly, L? uniqueness implies Markov uniqueness. If the closure of symmetric
operator (L, A) on L2(U, ) is self-adjoint, we say (L,.A) is essentially self-adjoint.
For a non-positive symmetric operator (L,.A) on L*(U,pu), i.e., (s Lf) 2wy <0
for all f € A and (L,.A) is symmetric, it is known that essential self-adjointnesss is
equivalent to L? uniqueness.

This general uniqueness problem is related to several specific questions arising in
different areas, e.g., uniqueness of martingale problems, existence of operator cores
consisting of ”"nice” functions, essential self-adjointness and uniqueness problems in

mathematical physics, as well as uniqueness problems for Dirichlet forms.



Part 1

Equivalence of capacities and

removability of singularities



Chapter 2 Probabilistic characterizations of
essential self-adjointness and removability of
singularities

2.1 Introduction

In this chapter we would like to point out an interesting connection between
some traditional and well-studied notions in analysis and an interesting, but perhaps
slightly less known area in probability theory. More precisely, we outline the rela-
tion between uniqueness questions for self-adjoint extensions of the Laplacian and its
powers on the one hand and hitting probabilities for certain two-parameter stochastic
processes on the other. Although both, the analytic part and the probabilistic part
of the results stated below are well-established, it seems that the existing literature

did never merge these two different aspects.

Recall that if a symmetric operator in a Hilbert space, considered together with
a given dense initial domain, has a unique self-adjoint extension, then it is called
essentially self-adjoint. The question of essential self-adjointness has strong physical
relevance, because the evolution of a quantum system is described in terms of a unitary
group, the generator of a unitary group is necessarily self-adjoint, and different self-
adjoint operators determine different unitary groups, i.e. different physical dynamics.
See for instance [88, Section X.1]. Self-adjointness, and therefore also essential self-

adjointness, are notions originating from quantum mechanics.

A related notion of uniqueness comes up in probability theory, more precisely, in

the theory of Markov semigroups. Recall that any non-positive definite self-adjoint



operator L on a Hilbert space H is uniquely associated with a non-negative definite
closed and densely defined symmetric bilinear form @ on H by Q(u,v) = - (u, Lv) 5,
(88, Section VIIL6], where (-,-);; denotes the scalar product in H and u and v are
arbitrary elements of the domain of () and the domain of L, respectively. Now assume
that H is an L2-space of real-valued (classes of) functions. Then, if for any u from the
domain of @ also |u| is in the domain of @ and we have Q(Jul,|u|) < Q(u,u), the form
@ is said to satisfy the Markov property. In this case it is called a Dirichlet form,
and L is the infinitesimal generator of a uniquely determined strongly continuous
semigroup of symmetric Markov operators on H, sometimes also called a Markov
generator, [17, 23, 35]. We say that a non-positive definite symmetric operator in an
L?-space H, together with a given dense initial domain, is Markov unique, if it has
a unique self-adjoint extension in H that generates a Markov semigroup. Different
Markov generators determine different Markov semigroups and (disregarding for a
moment important issues of construction and regularity) this means that they define
different Markov processes. So the notion of Markov uniqueness belongs to probability
theory. It has strong relevance in the context of classical mechanics and statistical

physics.

For a non-positive definite densely defined symmetric operator on an L?-space
essential self-adjointness implies Markov uniqueness, but the converse implication is
false, see Examples 1 and 2 below or [99]. Even if an operator is Markov unique, it
may still have other self-adjoint extensions that do not generate Markov semigroups.
It is certainly fair to say that a priori the notion of essential self-adjointness is a not
a probabilistic notion. However, and this is what we would like to point out here,
in certain situations essential self-adjointness can still be characterized in terms of

classical probability.



We consider specific exterior boundary value problems in R%. It is well-known
that the Laplacian A, endowed with the initial domain C{°(R?) of smooth compactly
supported functions on R?, has a unique self-adjoint extension in L?(R). This unique
self-adjoint extension is given by (A, H?(R?)), where given a > 0, the symbol H%(RY)
denotes the Bessel potential space of order «, see Section 2.2 below. Similarly, the
fractional Laplacians —(~A)*/2 of order a > 0, endowed with the domain O (RY),
have unique self-adjoint extensions, respectively, namely (-(-A)*? H*(R%)). In the

present note we focus on the cases 0 < a < 2.

Given a compact set ¥ c R? of zero d-dimensional Lebesgue measure, we denote
its complement by N := R4\ X. For any 0 < a < 2 the operator (—(-A)%/2,C¢°(N))
is non-positive definite and symmetric on L?(N) = L?(R?). We are interested in
conditions on the size of ¥ so that (—(~A)*/2,C&(N)) is essentially self-adjoint. Of
course one possible self-adjoint extension is the global operator (-(-A)*?2, H*(R?)),
which ’ignores’ . If ¥ is 'sufficiently small’, it will not be seen, and there is no other
self-adjoint extension. If 3 is too big’, it will registered as a boundary, leading to a

self-adjoint extension different from the global one.

As mentioned, the analytic background of this problem is classical and can for
instance be found in the textbooks [3, 35, 77]. See in particular [77, Sections 13.3 and
13.4]. For integer powers of the Laplacian on R? a description of the critical size of %
in terms of capacities and Hausdorff measures had been given in [5, Section 10], and to
our knowledge this was the first reference that gave such a characterization of essential
self-adjointness. For fractional powers a characterization of essential self-adjointness
for the case X = {0} follows from [34, Theorem 1.1]. For more general compact sets
¥ such descriptions do not seem to exist in written form. A probabilistic description

for the critical size of X, which we could not find anywhere in the existing literature,



can be given in terms of suitable two-parameter processes as for instance studied
in [52, 59, 61, 62]. In essence, these descriptions are straightforward applications of
Kakutani type theorems for multiparameter processes, see for instance [59, Chapter
11, Theorems 3.1.1 and 4.1.1]. In fact, using processes with more than two parameters
one could even extend this type of results to fractional Laplacians of arbitrary order.
A philosophically related idea, namely a connection between Riesz capacities and the
hitting behaviour of certain one-parameter Gaussian processes (that are not Markov
processes except in the Brownian case) had already been studied in [57]. Taking
into consideration also processes with a more general state space, another idea is to
test the size of small sets with one-parameter processes taking values in the space
of finite measures over RY, see for instance [26, 82, 83]. Interestingly, they exhibit
exactly the hitting behaviour needed to characterize the essential self-adjointness of

the Laplacian, [83, Theorem II1.5.2].

We would like to announce related forthcoming results for Laplacians on complete
Riemannian manifolds, [50]. An analytic description of essential self-adjointness for
the Laplacian via capacities reads as in the Euclidean case, instead of traditional ar-
guments for Euclidean spaces based on convolutions, [3], our proof uses the regularity
theory for the Laplacian on manifolds, [40], and basic estimates on the gradients of
resolvent densities, [6, Section 4.2]. To proceed to a geometric description we use
asymptotics of the resolvent densities, they are basically the same as those for Green
functions, see for instance [6, Section 4.2], [39, Section 4.2] or [70, Section 4.2]. For a
probabilistic description we restrict ourselves, at least for the time being, to the case
of Lie groups. In this case we can still work with relatively simple two-parameter pro-
cesses and use the potential developed in [52, 53] to connect them to capacities and

essential self-adjointness. In the case of general complete Riemannian manifolds one



first has to raise the quite non-trivial question what could be suitable two-parameter
processes taking values in manifolds. It might even turn out that it is more natural
to use measure-valued processes.

A subsequent idea to be addressed in the near future concerns details of the re-
lationship between stochastic processes and specific boundary value problems. For
many interesting cases it is well understood how boundary value problems (such as
Dirichlet, Neumann or mixed), encoded in the choice of domain for the associated
Dirichlet form, determine the behaviour of associated one-parameter Markov pro-
cesses. It would be interesting to see whether, and if yes, in what sense, the behaviour
of related two-parameter processes can reflect given boundary value problems for the
Laplacian, encoded in the choice of its domain as a self-adjoint operator.

In the next section we collect some preliminaries. In Section 2.3 we discuss analytic
characterizations of Markov uniqueness and essential self-adjointness for fractional
Laplacians. In Section 2.4 we provide geometric descriptions, and in Section 2.5 we
give probabilistic characterizations in terms of hitting probabilities for two-parameter

processes.

2.2 Bessel potential spaces, capacities and kernels

We provide some preliminaries on function spaces, fractional Laplacians, related
capacities and kernels. Our exposition mainly follows [3, Chapters 1-3]. Given « > 0

we define the Bessel potential space of order a by
HY(RY) = {ue LX(RY) : (1+[¢P)*Pae L2(RY)},
where u — @ denotes the Fourier transform of u. Together with the norm

Joal oz = || (1 + )0

L2(R?)



it becomes a Hilbert space. See for instance [3, 77, 100, 101]. Using the fact that
~Af= (€

for any f € S(RY), where S(R?) denotes the space of Schwartz functions on R?
and u + 7 the inverse Fourier transform, we can easily see that (A,C§(RY)) is
essentially self-adjoint on L?(R?) with the unique self-adjoint extension (A, H2(R?)),
see for instance [24, Theorem 3.5.3]. For a > 0 we can define the fractional Laplacians

—(=A)*? of order a/2 in terms of Fourier transforms by
(=22 f = (" /).

Again it is not difficult to show that (~A)*/?, endowed with the domain O (RY),
has a unique self-adjoint extension, namely ((~A)*2, H*(R?)). One can proceed
similarly as in [24, Theorem 3.5.3], see also [24, Theorem 1.2.7 and Lemma 1.3.1].
Given «a > 0, we write

Ya = ((1+ |6 ™%) (2.1)
to denote the Bessel kernel of order a and G, f := vo * f to denote the Bessel potential
operator G, of order o, which defines a bijection from S(R?) into itself and also
a bounded linear operator G, : L>(R?) - L?(R%). In both interpretations we have
Go = (I-A)~*/2. The image G, f of a measurable function f : R? - [0,+00] is a lower
semicontinuous nonnegative function on Rd, see [3, Proposition 2.3.2]. This implies
that for any f e L?(R%), where the latter symbol denotes the cone of nonnegative
elements in L?(R?), its image Go f is a [0, +00]-valued function on R?, i.e. defined for

any x € R%. We can therefore define the «,2-capacity Cap, o(F) of aset F c R? by
Capa () = inf {[|f[72za) : f € L2(R?) and Go f(2) 21 for all w € B},

with the convention that Cap,, o(F) = +oo if no such f exists, see [3, Definition 2.3.3].



There is another, 'more algebraic’ definition of a «, 2-capacity. For a compact set

K c R?, define

Capl o (K) = inf { ] 31a ey : ¢ € CF° (R) such that p(x) =1

for all 2 from a neighborhood of K}. (2.2)

Exhausting open sets by compact ones and approximating arbitrary sets from outside
by open ones, this definition can be extended in a consistent manner to arbitrary
subsets of R%. Now it is known that there exist constants c¢1, ¢ > 0 such that for any

compact set K ¢ R?, we have
c1 Cap, o(K) < Capy, o(K) < c2 Cap, o(K), (2.3)

see [76, Theorem 3.3 for integer o and [3, Section 2.7 and Corollary 3.3.4] or [4,
Theorem A] for general a. We would like to remark that (2.3) is based on certain
truncation results for potentials. For 0 < a < 1 the spaces H*(R?) are domains of
Dirichlet forms so that truncation properties are immediate from the Markov property.
However, for @ > 1 one needs to invest additional arguments, see for instance [3,
Sections 3.3, 3.5 and 3.7].

As before, let a > 0. We say that a Radon measure p on R? has finite a-energy if

fRd [oldp < ¢ [v] jragay  for all ve CF°(R).

For a measure p having finite a-energy we can find a function U%u € H*(R?) such

that
(U1, 0) o (ray = fRd vdp  for all v e S(RY). (2.4)

Using Fourier transforms this seen to be equivalent to requiring

(1 + IR T,0) o gy = A(0(—))  for all v e S(RY),

3 =11 =1
’ &0 8



what implies that T%% = (1 +|€|*)™%/i in the sense of Schwartz distributions, and

finally,
U = Yoo * .
Note that by (2.1) we have
V20 = Yo * Y- (2.5)

We can define the a-energy of u as

Eo(p) = A;d U dp,

and by (2.4) this can be seen to equal ||U°‘/AH§IQ(R(1). There is a dual definition of the

a, 2-capacity: For a compact set K c R? we have

n(K)?
Eo (1)

with the interpretation % := 0, see [3, Theorem 2.2.7].

Cap, o(K) = sup{ : p is a Radon measure on K} (2.6)

We finally collect some well-known asymptotics of the Bessel kernels. For 0 < o < d
we have

Yo~ Caalr]®®  as |z =0 (2.7)
with a positive constant cq, depending only on d and «, and for the limit case o = d,
Ya(x) ~ ca(-loglz[)  as z[ >0 (2.8)

with a positive constant ¢4 depending on only on d. Moreover, it is known that
Yo is continuous away from 0 and v, (z) = O(e” ) as |z| > oo. (2.9)

By (2.1) we have 9,(&) < €] for all sufficiently large ¢ € R, In the case d < o we
therefore see that the Bessel kernel 7, is an element of L!'(R%) and equals
i{x,€)
e

d
Rde£7 xeR". (210)

’Voz(x) =

See [3, Sections 1.2.4 and 1.2.5].

11 A&t e i



2.3 Markov uniqueness, essential self-adjointness and ca-

pacities

Recall that ¥ ¢ R? is a given compact set of zero Lebesgue measure and N :=
R\ 3. We first state a well-known known result on Markov uniqueness. Using the def-
inition (2.2) of capacities together with traditional approximation arguments, which
we will formulate below for the question of essential self-adjointness, one can obtain

the following.

Theorem 1 Let 0 < o < 2. The fractional Laplacian ((-A)*/?,C$°(N)) is Markov-

unique if and only if Capy s 2(X) = 0.

A classical guiding example for the case o = 2 is the following, which will be

complemented for the cases 0 < & < 2 in Section 2.4.

Example 1 Consider the case that ¥ = {0}. Then (A,C5°(N)) is Markov unique if
and only if d > 2. See [99, p.11/).

We turn to essential self-adjointness. The following theorem provides a character-

ization in term of the «, 2-capacity of X.

Theorem 2 Let 0 < a < 2. The fractional Laplacian ((-A)*/2,C$°(N)) is essentially

self-adjoint if and only if Cap, 2(X) = 0.

For the case a = 2 Theorem 2 is partially implied by [5, Theorems 10.3 and 10.5],
which also imply corresponding results for powers of the Laplacian of higher integer
order. In [50] we provide a version of Theorem 2 for the Laplacian (a = 2) on complete
Riemannian manifolds, generalizing earlier results given in [74, Theorem 3] and [20,

Theoreme 1].

11 ==
12 A = TH e 0



The following is a well-known guiding example for o = 2, for the case 0 < o < 2 see

Section 2.4.

Example 2 Consider the case that ¥ = {0}. Then (A,C5°(N)) is essentially self-
adjoint if and only if d > 4. See [99, p.114] and [88, Theorem X.11, p.161].

We formulate a proof of Theorem 2. Theorem 1 can be obtained by similar argu-
ments.

Proof Suppose that Cap, o(%) = 0. Let (£ dom £(*)) denote the closure in
L2(RY) of —(~A)*? with initial domain C°(N). Since clearly dom £(*) ¢ H*(R?),
it suffices to show the converse inclusion. Given u € H*(R?), let (uy), ¢ C&(RY) be
a sequence approximating u in H*(R?). By (2.2) there is a sequence (v,);, ¢ C$°(N)
such that vy, — 0 in H*(R?) and for each k, v, equals one on a neighborhood of X.
Set wy = (1 - vg)uy, to obtain functions wyy € C5°(N). Let n be fixed. It is easy to
see that Uy, —wng = uyv = 0 in L2(R?) as k — oo. Because the graph norm of (-A)/2

provides an equivalent norm in H*(R%), it now suffices to note that
(=A% (up, = wpr) = (=-A)*?(upv) >0 in L2(R?) as k — oo, (2.11)
For any f,g € Cg(RY) we can use the identity
~(-2)"2(fg) = 20 (f.9) - F(-B)*Pg - g(-A)*f (212)

to define the carré du champ T\ (f,g) of f and g associated with —(-=A)®/2, see for

instance [7, Section 1.4.2]. We have

| £(=a)"2g

L2 (R <o (may 190 e ey

for the second summand on the right hand side, and

lo(-a)"

B (] P e

) 3 1] &=L —
. A2t 8 5



for the third. For the first summand on the right hand side of (2.12) we can use
Cauchy-Schwarz, [[(®)(f,9)| <T)(f, £)/2T(*) (g, g)'/2, and since (-(-A)*/?,C5*(RY))
also extends to a Feller generator on R (see for instance [89]), we have T(®(f, f) e

L*®(R%), so that

c(1.9)

poy S PO e gy 1910y -

2
Here we have used that HI‘(O‘)(L(],Q)HL1 is nothing but the energy

(R9)
((—A)a/4g,(—A)a/4g)L2(Rd) of g, clearly dominated by the square of the H(R?)-
norm of g. Considering (2.12) with u,, and vy in place of f and g and applying the
preceding estimates, we see (2.11). As a consequence, we see that H “(]Rd) c dom £(®).
Conversely, suppose that ((~A)%/2,C¢°(N)) is essentially self-adjoint in L?(R%).
Then its unique self-adjoint extension must be ((-=A)*2, H*(R?)). Let u € C5°(RY)
be a function that equals one on a neighborhood of . Since C{°(RY) ¢ H*(R?)
and by hypothesis C°(N) must be dense in H*(R%), we can find a sequence (uy,)n
approximating u in H*(R?). The functions e, = u — u, then are in Cse (R?), equal
one on a neighborhood of ¥, and converge to zero in H*(R%), so that Cap, 5(¥) <
lim,, ||€nH§{a(]Rd) =0.
O
Finally, we would like to mention known removability results for A. One says that
a compact set K c R? is removable (or a removable singularity) for A in L? if any
solution u of Au =0 in U \ K for some bounded open neighborhood U of K such
that u € L?(U \ K), can be extended to a function % € L?(U) satisfying A% = 0 in
U. See [3, Definition 2.7.3]. By Corollary [3, 3.3.4] (see also [77, Section 13.4] and
[5, Proposition 10.2]) a compact set K c R? is removable for A in L? if and only if
Capy 5(K) = 0.

Removability results for fractional Laplacians are for instance discussed in [56].

) 3 =11 =1 —
’ A 2o 8 3



2.4 Riesz capacities and Hausdorff measures

In this section we consider some geometric descriptions for the critical size of 3.
For the case of Markov uniqueness they have been discussed in many places. For the
case of essential self-adjointness of integer powers of the Laplacian they were already
stated in [5].

We first give a quick review of Riesz energies and capacities. Given s > 0 and a

Radon measure ; on RY, let

L= [, [ o=y ndy)u(dr)

denote the Riesz energy of order s of u. The Riesz energy of order zero of a Radon

measure 1 on R? we define to be

fou= [, [ (~nlw =y u(dy)u(da).
For a Borel set E c R we can the define the Riesz capacity of order s >0 of E by
Cap,(E) = [inf {I,(1) : u Borel probability measure on E}]™*

with the agreement that é := 0. See for instance [59, Appendix C].

Now suppose 0 < 2o < d and that K ¢ R? is compact. Then
Cap, o(K) >0 if and only if  Capy_o,(K) > 0. (2.13)

To see this note that if there exists a Borel probability measure p on K with Iy o, () <
+oo, then by (2.9) and (2.7) respectively (2.8) we have E,(u) < +oo0, and by (2.6)
therefore Cap,, o(K') > 0. Conversely, if the o, 2-capacity of K is positive, we can find
a nonzero Radon measure p on K with E,(u) < +00, so that again by (2.9) and (2.7)
respectively (2.8) the Borel probability measure ﬁ has finite Riesz energy of order
d-2a.

11 ==
15 A = TH e 0



Consider the Dirac measure &g with total mass one at the origin, it is the only pos-
sible probability measure on the compact set {0}. If 2 < d then obviously I 2,(d¢) =
+00, 50 that by (2.13) we have Cap,, 5({0}) = 0. On the other hand, for d < 2« identity
(2.10) implies that U%5o(x) = Y2 * do(2) = Y2 (), z € RY, so that Eq(dg) = Y24(0) <
+o0o and therefore Cap,, 5({0}) > 0. Similar arguments are valid with « in place of 2a.

This produces fractional versions of Examples 1 and 2.

Example 3 Consider the case that 0 < a <2 and ¥ = {0}. Then ((-A)*/2,C°(N))
s always Markov unique for d > 2. For d =1 it is Markov unique if 0 < a <1 but not
if 1 <a<2. See also [16, Section IL.5, p.63]. So a necessary and sufficient condition

for Markov uniqueness is d > a.

Example 4 Consider the case that 0 < a <2 and ¥ = {0}. Then ((-A)%/2,C$°(N))
is always essentially self-adjoint for d > 4. For d < 3 it is essentially self-adjoint if
0 < 2a < d but not if d < 2a < 4. Therefore a necessary and sufficient condition for

essential self-adjointness is d > 2a.

As before let & ¢ R? be compact and of zero Lebesgue measure and write N :=
R? \ ¥. Using theorems of Frostman-Taylor type, [59, Appendix C, Theorems 2.2.1
and 2.3.1], see also [33, 58, 75, 79], we can give another description of the critical size
of ¥, now in terms of its Hausdorff measure and dimension. Given s > 0, the symbol
H* denotes the s-dimensional Hausdorff measure on R, [33, 58, 75, 79]. By dimpy we

denote the Hausdorff dimension. Again we begin with a result on Markov uniqueness.

Corollary 1 Let 0 < a <2 and suppose a < d.

(i) If H(S) < +oo then ((~A)*2,C$(N)) is Markov unique. This is true in

particular if a <d and dimg X < d - a.
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(i) If ((=A)°/2,CS°(N)) is Markov unique then dimy ¥ < d - a.

For the essential self-adjointness we have the following result, it partially gener-

alizes [5, Theorem 10.3, Corollary 10.4 and Theorem 10.5]

Corollary 2 Let 0 < a <2 and suppose 2a < d.

(i) If HP2%(2) < +oo0 then ((~A)2,C&(N)) is essentially self-adjoint. This is

true in particular if 2a < d and dimg 3 < d - 2a..

(i) If ((=A)°12,Ce°(N)) is essentially self-adjoint then dimg ¥ < d - 2a.

We provide some arguments for Corollary 2, it follows from Theorem 2. In a similar
manner one can deduce Corollary 1 from Theorem 1. Proof If 2 < d and H4~2%(%) <
+00 in Corollary 2 (i), then by Frostman-Taylor, [59, Appendix C, Theorem 2.3.1],
we have Capy_o, (%) = 0, and by (2.13) therefore also Cap, (%) = 0. If 2a = d and
HO(X) < +oo, then ¥ must be a finite set of points, note that H" is the counting
measure. Since capacities are subadditive, we have Capg/,(2) = 0 once we know a
single point has zero d/2,2-capacity. However, the only probability measure a single
point p € R? can carry is a Dirac point mass measure 0p with total mass one, and
clearly Io(dp) = +00, so that Capy({p}) = 0. By (2.13) this implies that Capy, »({p}) =
0, as desired. Conversely, if we have 2a < d and Cap, »(X) = 0 Corollary 2 (ii),
then by (2.13) Capy_s,(2) = 0, and Frostman-Taylor implies that for any £ > 0,
H420+2(%) = 0, showing dimy ¥ < d - 20 If 20 = d and Capypy 5(X) = 0, then by
(2.13) we have Capy(X) = 0. It is not difficult to see that this implies Cap,(X) = 0 for

all € >0, and therefore dimgy X = 0.
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2.5 Additive processes and a probabilistic characteriza-

tion

In this section we provide probabilistic characterizations of Markov uniqueness
and essential self-adjointness. We use the notation Ry = [0, +00).

We are aiming only at results on hitting probabilities, so there is ambiguity what
sort, of stochastic process to use. Potential theory suggests to use Markov processes,
and due to the group structure of R? a particularly simple choice is to use certain
Lévy processes, [16, 89]. Recall that a Lévy process on R? is a stochastic process
(Xt)ter, , modelled on a probability space (€2, F,P) and taking values in R? that has
independent and stationary increments, is stochastically continuous, is P-a.s. right-
continuous with left limits ('cadlag’) and such that P(Xy = 0) = 1. See for instance
[89, Chapter I, Section 1, Definition 1.6].

Let (By)ser, denote a Brownian motion on RY (starting at the origin), modelled
on a probability space (€2, F,P), that is a Lévy process on R? with P-a.s. continuous

paths and such that for any ¢ > 0 and any Borel set A c R?,

P(Bie A) = /Ap(t,:r)dx,

where

jof?

1 d
p(t,%)ZWeXp(—E), t>0,(IIER.

Alternatively, in terms of characteristic functions, a Brownian motion is a Lévy pro-

cess on RY satisfying

E[exp{i(&, By)}] = exp{—2_1t|§|2} t>0, £ eRY.

More generally, given 0 < a < 2 let (Xt(a))teRJ( denote an isotropic a-stable Léuvy

process on R? modelled on a probability space (2, F,P), that is a Lévy process on

11 ==
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R? satisfying

E[exp {z <§,Xt(°‘)>}] - exp {—2—0/2t|§|0‘} t>0, € eRL

Obviously for o = 2 the process (Xt(z))te]g+ is equal in law to a Brownian motion
(Bt)ier, - For 0 < o < 2 an isotropic a-stable Lévy process can be obtained from a
Brownian motion by subordination, see [89, Chapter 6, in particular Example 30.6].
For general existence results for Lévy processes see [16, Section 1.1, Theorem 1] or
[89, Corollary 11.6].

