
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학석사학위논문

Autonomous Navigation by Domain
Adaptation with Generative

Adversarial Networks

생성적대립신경망과도메인적응기법을이용한

자율주행방법연구

2018년 8월

서울대학교대학원

전기·컴퓨터공학부

홍용준



Autonomous Navigation by Domain
Adaptation with Generative Adversarial

Networks

생성적대립신경망과도메인적응기법을이용한
자율주행방법연구

지도교수윤성로

이논문을공학석사학위논문으로제출함

2018년 8월

서울대학교대학원

전기컴퓨터공학부

홍용준

홍용준의공학석사학위논문을인준함

2018년 8월

위 원 장:
부위원장:
위 원:



Abstract

Generative adversarial networks (GANs) has received popular attention because of

their great potential for important subjects in the machine learning field, such as semi-

supervised learning, image translation and domain adaptation. Specifically, GANs are

capable of generating more sharp and realistic synthetic data than prior generative

models without any probability distribution assumptions.

In this paper, we apply GANs to autonomous navigation, which has been a unique

subject for various fields such as robotics, mechanical engineering and machine learn-

ing. Prior approaches with deep neural networks to autonomous navigation are mostly

gathering lots of labeled real data and training neural networks by supervised-learning

method. However, large labeled datasets are indispensable for these approaches, and

labeled real data is hard to acquire, laborious and often erroneous.

We address this problem by domain adaptation with GANs. In simulator environ-

ment, various kinds of labels can be easily taken. By exploiting labeled synthetic data

from simulator environment, we alleviate labeling issue in real environment through

domain adaptation. In addition to that, by GANs, we try to make synthetic data look

like real data, so that autonomous navigation can be successfully done without label

information of real data.

keywords: Generative adversarial Networks, Autonomous navigation, Domain

adaptation,

student number: 2014-21634

i



Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 INTRODUCTION 1

2 BACKGROUND 4

2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Integral Probability Metric . . . . . . . . . . . . . . . . . . . 5

2.1.2 Image to Image Translation . . . . . . . . . . . . . . . . . . 10

2.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Autonomous Navigation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Non-learning Based Approaches for Autonomous Navigation 17

2.3.2 Learning Based Approaches for Autonomous Navigation . . . 17

2.3.3 Employing a Simulator for Autonomous Navigation . . . . . 18

3 METHOD 19

3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Domain Adaptation with Adversarial Learning . . . . . . . . . . . . 20

ii



3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 EXPERIMENT 27

4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Steering Command . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Off-line Test Result . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 Outdoor Navigation On-line Test Results . . . . . . . . . . . 30

4.3.3 Image Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 DISCUSSION 42

5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Content Similarity Loss . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Regression Problem . . . . . . . . . . . . . . . . . . . . . . 45

5.3.2 Command Condition . . . . . . . . . . . . . . . . . . . . . . 45

5.3.3 Other Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 CONCLUSION 47

Abstract (In Korean) 59

iii



List of Tables

4.1 Architecture details of the generator . . . . . . . . . . . . . . . . . . 34

4.2 Architecture details of the discriminator . . . . . . . . . . . . . . . . 35

4.3 Architecture details of the classifier . . . . . . . . . . . . . . . . . . 36

4.4 The off-line test result. . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Average steering command . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Average number of human interrupts to finish. . . . . . . . . . . . . . 38

4.7 Success rate to recover. . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



List of Figures

2.1 An overview figure of the GAN . . . . . . . . . . . . . . . . . . . . . 6

2.2 A figure of unpaired image translation . . . . . . . . . . . . . . . . . 12

2.3 An overview figure of [2] . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 An overview figure of [8] . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 An illustration of head and lateral classes . . . . . . . . . . . . . . . 20

3.2 An overview of the proposed method . . . . . . . . . . . . . . . . . . 21

4.1 Navigation test courses . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 A figure of images from each domain . . . . . . . . . . . . . . . . . 33

4.3 A figure of t-SNE result . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 A figure of PCA result . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 A figure of isomap result . . . . . . . . . . . . . . . . . . . . . . . . 41

v



Chapter 1

INTRODUCTION

Recent big advance in machine learning with deep neural networks can be possible

because of enormous amount of data. Particularly, supervised learning method with

labeled data shows great success in various fields. However, lots of labeled datasets

exist mostly one-sided to specific tasks related to images, and getting corresponding

labels to input data is laborious, expensive and often erroneous. Therefore, generating

synthetic data look like real data has been a popular subject in that real-like synthetic

data can replace real data and attaching corresponding labels artificially is cheaper and

easier than at real environment.

Generative adversarial networks (GAN) [19] has been focused on greatly because

of its capability of generating more real-like data than other previous generative model

such as variational auto-encoder [14]. Specifically, GAN adopt the discriminator, which

distinguishing real data and synthetic data. With concept of the discriminator, GAN

can produce real-like data without any probability distribution assumptions [28].

Even though GAN are leveraged to various tasks recently, we concentrate on how

GAN is applied to domain adaptation. Domain adaptation refers to adapting one do-

main to another so that one can use the data from the former domain to train a model

for the tasks in the latter domain [53]. Intuitively, to successfully transfer knowledges,

differences between two domains should be minimized, and this situation is highly ac-

1



ceptable to a GAN concept in that GAN also aims to minimize distance between real

data probability and synthetic data probability [28].

In this dissertation, we utilize domain adaptation with GAN to autonomous nav-

igation [76]. Most prior studies about autonomous navigation required large labeled

datasets, corresponding steering information for input image, for example. We address

this labeling issue by getting corresponding labels from simulator environment, which

is much easier than getting labels from real environment. Since simulator environment

and real environment are much different visually and perceptually, we apply GAN for

domain adaptation to minimize environments’ difference. By doing that, autonomous

navigation task can be accomplished without labels of real environment. The source

code for the proposed method is available at https://github.com/yjhong89/

DA_CIL. Note that this dissertation is based on the following papers:

• Jaeyoon Yoo, Yongjun Hong and Sungroh Yoon. Domain Adaptation Using Ad-

versarial Learning for Autonomous Navigation. Under review

• Youngjun Hong, Uiwon Hwang, Jaeyoon Yoo and Sungroh Yoon. How Genera-

tive Adversarial Networks and Its Variants Work: An Overview of GAN.

Under review

We summarize two major advantages of our approach over previous works.

First, our method reduces the labeling issue through domain adaptation by generat-

ing realistic images from simulated images. We apply domain adaption to a simulator

environment to train a navigation model that works reasonably well in a real environ-

ment using simulated data without any real labeled data. Simulator environments do

not suffer from labeling issues [9] because we can make any kinds of labels easily in

simulator environment.

Second, our method requires only a monocular camera. Many existing approaches

to autonomous navigation depend on various sensors, including global positioning sys-

tem (GPS) sensors and depth sensors [16, 37, 43, 70]. Such approaches often raise

2

https://github.com/yjhong89/DA_CIL
https://github.com/yjhong89/DA_CIL


issues such as the additional cost and complexity, which are the main problem with

using multiple sensors. They may increase the actuator burden, especially in the case

of micro aerial vehicles. Additionally, sensors have their own limitations. For example,

a GPS sensor does not usually operate well in an indoor environment or in a forest.

Compared with other sensors, a monocular camera is light and cost-effective. Images

can be acquired in real time with a camera in most well-lighted areas. Moreover, the

latest deep learning techniques, having shown remarkable achievements in the image

domain [41], may compensate for the lack of other sensors during autonomous navi-

gation.

3



Chapter 2

BACKGROUND

2.1 Generative Adversarial Networks

[19] proposed generative adversarial networks (GANs), which is composed of two

components, the generator G and the discriminator D. G produces fake samples from

the latent variable z whereas D takes both fake samples and real samples and decides

whether its input is real or fake.D produces higher probability as it determines its input

is more likely to be real. G and D oppose each other to achieve their individual goals,

so the adversarial term is coined. When this adversarial behavior is formulated as the

objective function, GAN solves minimax Equation 2.1 with parametrized networks G

and D, which both have full capacity. pd(x) and pz(z) in Equation 2.1 denote a real

data probability distribution defined in the data space X and a probability distribution

of the latent variable z defined on the latent space Z, respectively. It should be noted

that G maps the latent variable z from Z into the element of X , whereas D takes an

input x and distinguishes whether x comes from real samples or fromG. The objective

function is thus represented as follows:

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pd [logD(x)] + Ez∼pz [log(1−D(G(z))] (2.1)

where V (G,D) is a binary cross entropy function which is commonly used in binary

4



classification problems.