To prepare the discussion of related two-parameter processes below, we collect

some properties. Let 0 < a < 2. By
(a) _ (a) d
T, f(z) =E[f(X,;” +x)], t>0, zeRY

we can define a strongly continuous contraction semigroup (Tt(a))bo of Markov op-
erators on L?(R?) (and on the space Co(R?) of continuous functions vanishing at
infinity), they are symmetric in L?(R?). Its infinitesimal generator (in both spaces)
is —27%/2(~=A)*/2. The associated 1-resolvent operators Rga) = (I +27°2(=A)>/2)~1
satisfy

Rga)f _ ]0-00 e_tTt(a)f dt,
they are bounded linear operators on L?(R?) (and on Cu (R?)). The operators Rga)

admit radially symmetric densities u(*), that is

RO f(@) = [ @l @-y)ay.

For 0 < o < d we have

el < uga)(x) < cola|@ (2.14)

whenever |z| is sufficiently small, where ¢; and ¢y are two positive constants. See for

instance [59, Section 10, Lemma 3.1.1 and 3.4.1].
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Versions of Kakutani’s theorem, [59, Section 10, Theorems 3.1.1 and 3.4.1], now
allow to use Brownian motions (in case o = 2) or isotropic a-stable Lévy processes
(in case 0 < a < 2) to characterize Markov uniqueness. As before, ¥ ¢ R? is a compact

set of zero Lebesgue measure and N := R\ X.

Corollary 3 Let 0 < o < 2 and assume d > o.. The operator ((~A)*/2,CE(N)) is

Markov unique if and only if for any x ¢ ¥ we have
P(3 t € Ry such that Xt(a) +xed)=0.

The main aim of the present note is to point out a similar characterization for
essential self-adjointness. Because their definition and structure is particularly simple,
we will use two-parameter additive stable processes to describe the critical size of X.
Let 0 < a < 2. Given two independent isotropic a-stable Lévy processes (X (0‘)),5E]R+

and (X(®)),r, on R? we consider the process (Xt(a))teRi defined by
2 = XD XD b= (1) € R2. (2.15)

It is called the two-parameter additive stable process if index «, see [59, Section 11.4.1].
In the case a = 2 it is called the two-parameter additive Brownian motion, we also

denote it by (Bt)ter,, where
By =B, + By, t=(t1,t2)€eR?,

with two independent Brownian motions (By)sr, and (Et)t€R+ on R?. Additive stable
processes or, more generally, additive Lévy processes have been studied intensely in
[59, 61, 62] and follow up articles.

It seems plausible that, as two processes are added, these two-parameter processes

move 'more actively’ than their one-parameter versions, so they should be able to hit
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smaller sets with positive probability. This is indeed the case and can be used for our
purpose. The next satement is a simple application of known Kakutani-type theorems

for two-parameter processes, [59, Section 11, Theorem 4.1.1].

Corollary 4 Let 0 < a < 2 and assume d > 2c. The operator ((~A)*?,CE(N)) is

essentially self-adjoint if and only if for any x ¢ ¥ we have
P(3 t e R? such that Xt(a) +xeX)=0.

Applying Corollary 4 with o = 2 and d > 4 we can conclude that a compact set
K c R? is removable for A in L? if and only if it is not hit by the additive Brownian
motion with positive probability.

We collect some notions and facts related to additive stable processes and then
briefly comment on the case d = 2« in Corollary 4 which is the only case not covered
by [59, Section 11, Proposition 4.1.1 and Theorem 4.1.1].

One can define a two-parameter family (7;(0‘) )t-0 of bounded linear operators 7;(04)

on L2(R?) (or Cs(R?)) by
T = Tt(la)Tt(ga)a t = (t1,t2) > 0.

Here we write (t1,t2) > (s1,82) if t1 > s1 and t9 > s9. They satisfy the semigroup

property 7;((1)7;(0‘) = 7;((1) for all s,t > 0 and also the strong limit relation

+t

=0, feCuxn(RY),

sup

iy 7 -5

and, using the density of Co (R?) n L2(R?) in L?(R?), also for the L?(R%)-norm and
f e L*(RY). By the independence of the summands in (2.15) it is not difficult to see
that

T4 (2) =P + 2 ¢ A)
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for all Borel sets A ¢ RY and starting points x € R, See for instance [52] or [59, Sections
11.1 and 11.2]. Mimicking the one-parameter case, on can introduce associated 1-

resolvent operators Rga) by
RES(@) = [, e T f(@)as
Here, in accordance with the notation used above, we write 1 = (1,1). Obviously
Rgoz) _ Ria)Rgoz)7

and consequently the Rga) are bounded and linear operators on L2(R%) (and Cy (R?))
and admit the densities

uia) = uga) * u%a), (2.16)

that is
REf(@) = [ 1) @ - y)dy.

We provide the arguments for the special case 2a = d in Corollary 4. By Giraud’s

lemma, [6, Chapter 4, Proposition 4.12], together with (2.14) and (2.16), the densities

ugd/ 2 are continuous away from the origin and satisfy

d/f2
i (@) < 5 (- loglal)
for sufficiently small x, where c3 is a positive constant. We also have
d
ui (@) > ¢4 (~log|al)

for sufficiently small = with a positive constant ¢4: Suppose z € R? and |z| < 1. We

have

(d/2) f _=df2), —d/2 f -d
U x) > x dy > dy.
(@) {|x—y|s|y|}| sl dy {lz—yl<lyl} Iyl dy

) 3 =11 =1 —
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Let P(;) denote the hyperplane orthogonal to the straight line connecting x and the
origin 0 and containing the point %x (For d = 1 it just equals the one-point set
containing %x) Then, if H(,) denotes the closed half space having boundary P,
and containing x, any y € H ,) satisfies [z - y| < |y|. Writing A\ for the d-dimensional
Lebesgue measure and kg for the volume of the d-dimensional unit ball, we have,
given |z|/2 <r <1,
N(BO) N Hy) =wa [ 02 =1 =g [ A=)y
|z|/2 ||/ (2r)

for the volume of the spherical cap B(0,7) n H,). For |z| < r <1 this is bounded
below by ¢(d) r¢ with a constant ¢(d) > 0 depending on d only. Writing mg)(r) =
M(B(0,r)n Hy,)) we therefore have

ugd/Q)(x) > f

1 1

-d -d -1
U dy:fr dmg(r chdfr dr = cq4(—log|x|),
B0 5O (ryzcld)d J «(~loglal)

||
as desired. Now an application of [59, Section 11.3, Theorem 3.1.1] yields Corollary
4 for 2a = d.

Remark 1

(i) Alternatively, one can use the R?-valued two-parameter Brownian sheet to char-
acterize the essential self-adjointness of (A,Cg°(N)). A real-valued Gaussian
process indexed by R? is called a two-parameter Brownian sheet if it has mean
zero and covariance function C(s,t) = (s1 At1)(s2At2), s,t € R2. An Ri-valued

two-parameter Brownian sheet is a process (Bt)teRiz where
1 d
Bt = (Bt’ "'7Bt)7

and the components (Bf:)teRi; 1=1,...,d, are independent two-parameter Brow-

nian sheets. See for instance [59] or [60]. Using the arguments of [53] one can
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conclude that (A, C§°(N)) is essentially self-adjoint if and only if ¥ is polar for

the two-parameter Brownian sheet, more precisely, if and only if
fRd]P’(IEBt Lz eX)dt=0.

(ii) As mentioned, yet another stochastic process that can be used to characterize
the essential self-adjointness of (A,C§°(N)) is the super-Brownian motion. It
s a one-parameter process but its state space is a space of measures, and its
construction is probabilistically more involved. See for instance [26, 82, 83] and

in particular, [83, Theorem II1.5.2].
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Chapter 3  Capacities, removable sets and
LP-uniqueness on Wiener spaces

3.1 Introduction

The present chapter deals with capacities associated with Ornstein-Uhlenbeck
operators on abstract Wiener spaces (B, u, H), [13, 17, 42, 55, 67, 72, 73, 92, 98], and
applications to LP-uniqueness problems for Ornstein-Uhlenbeck operators and their
integer powers, endowed with algebras of functions vanishing in a neighborhood of a
small closed set.

Our original motivation comes from LP-uniqueness problems for operators L en-
dowed with a suitable algebra A of functions, the special case p = 2 is the problem
of essential self-adjointness. For the ’globally defined’ operator L on the entire space
LP-uniqueness is well understood, see for instance [29] and the references cited there.
If the globally defined operator is LP-unique one can ask whether the removal of a
small set (or, in other words, the introduction of a small boundary) destroys this
uniqueness or not. A loss of uniqueness means that extensions to generators of Cp-
semigroups, [81], with different boundary conditions exist. The answer to this question
depends on the size of the removed set. The most classical example may be the es-
sential self-adjointness problem for the Laplacian A on R", endowed with the algebra
C(R™~ {0}) of smooth compactly supported functions on R™ with the origin {0}
removed. It is well known that this operator is essential self-adjoint in L?(R") if and
only if n >4, [99, p.114] and [84, Theorem X.11, p.161]. Generalizations of this ex-

ample to manifolds have been provided in [20] and [74], more general examples on
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Euclidean spaces can be found in [5] and [48], further generalizations to manifolds
and metric measure spaces will be discussed in [50]. For the Laplacian on R™ one
main observation is that, if a compact set X of zero measure is removed from R", the
essential self-adjointness of (A, C°(R™\ %)) in L?(R") implies that dimg ¥ <n -4,
where dimy denotes the Hausdorff dimension. See [5, Theorems 10.3 and 10.5] or [48,
Theorem 2]. This necessary 'codimension four’ condition can be rephrased by saying
that we must have H" 4(X) = 0 for all d < 4, where H" ¢ denotes the Hausdorff

measure of dimension n — d.

Having in mind coefficient regularity or boundary value problems for operators in
infinite dimensional spaces, see e.g. [15, 21, 22, 46, 47|, one may wonder whether a
similar ’codimension four’ condition can be observed in infinite dimensional situations.
For the case of Ornstein-Uhlenbeck operators on abstract Wiener spaces an affirmative

answer to this question follows from the present results in the special case p = 2.

The basic tools to describe the critical size of a removed set X ¢ B are capacities
associated with the Sobolev spaces WP (B, u) for the H-derivative respectively the
Ornstein-Uhlenbeck semigroup, [13, 17, 42, 55, 67, 72, 73, 92, 98]. Such capacities can
be introduced following usual concepts of potential theory, [17, 31, 73, 91, 92, 94, 95,
98], see Definition 3.1 below, and they are known to be connected to Gaussian Haus-
dorff measures, [32]. Uniqueness problems connect easier to another, slightly different
definition of capacities, where the functions taken into account in the definition are
recruited from the initial algebra A and, roughly speaking, are required to be equal
to one on the set in question, see Definitions 3.2 and 3.3. This type of definition con-
nects them to an algebraic ideal property which is helpful to investigate extensions
of operators initially defined on ideals of A. For Euclidean Sobolev spaces these two

types of capacities are known to be equivalent, see for instance [3, Section 2.7]. The
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proofs of these equivalences go back to Mazja, Khavin, Adams, Hedberg, Polking and
others, [2, 3, 4, 76, 77, 78], and rely on bounds in Sobolev norms for certain nonlinear
composition operators acting on the cone of nonnegative Sobolev functions, see e.g.
[2, Theorem 3|, or the cone of potentials of nonnegative functions, see e.g. [2, Theo-
rem 2] or [3, Theorem 3.3.3]. Apart from the first order case r = 1 this is nontrivial,
because in finite dimensions Sobolev spaces are not stable under such compositions,
see for instance [3, Theorem 3.3.2]. Apart from the case p = 2, where one can also
use an integration by parts argument, [2, Theorem 3], the desired bounds are shown
using suitable Gagliardo-Nirenberg inequalities, [4, 76], or suitable multiplicative es-
timates of Riesz or Bessel potential operators involving Hardy-Littelwood maximal
functions and the LP-boundedness of the latter, [3, Theorem 1.1.1, Proposition 3.1.8]

The constants in these estimates are dimension dependent.

Sobolev spaces W™P(B, 1) over abstract Wiener spaces (B, u, H) are stable un-
der compositions with bounded smooth functions, [13, Remark 5.2.1 (i)], but one still
needs to establish quantitative bounds. We establish Sobolev norm bounds for nonlin-
ear composition operators acting on potentials of nonnegative functions, Lemma 3.1.
To obtain it, we use the LP-boundedness of the maximal function in the sense of Rota
and Stein for the Ornstein-Uhlenbeck semigroup, [92, Theorem 3.3], this provides a
similar multiplicative estimate as in the finite dimensional case, see Lemma 3.3. From
the Sobolev norm estimate for compositions we can then deduce the desired equiva-
lence of capacities, Theorem 3.1, where A is chosen to be the set of smooth cylindrical
functions or the space of Watanabe test functions. Applications of this equivalence
provide LP-uniqueness results for the Ornstein-Uhlenbeck operator and, under a suffi-
cient condition that ensures they generate Cy-semigroups, also for its integer powers,

see Theorem 3.2. In particular, if ¥ c B is a given closed set of zero Gaussian mea-
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sure, then the Ornstein-Uhlenbeck operator, endowed with the algebra of cylindrical
functions vanishing in a neighborhood of ¥ (or the algebra of Watanabe test functions
vanishing q.s. on a neighborhood of ¥) is LP-unique if and only if the (2, p)-capacity
of ¥ is zero, see Theorem 3.2. Combined with results from [32] on Gaussian Haus-
dorff measures, we then observe that the LP-uniqueness of this Ornstein-Uhlenbeck
operator ’after the removal of ¥’ implies that the Gaussian Hausdorff measure g4(X)
of codimension d of > must be zero for all d < 2p, see Corollary 3.1. In particular, if
the operator is essentially self-adjoint on L?(B, ), then gq(X) must be zero for all
d < 4, what is an analog of the necessary ’codimension four’ condition knwon from
the Euclidean case.

In the next section we recall standard items from the analysis on abstract Wiener
spaces. In Section 3.3 we define Sobolev capacities and prove their equivalence, based
on the norm bound on nonlinear compositions, which is proved in Section 3.4. Sec-
tion 3.5 contains the mentioned LP-uniqueness results. The connection to Gaussian
Hausdorff measures is briefly discussed in Section 3.6, followed by some remarks on

related Kakutani theorems for multiparameter processes in Section 3.7.

3.2 Preliminaries

Following the presentation in [92], we provide some basic definitions and facts.
Let (B, pu, H) be an abstract Wiener space. That is, B is a real separable Banach
space, H is a real separable Hilbert space which is embedded densely and continuously

on B, and pu is a Gaussian measure on B with

ot/ buldy) = expl-gle ), e,

see for instance [92, Definition 1.2]. Here we identify H* with H as usual, so that
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B* ¢ H c B. Since every @ € B* is N(0, |¢|3)-distributed, it is an element of L?(B; 1)
and the map ¢ — (p,-) is an isometry from B*, equipped with the scalar product
(), into L?(B, u). It extends uniquely to an isometry

~

hesh (3.1)

from H into L?(B, ). A function f: B — R is said to be H-differentiable at x € B if

dt ’

for all h e H. If f is H-differentiable at x then h* is uniquely determined, denoted by
Df(z) and refereed to as the H-derivative of f at z. See [92, Definition 2.6]. For a
function f that is H-differentiable at z € B and an element h of H we can define the

directional derivative O f(x) of [ at x by

Onf(x)=(Df(x),h)g -

A function f: B - R is said to be k-times H-differentiable at x € B if there exists a
continuous k-linear mapping ®, : H*¥ - R such that

ak
mf(l’ + tlhl + e+ tkhk)|t1:m:tk:0 = (I)x(hl, Ce hk)

for all hy,...,hy € H. If so, ®, is unique and denoted by D*f(z). A function f :
B - R is called a (smooth) cylindrical function if there exist an integer n > 1, linear

functionals Iy, ...,l,, € B* and a function F' € C;°(R"™) such that

fZF(ll,...,ln). (32)

The space of all such cylindrical functions on B we denote by FC}°. Clearly FC}°
is an algebra under pointwise multiplication and stable under the composition with

functions 7" e Cp°(R).
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A cylindrical function f € FCy° as in (3.2) is infinitely many times H-differentiable

at any x € B, and for any k£ > 1 we have
D i) = S 00y P, ) s (2 da)) 1y ® - ® 1,
G1yeedik=1

where 0; denotes the j-th partial differentiation in the Euclidean sense. The space
FCy° is dense in LP(B, ) for any 1 < p < +oo, see e.g. [12, Lemma 2.1].

We write Ho := R, H; := H and generalizing this, denote by Hj; the space of
k-linear maps A : H* - R such that

1417, = Y (Alej,. .. e5,))? < +oo, (3.3)

F1dk=1
where (e;)%; is an orthonormal basis in H. The value of this norm does not depend
on the choice of this basis. See [14, p.3]. Clearly every such k-linear map A can also
be seen as a linear map A : H® — R, where H®* denotes the k-fold tensor product
of H, with this interpretation we have A(e;, ®...®¢;,) = A(ej,,...,€j,) and by (3.3)

the operator A is a Hilbert-Schmidt operator. For later use we record the following

fact.

PROPOSITION 3.1 For any A € Hy we have

| A2, < 2kF sup {|A(hi,...,hg)|: h1,-, hx are members

of an orthonormal system in H, not necessarily distinct} .
Proof By Parseval’s identity and Cauchy-Schwarz in H®* we have
k
| Al =sup{|Ayl: y e H®* and |y| yer = 1}.

Choose an element y = y; ® ... ® y, € H®* such that |y| ger = 1 and | Ay < 2|Ay].

Without loss of generality we may assume that |y;|z = 1, 1 < j < k. Choosing an
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orthonormal basis (b;)7; in the subspace span{y,...,yx} of H we observe n <k and
yj = Yieq bidij with some |A;j| < 1. Since this implies
|Ay| < Z |A(b11a7b2k)|v
il,---,iké{l,'",'ﬂ}
we obtain the desired result.

O
We recall the definition of Sobolev spaces on B. For any 1 <p < +oo and k >0 let
LP(B, u, Hy) denote the LP-space of functions from B into Hj. For any 1 <p < +o00

and integer r > 0 set

”fHW’BP(B“u,) = kz_% HDkaLp(B,/L,'Hk) ) (34)

f e FCy°. The Sobolev class WP (B, 1) is defined as the completion of FCy° in this
norm, see [13, Section 5.2] or [14, Section 8.1]. In particular, WOP(B, u) = LP(B, u).
For f e WP (B, i1) the derivatives D¥ f, k < r, are well defined as elements of LP(B, 11),
see [13, Section 5.2]. By definition the spaces WP (B, 1) are Banach spaces, Hilbert
if p = 2. The space W of Watanabe test functions is defined as

We= () W(B,u).

r>1, 1<p<+oo

We have FCy° ¢ W, in particular, W* is a dense subset of every LP(B,u) and
W"P(B, ).

In contrast to Sobolev spaces over finite dimensional spaces, [3, Theorem 3.3.2],
also the Sobolev classes W"P(B, i), r > 2, are known to be stable under compositions
u = T(u) = T owu with functions T' € C;°(R), as follows from the evaluation of
an integration by parts identity together with the chain rule, applied to cylindrical

functions. See [13, Remark 5.2.1 (i)] or [14, Proposition 8.7.5]. In particular, the space
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W* is stable under compositions with functions from Cy°(R). Also, it is an algebra
with respect to pointwise multiplication, [73, Corollary 5.8].

Given a bounded (or nonnegative) Borel function f: B - R and ¢ > 0 set
Pif(x):= ]]-3 fle™tz +V1-e2y)u(dy), xe€B. (3.5)

The function P, f is again bounded (resp. nonnegative) Borel on B and the operators
P, form a semigroup, i.e. that for any s, > 0 we have Pi.s = P.P;. The semigroup
(P})¢s0 is called the Ornstein-Uhlenbeck semigroup on B. For any 1 < p < +o0 it ex-
tends to a contraction semigroup (Pt(p ))t>0 on LP(B, 1), [92, Proposition 2.4], strongly
continuous for 1 < p < +oo. The semigroup (Pt(z))t>o is a sub-Markovian symmet-
ric semigroup on L?(B,p) in the sense of [17, Definition 1.2.4.1]. The infinitesimal
generators (L), D(LP))) of (Pt(p))t>0 is called the Ornstein-Uhlenbeck operator on
LP(B,u), [92, Section 2.1.4]. We will always write P; and L instead of Pt(p ) and
£®) the meaning will be clear from the context. Given r > 0 and a bounded (or

nonnegative) Borel function f: B — R, set

1
I'(r/2)

where I' denotes the Euler Gamma function. The function V,.f is again bounded

Vif =

fo #1217t p, pt, (3.6)

(resp. nonnegative) Borel, and for any 1 < p < oo the operators V, form a strongly
continuous contraction semigroup (V;)r»0 on LP(B,u), see [13, Corollary 5.3.3] or
[92, Proposition 4.7], symmetric for p = 2. In any of these spaces the operators V, are
the powers (I — £)™"/? of order 7/2 of the respective 1-resolvent operators (I — £)~'.
Meyer’s equivalence, [14, Theorem 8.5.2], [92, Theorem 4.4], states that for any integer

r>1and any 1< p< +oo and any u € W"P(B, u) we have

exlulwraqg < | @=L, <o lulwragsg (3.7)
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with constants ¢; > 0 and ¢ > 0 depending only on r and p. By the continuity of
the V;. and the density of cylindrical functions we observe WP (B, u) = V,.(LP(B, u)).
The operator V, acts as an isometry from W*P(B, u) onto W**"P(B, i), [17, Chapter

II, Theorem 7.3.1]. For later use we record the following well known fact.
PROPOSITION 3.2 For any r >0 we have V,.(FCy°) c FCp° and V(W) c W,

Proof From the preceding lines it is immediate that V.(W>) c W. To see the
remaining statement suppose f € FCp° with f = F(ly,...,l,), l; € B*, F € C;°(R"),
and by applying Gram-Schmidt we may assume {l1,...,1,} is an orthonormal system

in H. The Ornstein-Uhlenbeck semigroup (Tt(n))bo on L?(R™), defined by
TVFE) = [ P+ V= e (2m) 2 e Ry,
preserves smoothness, i.e. Tt(n)F e C°(R™) for any F e Cp°(R™).
Given x € B and writing & = ({(x,l1) ..., (z, 1) 5y ), we have
P f(x)
= [ P+ VI=e Py ) e (T4 V= Py L)  n(dy)
= [ (VTP (g (L) ()
= /ﬂ-{n F(e ¢+ mn)(2w)_"/2 e_|”|2/2d?7
= EM () (2, ),

where Ft(n) =T, t(")F . Consequently P;f € FCp°, and using (3.6) and dominated con-
vergence it follows that V,. f € FCp°.

O

Although different in nature both 7C}° and W can serve as natural replacements

in infinite dimensions for algebras of smooth differentiable functions in Euclidean

spaces or on manifolds.
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3.3 Capacities and their equivalence

We define two types of capacities related to WP (B, u)-spaces and verify their
equivalence.

The following definition is standard, see for instance [31, 91].
DEFINITION 3.1 Let1<p<+oo and let r >0 be an integer. For open U c B, let
Cap, ,(U) = mf{| fI2, | £ € *(B.p), Vaf > 1 pr-ace. on U}
and for arbitrary A c B,
Cap, ,(A) = inf{Cap, ,(U)| Ac U, U openj}.

We give two further definitions of (7, p)-capacities. The first one is based on cylin-

drical functions and resembles [3, Definition 2.7.1] and [77, Chapter 13].

DEFINITION 3.2 Let1<p<+oo and let r >0 be an integer. For an open set U c B
define

FCr . oo
capiy T () =it {Julfy |0 € FO u=1 on U},

and for an arbitrary set Ac B,

capﬁf;C?)(A) = inf{capfnizc’:o)(Uﬂ AcU,U open}.

The capacities capfngcb ) have useful ’algebraic’ properties which we will use in

Section 3.5.

One can give a similar definition based on the space W . To do so, we recall some
potential theoretic notions. If a property holds outside a set £ c B with Capnp(E) =0
then we say it holds (r, p)-quasi everywhere (q.e.). We follow [73, Chapter IV, Section

1.2] and call a set E c B slim if Cap,.,(F) =0 for all 1 < p < +oco0 and all integer r > 0,

¥ [ 1] =1
N 3] & tj) & 37



and if a property holds outside a slim set, we say it holds quasi surely (g.s.). A
function u : B — R is said to be (r,p)-quasi continuous if for any £ > 0 we can find
an open set Us ¢ B such that Cap, ,(U) < ¢ and the restriction u|ye of u to U is
continuous. Every function w € W™P(B, 1) admits a (r,p)-quasi-continuous version
u, unique in the sense that two different quasi continuous versions can differ only on
a set of zero (r,p)-capacity. Since continuous functions are dense in W™P(B, 1) this
follows by standard arguments, see for instance [17, Chapter I, Section 8.2]. Now one
can follow [73, Chapter IV, Section 2.4] to see that for any u € W there exists a
function @: B - R such that u =7 p-a.e. and for all r and p the function @ is (r,p)-
quasi continuous. It is referred to as the quasi-sure redefinition of u and it is unique
in the sense that the difference of two quasi-sure redefinitions of u is zero (r, p)-quasi

everywhere for all r and p, [73].