As D wants to classify real or fake samples, V (G,D) is a natural choice for an

objective function in aspect of the classification problem. From D’s perspective, if

a sample comes from real data, D will maximize its output and if a sample comes

from G, D will minimize its output. Meanwhile, G wants to deceive D so it tries to

maximize D’s output when a fake sample is presented to D. Consequently, D tries

to maximize V (G,D) while G tries to minimize V (G,D), and which is where the

minimax relationship in Equation 2.1 comes from. Figure 2.1 shows an outline of the

GAN where D produces higher probability (near 1) when it decides its input is more

likely to come from real data.

Theoretically, the Nash equilibrium for Equation 2.1 can be achieved through the

following procedure. First, D is trained to obtain an optimal discriminator for a fixed

G, and then G tries to fool D to enable D(G(z)) produce a high probability. By itera-

tively optimizing such a minimax problem, D cannot discriminate whether its input is

real or fake anymore because pd(x) = pθ(x) has been achieved, and D(x) produces a

probability of 1
2 for all real and fake samples where pθ(x) stands for a probability dis-

tribution of generated samples with a generator parameter θ. Particularly, [19] shows

that solving Equation 2.1 is equivalent to minimizing the Jensen Shannon Divergence

(JSD) between pd(x) and pθ(x). JSD between pd(x) and pθ(x) is defined as follows:

JSD(pd(x)||pθ(x)) =
1

2
(Ex∼pd(x)[log

pd(x)
pd(x)+pθ(x)

2

] + Ex∼pθ(x)[log
pθ(x)

pd(x)+pθ(x)
2

])

(2.2)

Note that JSD is symmetrical (i.e., JSD(pd(x)||pθ(x)) = JSD(pθ(x)||pd(x))).

2.1.1 Integral Probability Metric

Integral probability metric (IPM) defines a critic function f , which belongs to a specific

function class F , and IPM is defined as a maximal measure between two arbitrary

distributions in the frame of f . In a compact space X ⊂ Rd where d is a dimension,

5



Generator

Discriminator

Generated fake data

Real data

Distinguishing real or fake

Latent variable z

Figure 2.1: A brief overview of the GAN.

let P(X ) denote the probability measures defined on X . We now define IPM metrics

between two distributions pd, pθ ∈ P(X ) as follows:

dF (pd, pθ) = supf∈F Ex∼pd [f(x)]− Ex∼pθ [f(x)] (2.3)

As shown in Equation 2.3, IPM metric dF (pd, pθ) defined on X determines a max-

imal distance between pd(x) and pθ(x) with functions belonging to F . From Equa-

tion 2.3, we note that F is a set of measurable, bounded, real-valued functions in that

if they are not, dF (pd, pθ) would not be properly defined. How to define F determines

various distances and their properties. We consider the function class Fv,w whose ele-

ments are the critic f , which scores its input as a single value so that it can be defined

as an inner product of parameterized neural networks Φw(x) and a linear output activa-

tion function v. It should be noted that w belongs to parameter space Ω that forces the

function space to be bounded. With the definition of the function class in Equation 2.4,

we can reformulate Equation 2.3 as the following equations:

Fv,w = {f(x) =< v,Φw(x) > |v ∈ Rm,Φw(x) : X → Rm} (2.4)

6



dFv,w(pd, pθ) = supf∈Fv,w,p Ex∼pd f(x)− Ex∼pθ f(x) (2.5)

= max
w∈Ω,v

< v,Ex∼pd Φw(x)− Ex∼pθ Φw(x) > (2.6)

= max
w∈Ω

max
v

< v,Ex∼pd Φw(x)− Ex∼pθ Φw(x) > (2.7)

From Equation 2.7, how we restrict v determines the semantic meanings of cor-

responding IPM metrics. From now on, we discuss IPM metric variants such as the

Wasserstein metric, maximum mean discrepancy (MMD), and the Fisher metric based

on Equation 2.7.

Wasserstein GAN

Wasserstein GAN (WGAN) [3] proposes a significant result regarding the distance

between pd(x) and pθ(x). In a GAN, we are likely to learn the generator function

gθ that transforms an existing function z into pθ(x) rather than directly learning the

probability distribution pd(x) itself. From this view, a measure between pθ(x) and

pd(x) is necessary to train gθ and WGAN suggests the Earth-Mover (EM) distance

which is also called as Wasserstein distance, as a measure of two distributions. The

Wasserstein distance is defined as follows:

W (pd, pθ) = infγ∈J(pd,pθ) E(x,y)∼γ [‖x− y‖] (2.8)

where J(pd, pθ) denotes the set of all joint distributions and marginals of γ(x, y),

which are pd(x) and pθ(x) respectively.

Probability distributions can be interpreted as the amount of mass they place at

each point, and EM distance is the minimum total amount of work transforming pd(x)

into pθ(x). From this view, calculating the EM distance is equal to finding a trans-

port plan γ(x, y), which defines how we distribute the amount of mass from pd(x)

over pθ(y). Therefore, a marginality condition can be interpreted in that pd(x) =∫
y γ(x, y)dy is the amount of mass to move from point x and pθ(y) =

∫
x γ(x, y)dx

7



is the amount of mass to be transported to point y. Because work is defined as the

amount of mass times the distance it moves, we have to multiply the Euclidean dis-

tance ‖x−y‖ by γ(x, y) at each point x, y and the minimum amount of work is derived

(Equation 2.8).

The benefit of the EM distance over other metrics is that it is a more sensible ob-

jective function when learning distributions supported by low-dimensional manifolds.

The article on WGAN shows that EM distance is the weakest convergent metric in

that the converging sequence under the EM distance does not converge under other

metrics and it is continuous and differentiable almost everywhere under the Lipschitz

condition, which general feed-forward neural networks satisfy. This benefit can be in-

tuitively thought of in that the EM distance is a more tolerable measure than other

distances such as JSD and Kull-back Liebler Divergence (KLD).

As the inf term in Equation 2.8 is highly intractable, it is converted into a more suit-

able equation via Kantorovich-Rubinstein duality with the 1-Lipschitz function class

[56], [25] for a set of functions such that for the critic f . A duality of Equation 2.8 is

as follows:

W (pd, pθ) = sup|f |L≤1 Ex∼pd [f(x)]− Ex∼pθ [f(x)] (2.9)

Consequently, if we parametrize the critic f with w to be a 1-Lipschitz function,

it transforms to solving the minimax problem in that we train fw first to approximate

W (pd, pθ) by searching for the maximum as in Equation 2.9, and minimize such ap-

proximated distance by optimizing the generator gθ. To guarantee fw to be a Lipschitz

function, weight clipping is conducted for every update of w to ensure the parameter

space of w lies in a compact space. It should be noted that f(x) is called the critic

because it is not explicitly classifying inputs as the discriminator, rather it scores its

input.

[23] points out that weight clipping for the critic while training WGAN incurs a

pathological behavior of the discriminator and suggests adding a penalizing term of

8



the gradient’s norm instead of weight clipping. It shows that guaranteeing the Lips-

chitz condition for the critic via weight clipping represents a very limited subset of all

Lipschitz functions; this biases the critic toward a simpler function. Weight clipping

also creates a gradient problem as it pushes weights to the extremes of the clipping

range. Instead of weight clipping, it suggests adding a gradient penalty term to Equa-

tion 2.9 with the purpose of directly constraining the gradient of the critic, which the

Lipschitz condition represents.

Fisher GAN

Instead of using standard IPM in Equation 2.3, Fisher GAN [51] emphasizes a stan-

dardized mean discrepancy which naturally induces a data-dependent constraint by the

following equations:

dF (pd, pθ) = sup
f∈F

Ex∼pd f(x)− Ex∼pθ f(x)√
1
2(Ex∼pd f2(x) + Ex∼pθ f2(x))

(2.10)

= sup
f∈F , 1

2
Ex∼pd f

2(x)+Ex∼pθ f
2(x)=1

Ex∼pd f(x)− Ex∼pθ f(x) (2.11)