DEFINITION 3.3 Let1 <p<+oo and let r >0 be and integer. For an open set U c B
define

capﬁ};}/w)(U) = inf{HuH{jVW(B’#) lue W =1 o0nU q.s.},

where U denotes the quasi-sure redefinition of u with respect to the capacities from

Definition 3.1, and for an arbitrary set Ac B,

capﬁ,}gw)(A) = inf{cap,(,fgoo)(Uﬂ AcU, U open}.

This definition may seem a bit odd because it refers to Definition 3.1. However, for
some applications capacities based on the algebra W may be more suitable that
those based on cylcindrical functions.

The following equivalence can be observed.

) -11 =1
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THEOREM 3.1 Let 1 <p< 400 and let v >0 be an integer. Then there are positive

constants c3 and cq4 depending only on p and r such that for any set A c B we have

s capyy, * ) (A) < Cap,,(4) < ex capl, " (4) (3.8)
and
3 capﬁgw)(A) < Cap, ,(A) <cq capﬁ}gm)(A). (3.9)

Theorem 3.1 is an analogue of corresponding results in finite dimensions, [4, Theo-
rem A, [76, Theorem 3.3], see also [3, Section 2.7 and Corollary 3.3.4] or [77, Sections
13.3 and 13.4].

One ingredient of our proof of Theorem 3.1 is a bound in W"P(B, u)-norm for
compositions with suitable smooth truncation functions. For the spaces WP (B, 1)
such a bound is clear from the chain rule for D respectively from general Dirichlet
form theory, see [17]. Norm estimates in WP (B, ) for compositions T'ou of elements
u € W"P(B, ) with suitable smooth functions 7' : R - R can be obtained via the
chain rule. For instance, in the special case r = 2 the chain and product rules and the

definition of the generator £ imply
LT(u) = T'(u)Lu+T"(u) {Du, Du);y, ue WP,

By (3.7) it would now suffice to show a suitable bound for £T'(u) in L?, and the
summand more difficult to handle is the one involving the first derivatives Du. In
the finite dimensional Euclidean case an LP-estimate for it follows immediately from
a simple integration by parts argument, [2, Theorem 3|, or by a use of a suitable
Gagliardo-Nirenberg inequality, [4, 76]. Integration by parts for Gaussian measures
comes with an additional 'boundary’ term involving the direction h € H of differentia-

tion that spoiles the original trick, and the classical proof of the Gagliardo-Nirenberg

1] =1L —
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inequality involves dimension dependent constants. A simple alternative approach,
suitable for any integer r > 0, is to prove truncation results for potentials in a similar
way as in [3, Theorem 3.3.3], so that a quick evaluation of the first order term above
follows from estimates in terms of the maximal function, [3, Proposition 3.1.8]. This
method can be made dimension independent if the Hardy-Littlewood maximal func-
tion is replaced by the maximal function in terms of the semigroup operators (3.5)
in the sense of Rota and Stein, [92, Theorem 3.3], [97, Chapter III, Section 3|, see
Lemma 3.3 below. We obtain the following variant of a Theorem due to Mazja and
Adams, [2, Theorems 2 and 3], [3, Theorem 3.3.3], now for Sobolev spaces W"P(B, u)

over abstract Wiener spaces. A proof will be given in Section 3.4 below.

LEMMA 3.1 Assume 1 <p < 400 and let r > 0 be an integer. Let T € C*°(R") and

suppose that T satisfies
sup [T ()| < L<oo, i=0,1,2,... (3.10)
t>0

Then for every monnegative f € LP(B,u) the function T o V,.f is an element of
W"™P(B, i), and there is a constant cp > 0 depending only on p, r and L such that

for every nonnegative f € LP(B, 1) we have
\T o Vifllwresuy <cr 1 fle - (3.11)

Another useful tool in our proof of Theorem 3.1 is the following ’'intermediate’

description of Cap,. ;. By FCy, we denote the cone of nonnegative elements of FCp°.

LEMMA 3.2 Let 1 <p<+oco and let r >0 be an integer. For any open set U c B we
have

Cap, ,(U) =inf {|f|¥,| f € FC3, Vi f 21 on U}. (3.12)
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Due to Proposition 3.2 the right hand side in (3.12) makes sense. The lemma can be
proved using standard techniques, we partially follow [72, III. Proposition 3.5].
Proof For U c B open let the right hand side of (3.12) be denoted by Capy. ,(U).

Then clearly

Cap,.,({IV2f1> R}) < RV [ f[T, (3.13)

for all f e FC}° and R > 0.

Now let U c B open be fixed. The value of Cap, ,(U) does not change if in its
definition we require that V.f > 1+ p-a.e. on U with an arbitrarily small number
6 > 0. It does also not change if in addition we consider only nonnegative f € LP in the
definition: For any f € LP the positivity and linearity of V. imply that (V;.f)* < V,.(f*).
Consequently, if f € LP is such that V,.f > 1+ p-a.e. on U, then also V,.(f*) >1+§
p-a.e. on U, and clearly | f*| ., < | f] 0

Given € > 0 choose a nonnegative function f € LP(B,u) such that u:=V,f>1+§

p-a.e. on U with some § > 0 and

e
Hf”ip < Capr,p(U) + §

Approximating f by bounded nonnegative functions in LP(B, i), taking their cylin-
drical approximations, which are nonnegative as well, and smoothing by convolution
in finite dimensional spaces, we can approximate f in LP(B, i) by a sequence of non-
negative functions (fy,)p; ¢ F CI;°+, see for instance [73, Chapter II, Theorem 5.1] or
[67, Theorem 7.4.5]. Clearly the functions w,, := V, f,, satisfy lim,, u,, = v in W"P(B, u).

By (3.13) and the convergence in W™P(B, ) we can now choose a subsequence

(un, )2, such that

Capvl",p({|um+1 - un7,| > 2_2}) < 2_i and ||un7;+1 — Un, ”LP < 2_%

) -11 =1
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forall t=1,2,... For any k=1,2,... let now

Ay = U{|uni+1_um|>2_i}> k=1,2,..

1>k

oo

Then for each k the sequence (up,)jc; is Cauchy in supremum norm on Aj. On the

other hand,

M({|um+1 - um| > 2_i}) < 2—z'p,

so that p(Ag) < $9°, 27 what implies
M(ﬂ Ak) = lim p(Ag) =0.
k=1 k—co

Consequently, setting @(x) = limy e un(x) for all x € Uy, A7 and u(x) = 0 for all
other x, we obtain a u-version u of u.

Now choose [ such that Cap;7p(Al) < 5 and then j large enough so that

anj - fHZp < % and sup [un, (z) —u(x)| < /2.
TeAS

Then uy,; > 1 p-a.e. on some neighborhood V' of U n A7. The topological support of
w is B, see for instance [13, Theorem 3.6.1, Definition 3.6.2 and the remark following
it]. Since u,, is continuous by Proposition 3.2 we therefore have u,; > 1 everywhere

on V. Now, since Capép is clearly subadditive and monotone,

13
Cap,,(U) < Cap],, (U) < Capy, (V) + Capl, (Ar) <[ fu, [, + 5
2e

<11+ 2

< Cap, ,(U) +e.

Using Lemmas 3.1 and 3.2 we can now verify Theorem 3.1.
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Proof We show (3.8). It suffices to consider open sets U. Since FCy° ¢ WP (B, 1),

we have

Cap,,(U) < & cap’, " ) (U)

with ¢ as in (3.7), so that it suffices to show
cap\, " (U) <cCap,,(U)

with a suitable constant ¢ > 0 depending only on r and p.
Let T e C*°(R) be a function such that 0 <7 <1, 7T(¢) =0 for 0 < ¢t < 1/2 and
T(t)=1for t>1, and let cr be as in Lemma 3.1. Given € > 0, let f € FCp%, be such

that w:=V,.f >1 on U and

HfHLP = Caprp(U) +
T

due to Lemma 3.2 such f can be found. Clearly T'ou € FC}° and Tou =1 on U.

Therefore, using Lemma 3.1, we have

FC©
Capv{p )(U) < HTOU”Wr,p(B,#) <L) flY, < ¢ Cap, ,(U) +e,

and we arrive at (3.8) with ¢z := 1/, and ¢4 := . Since FCg° ¢ W c W"P(B, ),

(3.9) is an easy consequence.

3.4 Smooth truncations

To verify Lemma 3.1 we begin with the following generalization of [13, formula

(5.4.4) in Proposition 5.4.8].
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PROPOSITION 3.3 Assume p>1 and f € LP(B,u). Then for any t >0 and u-a.e.
x € B the mapping h — P;f(x + h) from H to B is infinitely Fréchet differentiable,

and given hy,...,hi € H we have

Oh,++On,, Prf ()

_ k

(i) S, 7t VI QUi ) ()
where the functions iAzl are as in (3.1) and Q : R™ - R, n < k, is a polynomial
of degree k whose coefficients are constants or products of scalar products (hi,hj) ;.
If the hq, ..., hy are elements of an orthonormal system (g,;)’zl-“:1 in H, not necessarily

distinct, then each coefficient of QQ depends only on the multiplicity according to which

the respective element of (gi)i-“:l occurs in {hy,...,hi}.

Proof The infinite differentiability was shown in [13, Proposition 5.4.8] as a con-

sequence of the Cameron-Martin formula. By the same arguments we can see that

Ony O P (@) = [ P+ I=ey)x

ak

————o(t, Ath1 +...+ A\;h v _auld
X 8)\1"'8)\14&)(’ hy+ 4 Akhi, y) a=.=xe=0 1(dy),

where
—t —2t

(& ~ (& 2
t = —h(y) - —— .
ot ) = exp | =) - 51 Wl

A straightforward calculation shows that

ak

——o(t, \h1 + ...+ A\ph . he
3>\1---8>\k0(’ 1h1 + oo+ Akh, y) a =22 =0

—t k R ~
(ﬂ:) QUi (1), (1))

with a polynomial @) as stated.
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O
The next inequality is a counterpart to [3, Proposition 3.1.8]. It provides a point-
wise multiplicative estimate for derivatives of potentials in terms of powers of the

potential and a suitable maximal function.

LEMMA 3.3 Let 1 < q < +oo, let r > 0 be an integer and let k < r. Then for any
nonnegative Borel function f on B and all x € B we have

k

[DMVf (@), < ehoqr) (Vef (1)) (Sup Pt(fq)(l')) : (3.14)

Note that lemma 3.3 is interesting only for r > 2.
Proof Suppose hi,...,hy € H are members of an orthonormal system in H, not

necessarily distinct. Then for any § > 0 we have, by dominated convergence,

D*V, f(z)(ha, ... b

= Op,-On, Vi f ()

ff -tt’“/“( e )f(e te+ V1= e 2ly)x

—6

x Q(h1(y), ..., hi(y)) p(dy)dt

ya —ttr/m( < )ﬂe Ly VT Ty

—6 -2t
x Q(h1(y), s hie(y)) p(dy)dt

= 11(5) + Ig(d)

with a polynomial ) of degree k as in Proposition 3.3. Now let 8 > 1 be a real number

such that

<B< (3.15)

>3

-
2k



Holder’s inequality yields

t

- Bk
hls (fo R e (O A et

<|Q(71(y), ... ()P p(dy) dt

(/06 [Be_ttr/Q_lf(e_t:n + my) u(dy)dt)l/ﬁ,,

)7 x (3.16)

Using the elementary inequality e %t <1 —e2 for ¢ > 0 and (3.15),
et Bk
o tyr/2-1 ( ) <(1- e—2t)r/2—k6/2—1 2t
1-e2t
so that another application of Holder’s inequality, now with ¢, shows that the first

factor on the right hand side of (3.16) is bounded by

’ 1/(Bq)
(fo /B fle™tz+ V1 - e2y)pu(dy) (1 - e-Qt)’"/z"fﬂ/Z-le-%dt) «
7 0 ' J 1/(Bq")
([ 100 0. ()P dy) [ (1= ey )

According to Proposition 3.3 the coefficients of the polynomial ) are bounded for
fixed k, and since its degree does not exceed k, it involves only finitely many distinct
products of powers of the functions h;. Together with the fact that each h; is N (0,1)-
distributed, this implies that there is a constant ¢1(k,q,3) > 0, depending on k but

not on the particular choice of the elements hq, ..., by, such that

!

. . / 1/(Bq
(/10U 0o ) < a9,

Taking into account (3.15), we therefore obtain

r k1A —98\r -
RO arlhes) (5-55) - @yrenn,

W (s @) @)
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To estimate I2(9) let

.
T 3.18
L <7 (3.18)

In a similar fashion we can then obtain the estimate

k1 Coser B
RO < eallgn) (5-00) (1= ey

1

(V) (S;:é’ a(f%))” . (319)

where co(k,q,7) >0 is a constant depending on n but not on the particular choice of
hi,...,hg.

We finally choose suitable § > 0. The function
- (1-e2), §>0,
can attain any value in (0,1). Since Jensen’s inequality implies
(Ve f(@))" < sup(Pi(f)())" < sup P(f7)(w), (3.20)

we have sup,.o(P;(f9)(x))"? > V, f(x) and can choose § > 0 such that

(1 _ 6725) _ Wf(x)Q/r
28upyo(Pe(f9) ()2 (@)’

(3.21)

note that the denominator cannot be zero unless f is zero p-a.e. Combining with

(3.17) and (3.19) we obtain

IDMV, f (@) (hay ey )|

faan (5-5) e (5-3) )

k/(qr)
(Vo)) (i&é) Pt<fq><x>)
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for some constants ¢} (k,q,5), c4(k,q,7). For any given r there exist only finitely
many numbers k <7 and for any such k£ numbers § and 7 as in (3.15) and (3.18) can
be fixed. Using Proposition 3.1 we can therefore find a constant c(k, ¢, r) depending

only on k, ¢ and r such that (3.14) holds.

|

We prove Lemma 3.1, basically following the method of proof used for [3, Theorem
3.3.3].

Proof If r =1 then T has a bounded first derivative, and the desired bound is
immediate from the definition of the norm |-|,1,, the chain rule for the gradient
D and Meyer’s equivalence, [92, Theorem 4.4]. In the following we therefore assume
r>2.

We verify that for any k < r the inequality

HDk(T © Wf)"LP(B,M,Hk) < C(kv Lapa 7n) ”fHLP(B,y,) (322)

holds with a constant ¢(k, L,p,r) > 0 depending only on k, L, p and r. If so, then

summing up yields

”To ‘/T'fHWTvP(B,M) = Z HDk(TO V;f)HLp(B,;L,’HT) <cer Hf”LP(B,u)
k=0

with a constant ¢y > 0 depending on L, p and r, as desired.

To see (3.22) suppose k < r and that hq,..., hx are members of an orthonormal
system (gi)le, not necessarily distinct. To simplify notation, we use multiindices
with respect to this orthonormal system: Given a multiindex « = (ay, ..., ) we write
D% = 951--0y*, where for 3=0,1,2,..., a function u : B > R and an element g € H
we define 85 u as the image of u under the application g differentiations in direction

9,
Bu(x) = 0y -Ogu(z) = D u(z)(g, ... 9).

3 =11 =1
; &0 8



Now let o be a multiindex such that D% = 0, ---0p, . Then clearly |a| = k. Moreover,

we have

DT oV, f)(x)

k )
=2 TD oV, f(2) Y Car,...s D* Vi f(2)-- D'V, f (2)
j=1

by the chain rule, where the interior sum is over all j-tuples (a?,...,a?) of multiindices

o' such that |of| > 1 for all 4 and o' + a? + ... + o/ = a. The interior sum has (l;j)

summands. The C,1 _,; are real valued coefficients, and since there are only finitely
many different C,1 .5, there exists a constant C(k) > 0 which for all multiindices a
with |a| = & dominates these constants, C,1 ,i < C(k). In particular, C(k) does not
depend on the particular choice of the elements h, ..., hy. More explicit computations
can for instance be obtained using [45].

The hypothesis (3.10) on T implies

k ) 1 p
[DH(T o Vi f) ()| < (k)L Z (Ve f (@) 7 3 IDY Vo f(2)--DY'V, f ()]

with a constant ¢(k) > 0 depending only on k and with L being as in (3.10). Since

> (1-laf|/k) = j - |al/k =j -1 and
D*V, f(@)| < | DM, f (@) o,

Lemma 3.1 implies that
k ‘ ) ;
S (Vif (@) YD Vif (2)--D* V, f ()]
§=2
k , L ;
< Zg(Vrf(w))l‘] > | D ‘Wf(w)HHlal"--HD'“ |Vrf(l')”7-l‘aj|
=

c(k q,r)Z( )(suth(fq)(x))l/q
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where 1 < ¢ < +o0 is arbitrary and ¢(k,q,r) > 0 is a constant depending only on k, ¢

and r. For the case j =1 we have
DV, f ()] < [ DV, f () [
Taking the supremum over all hq, ..., hi € H as above we obtain

DT 0 Ve () s < ek Luor) | (sup P (FD) @) 2+ [ DMV, £ @) o,

with a constant ¢(k, L, q,r) >0 by Proposition 3.1.
Fixing 1 < ¢ < p and using the boundedness of the semigroup maximal function,
[92, Theorem 3.3], we see that there is a constant ¢(p,q) > 0 depending only on p and

q such that
1/
H(Stlj(l)) Pt(fq)) qHLP(B,/J,) < C(p,(]) Hf”LP(B,u) :
On the other hand, by (3.7), we have

1
HDkVTfHLP(B,M»Hk) < a Hf”Lp(B:ﬂ)'

Combining, we arrive at (3.22).

3.5 LP-uniqueness

We discuss related uniqueness problems for the Ornstein Uhlenbeck operator £
and its integer powers.

Recall first that a densely defined operator (L,.A) on LP(B,pu), 1 < p < +oo is
said to be LP-unique if there is only one Cy-semigroup on LP(B, 1) whose generator
extends (L, A), see e.g. [29, Chapter I b), Definition 1.3]. If (L,.A) has an extension

generating a Cop-semigroup on LP(B,u) then (L, A) is LP-unique if and only if the

y 2 11 &- -
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closure of (L, .A) generates a Cy-semigroup on LP(B, ), see [29, Chapter I, Theorem
1.2 of Appendix A].

From (3.7) it follows that for any m =1,2,... and 1 < p < +o0 we have D((-£)™) =
W?2m™P(B, 1). The density of FC° and W in the spaces W?™P(B, 1) and the com-
pleteness of the latter imply that ((=£)™, W?™P(B, 1)) is the closure in LP(B, 1) of
((=£)™,FCy) and also of ((=£)™,W*).

Since obviously (P )0 is a Co-semigroup, (£, FCy°) and (£, W) are LP-unique
in all LP(B, ), 1 < p < +o0. To discuss the its powers —(=£)"" for m > 2 we quote
well known facts to provide a sufficient condition for them to generate Cp-semigroups.
Since (P;)0 is a symmetric Markov semigroup on L?(B, i), for any 1 < p < +co the
operator £ = £(P) generates a bounded holomorphic semigroups on LP(B, p) with an-
gle 0 satisfying § -0 < £|% —1], see for instance [23, Theorem 1.4.2]. On the other hand
[27, Theorem 4] tells that if L is the generator of a bounded holomorphic semigroup
with angle 0 satisfying § -6 < 5~ then also —(~L)™ generates a bounded holomorphic
semigroup. Combining, we can conclude that —(-£)" generates a bounded holomor-

phic semigroup on LP(B,u) and therefore in particular a (bounded) Cp-semigroup
if
1

2

[28, Theorem 8] shows that (up to a discussion of limit cases) this is a sharp condition
for —(-=L£)™ to generate a bounded Cp-semigroup. For 1 < p < +oo this also recovers
the LP-uniqueness in the case m = 1. For p = 2 condition (3.23) is always satisfied.
Alternatively we can conclude the generation of Cy-semigroups on L%(B, ) directly
from the spectral theorem.

For later use we fix the following fact.

PROPOSITION 3.4 Let 1 < p < +o00 and let m > 0 be an integer satisfying (3.23).

3 =11 =1
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Then the operators (—(=L)™, FCy°) and (=(=L)™, W) are LP-unique in LP(B, ).

In particular, they are essentially self-adjoint in L?(B, ) for all m > 0.

The last statement is true because a semi-bounded symmetric operator (L, A) on
L*(B, ) is L*-unique if and only if it is essential self-adjoint, see [29, Chapter I c),
Corollary 1.2].

Here we are interested in LP-uniqueness after the removal of a small closed set
Y. ¢ B of zero measure. This is similar to our discussion in [48] and, in a sense, similar
to a removable singularities problem, see for instance [76] or [77] or [3, Section 2.7].

Let ¥ c B be a closed set of zero Gaussian measure and N := B \ X. We define
FCP(N):={feFCy| f =0 on an open neighborhood of ¥}

and

W (N):={f e W®>| f=0 qs. on an open neighborhood of %}.

The LP-uniqueness of —(-£)™, restricted to FCp°(N) and W (NN), respectively, now
depends on the size of the set X. If it is small enough not to cause additional boundary

effects then from the point of view of operator extensions it is removable.

THEOREM 3.2 Let 1 <p< +oo, let m >0 be an integer and assume that X c B is a

closed set of zero measure p. Write N :== B\ X.
(i) If Capy,y, ,(£) = 0 then the closure of (=(=L£)™,FCy*(N)) in LP(B, i) is
(=(=L)"™, W™ (B, ).
If in addition m satisfies (3.23) then (=(=L£)",FC;°(N)) is LP-unique.

(i) If (=(=L£)™, FCy*(N)) is LP-unique, then Capy,, ,(X) = 0.

y 2 11 &- -
! M &) 8 17



The same statements are true with W (N) in place of FC°(N).

Proof To see (i) suppose that Cap,,, ,(3) = 0. Let ((=£)™,D((-£)™)) denote
the closure of ((-£)™,FC;°(N)) in LP(B, p). Since FC°(N) ¢ FCp° we trivially
have

D((-L)™) c W2™P(B, ),

and it remains to show the converse inclusion.

Given u € W?™P(B, ), let (Uj);il c FCp;° be a sequence approximating u in
W?2™P(B, 1). By Theorem 3.1 there is a sequence (v;);°, ¢ FCg° such that limy_,eo v; =
0 in W2™P(B, ) and for each [ the function v; equals one on an open neighborhood
of ¥. Set wj; := (1 —v;)u; to obtain functions wj € FCp°(N). Now let j be fixed.
For any 1 < k < 2m let hy,..., h; be members of an orthonormal system (gi)le, not
necessarily distinct. As in the proof of Lemma 3.1 we use multiindex notation with
respect to this orthonormal system. Let o be such that D% = 0y, ---0y, . Then, by the
general Leibniz rule,

D (uy = ) () = D" (ugun) () = 3 ()07, (2) Do),

BLa

where for two multiindices o and 8 we write 8 < « if 8; < o; for all ¢ = 1,..., k. For

any such 8 we clearly have

|DPuj(z)| < HDw'uj(a:)H and |D Py (z)] < HD‘O‘fﬁ‘vl(x)H ,
Hyg) Hja-p|
and taking the supremum over all hq, ..., h; as above,
k
D (s = w500, < ) mae | D" (), max [ D" 1 () g,
with a constant ¢(k) > 0 depending only on k. Taking into account that
sup [ D™uj(z) 4, < +oo

reB
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for any n > 1 and summing up, we see that

2m
. k
hfnkzl [D" (s =) o 30,
< ¢(m) max Sup | D" wj () gy, Yimm o yam.s

:O7

here ¢(m) > 0 is a constant depending on m only. Since u; is bounded, we also have

limy(uj — wj) = limy ujv; = 0 in LP(B, pu) so that
hlmwjl =u; in W*™P(B,pu),
what implies u € D((-£)™) and therefore
WP (B, p) e D((-£)™).

To see (ii) suppose that (-(-£)™,FCy°(N)) is LP-unique in LP(B, ). Then its
unique extension must be (—(-L£)™, W?™P(B, 11)). Let u € FC{° be a function that
equals one on a neighborhood of X. Since FC}° c W?2mP(B, 1) and by hypothesis
FC*(N) is dense in W?™P(B, 1), we can find a sequence (u;); ¢ FCO°(N) approxi-
mating u in W™? (B, 1). The functions e; := u—w; then are in FCg°, each equals one
on an open neighborhood of ¥, and they converge to zero in W?™P (B, 11), so that by

Theorem 3.1 we have
Cap2m,p(2) 6] h}n ||6l HWQm,p =0.

The proof for W is similar.
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3.6 Comments on Gaussian Hausdorff measures

For finite dimensional Euclidean spaces the link between Sobolev type capacities
and Hausdorff measures is well known and the critical size of a set ¥ in order to
have (r,p)-capacity zero or not is, roughly speaking, determined by its Hausdorff
codimension, see e.g. [3, Chapter 5]. For Wiener spaces one can at least provide a
partial result of this type.

Hausdorff measures on Wiener spaces of integer codimension had been introduced
in [32, Section 1]. We briefly sketch their method but allow non-integer codimensions,
this is an effortless generalization and immediate from their arguments.