Equation 3.3 is motivated from Fisher linear discriminant analysis (FLDA) [72] in

that it not only maximizes the mean difference but also reduces the total with-in class

variance of two distributions. Equation 3.5 follows from the constraining numerator

of Equation 3.3 to be 1. It is also, as other IPM metrics, interpreted as a mean feature

matching problem but with different constraints. With the definition of Equation 2.4,

Fisher GAN derives another mean feature matching problem with second order mo-

ment constraint. A mean feature matching problem derived from the FLDA concept is

9



as follows:

dF (pd, pθ) = max
w∈Ω

max
v

< v,Ex∼pd Φ(x)− Ex∼pθ Φ(x) >√
1
2(Ex∼pd f2(x) + Ex∼pθ f2(x))

(2.12)

= max
w∈Ω

max
v

< v,Ex∼pd Φ(x)− Ex∼pθ Φ(x) >√
1
2(Ex∼pd vTΦ(x)Φ(x)T v + Ex∼pθ vTΦ(x)Φ(x)T v)

(2.13)

= max
w∈Ω

max
v

< v, µw(pd)− µw(pθ) >√
vT (1

2

∑
w(pd) + 1

2

∑
w(pθ) + γIm)v

(2.14)

= max
w∈Ω

max
v,vT ( 1

2

∑
w(pd)+ 1

2

∑
w(pθ)+γIm)v=1

< v, µw(pd)− µw(pθ) >

(2.15)

where µw(P) = Ex∼P Φw(x) denotes an embedding mean and
∑

w(P) = Ex∼P Φw(x)ΦT
w(x)

denotes an embedding covariance for the probability P .

Equation 2.13 can be induced using the inner product of f defined as in Equa-

tion 2.4. γIm of Equation 2.14 is an m by m identity matrix that guarantees a numer-

ator of the above equations not to be zero. In Equation 2.15, Fisher GAN aims to find

the embedding direction v which maximizes the mean discrepancy while constraining

it to lie in a hyper-ellipsoid as 1
2

∑
w(pd) + 1

2

∑
w(pθ) + γIm)v = 1 represents. It

naturally derives the Mahalanobis distance [13] which is defined as distance between

two distributions given a positive definite matrix such as a covariance matrix of each

class. More importantly, Fisher GAN has advantages over WGAN in that it does not

impose a data independent constraint such as weight clipping which makes training

too sensitive on the clipping value and also has computational benefit over the gradi-

ent penalty method in Improved WGAN [60] as the latter must compute gradients of

the critic while Fisher GAN computes covariances.

2.1.2 Image to Image Translation

Image translation is a task translating images from domain X to images from another

domain Y . Mainly, translated images have dominants characteristic of domain Y main-

10



taining its attributes before being translated. As in classical machine learning, there are

supervised and unsupervised techniques to conduct image translation.

Image translation with paired images can be regarded as supervised image transla-

tion in that image x ∈ domain X always has the target image y ∈ domain Y . [32] sug-

gests an image translation method with paired images using the U-NET architecture

[57] which is widely used for biomedical image segmentation. It adopts a conditional

GAN framework [50] in that its generator produces a corresponding target image con-

ditioned on an input image. In contrast, [71] adds the perceptual loss between a paired

data (x, y) to the generative adversarial loss to transform input image x into ground-

truth image y. Instead of using the pixel-wise loss to push the generated image toward

the target image, it uses hidden layer discrepancies of the discriminator between an

input image x and ground truth image y. It tries to transform x to y to be perceptually

similar by minimizing perceptual information discrepancies from the discriminator.

Image translation in an unsupervised manners is that given unpaired data from two

domains, it learns a mapping between two domains without supervision. [79] and [38]

aim to conduct unpaired image-to-image translation using a cyclic consistent loss term.

With a sole translator G: X → Y , there can be many possible mappings from X → Y

so that meaningless translation can occur or mode collapse occurs in which several

images in X are mapped to one image in Y . They adopt another inverse translator T :

Y → X and introduce the cyclic consistency loss which encourages T (G(x)) ≈ x

and G(T (y)) ≈ y. Cyclic loss term with L1 norm reconstructs T (G(x)) to be an

original x and G(T (y)) to be an original y so that each direction of translation finds

plausible mapping between the two domains. Figure 2.2 shows the baseline of unpaired

image translation where D denotes the discriminator in each domain and R is the

reconstruction loss for the cyclic consistency.