Given an m-dimensional Euclidean space F' and a real number 0 < d < m the
spherical Hausdorff measure 8¢ of dimension d can be defined as follows: For any
€ >0 set

SY(A) = inf{i rd{B;}2, is a collection of balls
i=1

of radius r; < £/2 such that A c | J Bl-},
i=1

and finally, S?(A) := sup..oSZ(A), A c F. A priori S¢ is an outer measure, but its

o-algebra of measurable sets contains all Borel sets. For any 0 < d < m and we define

2
05 (4) = ()™ [ s (<) sm-4a)

for Borel sets A c F', [32, 1. Definition], by approximation from outside it extends to
an outer measure on F', defined in particular for any analytic set. Recall that a set
A c F is called analytic if it is a continuous image of a Polish space.

We return to the abstract Wiener space (B, u, H). Let d > 0 be a real number and
let F' be a subspace of H of finite dimension m > d. Let p’" denote the orthogonal

projection from H onto F, it extends to a linear projection p! from B onto F which
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is (r,p)-quasi continuous for all r and p, [31, 11. Théoreéme]. We write F for the
kernel of p’". The spaces B and F x F are isomorphic under the map p* x (I-p"). If
A c B is analytical and for any z € F the section with respect to the above product
is denotes by A, c F, then for any a € R the set {z ¢ F : 05 (A;) > a} is analytic
up to a slim set, as shown in [32, 4. Lemma]. We follow [32, 5. Definition| and set
pf(B) = u((I - p!")"1(B)) for any analytic subset B of F. Then by [32, 4. Lemma]

we can define
o ()= [ 0 (An)u(da)

for any analytic subset A of B. As in [32, 8. Definition] we define the Gaussian

Hausdorff measure o4 of codimension d >0 by
04(A) := sup{gg(A) :FcH and d<dimF < +oo}

for any analytic set A c B. Restricted to the Borel o-algebra it is a Borel measure.
The next result follows in the same way as [32, 9. Theorem] from [31, 32. Théoréme]

and [78], see also [3, Theorem 5.1.13].

THEOREM 3.3 If a Borel set A c B satisfies Cap,. ,(A) = 0, then 04(A) = 0 for all

d<rp.

Combined with Theorem 3.2 this yields a necessary codimension condition which

is similar as in the case of Laplacians on Euclidean spaces, [5, 48].

COROLLARY 3.1 Assume 1 < p < +o0. Let ¥ c¢ B be a closed set of zero measure
and N := B\ Y.
If (=(=L£)™,FCg°(N)) is LP-unique, then

04(X) =0 for all d <2mp.
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In particular, if (L, FCp°(N)) is essentially self-adjoint, then
04(X)=0  for alld<4.

The same is true with W (N) in place of FC;°(N).

3.7 Comments on stochastic processes

We finally like to briefly point out connections to known Kakutani type theorems
for related multiparameter Ornstein-Uhlenbeck processes. The connection between
Gaussian capacities, [31], and the hitting behavious of multiparameter processes,
[51, 53, 54], has for instance been investigated in [8, 94, 95]. We briefly sketch the
construction and main result of [95], later generalized in [8].

Let ©© = B and for integer k > 1, ©*1)(B) := C(R,,0®)(B)). The space
©%(B) can be identified with C(R*, B). Moreover, set w0 =y Tt(o) =P, t >0,
and let Z() be the Ornstein-Uhlenbeck process taking values in ©(°)(B) = B with
semigroup Tt(o) and initial law M(O). Let ,u(l) denote the law of the process Z(1),
clearly a centered Gaussian measure on ©1)(B). Next, let (Tt(l))Ko be the Ornstein-

Uhlenbeck semigroup on ©(1)(B) defined by
) = [ 1o VIO ay), 2 c0O(B),

for any bounded Borel function f on @1 (B), and let Z(?) be the Ornstein-Uhlenbeck
process taking values in ©1)(B) with semigroup ()50 and initial law p(1). Tter-
ating this construction yields, for any integer r > 1, an Ornstein-Uhlenbeck process
Z() taking values in @(T’l)(B). This process may also be viewed as an r-parameter
process Z(") = (Zt(r))tem taking values in B. Now [95, §6, Théoreme 1] tells that a

Borel set A c B has zero (r,2)-capacity Cap, 5(A4) =0 if and only if the event

{there exists some t € R’ such that Zt(r) € A}

T ) 1
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has probability zero. See also [8, 13. Corollary].
Combined with Theorem 3.2 this result gives a preliminary characterization of
L2-uniqueness (that is, essential self-adjointness) in terms of the hitting behaviour of

the 2m-parameter Ornstein-Uhlenbeck process (Xt(m))teRim-

COROLLARY 3.2 Let m >0 be an integer. Let ¥ c B be a closed set of zero measure
and N := B\X. The operators (—(-£)™, FC*(N)) and (—=(-L£)™,W>=(N)) are L*-
unique (resp. essentially self-adjont) if and only if ZG@™m) does not hit © with positive

probability.

A more causal connection between uniqueness problems for operators and classical
probability should involve certain branching diffusions rather than multiparameter
processes, but even for finite dimensional Euclidean spaces the problem is not fully

settled and remains a future project.
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Part 11

Markov uniqueness, LP
uniqueness and elliptic regularity

on reflected Dirichlet space
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Chapter 4 Markov uniqueness and L2?-uniqueness
on reflected Dirichlet space

4.1 Introduction

Let U be an open set in R whose boundary is smooth enough in a sense that

d
1,7=1

will be precised later and let u = @%dzx, @ € Hllo’CQ(U), ¢ >0 dz-a.e. Let A = (a;;)
be a locally uniformly strictly elliptic matrix consisting of measurable functions and
B:=(Bjy,...,By) be a weakly u-divergence free vector field (for the precise conditions,

see later sections). Let S be a non-symmetric linear operator on L?(U, i) with the

domain D(S) c C3(U) being densely defined in L*(U, ). Let

2

1,J

1 d
Su=— Z(aijaiaju + &aijaju) + Z b;0iu f € D(S)
i=1
Consider the non-symmetric bilinear form (&, D(S)) defined by

E(f.9) =5 [(AVS,Voddu~ [(B.V )gdu, f.g€D(S).

Assume this form can be extended to a Dirichlet form (£, D(€)) with generator
(L,D(L)) extending (S, D(S)). The Markov uniqueness problem consists of finding
conditions which ensure that a diffusion operator has a unique sub-Markovian exten-
sion, i.e., an extension which is the generator of a Dirichlet form. That is, we want
to find a condition that guarantees that (L, D(L)) is the sole sub-Markovian exten-
sion of (S, D(S)). To show Markov uniqueness, we have to know that there exists a
maximum extension, and then show (S5, D(S)) is dense in this maximum extension

in some sense(see Section 4.3 for more detail). When U = R? and D(S) = Cg°(R?),
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it is the so-called Dirichlet problem and well-studied by many other authors (see
[19, 29, 35, 46, 69, 85] and the reference therein).

However, we cannot guarantee Markov uniqueness on the domain even in the sim-
plest case when ¢ = 1 and U is an open ball so that (S,D(S)) = (%A,C’S"(U)),
since we know that there exists at least two different extensions (%A, H?Viu(U )) and
(%A, H*2(U)n Hé 2(U)). Hence we need some different test functions to guarantee
Markov uniqueness. One of possible test functions is D(L) n C3(U) and we will see
in Section 3 that it corresponds to the so-called Neumann problem.

Markov uniqueness problems are related to a number of other uniqueness problems.
The L? uniqueness problem consists of finding conditions which ensure that a diffu-
sion operator has a unique extension which generates a Cy semigroup. In particular, it
is easy to see that L? uniqueness implies Markov uniqueness. In the symmetric case,
it is known that L? uniqueness is equivalent to essential self-adjointness. Essential
self-adjointness has been well-studied by many authors (see [9, 29, 46, 49, 66, 71] and
the references therein).

In this paper, we will present generalizations (in some sense) of previous results on
uniqueness problems on domains of Euclidean space in the case of Neumann problem.
In Section 4.2, we present our general setting, some preliminary results and notations
that will be used throughout this paper.

In Section 4.3, we will see Markov uniqueness results in simple cases, when A = I,
B =0, and U is of class C? or certain type of d-dimensional polytope. We will use a
reflection technique and collect some known tools from partial differential equations
to show our main result. Moreover, we will show some density result for more general
A. However, we cannot see that this density result implies Markov uniqueness, since

we don’t know which is the maximum extension.
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In Section 4.4, we use similar tool from Section 4.3 to show L? uniqueness, for more
general A and B, but we assume more restrictions on the density (.

In Section 4.5, we merge our result with a known result from [85]. There, a certain
condition on A near the boundary is assumed to guarantee Markov uniqueness even

in Dirichlet problem. So, we call this merged problem as Robin boundary problem.

4.2 Functional analytic framework, preliminary results and

notations

In general, we shall denote by |- | g the norm of a Banach space (or vector space)
B. In the special case of R%, d > 1, |-| will denote the corresponding Euclidean norm
and (-,-) the Euclidean inner product. For z € R?, let x; denote the i-th coordinate of
z,1<i<d, and By(z):={yeR?: |y-z| <r},By(z)={yeR?: |ly—z| <r}, r>0.
In general A shall denote the closure of A in the corresponding topological space. By
R, we denote the set of all positive (> 0) real numbers.
Let U c R? be a possibly unbounded open set whose boundary is locally the graph
of a Lipschitz function. Let ¢ denote the surface measure on the boundary oU of U
and 1 be the inward normal vector on QU. It is known that 7 is o-almost everywhere
(0-a.e.) uniquely defined.
For arbitrary open Q c RY, let LP(Q, ), p € [1,00], denote the usual LP-spaces with
respect to the measure p and we omit y if it is the Lebesgue measure. By LfOC(U, i)
we denote all measurable functions f: U — R with f e LP(V, ) for any bounded and
open set V c U. We denote by (-,+)g the inner product in Hilbert space H.
Let A, B be sets. For a function f: A - R and B c A, denote the restriction of f to
B by fip. We denote the closure (in a topological space that will be mentioned) of B

by B. For a set A c R%, a function f: A — R, let suppaf denote the essential support

1 3
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of f in A with respect to the Lebesgue measure. For convenience, we write suppf or
support of f instead of suppf. Let n € Nu{oo}. Denote by C#(R?) the set of n-times
continuously differentiable functions on R¢ with compact support, and Cy (Q) denote
the restriction of CF(R?) to 0, where Q c R? is an open set.
If W c LP(U,p) is an arbitrary subspace, let Wy denote the space of all elements
u € W such that supp unU is a bounded set in U, by W, = W n L (U, ) the space
of all (yi-)essentially bounded elements in W. Finally, let Wy, = Wy n W,
Let C’loo’c1 (U) be the set of functions whose restriction to a compact set K is a Lipschitz
continuous function, where K c U is arbitrary.
For n = 1,2 and arbitrary open set Q c RY, let H™P(Q2) be the classical Sobolev
space of order n in LP(Q), i.e. the space of all measurable functions that are together
with their weak derivatives up to order n again in LP(Q), p € [1,00]. For a weakly
differentiable function u, let 0;u denote its i-th partial weak derivative, and let Vu :=
(O1u,...,0qu), 1 <i<d. Let

HY2(Q) = {u: u-x e HH(Q) for all x € C(Q)}.
Fix p € HZIOS(U) such that ¢ >0 dz-a.e. and let

dp = o*dx.
Note that HZIOS(Q) = HY2(Q), if Q is bounded.
A family (T})ss0 of linear operators on L?(U, u) with D(T;) = L2(U, i) for all t > 0
is called a sub-Markovian strongly continuous contraction semigroup or shortly sub-

Markovian Cy semigroup of contractions, if

(i) limy_o Tyu = u for all we L?(U, u)  (strong continuity),
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(ii) T} is a contraction on L?(U, i) for all ¢ > 0,
(iii) T3Ts = Tyss for all t,s >0  (semigroup property),

(iv) 0 <u <1 p-a.e. implies 0 < Tyu < 1 p-a.e. for all u e L2(U, u).

Consider

E(f9) =5 [V1.99), f.9¢CFD), (4.1

The regularity properties of ¢ imply that (€, Cg°(U)) is closable in L?(U, i) and the
closure (£, D(€)) is actually a Dirichlet form on L?(U, uu). Note however, that the
closability of (€,Cg° (U)) also follows from the existence of a “maximum” Dirichlet
form (€7, HY2(U,u)) as defined in (4.3) below. We denote its generator (resp. its

Co-semigroup of sub-Markovian contractions) by (L, D(L)) (resp. (T3):0)-

Assume a densely defined symmetric linear operator (S, D(S)) in L?(U,p) is given
such that —S' is non-negative definite, i.e. (=Su,u)r2(y) > 0, u € D(S). Define (for

more details, we refer to [35, Chapter 3.3] )

Ay (S,D(S)) = {A|A with domain D(A) is self-adjoint extension of (S, D(S5)),
— A is non-negative definite and the semigroup on L*(U, 1)

generated by A is sub-Markovian}.

If there is only one element in Ay (.S, D(S)), we call (S,D(S)) Markov unique.
For A € Ay (S,D(S5)), let (€a,D(€4)) denote the Dirichlet form with generator
(A,D(A)). If A1, As € Ap(S,D(S)), we can define a partial order in the following

sense

A1 <Ay = D(gAl) CD(SAQ)a gA1(f7g) ZgAQ(f?.g) vf»Q € D(gAl)'

-":lx_i _'q.l.'\-'_] |E ;- =
61 | &= L i



For ke {2,3,...} u{oo} define
Cg,Neu(U) ={fe O(])g(ﬁ) (V=0 chda-a.e. on OU}.

Note that ¢?do is well-defined, because 2 has a trace on U (see e.g. [30]) that we

denote for simplicity again by ¢?.
LEMMA 4.1 Let ke{2,3,...}u{oco}. Then
C5(U) n D(L) = Cg yeu(U)-

Proof Assume g e C$°(U) and f € CF(U)n D(L). Using integration by parts, we can
see that
1 \Y%
€(f,9) =5 / (Af +29f -2 )gdp.
U ¥
By denseness of C§°(U) in L*(U, ), we can see that
1 Vo
Lf==-Af+vVf-— p-ae.
2 ¢

Now take g € C3°(U) and get

1 1
E(f.9) = 5 Jy (Af+2vf- %)gdu *3 faUng,n)@QdJ-

Hence [y, g(V f, n)p*do =0 for g e C(U). Since the support of f is bounded, choose

a compact K such that OU nsuppf c K c QU. Then

/};g(Vf,n)gona =0 for ge C(U). (4.2)

In particular, (4.2) is valid for any polynomial g, since polynomials on a compact set
can be extended to a function in C§°(U). By the Stone-Weierstrass Theorem, we can

see that (4.2) is also valid for continuous functions on K. Therfore

CEU)nD(L) c{feC¥T) : (Vf,n) =0 p*do-a.e. on dU}.
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The converse inclusion is clear.

Let for some k € {2,3,...} U {oo},
D(S) == CE(T) n D(L) and Sf = Lf = %Af+ v % for f ¢ D(S).
Then by Lemma 4.1
(S,D(S)) = (L,C5(U) n D(L)) = (L, Cg e (T)).

DEFINITION 4.1 For open Q c R?, ¢ ¢ HIIOCQ(Q) and ¥ > 0 dx-a.e. on §, the

weighted Sobolev space HY?(Q,¢?dx) is the set of elements f € L?(Q,¢?dx) such

that there exists (f1,. .., f4) € (L?(Q,1%dx))? satisfying

0

(fir 9 12(Qp2de) = — (f, 9,9 +2g for any g € C°(Q2).

)L2(Q,w2dx)
By [99, Lemma 6], we have 0;f = fi, 1 <i<d if f e HY*(Q,¢*dz) n HY(Q, dx).

For notational convenience, we also write 0;f = f; for any f € HV2(Q,v?dx).

By [99, Theorem on page 114], the symmetric bilinear form on L?(U, i) defined by

E°(f.9) ==%fU<Vf7 vg)dp, f.ge HY(U,p) (4.3)

is the Dirichlet form of the maximum element of Ay (L, Cg°(U)) with repect to the
above partial order. In particular, (£, HY?(U, 1)) is closed. Thus, since C3*(U) c
HY2(U,p), we can see again that (£,C§°(U)) as defined in (4.1) is closable in
L3(U, ).

LEMMA 4.2 Suppose ngNeu(U) is dense in HY?(U,p). Then (L,C’Z{Neu(ﬁ)) is

Markov unique.
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Proof Since (L,D(L)) € Ay (L,C(U)) N AM(L,C&NW(U)), the maximal element
of Ay (L,C$(U)), i.e. the generator of (€%, HY?(U, 1)), is equal to the maximal
element of Ay (L, C’&Neu(v)).

Using [35, Lemma 3.3.1] the minimal element of A/ (L, C’é‘,Neu(U)) is the generator
of the closure of (E,C(’)“’Neu(ﬁ)) in L2(U, ) which coincides with (€%, HY2(U, ),
if C’(’i Neu(U) is dense in H%?(U,p). Therefore, in this case, the minimal element of
AM(L,C& ~New(U)) coincides with the maximal element of AM(L,C’(’i New(U)) and

Markov uniqueness holds.

Before we start the proof, we need the following Lemma which gives an explicit

description of the weighted Sobolev space.

LEMMA 4.3 Let ) and ) as in Definition 4.1. To distinguish d-dimensional Lebesgue
measure and (d - 1)-dimensional Lebesque measure, we let \* be the k-dimensional

Lebesgue measure on this lemma, k=d, d—1. Let
O ={(z2,...,2q) € Rd71| there exists x1 such that (x1,22,...,24) € Q}.

Let ﬁ(l) be a A% -version of p := ? which is absolutely continuous on the xi-azxis for

M1a.e. (29,...,24) in Q1. Define the following space

we L2(, pdx) : there exists a function @V such that
i) aM) = u, pdz-a.e.
D(&)::= i) for M ace. (xa,...,2q) €, 0D (21,20, .., 24)

is absolutely continuous in x1 on {x; € ]R\ﬁ(l)(aﬁl,a;g, cooyxq) >0}

and 9N [0z (classical partial derivative) € L* (2, pda)
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Then D(E)1 is independent of the choice of the version pV) and 9V [0z is defined
p-a.e. Define D(&);, i=2,...,d analogously and let D(£) = n;D(E);. Then we have
D(E) = HY*(Q, pdx) and 8D [dx; = d;u.

Proof See [99, Lemma 6].

We get the following corollary of Lemma 4.3.

COROLLARY 4.1 For x e C°(U) and f e HY*(U, ), xf € HY*(U, 1) and 0;(xf) =
Iixf +x0if.

4.3 Main result on Markov Uniqueness

First, we obtain Markov Uniqueness in the special case when U is a cube.

THEOREM 4.1 Let U = (0,1)* be the d-dimensional unit cube. Then Cgf’Neu(U)
is dense in HY2(U, ). Moreover, if f € HY2(U,p)o, then for any € > 0, we can
choose { fn}ns>1 C Cgf’Neu(U) such that f, converges to f in HY*(U,u) and suppf, c
{z|dist(x, suppf) < e}.

Proof Since (%, H“?(U, ;1)) is a Dirichlet form, H%?(U, 1), is dense in HY2(U, p).
Let f denote a fixed p-version of f € HY?(U,pn)p. Extend f to 3U = (-1,2) by

reflection, i.e.,

f(@, e, xa) = f(@(21), $(22), -, b(2a)),
where ¢ : [-1,2] - [0,1] is defined by

T if 2 €[0,1],
p(x)=4 2-z ifze[l,2],
-r ifxe[-1,0].
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Consider a fixed p-version @ of p, extend @ to 3U analogously, and let dji = p?dz. By

Lemma 4.3, we can sce that f € H"2(3U, ji);. Choose g € Cg°(R?) with
]d
1

Let f = f g, ¢ be an extension of ¢ to R? with compact support, and let dji = ¢>dx.

1 if xzel-
0 if zf[-

g(z) = 7

)

NI
ol ot

Then we have f € HY2(R?, 1)g . Define

fo@) = [ n()i -y,

where 7. is a standard mollifier, and ¢ < 711. We want to show f. € C%y,, (U). Clearly,
f- € C°(U). Note that g € Cngeu(ﬁ), if and only if 9;g|z,=0 = 0ig|z;,=1 = 0 and
g€ C(U). Define dg; = dy;dyy . . . dy;_1dyis1 - - - dyg

2 2 2 ~
i fe (@) ;=0 = [1"'[1 ]:1 Oine(x1 = Y1, s =Yir - Ta = Ya) F (W1, y2, -, ¥a)dTi

and

2 N £ N
L ain-(.. ) F (.. )dyi / aine(.. ) F(. )dyi
€ R 0 ~
[0 7w o T

€
A al”E(xl _y17' * '7_yi7' M 7xd_yn)f(y17' * '7yn)dyZ

0 ~
- l ai’r/e(ml_y17'"7yi,"'7:Ed_yn)f(y1a"',_yi7“-ayn)dyi
0.

Silmilarily, 0;fz(x)|q;=1 =0, and we get the desired result. Now, the proof of
[19, Theorem 2.7] shows that f. converges to f in H“2(R%, ). In particular, f. con-

verges to f in HY2(U, p).
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Next, we want to prove Markov Uniqueness for more general domains.

DEFINITION 4.2 Define partial d-polytope by {x|x = zgf Aiv;, either \; e R or \; €

R, for each 1<i<d, v;’s are linearly independent vectors with norm one}.

DEFINITION 4.3 A partial d-polytope V' is called tessellationable if we can cover

R? by copying some V and gluing some points only if they are copied from same point.

(In particular, if d = 2, this is possible, if and only if angle at the origin 0 is T for
n

some natural number n.)
THEOREM 4.2 Theorem 4.1 also holds for tesselationable U.

Proof Since (€%, H%“?(U, 1)) is a Dirichlet form, H'2(U, ) is dense in HY2(U, ).
Choose f € HY2(U, )y, and let g; € C§° (R?) be such that it is 1 on By (0),0< g; < 1 and
|[Vgi| <1, for k € N. By Lebesgue’s dominated convergence theorem and Corollary 4.1,
fi:=f-gilu converges to f in H"?(U, u). Hence H"?(U, u)o is dense in H2(U, p).

Now, the remaining parts of the proof is similar to Theorem 4.1. More precisely,
we can use the reflection method on the boundary to extend a given function f €
HY2(U, ()0 and density ¢, and then use mollification method to get approximation

by functions in Cé’f’Neu(U).

DEFINITION 4.4 Let k € {2,3,...} U {co} and U be an open subset of RY. We
say that U has a CX locally tesselationable boundary, if Yz € OU there is a

tesselationable V,, some open neighborhood U, of x, d, > 0, and there exists 1, :

U, — Bs,(0), such that

1] =1 —
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(i) by is a C* diffeomorphism,
(i) Ya(z) =0,
(ii1) Bs,(0)n Ve =, (UNnUy),
(iv) Bs,(0)n AV, =, (U nU,).

For k € {0,1,...} u{oo}, let C*Y(U,) denote the set of all k times continuously
differentiable functions f (resp. the set of continuous functions f if k =0) such that

ort...09f, Zﬁl:l a; =k and a; e Nu {0}, is Lipschitz continuous. If 1, ;' above

x

can be chosen to be of class C*', we say that U has a C*' locally tesselationable

boundary.

Since a half-space in R is tesselationable, the following definition is a special case

of Definition 4.4.

DEFINITION 4.5 Let k€ {2,3,...} u{co}. A possibly unbounded open set U in R?
is said to have a C* boundary, if for all x € OU, there exists 6, > 0, an open

neighborhood U, of x, and 1, : U, — Eéz(o) such that
(i) by is a C* diffeomorphism,
(ii) ala) =0,
(iii) Bs,(0) n{zq >0} =1ho(UnUs),
(iv) Bs,(0) n{zq=0} =1, (0UnUy).

For ke {0,1,...} u{co}, if 1y, Y3 can be chosen to be of class C*', we say U has

a CH1 boundary.
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LEMMA 4.4 Let Qy, Qo be bounded open subsets of R%. Let F = (Fy,...,Fy):Q —
Qs be a one-to-one mapping which is Lipschitz continuous together with its inverse
FL:F(Qy) - Q. Let e HY2(Qy), ¥ > 0 dz-a.e. Then (F) e HY?(Qy) and for all
g€ HY(Qq,9%dx), g(F) € HY?(Q1,%(F)%dx). Moreover, 9;g(F) = X¢_, (OrgoF)0; F},

a.e. on .

Proof By [36, Lemma 1.3.3.1], we have ¢)(F) € H»?(€4). Then we can show C*°(£22)n
HY2(Q9,9%dx) is dense in H?(§y) analogously to [35, Lemma 3.3.3]

(see [19, Theorem 2.7] also). Since F' is Lipschitz continuous, it maps Lebesgue zero
sets to Lebesgue zero sets. Assume g € C*(Q2) N HY2(Qy,1%dx) first. The last asser-
tion for this g follows easily from elementary calculation. Then g(F') € HY2(Qy, ¢(F)?dx)
by change of variable (see [87, Theorem 7.26] for example).

Now, assume g € H'?(Us,4?dx) and choose g; € C*(Q2) n H2(Qy,¢?dx) converg-
ing to g. Then we can easily see that g;(F') (resp. 0;¢;(F')) converges to g(F') (resp.
3¢ (Okg o F)0;Fy) in L*(Q1,v(F)%dz) by change of variable. Now we can see that
g(F) satisfies the equation in Definition 4.1 with 0;g(F) = £¢_, (Oxgo F)9;F}, and the

result follows.

We are ready to prove Markov uniqueness result.

THEOREM 4.3 Assume that U is an open set in R® with C* locally tesselationable
boundary for some k € {2,3,...} U {co}. Assume further that for all x € U, the
diffeomorphism 1, of Definition 4.4 maps the normal vector at y € OU n U, to the
normal vector at 1, (y) € OVynBs, (0) for ¢? do-a.e. y e OUNU,. Then (L, C(I)C’Neu(ﬁ))

1s Markov unique.
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Proof Choose f € HY*(U, ;) and let g; € C(‘)X’(Rd) be such that it is 1 on B;(0),
0<gr<1and |Vgl<1, for [ € N. By Lebesgue’s dominated convergence theorem and
Corollary 4.1, f; := f - gi|y converges to f in H%?(U,p) and have bounded supports.
Hence HY?(U, 1) is dense in H2(U, u).

Choose f € HY2(U, jt)g. For x € K := OU nsuppf let Uy, 1, be defined as in Definition
4.4. Since (U, )zex is an open cover of the compact set K, we can find a finite subcover
(Uyi)i=1,...,m- Then the two compact sets suppf \ U2, U, and suppfnoU are disjoint
and have hence positive distance to each other. Therefore, we can choose a bounded
open set O such that O c U and {0, Upy.oy Uym } is an open cover of supp f. Choose a
partition of unity (¢;)i<o,..m < C3°(R?) subordinate to {O, Uyty...,Uym},ie. supp(p c
O, supp¢; c Uyi, 1 <i<mand 3% ¢; = 1 on suppf. Now, let @; := go(w;}), i=1,...,m.
Then @; € HY?({z4 > O}ﬁB(;yi (0)). Let f; :=Cif,i=0,...,m. Then fy € HY2(OnU, p),
fi € H172(Uy¢ nU,u),i=1,...,m, and fl(w;}) e HY2({zq > 0} n B(gyi(o),@de) by
Lemma 4.4. By Remark 4.2 we can choose g/ € Coneu({Ta > 0} ﬂggyi(O)) which
converge to fi(zp;}) for 1 <i<m . Note that gf(z/)yi) € C’(’i Nen(U) since by preserves
normal vectors by assumption. Moreover, gf(wyl) - f;in HY*(U, ), 1 <i < m, by
change of variable. By [19, Theorem 2.7] we can find a sequence (g;)i»1 ¢ C5°(O) c
C’é“,Neu(U) which converges to fo in H'2(U, i). Thus

gz+§£9f(%i) _’f0+§;fi =f

in HY2(U, i1). Therefore C’(’)‘:’Neu(ﬁ) is dense in HY2(U, ).

Using the technique of Theorem 4.3, we can show the following two corollaries.

COROLLARY 4.2 Let U c R?% be an open subset with a C%' boundary. Then f €
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HY2(U, 1) can be extended to f ¢ HY2(R?, $%dx)o, where ¢ € HY2(R%)g is an exten-

8101 Of Plsuppy 10 RY.

Proof Choose f € H*(U, 1)o. Take a partition of unity (o, O), (G, Uy, )izt,...m as in
Theorem 4.3. For ¢ = 1,...,m, let f; = ;f and extend go(w;}), fi(w;}) by reflection
to the whole ball B(;yi (0) such that the support of fi(w;}) is a compact set contained
in the ball B(;yi(O) as in Theorem 4.1 and call it as @;, f;. Choose a bounded open
(2 containing the closure of O U}, U,, such that 02 is locally the graph of a Lipchitz
function and a cut-off function x € Cg°(Q2) such that x =1 on O U, Uy,. Then we
can extend (o +Xi%; (;P(1hy) to a function & € HY2(Ou™, Uy,). Finally ¢ = x$ and

f=Cf+Xm™ fi(1,i) are the desired functions by Lemma 4.4.

REMARK 4.1 Assume U c R? be an open subset with a C%' boundary. Then C3*(U)

is dense in HY(U, ).

Proof By the proof of Theorem 4.3, we can see that H'2(U, 11)g is dense in HY2(U, 11).
Now choose arbitrary f € HY2(U, i)o and extend it to f ¢ HY2(R%, ¢2dz)o by Corol-

lary 4.2. Now we get the desired result by [19, Theorem 2.7].

The condition in Theorem 4.3 that “y maps a normal vector on U nU,, to a normal
vector on 0V nBg, (0) dz-a.e.” is a quite strong assumption. For the rest of this section
we will consider some specific cases where this is possible. At first, we will deal with

C*-boundaries, k > 2.
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LEMMA 4.5 Let R? be the open half-space with x4 > 0 and F = (F, F, ..., Fy) :
OR? - R? be of class C*, Fy = Fy(x1,x9,...,24-1) for 1 <i<d, and Fy+0 on some
neighborhood of zero. Then there exist open neighborhoods Vi,Va of zero in R, a
C**L_diffeomorphism ¢ = (¢1, ..., ¢q) from Vi to Vo satisfying (i) — (iv) of Definition

4.5 with x =0, such that

0 F
001 00
8331 o (%cd 0 F2
o =| : | onVinoR? (4.4)
d¢a  O0¢q
... == 0 Fy_
al’l 81‘(1 d-1
F F
Proof Using [105, Theorem I], we can extend F; to a function F, = 1*:'1'(331, X9y, Xq)

on R%, 1 < i < d such that it is C* on OR? and C* outside. Let ¢;(x1,22,...,2q) =
[Id Fi(z1,. ., 24-1,Ya)
0

Fd(xla"wxd—byd) -
neighborhood of zero, where F}; is nonzero there. One can check detD¢(0) # 0. Thus,

dyg+z; for 1 <i<d-1 and ¢4(z1,22,...,24) = T4 ON SOme

by the Inverse-function theorem, we can find some open neighborhood Vi, V5 of 0 in
RY and ¢ := (¢1, ..., ¢q) is C**'-diffeomorphism there. It is easy to see that ¢ satisfies

(i) = (1) of Definition 4.5 with = = 0, and satisfies (4.4).

COROLLARY 4.3 Let k € {2,3,4,..} U {oo} and U be an open set in R? with C*

boundary. Then (L,C’&Neu(ﬁ)) is Markov unique.

Proof The normal vector is locally defined on 90U n U, by M where 1),

V[ (%2)all

is any function as in Definition 4.5. Let f € C* (B, (o) N {za > 0}) whose normal

derivative is zero on B, (g) N {z4 = 0}. Then f(3) has a zero normal derivative on

¥ [ 1] =1
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Oy OY1\ (OYqg
Ox1  Oxg || 011
OU n Uy, if and only if (V[)(v)) : | = 0. Since d"" component of
Ovg  OYg || O%a
8x1"'6xd 6$d

0P oY1\ (O0Yq
8$1...a$d 8x1

o : | is positive and using Lemma 4.5 with F; = (Zgzl OkiOkhg) o
Mg OYa || Y4
8%1‘.'8$d a$d

o1 1\ (O
dr1  Oxq || Ox1

Y1, we can assume : is a normal vector on OU N U,.

Mg g || O

Ox1  Oxyq/ \Oz4

Now, the remaining part of the proof follows from Theorem 4.3.

Now we will deal with C? locally tesselationable boundary case in R2.

LEMMA 4.6 Let f be a real-valued C™ function defined on the hyperspace A :={x €
Rz = 0}, where m is a nonnegative integer and I c {1,2,...,d-1}. We assume that
f =0 on some of the d—2 dimensional spaces A; = {x € Alx; =0}, i € I. For x ¢ R?,
let Px be the orthogonal projection of x onto A. Then we can extend f to a function

g which is defined on the whole space such that g is C* on A°. Moreover, g(x) =0,
ﬁ]%bel4¢

Proof The proof is attained from classical result, [105, Theoreom I]. However, we have
to modify this proof a little bit to attain additional condition that g is constantly 0 if
Pz e A;. From now on, we will use the notation from [105] for this proof with E = RY.
Clearly, f(x) is of class C™ in A in terms of fi(z), ox < m, with fi(z) = Dy f(x)
if kg =0, fi(x) =0 if kg #+ 0. When we divide E into n-cubes of side 1 ([105, page

67, 8.]), we will take a special cubes, which are of the form I; x I x --- x I, where

¥ [ 11 ==
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I; = [Nj, Nj + 1], where N;’s are integers.

fi(y)
!

fi=0forl; =0, z; =y; = 0 for [; # 0. Since ¢,(x) # 0 iff x € [,, - B,, if Px € A; and

If Pre A; and y € A;, we check ¥(2;y) = ¥5am (y — x)! = 0 by using the fact
x" € A\A;, then ¢, (z) = m,;(z) = 0. Hence, g(z) = ¥, ¢y(z)(z;2") = 0 if Pz € A;.

O

LEMMA 4.7 Let V c R? be the defined by V := {x e R}z = \jv; + Aowa, \; 20, i =
1,2}, where vy and vy are linearly independent unit vectors. Assume there exists
Vo ¢ R? which is a neighborhood of 0 satisfying following properties.

Fori=1,2, F': C;(:= Ruv;) - R? is of class C* with (n;, F*) # 0 on C;nVjy, where 1; is
a inward normal vector which is orthogonal to v;. Assume further that (v;, F') =0 at
0. Then there exists an open set Uy and a C**-diffeomorphism ¢ as in Definition 4.4
such that Uy is an open neighborhood of 0 and ¢ is a diffeomorphism of Uy into V' and
V¢ maps F' into normal vector (possibly multiplied by scalar function) on C;nUy,i =

1,2.

Proof Using Lemma 4.6, we can extend F' to a C* function Fl=F1 (x1,22,...,2q)
on R? such that it is infinitely differentiable outside Cj, (F L' vi)=0on CynVy. By
shrinking to a subset if necessary, we can assume (1;, F*) # 0 is nonzero on V. Note
that every z € R? can be uniquely written in the form z = 22:1 Aka Vi, we will write

[@,VE] = A, for notational convenience. Let

[¢17 Vl] (1") =

[z,v2] [Fl,V1]([I,Vl]V1+[y,V2]V2)
COS(771, V2) '[O (771,F~1)([x,v1]v1+[y,v2]v2) cos(n2,v1)-[EF1,vi]([z,v1]vi+[y,va]va) cos(n2,m1) d[y7 VQ]+
[z,v1],
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and

(6!, va] = fl7v] ( (1, F1)([z,v1]v1 +[y,va]va)

_ 1 d
n, FL) ([, vi]vi+[y,va]ve) cos(nz,vi)=[Ft,vi]([z,vi]vi+[y,va]va) cos(n2,m) [y, v2]

on Vp. We can see that V¢! preserves normal vectors (possibly multiplied by scalar
function) on Cy N Vj, and also preserves the regularity of F2. We can also see that
V¢! maps 7, (possibly multiplied by scalar function) into F! on C} nVj, and is of
class C**1. Since V¢ is invertible at 0, we can apply inverse function theorem. We

can define ¢? similarily and using composition with ¢!, we get the desired result.

O

Let U c R? be an open set with C* locally tesselationable boundary. We say that

x € OU is a singular point, if for any open neighborhood U, of z in dU, U, is not the
graph of a C* function. Note that there are two natural tangent vectors at a singular

point x, and we define angle at x be the angle of two natural tangent vectors.

COROLLARY 4.4 Assume that U is an open set in R? with C? locally tesselationable
boundary. Assume Vi defined in Definition 4.4 preserves angle at singular points.
Then (S, D(S)) is Markov unique, k > 2. Moreover, if boundary of U is of class C*,

we get (L, C’&Neu(ﬁ)) is Markov unique, k > 2.

Proof For a singular point x € U, choose a 1), as in Definition 4.4. Let E; ; be the set
which is mapped into C; by ., where C; is as in Lemma 4.7. We can naturally define
normal vector 7;, on E; ., and let I’ b= Yy ni,z(we can multiply cut-off function
so that we can assume F' is of C*~! on C;). If V4 preserves the angle between two
vectors in some plane, it also preserves all angles between two lines who lie on that

plane. Hence (v;, F') = 0 at 0 is nothing but Vi, preserves the angle between normal
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vectors on i, and E3, which is same with angle at . Now remaining parts of the

proof is analogous to Theorem 4.3.

REMARK 4.2 On the previous Corollary, we infer that if Vi, preserves normal
vectors mear x, it also preserves the angle at x. Hence previous Corollary is mazximal

result. From this, we can imagine the following conjecture.

(Conjecture 1) Let V be tesselationable, and let I be the set of indices ¢, where
A e R, (note OV consists of d —1 dimensional spaces C; := {z € 0V|x = Z?# AjVi, Aj€
Rif j ¢ I,)\; € R, otherwise, for each 1 < j < d,j # i}, i € I.) Assume there exists
Vo ¢ R? which is a neighborhood of 0 satisfying following properties.
Assume for each i € I, F' = (F},F3,...,F%) : C; > R% is of class C*(it means, F' is
restriction of C* function defined on the hyperspace containing C;.) with (n;, F*) # 0
on C; nVy, where 7; is a normal vector which is orthogonal to v; for all j # . Assume
further that for each point x € dC; N dC; N Vy, for some j # i € I, (v;, F') = 0. Then
there exists an open set Uy and a C**!-diffeomorphism ¢ as in Definition 4.4 such
that Up is an open neighborhood of 0 and ¢ is a diffeomorphism of Uy into V' and V¢
maps F* into normal vector(possibly multiplied by scalar function) on C; n Uy.
If this conjecture is true, we can show the following conjecture.
(Conjecture 2) Assume that U is an open set in R? with C* locally tesselationable
boundary. For a singular point x € OU, choose a 1, as in Definition 4.4. Let E; , be
the set which is mapped into C; by ., where C; is as in Conjecture 1. If ¢, preserves
the angle between normal vectors on E;, and E;,, i,j € I, then (L,C(liNeu(ﬁ)) is

Markov unique.

REMARK 4.3 Let k > 2 be an integer. Assume that U is an open set in R with
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C* locally tesselationable boundary. Assume A = (aij)1<i j<d s a matriz of real-valued
measurable functions on U. For each x € OU, let 1, be as in Definition 4.4, E;, be
the set which is mapped into C; by ., where C; is as in Conjecture 1, and let n;
be the normal vector on U, corresponding to m;. We assume that for each x € OU,
Vi, ATn; = n; on Uy, i € I for some appropriate (¢z,Uy). Then we can use the
reflection method of Theorem 4.3 to cover oblique Neumann boundary conditions,
that is, the directional derivative with respect to ATn is 0 on OU.

In particular,
Cl opnen(U) = {f € C§(U)|{AT 0,V ) =0 p*do-a.e. on OU}.
is dense in HY2(U, p)o.

Note that under the assumption of following proposition, the condition of Remark

4.3 is satisfied.

PROPOSITION 4.1 Let k> 2 be an integer, and assume A = (aij)1<i j<d 5 @ matric

of real-valued measurable functions on U, where U has a C* boundary and
aij € CMHOU) = {f + f(v3') e C* 1 (Bs, (0) N {xg =0}) for each x € U},

with v, defined as in Definition 4.5. Assume further that

d
0< > aij(x)&&;  VE=(&,...,&1) €RY 2 € IU. (4.5)

3,J=1

Assume also that Then
Co.opnen(T) = {f € CEU) (AT, V f) = 0 p*do-a.e. on U}

is dense in HY2(U, p)o.
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Proof Almost same with Corollary 4.3. Just note that (ATn,Vf) =0 on OU n U, iff
O O\ (O

Ox1  Oxg 0x1
Df ATl : | =0, where U, is as in Theorem 4.3.
s OYa a
Ox1  Oxy 0xg
81’1 o 8$d 81‘1
Note also that d** component of AT | is always positive by (4.5).
s O%a 9%a
Ox;  Oxyg O0xg

4.4 L?-uniqueness

Let U and A satisfy the condition in Remark 4.3, and d > 2, and let

Q5 + Qjj

aij - aji
2 ’

A= (aiy)] iy = =

o )
A= (@ij)j o1, Gij = Gl

We assume further that a;; € C’loo’i (U) and for any bounded V c U there exist constants

K,L,\y € (0,00) with

L2 . o 2 d
AER < 7 ag(2)&€5 < Avlé] VE=(&1,...,80) €RY, prae.xeV  (4.6)
ij=1

and for f, ge C&(U),

fU(/Wﬂ Vo < K& (f, F)*€1(9,9)"° (4.7)
In particular, (4.7) is satisfied if
- -1

max ] (v < LAV (4.8)

We also assume that B = (by,...,bq), with

bie Lj5.(U, 1) (4.9)
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satisfy
fU<B, Vu)du=0 YueCL D). (4.10)
Note that (4.10) implies

Q/U(B,Vu)udusz<B,Vu2)du=0 Vue HY2(U)o. (4.11)

On this section, we define a closable form.

E(f.9) =5 [AVLV- [[(B.VHgdn, f.g¢C D).

Note that closablity of (€, C¢°(U)) is equivalent with closability of its symmetric part
(&, C&*(U)). Moreover, closability of the latter form is equivalent with closability of
(E,{f € C2(U)|(ATn,Vf) = 0 p%do-a.c. on UY}) by previous section. But we know
that the last form is closable by [72, Proposition 3.3].

We also assume that (£,C5°(U)) can be uniquely extended to a Dirichlet form
(€,D(E)). Let (L,D(L)) be a generator of the Dirichlet form.

LEMMA 4.8 D(E)o = HY2(U, u)o.

Proof Let f € D(E)o and (fu)ns1 € C°(U) which converges to f in D(E). Take
X € C§(U) which is 1 on the support of f. By direct calculation using (4.6), we
can see that sup,,s; (% f(J(V(xfn), V(Xfn))dp) < co. By [72, I. Lemma 2.12], we have
feHY(U,p)o and D(E)g c HY2(U, it)o. The converse inclusion also holds by similar

reason.

Now we will see partition of unity and their corollaries.

For the following lemma, we used the technique as in [86, Theorem 10.8].
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LEMMA 4.9 (Partition of Unity with Neumann boundary condition) Suppose K is a
compact subset of U, and {Uy} c R? is an open cover of K. For the sake of simplicity,
we further assume that U, is either a domain of diffeomorphsim in Definition 4.4 or

contained in U. Then there exist functions (1,...,(y € Cg(U) such that

(a) 0<¢ <1 forl<i<n,
(b)  supp(; c Uy for some «,
(¢) Sum of (;(x) is 1 for every x € K, and

(d) (ATn,v¢) =0 pPdo-a.e. on OU.

Proof Associate with each z € K an index a(x) so that x € Uy(,). Then there are

open balls Bi(x), 1 <k <3, centered at x, with
Bi(z) ¢ Bo(x) ¢ Ba(x) ¢ By(x) c B3(x) c Ua(z)- (4.12)

Since K is compact, there are points z1,...,z4 in K such that K is contained in the
union of By (x;).

We define a measurable function ¢ : U — R such that ¢(?(z) = 1 on By(x;) nU and
0 otherwise. Using reflection method as in Theorem 4.1 and Corollary 4.3, and take
€ small enough when we do mollification with standard mollifier 7. so that we can
find ¢} satisfying ¢}(z) = 1 on By(x;) nU, ¢}(z) = 0 on U\Bs(x;), 0 < () < 1,
and satisfies condition (d). This is possible by (4.12). Now, remainder of proof follows

from usual argument (see [86, Theorem 10.8]).

O

COROLLARY 4.5 For any bounded V c U, there exists x € C&NEU(U) such that x
is 1 on'V, and 0< x <1 on U. Note that if dU is of class C* locally tesselationable,

k> 2 is an integer, we can take x € Cé“,Neu(U).

) 3 1] &=L —
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LEMMA 4.10 If h: U - R be a measurable function such that xh e HY2(U, u)o for
all x € C&Neu(ﬁ), then h e HY2(U, 1) for all € CF(U).

Proof For arbitrary ¢ € C5°(€), choose y € C’g} New (Q) which is 1 on the support of

1. This is possible by Corollary 4.5. Then ¢h = xyh = v xh

——
eHL2(U,p)o
~—

eHL2(U,u)o by Corollary4.1.

O
Before we prove L? uniqueness, we will see some regularity result for certain type

of weak solutions.

LEMMA 4.11 Assume @(z) = 1 for all x € U. We assume U c R? be an open set
with CY*-boundary. Then D(L) c HZQOCQ(U), where
2,2 " 2,2 2 77
H 2 (U) = {flfx e H*(U) for all x € C§ opnen(U)}-
Moreover, we can see
D(L) = HY2(U) n H.? ponen(U), where
HZQO’ZObNeu(U) ={f ¢ Hfo’f(UH(ATn,Vf) =0 <p2da—a.e. on OU},

and

1 d
Lu= 5 E(CLUOZaju + &aij@ju) + Z; bl&u
1, 1=
Proof Choose f e D(L). For all g e H"?(U)g, we have

5(f,g)=%f(AVﬁVg)du—fU(B,Vf)gdu:f—Lfgdu.

Note that first equality holds by Lemma 4.8, and Sobolev inequality.
Therefore, if x € Cf oyneu(U), x.f € H*(U)o by Lemma 4.8 and

[ (AvCeh) Vaddu= [ fgdu for all g e H2 (1),

) 3 1] &=L —
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, where f' = =2xLf = ¥; i{ai;(0:x) (9; f) + 0i(ai;(9;x) )} + 2 4L, b Oix f.

The case U = R? and U = R? is entirely analogous of those of [18, Proof of Theorem
9.25 A,B]. Using the compactness of U nsuppy, choose finitely many points z; € OU
and neighborhoods U,, which is an open cover of U nsuppf and let v; := 1, , where
Yy, and Uy, are defined in Definition 4.5, 1 <¢ < m. Choose yg and a neighborhood
Uy, such that Uy, c U and {U,,} is an open cover of U nsuppf, 0 <i<m. Choose a
partition of unity ¢; € CQOZ)N@u(ﬁ) such that supp¢; c Uy, and ¥; ¢ = 1 on U nsuppf
by Lemma 4.9. We write u = }.;" ¢;. Now remaining parts of the proof is analogous

to [18, Proof of Theorem 9.25 C].

The last statement can be derived similarly as in Lemma 4.1.

COROLLARY 4.6 Assume p(x) =1 for all x € U. We assume U c R? be an open

bounded set with CY:*-boundary. Then there exists a weak solution u € H>?(U) of

(1-L)u=finU
(u, ATn) =0 on OU

for all f e L*(U).

Proof Existence of solution is derived from [72, I.Exercise 2.7] and regularity comes

from previous lemma.

LEMMA 4.12 Assume o(x) = 1 for all z € U. We assume U ¢ R? be a bounded

convex set. We further assume that ATy = ATy do-a.e. on OU. Then there exists a

) 3 1] &=L —
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weak solution w e H**(U) of

(1-L)u=finU
(u, ATn) =0 on OU

for all f e L>(U).

Proof We follow the proof of [36, Theorem 3.2.1.3] with some changes. We choose
a sequence (€, )men of bounded convex open subsets of R? with C? boundaries T,
such that U c Q,, and the distance of OU and T'),, tends to zero as m — oco. We

consider the solution u,, of the Neumann problem in £2,,, i.e.

(1= L)ty = f in Qy,
(um,ATn) =0 on T,

(it has a solution in H*2(U) by Corollary 4.6).

Now we need the following Lemma which corresponds to [36, Theorem 3.1.3.3].

LEMMA 4.13 Assume p(xz) = 1 for all x € U. Let U be a convex, bounded open
subset of R? with a C? boundary, and o > 0 be a real number. Assume ATy =

ATy do-a.e. on OU. Then there exists a constant C = C(«, A,d) such that
lul22v < Cla, A, d)|[(a = L)ul.
for all we H**(U) such that (ATn, v f) =0 do-a.e. on OU.

Proof (of Lemma 4.13)
Apply [36, Theorem 3.1.1.1] to v = AVu. Then, we have

i d Ov; 0v;
LA dx - f—Z—Jd >0
[U| ul*de Z U Oxj Ox; r=

ij=1
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where v; is #’th component of v and L4y := Zg,jﬂ 0;(ai;05u).

Observe that

31)1' 8vj
ox 7 &%z

d d
(>, 0j(airku)) (Y 9s(a;0u))
o] =1

d d d d
(Z @dlk@ku)(z ai&jlalu) + (Z 3]C_L1kaku)(z C_leaialu)
k=1 =1 k=1 =1

=1 =11
d d d d
(> awdioku) (Y dazdw) + (D awd;oru) (. a;diou)
k=1 i-1 k=1 i-1

+

=111 =1V

Zgjzl(IV) > AP 2;{]»:1 |3;0;ul* by [36, Lemma 3.1.3.4].(Note that the term (I) is
missing on the proof in [36, Theorem 3.1.3.3]). For the below, C' = C(a, A, d) could
be different from line by line.

By estimation as in [36, Theorem 3.1.3.3], we get Z;{jzl [ 0:05uldz < C(fy, |LAu2dz+
S, [y 0puld).

Using the fact that [;;(a - L)uudz = %Zgjzl [ir aijOudju+ a [ |ulPdx by (4.11), we

can see |ul2 and |Vu|2 are bounded by C||(« — L)ul 2. Since

f |LAu|2da:
U

d
[U |(2a — 2L)u + '21 9 (ai;05u) - 2au + 2( B, Vu)|*dx
1,]=

d
< C’(L(!(a - L)u|2 + | Z 8¢(aij8ju)]2 + |204u|2 +|2(B, Vu)\Q)dw)
ij=1
=3¢ ;o1 Giai05u
< C(|(a=Lyul3+[vul3+ |u]3),

we get the desired result.

Now, we return to the proof of Lemma 4.12.

¥ [, 1 3
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From previous lemma, we can see that there exists a constant C' such that

||um||H2,2(Qm) <C.