11



Domain B

𝑮𝑨𝑩(𝑮𝑩𝑨 𝑿𝑩 )

𝑮𝑨𝑩(𝑿𝑨)

𝑿𝑩

𝑮𝑩𝑨(𝑿𝑩)

Generator B to A

Generator A to B

Domain A

𝑿𝑨

R

𝑮𝑩𝑨(𝑮𝑨𝑩 𝑿𝑨 )

R

𝑫𝑨
𝑫𝑩

Figure 2.2: A figure of unpaired image translation.

2.2 Domain Adaptation

Domain adaptation is a type of transfer learning which tries to adapt data from one

domain (i.e., the source domain) into another domain (i.e., the target domain), while

the classification task performance is preserved in a target domain [52]. The reason

why domain adaptation gets popular attention is that there are lots of situation such

that there are the source domain where input data has corresponding label information

and the target domain where input data does not have corresponding label informa-

tion. These situation widely happens in various field because labeled data is difficult

to obtain in the real world. Domain adaptation can be considered as transferring prior

knowledge of a known source domain to a target domain for doing tasks (e.g. clas-

sification) in the target domain without label information of the target domain. For-

mally, we assume that there is a joint probability distribution of input data, x, with

its label, y, in each domain: PS(x, y) in the source domain and PT (x, y) in the tar-

get domain. These two joint distribution are defined over X × Y , where X and Y are

sets of a data space and a label space, respectively. Given the labeled source domain

data, (xs, ys) ∼ PS(x, y), and unlabeled target domain data xt, which comes from the

12



marginal distribution PT (x) of PT (x, y), domain adaptation aims to learn a classifier

h : X → Y , which properly fits on the posterior distribution, PT (y|x) of PT (x, y).

The simplest way to conduct domain adaptation is to not care about differences

in the distributions of the two domains, which are called a domain discrepancy [45].

It trains a model only with the source domain data (xs, ys) and applies the model di-

rectly to the target domain without concerning domain discrepancy. In many cases, this

method does not work well in the target domain because of the domain discrepancy

[45]. The most intuitive way to overcome this issue is to extract a common repre-

sentation space where distributions of the two domain are projected [2, 45, 61]. This

approach attempts to obtain a domain invariant representation space where a projected

distribution is invariant from the source domain to the target domain. It is considered

that, as distributions of two domains on the representation space become closer, the

domain discrepancy becomes smaller and the learned model performs satisfactorily on

the target domain.

To find the common representation space, [7] and [29] proposed methods that per-

formed re-weighting of samples from the source domain. [55] and [20] aimed to find a

feature space transformation that maps a source domain distribution to a target domain

distribution. While their methods attempted to match the feature distributions from

the source and the target domain by re-weighting or geometric transformation, there

are some trials that applied a GAN framework to reconstruct the common represen-

tation space [2, 8, 61]. These methods focus on leading the feature representations to

be indistinguishable between the two domains while maintaining the capability of the

task classifier via adversarial learning with a discriminator. These adversarial domain

adaptation methods have benefits over [7, 29] in that they do not need to do complex

sample re-weighting or feature space transformation. Rather, they change the common

representation space itself dynamically by adopting the deep discriminative domain

classifier (domain discriminator). By employing a GAN concept which naturally mea-

sures the distance between two domains, they aim to merge finding common features

13



and training the task classifier into one framework.

[2] approaches domain adaptation by maintaining discriminative and attaining do-

main invariance concepts. Maintaining discriminative means maintaining a label pre-

diction ability to classify well in the target domain. Domain invariance stands for mak-

ing generated features trained for classifying source data, not distinguishing whether

it comes from the source domain or the target domain. As seen in Figure 13a, there are

two components sharing a feature extractor. One is a label classifier which classifies

labels of source data. The other is a domain discriminator which distinguishes where

data comes from. We train a label classifier to classify labels of source data via a cross

entropy loss. We also train a domain discriminator adversarially via gradient reversal

layer (GRL), which induces the feature generator to extract domain invariant features.

Therefore, the feature generator acts like the generator, which produces source-like

features from the target domain, and the domain discriminator acts like the discrimi-

nator in that it discriminates source domain samples as real and target domain samples

as fake with a binary cross entropy loss.