Again, argument as in [36, Theorem 3.2.1.3] shows u,, converges to a weak solution

u weakly in H*2(U) up to a subsequence.

COROLLARY 4.7 Let U be a C? locally tesselationable set. Assume p(z) =1 for all
z € U. We further assume that ATy = ATy do-a.e. on OU. Then D(L) ¢ H>*(U).

loc

MOT’@O'U@T’, we can see
2.2
D(L) = H172(U) n E[loc,ObNeu((])7

and

d
Lu= % E(aij&-aju + Gial-jaju) + Z bzazu
.3 i=1

Proof Choose f e D(L). Similar to Lemma 4.11, we have for x € C’g’Owa(ﬁ),
1
3 f (AV(xf),Vg)dx + f xfgdx = f f'gdax for all g e HY(U),, (4.13)

where f' = x(1- L)f - 1 % 1{ai (90)(93) + 0i(aig(9p) )} + 5Ly 6O .

Take x € U and choose (t¢,,U,) as in Definition 4.4. Take x whose support is in U,
in (4.13). Note that if V' is a tesselationable set, it must be convex (and unbounded).
Note also that intersection of unbounded convex set with a ball is a bounded convex

set. Using the argument as in Lemma 4.11 and by Lemma 4.6, we have a weak solution

u e H*2(U nU,) satisfying

1
5/(AVU,Vg)da;+[ugd:c=ff'gda; for all g e HY*(U nU,).
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Since xf is also a weak solution, x f = v € H>?(U nU,) by uniqueness. Since interior

regularity is well-known by classical result, we get the desired result.

O

Now, we will show you some definitions and well-known facts about LP unique-
ness.

If there is only one Cjy semigroup on LP(U, 1) whose generator extends given densely

defined unbounded operator (A, D), then the operator (A, D) is said to be LP-unique.

If (A,D) is semi-bounded symmetric operator, it is known that L2-uniqueness is

equivalent to essential self-adjointness(see [29, cor 1.2]).

Let B be a Banach space, and f € B. An element [ € B’ that satisfies ||I| 5 = | f| B,

and I(f) = | f||% is called a normalized tangent functional to f.

A densely defined operator (S, D) on a Banach space B is said to be dissipative,

if for each f € D there exists a normalized tangent functional [ with I(Lf) <0.

LEMMA 4.14 A densely defined operator (S,D) on LP(U,pn) is LP-unique, if and

only (S, D) is dissipative and (a— S)D is dense in LP(U, ) for some a>0, p>1.

Proof

“=7: Assume (S, D) is LP-unique. Let (S, D) be the unique extension of (S, D)
who generates Cp-semigroup. Note that (S, D) is closed by [85, Proposition on page
237]. By [85, Theorem X.48], we can see that (S, D) is dissipative, hence its restriction
(S, D) is also dissipative. By [81, A-II,Theorem1.33], (S, D) must be dense in (S, D)
with respect to the graph norm. Let (U,) be the corresponding resolvent. For any

f € LP(U, ), Usf € D. Thus we can choose (fn)ns1 ¢ D converging to U, f with

) -11 =1
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respect to the graph-norm. Then («a - S) f,, converges to (a - S)Uyf = f.

“«<": Assume (S, D) is dissipative and («—S)D is dense in LP(U, u). We first note that
every dissipative operator is closable and that its closure is again dissipative. Denote
hence by (S, D) the closure of (S,D) on LP(U,p) which is again dissipative. Let [
be a normalized tangent functional to u € D, which exists since (S, D) is dissipative.

Then

A

alulyy,y < al(w)-1(50)

I((a = S)u)

IN

|l Loy | (0 = S) ] Lo,

Thus the range of (a—S) is closed and we get that (S, D) generates a Cop-semigroup
by [85, Theorem X.48]. Let (J,D) be another generator that extends (S, D). Then
it also extends (S, D). But since both (a—.S) and (« - J) are invertible, they must

be the same.

Now, we are ready to prove our L? uniqueness results.

PROPOSITION 4.2 Assume (4.8), Ve e L7 (U,p), where v >2 ifd =2, v=d if
¥

loc

d>3, and a;j, b; are in L*(U), 1<i,j <d. Then (L, D(L)o) is L*-unique.

Proof Here, we used the idea from [96] and [9].

(L,D(L)) is dissipative by [85, Theorem X.48|, and hence its restriction (L, D(L)g)
is also dissipative. Using Lemma 4.14, it is sufficient to show if h € L?(U, ) is such
that [ (1- L)uhdu =0 for all ue D(L)o it follows that i = 0. Let x € CF e, (U)- If

u € D(L), we can easily see that yu € D(L)o and L(xu) = xLu + (AVy, Vu) + uLx.
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Hence

[(I—L)u(xh)d,uz [(1—L)(ux)hd,u+f(flVX,Vu)hdu+[uLxhd,u
- f (AVx, Vu)hdp + f wLyhdp.

d 1 1 1 1 1 1
Let p* = p so that — + — = —. Take p such that — + — = ~. Since Ly =
d-p p ad p Pty 2

A4
5 500 0i(ai0ix) + 24 aijj?@x + YL bidix, we have [ uLxhdp < C([ul2|h]2+
Ve Ve : :
Jwlp ||7||v||hH2) < C(lul2lpl2+ul 2w H?lelh\lz) by Sobolev inequality, where

C is a constant which does not depend on w. We obtain v — [(1 - L)u(xh)dpu,
uw e D(L), is continuous with respect to the norm 511/2. Since D(L) is dense in D(&),
there exists v € D(&) such that & (u,v) = [(1 - L)u(xh)du for u € D(L) by [72,
LExercise 2.7]. Hence, [ (1-L)u(v-xh)du for all ue D(L), and xh =v e HY2(U, u)o

and that

E1(u, xh) :/(AVU, Vx)hd,quf(Lox)uhdu.

Given arbitrary u € Ca o n0, (U), We can choose x € C2 ,, v (U) which is 1 on the

support of u Corollary 4.5. Hence, the previous equality implies
E1(u, h) =0 for all u € Cf ppnen(D).

Now, let u € HY?(U, 1), and choose a sequence u,, € Cg,ObNeu(ﬁ)’ n > 1, such that
limy, o0 Uy = u in HY2(U, 1) by Remark 4.1. Take ¢ € C’g’ObNeu(U) such that 1 is 1
on support of u by Corollary 4.5. Using Corollary 4.1, we can see that lim, . Yu, =
Yu=wuin HY?(U, ). Hence

1
3 f(AVu, Vh)du - f(B, Vu)hdp + f whdp = € (u, h) = 0 for all uwe HY2(U, 1)o.

By Lemma 4.10, we can see xyh € HY2(U, p)o for all € Cg"(ﬁ).
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Now, for x € C5°(U),

> Javean), vomdn+ [ (en’an
=%f(AV(XQh),deu—%f(xh)mvx,vh)dw%fh<AV(xh),Vx)du+f(xh)2du
= [(B.OE - [ AT TR+ [ AV OR), T

- [ (B Chdp- 3 [ () (ATx Y+ 5 [ AV G, VX
:_%f(B,V(h2))X2dM—/(Xh)(AVX»deMJF%[h2<AVXaVX>dM

=%[<BaV(X2))h2dM—[h(AVX,V(Xh))du+%th(AVX, vX)dp.

=1 =11 =111

Now, choose a sequence xj, € CS°(U) such that it is 1 on Bx(0)nU, 0 < x; < 1 and
|Vxk| < %, k € N and put it in above equation instead of x.

Then, for some constant C' which could be different on each inequality but indepen-
dent of k, we get

d
1< C Y 1bill o= (0) [V O NN 217,
=1 ~——

<

[N

SUppPXxk ——
%
C _ ) _
< EHh”LQ(U,,u)(/ )‘s&ppxk|v(th)|2du)l/2 (Slnce )‘s&ppxk < 1)
SUppPXk
C
< - (€ Caehy xeh)) 2,
d 2 2
II11<C Y gl oo [Tk 1L
7,7=1 N~——
<L
<7z
Hence
C C
E1(xrh, xxh) < = (& ey xach)) ' + = (4.14)
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By letting k — oo, we get £Y(xxh, xxh) — 0. In particular, ||hH%2(UM) =0, hence h =0

and we get the desired result.

THEOREM 4.4 Assume o(x)? > 0 for all x € U and is in C’loo’cl(ﬁ) We also as-
sume that (4.8), and a;j, by € L=(U), 1 <i,j <d. We assume further that ATy =
ATy do-a.e. on OU if U contains singular points. Then (L,C’g’ObNeu(U)) is L2-

unique.

Proof By [30, Theorem 1.2 of Appendix A], it suffices to prove C’&ObNeu(U)
is dense in D(L) with respect to the graph norm. However, we know that D(L)g
is dense in D(L) with respect to graph norm by Proposition 4.2. Hence it suffices
to prove C&ObNeu(U) is dense in D(L)g. Note that H??(U, i) convergence implies
convergence with respect to the graph norm. Proof is similar with Theorem 4.3. We
just give a sketch of proof here. Choose f € D(L)o. Let A" = (a;;), B' = (by,...,by),
where a;j = ¢?a;j and b} = p?b;, 1 <i,j <d. Then A’, B’ satisfies the same condition as
A and B locally. Choose diffeomorphism (Uy,,%;)1<i<m as in Theorem 4.3 which is an
open cover of supp f. Use partition of unity(Lemma 4.9) (¢;)7%, such that supp¢; c Uy,
with K =suppf. We can use Lemma 4.11 (resp. Corollorary 4.7) to get (f¢;)(¢;1) =
wi € Hu? (Bi) = {f e H*2(B;)|(n, Vf) = 0 p*do-a.e. on dB;}, where B; = (U, nU).
For simplicity, we assume B; = R%. Define @ by an extension of u to R? by reflection.

We want to show @ € H>2(R?). We just give a reason why @ € H>%(R?%) below. The

rest of proof is same with Theorem 4.3.
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Let f € C3°(R?), then

fR i(2)0u0af () da fR , W)0uaf () + fR @1 @i, ~20)0a0af (@) da

—A;d Oqu(@) (Daf (x) - (0af) (21, .., a1, ~2q))dz + (+)
fRd 0u00u(z) (f(x) + F(21, ..., Taor, —q))da + (%)
[ @udau() g + @udaw) (@, war, ) lge) () de

fR Ba0ii(2) f () da

(*) on the 4’th equality is the boundary term derived from integration by parts and
it disappears, since Jg(f(x1,...,%Za-1,~%d))|z,=0 = —0af (@)|z =0

(**) on the 5’th equality is the boundary term derived from integration by parts and
it disappears by Neumann boundary condition of . Similarly, the following holds for

all 1<i,j <d.

fR (@) 0, f (x)de = fR | 0idyi(2) f (x)da.

REMARK 4.4 By the reflection method as above, any u € Hg’g’Neu(U)o with (a—L)u =
f, feLP(U), can be extended to @ € H>P(R?) such that (a—L)u = f in RY, where f is
an extension of f such that ||f||Lp(Rd) <O\ flzrry for some constant C independent

of u and f.

1e(U) for some ~y > d, ¢ is locally uniformly positive and is

REMARK 4.5 If Ve el
¥

locally bounded, i.e., essinfyo >0 and @[ v,y < 0o on each bounded set V c U.

’ SERSES,

/Rf u(2)0404f (x)dx + jﬂ-aﬂ w(x)(0g0qf) (w1, ..., xq-1,—xq)dx

'||



Proof Assume U is a half space R? := {(x1,...,24)|xq > 0} first. Extend ¢ to RY
by reflection, i.e., o(z1,...,2q) = o(x1,...,~x4) for {z € R¥Yzy < 0}. Now the result
follows from [9, Corollary 8§].

Now U is as in the beginning of this section. Choose bounded V c U. Now the result

follows from usual argument using partition of unity as in Lemma 4.11.

REMARK 4.6 With the condition in [68, Chapter 3, Theorem 3.1 page 135], we

can get L*-uniqueness of (L,C%.,(U)). In particular, if U is bounded C**-domain,

aij € CL*(U), bj e C¥*(U) and Ve o CO*(U) for some 0 < a < 1, we can easily get
¥

L?-uniqueness. Previous Theorem 4.4 clearly extends this classical method.

Proof Assume [;;(1-L)uhdp =0 for all u e C’g,ObNeu(ﬁ) for some h e L2(U). By [68,
Chapter 3, Theorem 3.1 page 135], for any f € C3°(U), there exists us € C&ObNeu(U)

such that (1 - L)uy = f. Hence, we are done.

4.5 Markov uniqueness of Robin boundary condition

Let U c R? with 2 disjoint boundaries I'; and I'y, dist(T'1,I'g) := infyer,, yera ||z -
yl>o0.
Let a;j = aj; € H*(U) n C'(I'1), which is strictly positive for all 2 € U uT';. For
x € C§(U), xa;; can be extended to H* (R?). Note that H*(U) consists of locally
Lipschitz continuous functions (See [44, Theorem 4.1]). Hence, every point z € UuTl'y

has a neighborhood such that a;; is Lipschitz continuous there. Let

Chynea(U UT) = {f € C(RN\D2) ror, (AT, V) =0 ¢°do-ae. on Iy} (4.15)

¥ [ 11 ==
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Define

£(f.9) = fU<Avf, vg)de, (4.16)

where the 0; f denote the distributional derivatives and the domain D(&) of the form
is defined to be the space of all f € L?>(U) for which the integral is finite. By [85,
Theorem 1.1 1], it is a Dirichlet form. We can also see that C(Q)b New(UUT'1) is contained

in the generator (L, D(L)) of the form.

THEOREM 4.5 Suppose = € Ty has a neighborhood which C?-deffeomorphic to tes-
selationable set in the sense of Definition 4.4. Then (L, C%bNeu(U U Fl)) 18 Markov
unique if and only if capy(T'2) = 0, where capy is defined as in [85, page 3 (4)](we

use capy instead of capq ).

Proof By [85, Theorem 1.1 III], (£, D(£)) is a maximal extension in the sense of
Section 3 of this paper. Therefore, it is enough to show that C%b New(UUT) is dense
in D(E). Choose f € D(E). Take gp be a measurable function which is 1 near I'y and 0
near I'y. By convolution with usual mollifier, we can get C'*° function g; which is 1 near
I'; and 0 near I';. Note g1 and Vg are both globally bounded. Let hy = fg1, ho =1-f.
Note hi, hy € D(E). Now hy can be approximated as in Theorem 4.3 and hsy can be

approximated as in [85, Proposition 4.1].
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Chapter 5 L!'-uniqueness and conservativeness on
reflected Dirichlet space

5.1 Introduction

Let U be an open set in R? whose boundary is smooth enough in certain sense and
let 1 = p?dz, @ € Hllo’f(U), @ >0 dz-a.e. Let A = (aij)g,jﬂ (possibly non-symmetric)
be a locally strictly elliptic matrix with elements in Hllof(U) and (3 := (B1,,Bq) be
a divergence free vector field (for the precise conditions, see later sections). Let L be
a non-symmetric linear operator on L?*(U,u) with the domain D(L) ¢ C2(U) being
dense in L?(U, u1). Let

1 d
Lu= 5 izjj(aijaiaju + 0;a;;0;u) + ; bio;u feD(L).

The uniqueness problem for diffusion operators are studied by many articles and
book, for example, [10, 29, 46, 49, 66, 71] (For background material, motivation
and survey, see [29] for detail). In this chapter, in particular, we are interested in
constructing extension of L which generates Cp-semigroup, finding regularity of a;;
and b; which guarantee equivalence of conservativeness and L' uniqueness, and certain
type of elliptic regularity and L? uniqueness result. Main importance of our chapter
is, since we deal with Neumann problem, we can also investigate boundary behaviour
of some problems. From previous result, they usually assume that U = R? because it
is very difficult to control boundary effect.

In Section 2, we use the idea from [96] to construct extension L of L whose

generator extends L. Moreover, we also show that L! uniqueness of (L, 0027 New (D)) is
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equivalent to conservativeness in certain sense, which will give us analytic criteria to
show conservativeness. We also contain some concrete example when this holds. Note
that if U = RY, our result extends the previous result [96].

In Section 3, we use the idea from [10] to show elliptic regularity and some applica-
tions including L? uniqueness result and invariant measure result. On this section, we
only assume that a;; is locally Holder continuous rather than H llo’f (U) which extends
previous result [9, 10].

In Section 4, we will see when distorted Brownian motion will satisfy the condition
of Section 2.

Although many statements in this chapter resemble statements in [96] and [10],

we will state them here again to make this thesis self-contained.

5.2 Functional analytic framework and notations

In general, we shall denote by | - |5 the norm of a Banach space (or vector space)
B. We denotye the topological dual space of a Banach space B by B’. In the special
case of RY, d > 1, |- | will denote the corresponding Euclidean norm and (-,-) the
Euclidean inner product.
Let U c R? be a possibly unbounded open set with Lipschitz boundary, where the
definition of Lipschitz boundary is given in the Appendix. Let o denote the surface
measure on the boundary U of U and 7 be the inward normal vector on dU.
For any V c U, V open, let LP(V,u), p € [1,00], denote the usual LP-spaces with

respect to the measure p and we omit p if it is the Lebesgue measure. We denote by

p

(U, 1) we denote all measurable

(,+) g the inner product in Hilbert space H. By L
functions f : U - R with f € LP(V,u) for any bounded and open set V c U. Let

n € Nu{0,00}. Denote by CF(R?) the set of n-times continuously differentiable
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functions on R% with compact support. For a set A c R?, a function f: A - R, let
suppa f denote the essential support of f in A with respect to the Lebesgue measure.
For convenience, we write suppf or support of f instead of suppgf. For a compact K
in R?, let C™*(K) be the usual Holder space of order (n,s), which consists of n-times
continuously differentiable functions with Holder exponent s, n € Nu {0}, 0 < s < 1.
For open Q c R?, a continuous function f:Q — R is called locally Holder continuous
if its restriction to K for all compact K c Q is Hélder continuous. Let A, B be sets.
For a function f: A - R and B c A, denote the restriction of f to B by fiz. We
denote the closure (in a topological space that will be mentioned) of B by BK R. For
V cU, V open, let

Cy(Vu(UunV))

= {f|v|f € C’{)‘(Rd),supdef c Vp for some Vp c R? open with Vo nU = V1.

Note that for V = U, we get C}(U) = {f|U|f e C?(R%)}. For n = 1,2 and arbitrary
open set V c U, let H"P(V'), p € [1,00], be the classical Sobolev space of order n in
LP(V'), i.e. the space of all measurable functions that are together with their weak
derivatives up to order n again in LP(V'). For a weakly differentiable function u, let
O;u denotes the directional derivative with respect to the direction e; which is 1 on the
i'th coordinate and 0 on the other coordinates, and let Vu := (01u, -+, dgu), 1 <i < d.
Let

H'P(U) = {u|u-x e H"P(U) for all x e C(U)}, pe[l,00].

loc
If W c LP(U,p) is an arbitrary subspace, let Wy denote the space of all elements
u € W such that supp v is a bounded set in U, and by W, = W n L* (U, 1) the space
of all (yi-)essentially bounded elements in W. Finally, let Wy, = Wy n W,

Fix ¢ € Hllof(U) such that ¢ > 0 dr-a.e. and let du = p?dr. For 1 < i,5 < d let

) -11 =1
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a;j :U — R be measurable functions. Let further A = (aij)1<ij<d and for 1 <i,j <d

Qg5 + ajj . Q5 — Qj;

Q;j = 5 Qjj = 9
We assume that A is locally strictly elliptic, i.e., for any bounded V c U there exist

constants M, \y € (0, 00) with

d
NP < Y ai(@)& < WP VE=(&,..,&) €RY, prae. ze V. (5.1)
2,7=1

and (actually, we only need that the Dirichlet form defined in Lemma 4.5

below satisfies the weak sector condition)

max
1<i,j<d

s oo vy < MAY (5.2)
and

a;j € Hl’g(U,,u) ={ulu-xe H1’2(U,,u) for all y e C°(U)}, 1<i,j<d.

loc

For an arbitrary open set V c U, HY2(V, ;1) be the closure of Cg(V u (0U OV)) in
L*(V, p) with respect to the norm (f;, u?du + [, |Vu|2dp) /2. The closure exists (see,
e.g. Lemma 4.5 below) and moreover H%2(Vy,u) ¢ HY2(Va, 1) whenever Vi c Va.

For V c U open, let
C3 neu(VU(OUNT)) = {f e CF(VU(OUNV))[(ATn,V f) =0 p°do-a.e. on OUnV}.

where AT = (aiTj) = (aj;) is the transposed matrix of A. Attention: Here we assume

that A”7 is uniquely defined ¢?do-a.e. on OU. Note that for V = U, we get
Conea(0) = {f € C3(U) (AT, Vf) = 0 p*do-a.e. on OU}.

Let B = (bz)l e L?

loc

(U;R%, 1), i.e. I |B[2dp < +00 for any bounded and open V c U.

Suppose

fU LAu+ (B, Vuydu=0 YueClyen(D), (5.3)

¥ , 18
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where LAU = % Zg,]&l aij&@ju. Let

d {8.ar 9.
2 Ap? Ap? Ap? J © ;
BAET = (B gy, g }:( - +a£]7), 1<i<d.

2
Let B = (Bla"'aﬁd) =B _/8A,Lp .
Then, using integration by parts and noting that the boundary terms disappear, we

obtain from (5.3) that
fU (B, Vuydp =0 Yue 2y (D). (5.4)
LEMMA 5.1 We have that
£9(u,v) = % [ AV, o), w,ve CROD), (5.5)
is closable in L*(U, 1) and its closure (€Y, D(E%)) is a sectorial Dirichlet form.

Proof Assume (fn)ns1 € C2(U) — 0 in L*(U,p) and E°(fn = fm, fn = fn) — 0O
as n,m — oo. Then (fn)ns1 ¢ C2(V) := {f|V|f € C23(RY)} — 0 in L3(V, u) and
3 JAAV(fa=fin), V(fa= fin))dp — 0 for any bounded and open set V c U as n,m —
co. By [103, Lemma 1.1], we obtain that (AV f,, Vf,) = 0 in L'(V,m). From this it
easily follows that there exists a subsequence such that limg_,(AV fy,, Vfn,) — 0

p-a.e. on U. Therefore, by Fatou

go(fnvfn) < hlgrig}fgo(fn - fnkv fn - fnk)a

which can be made arbitrarily small for big n. Hence (£°,C2(U)) is closable in
L*(U, ). Finally, the conditions (5.2) on @;; and (5.1) imply that the closure sat-

isfies the strong sector condition and it is a Dirichlet form.
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Consider the Dirichlet form (£°, D(£°)) and let (L% D(L°)), (G%)as0, (T)ss0
be the corresponding generator, resolvent, and semigroup respectively. We denote by
(E°, D(EY)) the co-form of (°, D(EY)), i.e. the form defined by E°(u,v) = £°(v,u).
Note that D(E°) = D(EY). Objects corresponding to the co-form (E°, D(EY)) are
all noted with a hat. For instance, the corresponding co-resolvent, and co-semigroup
are denoted by (G%)as0, and (TP )0 respectively. Since for any ¢ > 0, T) is sub-
Markovian, T} | L2(Up)nL (U,u) can be uniquely extended to a sub-Markovian contrac-

tion T? on LY (U, ).

We further assume
(C) equality (5.4) extends to any u € CZ(U).

REMARK 5.1 If U has a C* boundary, and a;; € C1(0U), 1 < 4,5 < d, then (C)
holds. (Definition of C*(OU) is given in Appendiz.)

Proof See Proposition 4.1.

(C) implies that (5.4) extends to any u e HY2(U, i), in particular,

L(B,Vu)vduz—[lj(ﬁ,kud,u Vu, ve HY*(U, 1)op- (5.6)

It is easy to see that Cg’Neu(U) c D(L®). Therefore, Lu := L%u+ (3, Vu),u € D(L°)g,
is an extension of L4u + (B, Vu),u € Cngeu(U).

For any bounded and open set V c U, denote by (L% D(L%")) the generator of
EO(u,v); u,v € HY2(V, 1), by (GXY)aso the associated resolvent, by (Tto’v)t>0 the
associated sub-Markovian Cy-semigroup of contractions and by (T_}O’V)Do its unique

extension to L' (V, ). Let further (ZO’V, D(ZO’V)) be the generator and (Ez’v)mo be

) 3 1] &=L —
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the resolvent of (Tto’v)bo. We denote here the dual objects on L' (V, y)which are ob-

tained through the co-form (€, D(E°)) by (EO’V’ ,D(EO’V’ ), (@g’v’ )as0s (Ttov )t50-

DEFINITION 5.1 Let (S,D) be a densely defined linear operator on LP(U,pn). If
there is only one C°-semigroup on LP(U,u) whose generator extends (S, D), then
(S, D) is said to be LP-unique. If (S,D) is a semi-bounded symmetric operator, it
is known that L*-uniqueness is equivalent to essential self-adjointness (see [29, 1 c)

Corollary 1.2 and Lemma 1.4]).

DEFINITION 5.2 Let B be a Banach space, f € B. An element | € B’ that satisfies

B = flB, and I(f) = | f|% is called a normalized tangent functional to f.

DEFINITION 5.3 A densely defined operator (S, D) on a Banach space B is said to
be dissipative, if for each f € D there exists a normalized tangent functional | with

I(Lf) <0.

PROPOSITION 5.1 Let V cU be open and bounded. Then:

(a) The operator LV = L%Vu+(B,Vu),u e D(L%V)y, is dissipative, hence in partic-
ular closable, on L*(V, ). The closure (EV, D(ZV)) generates a sub-Markovian

. . =V
Co-semigroup of contractions (T )i»0-

(b) D(T"), < H'3(V, 1) and

&uv)~ [ (8, vupdp=- [ T uvdpsue DI )0 e H2(V, ),

In particular,

E%u,u) = - ffvuud,u;u € D(fv)b.

Before proving Proposition 5.1, we need some lemmas.
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LEMMA 5.2 Let (S,D(S)) be the generator of a strongly continuous contraction
semigroup on a Hilbert space (H,(-,-)). Suppose there exists a constant K > 0 such

that
(1= 8)u,v)| < K((1-8)u,u)"*((1 = S)v,v)? for all u,v e D(S).
Then Tyf € D(S) for allt>0, and f € H.

Proof See [72, I.Theorem 2.20, I.Corollary 2.21].

LEMMA 5.3 Let f e H"2(V, ). Suppose there exists g € L*(V, i) such that
(. h) = [ ghdu Vhe HY(V,)a L™(V, ).
Then f € D(EO’V) and ZO’Vf =—g.

Proof (we adapt here the proof of [17, I. Lemma 4.2.2.1] to the non-symmetric case).

For any v e L*(V, 1), we have
e = [ 9@ vdu=tim [ ((gam)v(-n) G vdu= [ @V g)vdn.
On the other hand

E°(f, @?’VU) = fv flv- é(l)’vv)du = [V(f —ag’vf)v dps.

Hence f = E?’V(g + f) and we get the desired result.

LEMMA 5.4 Let (B,D(B)) be a coercive closed form on a Hilbert space (H,(-,-))
and let C be a non-empty closed linear subspace of D(B). Let J be a continuous

linear functional on D(B) and a> 0. Then there ezists a unique v € C such that

B(v,w) + a(v,w) = J(w) for all weC.
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Proof See [72, I.Exercise 2.7].

O
Proof (of Proposition 5.1) Because of Lemma 4.14, 5.2, 5.3, 5.4, we can proceed as

in [96, Proposition 1.1], although we are in the non-symmetric case.

REMARK 5.2 Since —f3 satisfies the same assumption as 3, the closure (fv’/, D(fv”))
ofﬁo’vu—(ﬁ, Vu),u € D(I:O’V)O,b on LY(V, 1) generates a sub-Markovian Cy-semigroup
of contractions. If (LV"', D(L""")) is the part of (EV”,D(EV’,)) on L*(V, 1) and

(LV,D(LY)) is the part of (EV,D(EV)) on L2(V,p), then (LY, D(LV")) is the

adjoint operator of (LY, D(LY")). For more details, see [96, Remark 1.3].

LEMMA 5.5 To distinguish d-dimensional Lebesgue measure and (d—1)-dimensional
Lebesque measure, we let \* be the k-dimensional Lebesque measure on this lemma,
k=d, d-1. Let Uy = {(xa,--,24) € RYY| there exists x1 such that (z1, 9, xq) € U}.
Let g be a XN -version of p := ¢® which is absolutely continuous on the x1-axis for

X1a.e. (29, 2q) in Uy. Then define the following space

there exists a function @V such that
i) aM = u, p— ae.
D(g)l:: U€L2(U,/_,L)7 /LZ) fO’F )\d_l_a"e‘ (I’g,‘”,xd)EU]_,fL(l)(ﬂfl,ﬂj‘Q,"',l‘d)

is absolutely continuous in x1 on {x € R|pM (x1, 29, -, 24) > 0}

and 8D [0z, € L2 (U, 1)

Then D(E)1 is independent of the choice of the version oY) and 96V [0z, is defined
p-a.e. Define D(&);, i = 2,-+,d analogously and let D(E) = n;D(E);. Then we have
D(E) = HY2(U, ;1) and 8™ |9z; = du.
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Proof See [99, Lemma 6].

We get the following corollary by above Lemma.

COROLLARY 5.1 ForxeCg(U) and f € HY*(U, ), xf € HY*(U, ) and 0;(x[f) =
Iixf +x0if.

THEOREM 5.1 There exists a closed extension (L, D(L)) of
Lu = L% + (B, Vu),u e D(L%)g,
on LY (U, p) satisfying the following properties:
(a) (L,D(L)) generates a sub-Markovian Cy-semigroup of contractions (T'¢)sso.

(b) Let (Up)nen be any sequence of bounded open sets in R, with U, c Uy, for any
n, and Ups1U, = R%. Set V,, :=U, nU, n>1. Then limnqwéz"f =(a-L)7'f
in LY(U, i) for all f e L*(U,p) and a > 0.

(¢) D(L), c D(E°) and
E%(u,v) - [ (B, Vu)vdu = —[fuvdu;ue D(L)y,v e H*(U, 1)o -

Moreover,

E%u,u) < - [fuud,u;u e D(L),.
Before proving Theorem 5.1, we need the following lemma.

LEMMA 5.6 Let Qq,Q be bounded open subsets of U with 2y c Qo. Let u € Ll(U, ), u >

0, and a>0. Then @glu < 522%
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Proof The proof is basically the one of [96, Lemma 1.6], but we have to change the
reason why w? € H2(Qq, 11).

Let v e C’g(Ql u(oU ﬂﬁl)) and let y € Cg(Ql u (U ﬂﬁl)) be positive with xy =1 on
suppg, (v). Then (v—ag2u)+ = (X(v—§22u))+. Assume (up )nen © C3(Q20(0UNQ2))
converges to @2211, in H2(Qy, 1t). Since (Xtn)nen C Cg(Ql u (U nﬁl)) converges to

X@%u in H2(Qq,p) by Corollay 5.1, it follows (v —@Q

«

*u)* e HY2(Qq, ). Finally,
choose (vUn)nen € C3(21 U (AU n€Y)), such that v, — aglu strongly in HY2(Qq, ).
Then, £° ((vn - @2%)*, (v — ESQU) <&° (vn - @22% Up — @2%)*) which is bounded

Qo Qo +
« (0] u) -

independent of n. Since (v, -G, u)* —w} in L?(Q1, 1), we get that (v, -G,

w, weakly in H'2(Qq, u). Therefore, w}, € H“?(Qy, 1) by [72, I. Lemma 2.12].

O
Proof (of Theorem 5.1) Using Lemma 5.6, the proof is similar to [96, Theorem 1.5].
In particular, we note that £2(-,v) for some fixed v € D(EY) is a linear functional on

D(&°) by sector condition.

REMARK 5.3 (a) By Lemma 5.6, (L,D(L)) satisfying Theorem 5.1(a),(b), is

uniquely determined.

(b) Analogously to Theorem 5.1 (cf. Remark 5.2), we can construct a closed exten-
sion (f,,D(f’)) of ou (B, vu),u € D(I)oy on LY(U,u) and which satisfies
the analogous properties to Theorem 5.1(a)-(c), with B replaced by - and E°

replaced by &Y. We can eastly see that

f Gouvdp = ] ué,avd,u for all u,v e LY (U, ),

where G = (o~ L)™! and @la = (« —f)_l.
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(¢c) (L,D(L)) is dissipative by Theorem 5.1(a) and [88, Theorem X.48], and hence

its restriction (L, D(L°)gy) is also dissipative.

(d) D(L), (and then of course also D(f,)b) is an algebra:

Proof The proof is basically same as in [96, Remark 1.7]. But we have to make
some modification due to the non-symmetry. We shall precise the details below.
Let we D(L)y. It is enough to show that u®> € D(L),. To this end it suffices to

prove that if g == 2uLu + (AVu, Vu) then

f f’vu2du = f gudp for all v = Ellh,h e LY(U, p)s, (5.7)

since then [ G1(u*-g)hdu = [(uQ—g)allhdu = qu(éllh—flallh)d,u = [ u?hdu
for all h e LY(U, 1)y, where A ={a;;}. Consequently, u* = G1(u® - g) € D(L).

For the proof of (5.7) fix v = allh, he LY (U, )y, and suppose first that u = Gy f
for some f e LY(U, p)y. Let uy, = EY"f and vy, = @Vn”h, where (Vi)n>1 is as in

Theorem 5.1(b). Then by Proposition 5.1 and Theorem 5.1,

f ' VUt dpt

—So(uun,vn)—[(/B,anmund,u

= —So(u,vnun)—%/(AVun,an)udu+%f(AVu, Vi Yvndp
+ f(ﬂy Vu)”nundu—/(ﬁ,Vun)uvndu

= [fuvnundu+/fvnunvnud,u+%f(AVun,V(Unu))du

- %f(AVumWn>udu+%[(Aw, Vi ondp

f(zu)vnund,u"'f(zvnun)andu+f<A_vua vun)”nd:u'

Since up, converges tou weakly in D(E°), [(AVu, Vuy)v, du — [(AVu, Vu)vdp

by the sector condition.
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(Indeed, limy,,o0 [(AVU, Vup)vdp = limy,eo [(AVUy,, Vu)v, du, since v, — v
pi-a.e., [v=vy,| is bounded uniformly inn and |( AVu, Vu,)| is bounded in L*(U, 1)
uniformly in n, because it converges to |{ AVu, Vu)| in L*(U, p). So we can apply
Lebesgue’s theorem). Now, the remaining part of the proof is the same as [96,

Remark 1.7], if we change A to A in the definition of go there.

LEMMA 5.7 Letue HY?(U, 1) and u = constant y-a.e. on a Borel measurable subset

B of u. Then 1g|Vul*du =0, i.e.
|[Vu|=0 p-a.e. on B.

Proof See [104, Lemma 3.8 (iii)].

COROLLARY 5.2 Forue HY2(U, i), support of Vu is contained in support of u.

PROPOSITION 5.2 Assume U has a C? boundary and a;; € C*(0U). The following

statements are equivalent:

(a) There exists (Xn)n>1 C HLZ(U, ©) and o> 0 such that (xn, —1)" € HY(U, 14)0.b5

loc

n>1, lim,e Xn =0 p-a.e. and

53(1),;(") + f (B, Vxn)vdu >0 for all v e Hl’Q(U,u)OJ,,v >0
for any n>1.
(b) (L,D(L )op) is L'-unique.

(c) pis (Ty)-invariant.
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Proof (a)=(b): By Remark 5.3(c) and Lemma 4.14, it is enough to show that if
h e L=(U,p) is such that [;;(a — L)uhdp = 0 for all u € D(L°)g;, and some a > 0,
then h = 0. The rest of the proof is almost the same as [96, Proposition 1.9], but
we have to change Cg°(R?) to C&NEU(U), A to %fl , €% to €0 and Hé’2(]Rd,,u)0 to
H?(U, p)o. Then similarly to [96, (1.22)], we obtain for u € D(L")y, x € C§ o, (U)
that xu € D(L%)g, and xh € D(£°) and that

Sg(u,xh)zf(ﬁ,v(xu))hdu+/(AVu, Vx)hdu+/(L0X)uhdu.

Given arbitrary u € C2 ., (U), we can choose x € C2 ... (U) which is 1 on the support

of u (see Lemma 4.5). Hence, the previous equality implies
£%(u, h) - f (8, Vuyhdp = 0 for all ue C2 ., (7).

Now, let u € HY2(U, )0, and choose a sequence u,, € C&Neu(U), n > 1, such that
limy, 00 tp = u in HY2(U, 1) (see Proposition 4.1). Take 1) € C’ngeu (U) such that ¢ is
1 on support of u by Lemma 4.5. Using Corollay 5.1, we can see that lim,_, . Yu, =

Yu=u in HY2(U, 1). Hence,
€%(u, h) - f (8, Vauhhdp = 0 for all we HY2(U, 1)o. (5.8)

Let vy = [A] Lo uyXn = h. Then v < (A uyXn = [Al L) pae. In
particular, v,, is essentially bounded and has compact support. Choose a nonnegative
¥ € C2(U) such that ¢ = 1 on the support of v,,. YR Loy = h) € HY2(U, )op
by Lemma 4.10 and ¢(|[h|| oo (7, Xn = 17l oo (w))” € HY*(U, )0, by Corollay 5.1.
Hence

vy, = ([h o wyxn —=h)" = Ylhlre@mxn - ﬂ)f e H*(U, 1oy -

—_————
eH1.2(U,u)o by Corollay 5.1 eHL2(U,u)o by Lemma 4.10
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Moreover,
0< & (v, vp) - f(ﬂ, Vv, Yopdp < —a f(v;)Zdu.

First inequality holds by using the fact that — [ (8, Vv;,)xndp (?) (B, VXn)v,du, the
assumption on y,, and (5.8).

(I) holds by (5.6), Corollary 5.2 and replacing x,, by =M vix, A M, where M is large
enough constant such that x, = -M v ¢ x, A M on the support of v,,.

Second inequality holds by using the fact that [ (3, Vv, )vndu f (B, Vv, v,

(HI)
0, E%v;,, vn) ( < 0.

v)
(IT) holds by Corollary 5.2.
(I1I) holds by (5.6).
(IV) holds by Lemma 5.7.
Thus v, = 0, i.e., h < [A|peu)Xn- Similarily, —h < A e )Xn, hence |h| <

|2 Loo (17,2) X Since limy, o0 X = 0 p-a.e. it follows that h =0 p-a.e.
(b)=(c): Same as [96, Proposition 1.9](ii)=>(iii).

(¢)=(a): Let (V;,) be as in Theorem 5.1. By Remark 5.2, the closure of L%V u—(, Vu),
u € D(L%"),, on L'(V,,p) generates a sub-Markovian Cy-semigroup. Let y, :=
1- @}/"’,lvn, n > 1. By the dual version of Proposition 5.1 (see Remark 5.2), we
have EYn’llvn € H"2(V,,p) ¢ HY2(U, ). Hence xn € H2(U,p) and (xn - 1)°

loc
HY(U, 1)op-
—Va,’ =V, —=Vn,’
Fix n>1 and let wy := fyG%lGl Ly,,v > 0. Since wy >vG,;; Gy 1y, and
Vn: V’ﬂ7 VTL» V’n: 1
161Gy, =Gy G6+11V >Gy 1y, -
y+1
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by the resolvent equation it follows that

' 1
GY "1y, - —— for all v>0. (5.9)
v+1

Now, we have (using in particular the dual version of Theorem 5.1, see Remark 5.3(b)

for the equality)

E)(wy, wy) < (Glm Wy Wey ) L2(U )
< 7(G1 w'y,Gl 1Vn)L2(U,p,)
—Vn, —Vn,
= &G 1vn,w7)+f<B,Vw7>G 1y, dp
Vn,
<

1 =V,
K& (wnw,)* (@ 10, G 1) E + VN8I, ez |

where K is a weak-sector constant of (£°, D(&°)).

By the above, we see that lim,.. w, = a}/"’ ly, weakly in D(EY). Let J(f) =

n

EY(u, f). Then by the weak sector condition, J is a continuous linear form on D(E?).

Hence, J € D(£Y)" and J(w,) > J(él”"m). For w e HY(U, p)op,u >0,

ﬂlim ([udu &Y (u,wy) - [ B, Vwsy ud,u)

—> 00

ma (/ udu—’yf(aln’ —w,y)ud,u) 0

5?(UaXn)+](5,Vxn)udu

by (5.9). Since x, is decreasing by Lemma 5.6, Xoo := lim,_c X exists p-a.e. If
g¢€ Ll(UHUJ)ba then

f IX oot

lim fgxndu= lim (fgdu—fgalv"”lvn du)
. _Vn

= lim (fgdu—fGl glvndu)

= fgdu—f@gdwo
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since p is (T;)-invariant. Hence [ gxoodp = 0 for all g € L'(U, u), and we get the

desired result.

O

REMARK 5.4 The proof of (c)=(a) in Proposition 5.2 shows that if p is (T;)-
invariant then there exists for all a > 0 a sequence (Xpn)ns1 C HZIO’S(U,/L) such that

(xn=1)" € HY2(U, )0 p, n 2 1, limyeo Xn = 0 p-a.e. and

EQwxn) + [ 4B, Vxa)udp > 0 for all v e HY* (U)o, > 0

for anyn>1.

Indeed, it suffices to take xn :=1- 5‘1/"’ 1y, n>1.

THEOREM 5.2 Let d > 2. Assume that for all compact K in U, there exist Ly >0

and sk € (0,1) such that
|aij(z) — aij(y)| < Li|z - y|°% for all x,y € K.

Assume further that there exist bounded and open sets U, ¢ R?, n > 1 such that
U, U, =R and V,, := U, nU is a bounded C**Vn -domain and aij € Cl’sW(GU nV,).
Let h € L®(U,u) be such that [ (1 - L)uhdp =0 for all u € Cg,Neu(U). Then h €
HY2(U, 1) and EY(u, h) - [ (B, Vu)hdp =0 for all ue HY2(U, u)o.

loc
Before proving Theorem 5.2, we need following lemmas.
LEMMA 5.8 (Hopf’s Lemma)
Let Q c RY be a bounded C*-domain and u e C1(Q) nC?(Q). Let B = (bij) be a non

necessarily symmetric matriz of continuous functions b;; : Q >R, 1<i,j<d, which

s uniformly strictly elliptic, i.e., there exists a constant 6 >0

d
Z bl](x)gléj Z9|§|2 V§= (fla"'agd) ERda x € ()

i,j=1
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Let Lou = (o = ¥4 0ij0;0;)u. Assume that for some o >0, Lou <0 in Q and there

exists xg € OQ such that u(xo) >0 and u(xg) > u(x) for all x € Q. Then
(BT, u) (o) < 0.

Proof We follow the proof as in [30, LEMMA (ii) on page 347].
Since Q is a C? domain, it satisfies the interior ball condition at zg, i.e., there exists
an open ball B c Q such that xp € 9B. We may assume B = B,(0), where B,(0) is

the open ball of radius r centered at 0 for some r > (0. Define
= Az)? _ “Ar?
v(z):=e e, xzeB.(0),

for A > 0 as selected below. Let d;; := 1if ¢ = j and 0 otherwise, 1 < 4,j < d. Then

using the uniform strict ellipticity condition, we compute

Lav = (Oé - waﬁlaj)v
]
67)\|x|2 Z bij(—4)\2$i$]‘ + 2)\51‘]‘) + Cy(ef)‘pc'2 - ef)‘TQ)
]
e~ al? (4072 |z% + 2Xtrace(B) + o)

IN

Consider next the open annular region R := B,(0) - B,2(0). We have (since all b;;

are continuous)
Az2_py2..2
Lov<e (=OX*r* + 2Xtrace(B) + «) <0 (5.10)

in R, provided A > 0 is fixed large enough.

Since u(xg) > u(x) for all x € Q, there exists a constant £ > 0 so small that
u(xo) > u(r) +ev(x), x€dB,(0). (5.11)
In addition note

u(zg) >u(z) +ev(x), xe€dB-(0). (5.12)

2] O 1 &) -
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since v =0 on 0B,(0).

From (5.10) we see
Lo(u+ev—-u(zg)) <—au(zp) <0in R,
and from (5.11), (5.12) we observe
u+ev—u(xg) <0 on JR.

In view of weak maximum principle, [30, p346, Theorem 2], u + v —u(xg) <0 in R.

But u(xo) —ev(xo) —u(zp) =0, and so
(BT, vu)(zo) + (BT, vou)(xg) <0

by uniform strict ellipticity.
Consequently,

-2
(B0, V) (a0) < ~¢(B"n, Vo) (o) = =~ (~B 0, Vo(wn)) = —= (B ao,a0)e ™" <0

as desired.

O

LEMMA 5.9 Assume B = (b;;) satisfies the same assumptions as in Lemma 5.8 and
let Ly, be defined as in Lemma 5.8. Let Q c RY be a bounded connected C?-domain
and u e CH(Q)nC%(Q). Assume that for some >0, Lou <0 in Q and (BT, vu) >0

on Q. Then u <0 in Q. Moreover, u <0 in Q if u is not a constant.

Proof If u is constant, it is easy to see that the conclusion holds. Assume u is not
constant. Assume to the contrary that there exists y € Q such that u(y) > 0.

By the strong maximum principle [30, Theorem 4 on page 350] u attains its nonneg-
ative maximum at some point xg of the boundary and u(zo) > u(z) for any z € Q.

But this leads to a contradiction by Lemma 5.8, since (BTn, Vu) > 0.

&) et
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REMARK 5.5 In Lemma 5.9, we can get u <0 in Q even if Q is not connected, since

we can apply this result on each connected component.

LEMMA 5.10 Assume B = (b;;) satisfies the same assumptions as in Lemma 5.8
and let Lo be defined as in Lemma 5.8. Let o > 0 and Q ¢ R? be a bounded open

C%-domain. Suppose ue C1(Q) nC%(Q) satisfies (BTn, vu) =0 on 0. Then in Q
alu| < supg|Laul.

Proof Tt is enough to show au < supq(Lau), since —u satisfies the same assumptions
than u. Then +au < supq|Lyu| and the result follows.
Define M := supq(Lau) and let w = u — o 'M. Then Low = Lou— M <0 in Q. By

Lemma 5.9 and Remark 5.5, we get w <0 in , which implies the assertion.

LEMMA 5.11 Assume d > 2 here. Assume B = (b;;) satisfies the same assumptions
as in Lemma 5.8 and let L, be defined as in Lemma 5.8. Moreover, assume Bz-j =
bij + b —
' e C%5(Q) and bij € C1*(0N). Let Q c RY be a bounded C%*-domain and let

feC*(Q),0<s<1, a>0. Then

Lou=f inf, (5.13)
(BTn,vu)=0 on 09,

has a unique solution u:= Raf € C%*(Q). Moreover:
(i) Ry is positivity preserving, i.e.
feC*(Q), f(£)20, Ve eQ = Ruof(x)>0, Yz eQ.
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(i) supq |aRa f| < supg |f]-

Proof The first statement follows from [68, Chapter 3, Theorem 3.1 page 135](i) and

(ii) follow from Remark 5.5 and Lemma 5.10, respectively.

]
Proof (of Theorem 5.2) We follow the proof of [96, Theorem 2.1], but since the
changes are subtle, we shall explain the details of the whole proof.
Let x € C’g’Neu(ﬁ) and r > 0 be such that supp(x) ¢ B,-(0). Choose n € N such
that By, (0) ¢ Uy,. Choose ¢ € C°(U,) which is 1 on B,(0), 0 on U, — Ba,(0), and
0 < < 1. Let A = {a;;} be such that A = A+ (1 -14)I, where I is the identity

matrix. Then a;;(x) = a;j(z) for all x € B,.(0) nU, there exists some constants L > 0,
dij + &ji

—
Moreover, a;; € cHova (0V,,) and satisfies the uniform ellipticity condition. Let L,

0 < s < 1 such that |a;j(x) — a;;(y)| < Llz —y|® for all z,y € U, and a;; =

be defined as in Lemma 5.8 with b;; := %, 1 < 4,5 < d, satisfying the conditions
of Theorem 5.2. Then by Lemma 5.11, for any f € C5°(V},) there exists a unique
RMf e C?%(V,) with LoR"f = f in V,,, satisfying Lemma 5.11(i) and (ii). By a
standard procedure (see e.g. proof of [96, Theorem 2.1]) R can be extended to a
sub-Markovian operator aV' on the bounded Borel measurable functions By(V;,) on
V,, such that V' f = R} f for any function f € Co(V},), i.e. any continuous function
f on V,, that vanishes at infinity. Choose (fx)r>1 € C5°(Vy,) such that fi — hly, p-
a.e. and | fil g v ) < 1 Lo (v, ). Then limg oo @V fr = aV}(R1y,) pointwise on
V,, by Lebesgue’s theorem, hence limy_, ., xaV fi = xaV?(h1y;,) on L?(V;,, 1) again
by Lebesgue’s theorem. Next, one shows that (xaVfi)rs1 is £°-bounded, which
further implies that xaV®(hly;,) € D(E%) and that (xaV"fi)rs1 converges weakly
to xaV*(hly,) in D(EY) by [72, 1. Lemma 2.12]. Then, we derive the analogous

equalities and inequalities to (2.2) and (2.3) in the proof of [96, Theorem 2.1]. By

) 3 =11 =1 —
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this we get that (xaV*(hly,))aso is bounded in D(E?). Then again as in the proof
of [96, Theorem 2.1] we get that the limit of some weakly convergent subsequence
(xaxVy, (hly,))k=1 With ap — oo equals xhly, = xh p-a.e, since every closed ball
in Hilbert space is weakly sequentially compact. In particular, yh € H 1’2(U,,u)07b.
Moreover, Lemma 4.10 implies h € H llo’f(U, ).

Let u € HY2(U, t)o. Then by Proposition 5.2, there exists a sequence v, € C’g’Neu (U),
n > 1, such that lim, e v, = u in HY2(U, 11). Let 1 € Cg,Neu(ﬁ) be such that v is 1
on support of u (see Lemma 4.5). Using Corollay 5.1, we get lim,, .o v, = u = u in
HY2(U, u). Let uy, :=¥v, and x € C§°(U) be such that y is 1 on support of 1.

Then

Euwh) — [ (8, Vuphdy= lim (€)(un, k) = [ (5, Vunhidp)

lim [ (1-L)u,xhdyu=0.

n—oo

REMARK 5.6 Assume the boundary of U is of class C*V! and a;; € C=21U) =
{f|U|f e CF21(RY)}, where 1 = 3 + max{k € Z|k < %l} Let h € L*(U,u) be such
that [ (1 - L)uhdp = 0 for all u € C&NEU(U). Then h € Hllo’f(U,u) and E)(u,h) -

[ (B, Vu)hdp =0 for all ue HY(U, p)o.