Label 

Classifier

Domain 

discriminator

Feature
Feature 

extractor

GRL

𝑰𝑺

𝑰𝑻
𝑭𝑺 𝑭𝑻

𝑭𝑺

Figure 2.3: A figure of [2]. IS and IT stand for a source domain image and a target

domain image and FS , FT are mean extracted source features, and target features,

respectively

[61] aim to solve the target domain unlabeled data classification problem by incor-

14



porating [24]. As other adversarial approaches in the above paragraphs, it also consists

of three parts: the feature generator generating domain invariant features, the critic

estimating Wasserstein distance between generated features from source and target

domains, and the classifier passing the supervised signal from the source domain to

the target domain with cross entropy loss. It differs from [2, 8] in that it accesses the

minimax problem with the Wasserstein critic to train the domain discriminator.

[8] take a little different approach to [2]. It attempts to adapt source images to be

seen as if they were drawn from the target domain while [2] try to make generated fea-

tures from both domains similar. There are three components in the suggested model

similar to [2]. The generator maps a source image xs and a noise vector z to a target

adapted image xf . The discriminator distinguishes a real target image xt and a tar-

get adapted fake image xf . The classifier assigns a class label for xs. In addition, it

adds a content similarity loss which reflects a prior knowledge of adaptation, which

guides some important parts of xs to be maintained while it is being transferred. Con-

tent similarity loss is defined as the pixel-wise mean squared error between source

image and adapted image only for the masked area, which becomes a prior important

knowledge of adaptation. It informs the adapted image that the masked area is neces-

sarily kept during adaptation. More importantly, the method of [8] can check xf is well

transferred during training phase because xf is an image itself, while [2, 61] can not

visually check domain adaptation process because the common representation space

can not be easily visualized.

[27] are similar to [8] in that they can also visualize transferred image, but they

adopt two-way generators between the source domain and the target domain. Based on

the concept of cyclic consistency loss [38, 79], they add semantic consistency loss and

feature level adversarial loss from a classifier which pre-trained with source domain

data.

[64] focus on situations where a classifier does not perform well in both domains

and tackle this non-conservative domain adaptation with a cluster assumption [10],

15



Label 

Classifier

Domain 

discriminator

𝑰𝒇
Target Image 

Generator

𝑰𝑺

𝒁

𝑰𝑻

Figure 2.4: A figure of [8]. If and Z stand for a fake image and a random noise vector

from a uniform distribution U [−1, 1].

which data samples in the same cluster share same label information. They impose

a cluster assumption for target domain data by reducing conditional entropy loss. To

control a classifier’s behavior to be more robust near the data points, they incorpo-

rate locally-Lipschitz via natural gradient [21]. By making a parametrization-invariant

classifier through natural gradient, they try to reject classifiers which violate the clus-

ter assumption in the target domain, so reduce a classifier function space to be more

feasible.

Domain adaptation has been applied in many tasks. [45] learned transferable poli-

cies for the UAV navigation using domain adaptation. They tried to decrease domain

discrepancy defined with maximum mean discrepancy (MMD) [22] of a predefined

kernel. MMD has shown its applicability in various tasks [15, 36, 54], yet is still

highly dependent on the choice of the kernel [44] and may result in biased estima-

tion, because of the sampling variance [22]. [8] and [63] used a simulator for domain

adaptation with an adversarial learning framework. [9] adopted this framework for a

grasping task. [63] refined eye rendered images to be more realistic by using GANs.

16



2.3 Autonomous Navigation

2.3.1 Non-learning Based Approaches for Autonomous Navigation

Non-learning based approaches can be interpreted as non-data driven approaches,

which needs additional requirements, such as state feedback and state extraction from

raw inputs with other sensors, leading to computationally expensive systems [42, 47,

48, 62, 80]. Moreover, these approaches depend on many sensor such as Global Posi-

tioning System (GPS), depth sensor and expensive laser (LIDAR) sensor [16, 43, 70],

which are incompatible with our purpose. However, learning-based methods or data-

driven methods produce a reactive controller by mapping raw inputs into an action.

Data-driven methods are also known to seek a robust solution [5].