Proof Let (A,D(A)) be the closure of (5.5) (see Lemma 5.1) with p = dz, and
(Wa)aso (resp. L4) be corresponding resolvent (resp. generator). By Lemma 4.8, we

have D(A = HY2(U)g and if f € L?>(U) and g € H%?(U)g, then

Aa(Waf,g):%f(AVWaf,Vg)dx+afWafgdx:ffgdac. (5.14)

-
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If x € C’&Neu (U) and f € C°(U), then YW, f € D(A)o. Then, using the product rule,

(5.14), and the Gauss-Green Theorem, we get

1
5f(AV(XWaf),Vg)derafXWafgdx:ff'gd:n for all g e HY*(U)o, (5.15)

where f' = Xf—% ¥i.i1aij (0ix) (0jWa f) +0;(aij(9;x)Waf)}. By a classical regularity
result for weak solutions of the Neumann problem(cf. [18, Remark 24 written under
Theorem 9.26]), xW,f € H"*(U) (This theorem also holds for unbounded U by
exactly analogous proof using the compactness of suppx nU. The only part using the
boundedness of U is when we apply partition of unity on U, but it’s OK if suppynU
is compact. See also Lemma 4.11. Note that we can assume boundary of U is of
class C1~1! instead of C! by [37, Lemma 1.3.3.1].), and hence of class C2(U) by [30,
5.6.3. Theorem 6] (This theorem also holds for unbounded U by exactly analogous
proof using the compactness of suppy N U similar to above.) Now, (5.15) implies
XWaf € CF jeu(U).

Now, choose V' c U such that V is open and bounded, supp(x) ¢ V and choose
(fn)nz1 € Cg°(V) such that f, - hly p-ae. and | follpo(v,u) < 2] e (vpy- Since p
is equivalent to dz, we get lim, .o fn = hly in L?(V) by Lebesgue’s theorem and
limy, 00 aWa fn = aWa(h1ly) in L2(V). Passing to a subsequence, we can assume
limy,, 00 Wy fr, = aWy4(h1ly) p-a.e. Now the remaining parts of the proof is similar to

dial.
Theorem 5.2, but we explain the details. Let B := (b],--,b};), where b} = Z;-lzl ]2 <

-
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Then

E%(xaWo frs xXaWa fn)

_fLO(XaWafn)XaWafndM
__[XLAX(O‘Wafn)Qd:UJ_/(AvXav(XaWozfn»aWafnd/‘
¢ [(AVX T @Waf) du=a [ (@Wafa= fu)x*aWafudy

_/<,BA,¢2 ~ B, V(xaWafn))xaWe frdp.

Hence (xaWe fn)ns1 is £%-bounded, which further implies that yaWs (hly ) € D(E°)
and that (xaW,fix)rs1 converges weakly to yaWy(hly) in D(E®). Then, we also

derive the analogous inequality to [96, (2.3)], which is as follows.

E%(xaWyh, xaWah) < lillgrr_l)glfgo(xocWafk, xaWe fr)

<= [ XL (@Wa(h1v)dn - [ (A7 (alVa(h1v))aWa (v )du

+ [{ATX, 9 (@Wa (k1)) [ X*(aWa(hly))hdp

+ [ (B =B, voaWa(hly))xhdp+ [ (B =B vx)x(aWa(h1y))hdp

+2 [ (AVX, V(xaWa(hly))hdp -2 [ (AVX, 9x)(@Wa(hLy))hdp

v [ LG @Wahly)hdp - [ (54" = B v(xalWa(hlv))xaWa(hly )d
By this we get that (xaWya(h1ly))aso is bounded in D(EY). Then again as in the
proof of [96, Theorem 2.1] we get that the limit of some weakly convergent sub-
sequence (xaxWe, (hly))gs1 with ap — oo equals xhly = xh p-a.e. In particular,

xh e HY?(U, p1)o,p-

Then we get

Sf(mh)—[(ﬁ,Vu)hdu:O he HY2(U, 1)

¥ 3 1] 3
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as in Theorem 5.2.

O

COROLLARY 5.3 Assume all the conditions as in Remark 5.6. Fiz o > 0. For all
feC(U), there exists u € C&Neu(ﬁ) such that (a«—L)u = f on suppf. For arbitrary

open set Q c RY containing suppf, we can further assume that suppu is contained in

Q.

Proof f' defined in Remark 5.6 coincides with f on suppjf.

COROLLARY 5.4 Under the assumptions of Theorem 5.2 (resp. Remark 5.6),

(L,C&Neu(ﬁ)) is L'-unique if and only if p is (Ty)-invariant.

Proof Almost same with [96, Corollary 2.2]. Just change R? to U, CF*(R?) to

C2 Neu(0), Hy?(RY, 11)o to HY2(U, 11)o, [96, Proposition 1.9] to Proposition 5.2, [96,
Theorem 2.1] to Theorem 5.2 (resp. Remark 5.6).

i

Since (T)-invariance of ju is equivalent to conservativeness of (T;), we get the

following:

COROLLARY 5.5 Under the assumptions of Theorem 5.2 (resp. Remark 5.6),
(L,CSVNW(U)) is L'-unique if and only if (T;) is conservative, where (T;) is the

semigroup of (fl, D(f)).

PROPOSITION 5.3 Let U have a C* boundary and a;; € C'(dU). Each of the fol-
lowing conditions (a) and (b) imply that p is (T)-invariant.
(a) @y, b~ B € LNU,p), 1<i,j<d.

(b) There exists u € C*(U) with (Vu, An) <0 @*do-a.e. on OU and o > 0 such that
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limyy| 00 u(x) = +oo (If U is unbounded) and LA+ (6AT’902 - B,Vu) < au.

(¢) ~(A(@)z, z)/(Jo2+1)+ Strace(A(z)) +((BY ¥ - B)(z), z) < M(je In(|z*+1)+1)
for some M > 0. We further assume one of the following :

(i) A=1 and U is star-shaped centered at 0, i.e., for all x in U the line segment from
0 to x is contained in U.

(i) U is a ball centered at 0.

Proof (a) By Proposition 5.2, it is enough to show that (L,D(LO)O,b) is L'-unique.
By Remark 5.3(c) and Lemma 4.14, it hence suffices to show that if h € L=(U, ) is

such that
fU(a ~ Lyuhdy = 0 for all ue D(L%)op, (5.16)

for some a > 0, then A = 0. From the proof of Proposition 5.2 (a)=(b), we know that
(5.16) implies xh € HY2(U, 1) for x € Cg,Neu(U) and

E2(u, h) - f (B, Vuyhdpu =0 for all u e HM?(U, u)o. (5.17)

Moreover, Lemma 4.10 implies h € H">(U, 11). Now, for x € Ce(U) (for intermediate

loc

steps see proof of Proposition 4.2.)

> VO, VO a [ e

=%f(ﬁ,V(x2)>h2du—fh<!1v><,v(xh)>du+%[#(Avx,vxm,

=1 =11 =III

Now, choose a sequence Y € C5°(U) such that it is 1 on Bg(0)nU, 0 < xx < 1 and
1
|Vxk| < T k € N. Replacing x by xx in the latter equation, we get for constant C

(which could be different from inequality to inequality but is always independent of
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k), we get using in particular (5.2)

1 d A 2
11 IO w0 X [ 1005 ld,
N~—— =1

<

ElIN]

1] < M [ 1B, 9319 )
< Ol Tl [ ARG A 9 Gl
1
k
< L ) [ A VO
< Danl2,, (€ 0ahoan) ",

IT11) < eIy 3 [ lasldn
N——

1 7j_
<k—2

Hence we get
2 C
+

¢ ¢
K k-

1
E9(xkhy i) < = (E20xkh, xih))"

Hence E2(xxh, xxh) = 0 as k — oo. In particular, O‘Hh”%Z’(Uu) =0, hence h =0 and we

get the desired result.

b) Let xp, := 2. Then lim;, 0 xn = 0 and X, € H'? U,i), (xn —1)" is bounded
n

loc

and has compact support. Thus (x, - 1) € H1’2(U,,u)07b.
For all v e HY2(U, t)gp,v >0,

1
5 JAve vxadua [ oxadus [ (8,9x0)vdn

T 2
—/[‘](LAXH+(,BA g —ﬂ,VXn))vdu+aLvXndu

1
= A 2do >0
5 BU(Vxn, nyvyp-do

Ea(v, Xn) + f (B, Vxn)vdp
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Now Proposition 5.2 implies the desired result.

(c) By taking u(x) = In(|z|? + 1) + r for sufficiently large r, we can apply (b).

REMARK 5.7 Let U have a C? boundary and a;; € C*(9U).
(a) We can replace the assumption (5.2) on Proposition 5.3-(a) by weak sector con-

dition, i.e., there exists a constant K >0 such that

[ AV $.vg)dn < KEN(1, 1) E0. 90, f, g€ CF (D)

+ =1,

, 1
if @iy, bi- B By € LNUp), Gy € LP(U ), 22 € LV (Uop), = + —
2 D

D=

1<p,p <00, 1<i,j<d, and ATy=0 p2do-a.c. on OU.

(b) Suppose  is finite. Then with the same proof as in [96, Remark 1.11.(i)], we can
see that p is (Tt)-invariant if and only if p is (T;)—z'm)am'ant. Then we can replace
BAT’“"Q - in Proposition 5.3 (b) by BA’“’z +6 =B, and An by ATn and the implication
still holds true.

(c) Suppose that there exists a bounded, nonnegative and nonzero functionu € C*(U)
with (Vu, An) > 0 do-a.e. on U and o > 0 such that L u + (BAT’“’Q - B,Vu) > au.

Then 1 is not (T¢)-invariant.

Proof (a) As in the proof of Proposition 5.3-(a), it is enough to show that if h €
L*=(U, ) is such that (5.16) holds for some « > 0, then h = 0. We also know that

he H-*(U, 1) and (5.17) holds. Now, for ¢ Cg°(U) (for intermediate steps see proof

loc
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of Proposition 4.2.)

L [ 4AVOh), O+ [ (xhydn
:%fuw’v(XQ»hzd“‘fU(Xh)<AVx,Vh>du+%/Uh%Avx,Vx)dM
:%L(ﬁaV(X2)>h2du—i/U(/lVXQ,VhQ)d,u+%[UhQ(Av%vX)d”

1 1
=5 [ 8O+ 1 [ ¥ o0, () hdp
1/7]

=1 =11
1 29; 1
- 005 () 22 24 —/h2A dy.
+4fU%ag i(x%) PR (AVx, VX)du
=ITT =1V

Now, choose a sequence yj, € C5°(U) such that it is 1 on Bg(0)nU, 0 < yx < 1 and
|Vxk| < %, k € N and put it in above equation instead of x.
Then, for some constant C' which could be different on each inequality but indepen-
dent of k, we get
d 2
1< CIV D0 X [ 1= 51

—
<

BN

d
111 < VO =y [ 100l

/L?]=
<

NN

d
111 < CIT OO (2 N o) IV oy
S~—— 4,7=1
<

eSS

d
1V <l My X [ lauldn.
~—— i,5=1

<

e
w"“

By letting k — oo, we can conclude as in the proof of Proposition 5.3(a).

(c) It is almost same with [96, Remark 1.11.(ii)], but we repeat the proof here.
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We may suppose that u < 1. If 4 would be (T)-invariant it would follow that there

exist x, € Hllof(U,u), n > 1, such that (x, — 1)~ € H?(U, 1) p, limpyoo xn = 0 p-a.e.

and E2(v, xn) + [{B, Vxn)vdp > 0 for all v € HM2(U, 1u)op, v > 0 (by Remark 5.4).

Let vy, := (xn —u). Then v, < (xn—1)" p-a.e. In particular, v, is essentially bounded

and has compact support. Choose a nonnegative v € Cg(ﬁ) such that 1) = 1 on the

support of v;,. Note that v, = (xp, —u)” = (¢(Xn —u))_ e HY*(U, )0, by Corollay
NI

eH2(U,p)o
5.1.

Osgg(v;,fun)—/(B,Vv;)vndus—af(v;)Zdu.

First inequality holds by using the fact that — [ (3, Vv, ) xndp (—) (B, Vxn)v;,du, and
the assumptions on y,, and u.

(I) holds by (5.6), Corollary 5.2 and replacing x,, by =M vix, A M, where M is large
enough constant such that x, = -M v ¢ x, A M on the support of v, .

Second inequality holds by using the fact that [ (3, Vv, vnd,u f LA (1?1)
0, E%v;,, vn) (I%/) 0.

(IT) holds by Corollary 5.2.

(ITI) holds by (5.6).

(IV) holds by Lemma 5.7.

Thus v,, =0, i.e., u < xp. Since limy,,, Xn = 0 p-a.e. and u > 0 it follows that u = 0

which is a contradiction to our assumption u % 0.

EXAMPLE 5.1 Let ji:= ¢ dz, B(x) = -2z - 6¢* , Lu=u" + Bu', u € C&Neu(ﬁ)}
where U = (a,00), —00 < a < +o0, (L,D(L)) be the mazimal extension having prop-
erties (a)-(c) in Theorem 5.1 and (Ty)s0 be the associated semigroup. Let h(x) :=

[ e‘tzdt, x €U. Then h satisfies the assumption of Remark 5.7 (c), hence p is not
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(T;)-invariant.

5.3 Elliptic regularity and L?-uniqueness

In this section for  c R%, Q open, LP(§) be a usual LP space on Q and H'P(Q)
be a classical sobolev space of order 1 in LP(£2). Assume d > 2 throughout this section.
In this section, we follow the proof of [10, Chapter 2. Elliptic case.] . Assume U and
A be as in Remark 5.6(resp. Theorem 5.2). On this section, because we need one
of two different conditions, we will use (resp.) for the condition of Theorem 5.2. For

1 1
0<p<oo,let p’ denote the number satisfying — + — = 1.
p D

LEMMA 5.12 Let v be a locally finite (not necessarily non-negative) Borel measure

on U such that for any compact K cU some Cg >0,
f Zaij@-(‘)jfdusC’K(sup |f|+ sup |Vf|) (5.18)
UnK ’L,j UnK UnK

for all nonnegative f € C’&Neu(ﬁ). Then v is absolutely continuous with respect to

loc

d
Lebesgue measure with d—y e L] (U) for every re[l,d).
T

Proof The proof is analogous to [10, Theorem 2.1 (ii)], but we will repeat again here,
because there are some changes.

Let Do be a ball in R? and let & € CF v, (U) be such that 0<£ <1, £=10n DonU
and the suppé belongs to D n U, where D is a ball in R%(resp. we take D = U,
satisfying suppé c U, n U instead), this is possible by Corollary 4.5. Let us consider
the measure v = {v. By substituting £ in place of f in (5.18), for every nonnegative

P e Cg,Neu(ﬁ)7 we obtain

‘f > ai;0;0;4dv'| < Cy (sup [¥] + sup |V7,/J|) (5.19)
DU 75 DU DnU

T ) 1] =1
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where C] is a constant independent of 9 as in the proof of [10, Theorem 2.1 (ii)]. Note
that above inequality still remains true for every ¢ € C2(D nU) with (ATn,¢) =0
on (D nU) again as in the proof of [10, Theorem 2.1 (ii)]. Now fix A big enough to
satisfy the inequality on [36, Theorem 2.3.3.6](resp. arbitrary A > 0). Now let r > d.
By Corollary 5.3(resp. the proof of Theorem 5.2), given g € C§°(D nU), there exists

a function u € C*(D nU) such that

AU — Zaijaif)ju =g

1,
on DU and (ATn,u) = 0 on OU (resp. (ATn,u) =0 on (D nU)). Now [36, Theorem
2.3.3.6](resp. [37, Lemma 9.17]) implies, there exists a constant Co independant of g

such that
|ul gr2.r (Deery € C2llgl e (DAvy-
By Morrey’s theorem,
sup [Vul + sup [u| < Cs] g - ooy
DnU DnU

for some constant C3 > 0.

Together with (5.19) yields

[ 9@ <Culglirpney. Vg€ G (DAU) (5.20)
for some Cy4 > 0. Hence we get the desired result.

O

For a Banach space B and n € N, let B" := B@&--® B with norm | f|pn :=
|
n

S | fil B, where f = (f1,-, f) € B".

LEMMA 5.13 Let ) be an open set. For v e L}, (), define L, : (C'(‘)’°(Q))d+]L - R by

d
L,(v) = f v(vg — ;&vi)dx,

-
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where v = (vg, -, vq) € (C§°(Q))d+1. If |L,(v)| < C”UH(
C >0, then ve H'P(Q).

v ()™ for some constant

Proof Take v = (v9,0,--+,0). Then | [ vvodz| < Clvoll 1o ()- Hence v € LP(£2). Now,
take v = (0,v1,0,--,0). Then | [ vO1v1dz| < Cllv1] - Therefore, there exsits vy €
LP(Q) such that [ vdyvidx = [ vividz. Hence v is weakly differentialble with respect

to the first coordinate, and O v = 14 € LP(). Similarily, we can get the desired result.

O

LEMMA 5.14 Letr > 1, qe[r',00). Fiz arbitrary x € U. Then there exists a bounded
open neighborhood D c RY of x with the following property. Let v € L, (U) such that
for any f € C3(DnU) with (AT, f) =0 on (D nU), we have

<Cl flarapaey (5.21)

!LHU%aijaiaijd$

with C independent of f.
Then ve HY (D U).

Proof Take arbitrary D which is a neighborhood of z(resp. take D = U,, such that
x € Up). By Corollary 5.3(resp. the proof of Theorem 5.2), given g = (go,91,**,9d),

(9i)o<i<a € C (D N U), there exists a function u € C52(D nU) such that
A\u — Z aijf)i(‘)ju =go+ Z &-gi (522)
1, i

on DnU and (ATn,u) =0 on d(D nU) for any .

By putting into (5.21), we get

‘LOU(QO+Zaigi—Au)de < Cllul gra(pavy- (5.23)
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Hence

S0+ Zig)vde| < Colulimnaqonny (5.24)

for some constant Cp >. By Lemma 5.13, it remains to prove |ul g1.4(parry < C1g] (La(Q))®!
for some constant Cy > 0.

By Remark 4.4, u, g; can be extended to a function @ € H>?(R?), g; € LP(RY) such
that [gi|Lr(rey < C2|9ill Lr(Dnvy for some constant Cy independent of u, g;. Now the

result follow from [63, 4.4 Theorem 2].

LEMMA 5.15 Let p > d, v € (p',00), v € L}, (U), and let v € L} (U) or v €

loc

LP

loc

(U,vdz). Assume that, for every f € C&Neu(U), we have

| [ a0y pvda|< [ (1f1+ 90wz, (5.25)
Then, v e HP(U).

Proof Fix arbitrary € U and choose D as in Lemma 5.14. Let g = pr/(pr—p-7) > 1.
By analogous argument of [10, Theorem 2.8], we can see that |yv| € L;{;C(U ). Again,

analogous argument of [10, Theorem 2.8] shows

| [ asdids @] < 19 Flaonry (5.26)

for any f € C’g New(U), and ( € C’g New(U) such that supp( c D for some constant C
independent of f. Since we can take any x € U, v e H lt’cq’(U). Now, exactly analogous

proof of [10, Theorem 2.8] can be applied.
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COROLLARY 5.6 Let p > d, and let b; € L} (U). Let v be a locally finite Borel

measure satisfying
[ULAu +(B,Vuydy =0 VueCZ (D). (5.27)

dv
Then v is absolutely continuous with respect to Lebesque measure with T € Hllgf(U).

Proof 1t easily follows from Lemma 5.12 and Lemma 5.15.
O
By Riesz-Thorin Interpolation Theorem, (Tt) determines uniquely a semigroup
of contractions (7}) on L?(U,u) whose generator extends (L, C’g,Neu ({U)).

Note that the following theorem extends [9, Theorem 7].

THEOREM 5.3 Let p > d, b; € LY (U,p), Bi € L®(U), a;j € L=(U) and ¢ is lo-

loc

cally uniformly positive and is locally bounded, i.e., essinfyyp > 0 and |¢| ey, <

oo on each bounded set V c U, where v > d, then we can get L?-uniqueness of

(L, C8 veu(D))-
Proof Assume h e L?(U, i) such that

fU(1 ~ L)uhdp = 0 for all u € C2 v, (7).
By Corollary 5.6, we have h € Hllo’f(U). Therefore, for x € C°(U),

> [ AVOm), TOm)du+ [ (e

=%f(ﬁ,v(xg)wdu—fh(AVX,v(xh»dw%th(AvX,vXWM

Now the remaining parts of the proof is exactly analogous with Proposition 4.2.
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REMARK 5.8 Assume OU is of class C%'. If Ve e L7 (U) for some v >d, ¢ is
¥

loc

locally uniformly positive and is locally bounded.

Proof Proof is exactly analogous of that of Remark 4.5 using [37, Lemma 1.3.3.1].

Now we will show an application of our result.

PROPOSITION 5.4 Assume further that A=1 and U is a star-shaped domain cen-
tered at 0. Let b; € LfOC(U) for some p > d. Suppose that there exists M > 0 such

that
(B(x),z) < M(|JzP*In(|z)* +1) +1) for all x € U. (5.28)
Then there exists at most one probability measure p satisfying
bie L} (U ) and f Au+ (B, Vu)du=0 for all ue Cg,Nw(U). (5.29)

Proof Let py, pa be two probability measures satisfying (5.29) and let p = % i+ % 2.
Clearly, p satisfies (5.29) again. By Corollary 5.6, u is absolutely continuous with
respect to Lebesgue measure and for the density p we have that p e H llo’f (U). By [102,
Corollary 5.3], p admits a positive continuous modification, thus ¢ = \/p € H lt’f(U )
and b; € L2 (U, ).

Now, we follow the proof [96, Proposition 2.8] to show (L,C’g’ New(U)) is Ll-unique
by Remark 5.6(resp. Theorem 5.2).

Again, analogous proof of [96, Proposition 2.8] shows h := % e D(E°%) and £°(h, h) =

0, and hence p; = pso.
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5.4 Examples

(This is the condition for Distorted Brownian motion to satisfy the assumption of
this chapter.)

All the conditions are as in the Introduction and d > 2(The case d = 1 can be sim-
ilarly, but easier. Here we omit the proof). Assume additionally that A = I + A, a;j €
CH(U),U : C? domain, p € C*(0U).

Additionally, we also assume that the one of Condition Theorem 5.2 (resp. Remark

5.6) is satisfied.

fa AVE)gPdo =0 for all f € CF e, (D)
— [BU (Vf, ATn)p?do =0  for all fe C’&NGU(U)
— '/aU (Vf,ATn)p?do =0  for all feC?(AU)

The last equivalence holds because, if f € C’a Neu(U), the restriction of f to QU is
clearly C2(9U). Conversely, let f € C2(QU). Let (94, ¢.) be usual C? diffeomorphisms
as in Definition 4.1 whose domains are neighborhoods 2, of x € QU. As in previous
chapter, we can assume ¢; maps ATy to (0,0,---,0,1). Since suppf is compact, we
can assume suppf c UL, Q; for some ; = Q,,, x; € OU. Let 7; be partition of unity
subordinated to €; such that ¥;7; = 1 on suppf. Then (n;f)o¢~! is a function on R%n
x4 = 0. We can easily extend (n;f)o¢~! to C? (Kf) whose support is contained in image
of ¢;(For example, we can define a function F € C? (Ei) such that F(zy,-,x4-1,24) =
(if)o¢ Y (z1, -+, w4-1) and we can multiply some function C§° (@i) whose support(in
Ei) is contained in image of ¢; and is 1 on the support(in 8@?) of 71 (21, 2q-1)).
By returning back this extended functions to U, we get the desired result.

To get further result from this, we need integration by parts on the Riemannian

11 =1 —
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manifold. Note that U is a d—1 dimensional Riemannian manifold. Since (A77,7) = 0,
ATy is a tangent vector field on the manifold dU.
faU (Vf, AT 2o =0 for all f e C*(AU)
— faUg(grad fATne*)do =0 for all feC?(QU)
— —/8U fdiv(ATnp*)do =0 for all feC?*(QU)
Therefore, div(ATn¢?) = 0 do-a.e.

Here, g(grad f,ATne?) = df (ATne?), and divergence is in the sense of Riemannian

1 A
manifold structure, i.e., divX = ———=0;(/det(g9)X").

Vdet(g)

Note also that although OU may not be an oriented compact manifold, we can do

integration by parts, since we only need to integrate locally.

5.5 Appendix

DEFINITION 5.4 An open set U is called to have Lipschitz boundary if it is locally a

graph of a Lipschitz function. Alternatively, we also say that U is a Lipschitz domain.

DEFINITION 5.5 An open set U is called to have C™ boundary if for all x € OU, there
exists 6, > 0, there exists U, an open neighborhood of x, there exists 1, : Bs, (0) - U,
such that

(1) s, w;l are of class C"

(i1) ¥.(0) ==

(i4i) ¥2(Bs,(0) n{z1 <0}) = 12(Bs,(0)) U

(iv)  2(Bs,(0) n{z1 =0}) = ¥2(Bs,(0)) nOU
, where n € Nu {0}. Moreover, if 1, ;' are of class C™*, we say U has C™*-

boundary, 0 < s < 1. Alternatively, we also say that U is a C™°-domain.
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DEFINITION 5.6 Let U be a C™%-domain.

C(0U) = {f1f (¥a) € €' (By, (0) 0 {4 = 0}) for cach x < DU}

, where 1, is defined in Definition 5.5, n' e Nu{0}, 0<s' <1, n"+s <n+s.
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