2.3.2 Learning Based Approaches for Autonomous Navigation

Learning based approaches for autonomous navigation mostly adopt supervised learn-

ing method, which incorporate raw input x and its corresponding y to train autonomous

navigation system. Supervised learning based methods have been proposed to perform

autonomous navigation using real images. [58] and [34] proposed DAGGER algo-

rithm and GPS algorithm, respectively, and each group implemented a variant of su-

pervised learning method to navigate the UAV in the outdoor environment. DAGGER

progressively trains a moving policy, that expert iteratively labels appropriate actions

for newly unvisited states. By doing thorough data aggregation, DAGGER tries to

match a moving policy with a policy of expert. [6] achieved autonomous highway

driving using the basic supervised method. [78] ,[75] and [11] improved basic super-

vised learning methods for a car and remote-control car driving. [17] and [65] viewed

navigation as a classification problem instead of a regression problem, simplifying the

navigation itself. These approaches have a limitation, that acquiring labels for real im-

ages is laborious or expensive. It causes these methods to be less applicable to various

environments. Although automated the labeling process, they still needed additional

17



information that is difficult to acquire in the outdoor environment with only a monoc-

ular camera. We addressed this limitation by utilizing a simulator and by not applying

supervised learning method on the real image domain directly.

2.3.3 Employing a Simulator for Autonomous Navigation

Using a simulator for training an autonomous navigation system has advantages. One

can measure any physical property, including location and velocity in freedom. One

need not care about damage to a vehicle. However, there is a domain discrepancy is-

sue. To address this issue, [49] exploited a depth image, which is more invariant across

the two environments. They used a reconstructed depth from a 2D image or a depth

sensor to obtain the depth image. [59] suggested randomization be applied to the simu-

lator with highly various features, such as light conditions, textures, and objects. They

showed that their navigation model worked reasonably well in an indoor environment

although they did not provide any real images during the training. However, using a

depth sensor increases the cost. Reconstructing a depth image incurs additional error

and high computing cost. In addition, the indoor environment is also relatively simple

and plain, compared to the outdoors. Thus, it remains doubtful whether the method of

[59] would work satisfactorily in the outdoors.

18



Chapter 3

METHOD

3.1 Problem Setup

Our goal is for a vehicle to navigate autonomously along train. We view navigation as a

multi-class classification problem. As in [65], we train a deep learning model that clas-

sifies where the UAV is located with respect to the road (i.e., left/center/right-lateral

class) and where the UAV heads for along the road (i.e., , left/straight/right head class),

based on a raw image from a camera on the UAV. Figure 3.1 represents how we define

lateral and head classes. For autonomous navigation, we utilize simulator images, real

images, and correct lateral/head labels for simulator images. To address the gap be-

tween simulator images and real images and the absence of labels for real images, we

adopt domain adaptation with an adversarial learning framework. We attempt to trans-

fer a simulator image (i.e., source domain) into a transferred image (i.e., transferred

domain) to look like a real image (i.e., target domain) while maintaining characteristics

of each class. Correct classification in the target domain can thus be achieved without

any labels for the target domain images.

19



left

right

straight

Figure 3.1: Illustration for (a) lateral classes and (b) head classes with respect to a road.

Note that the lateral center class is slightly skewed to the right.

3.2 Domain Adaptation with Adversarial Learning

For autonomous navigation, we utilize simulator images with the labels for classifica-

tion and real images without corresponding labels. There are two major obstacles to do

the task. One is the absence of the labels for real images, and the other is the domain

discrepancy caused by a gap between simulator images and real images. We try to

address both issues at the same time by domain adaptation using the GAN framework.

An outline of our model is illustrated in Fig. 3.2. Our model is composed of two

generators GT→S , GS→T , two discriminators DT , DS , and a task classifier C with

trainable parameters θgT , θgS , θdT , θdS , θc respectively. The subscript T and S indicate

the domain of the input image (source,target). The generator converts the input image

from one domain to fit to the other domain. The discriminator takes the transferred

images and the real images, and distinguishes the inputs between them. The classifier

takes the transferred image and the ground-truth labels of the source image then learns

20



to classify the lateral and head classes of the transferred image, respectively during

training. Though it is not shown in Figure 3.2, the classifier takes target domain images

then classifies their classes during the test. These components are combined into one

model, and they are trained simultaneously in an end-to-end manner. No labels for

target images is required.

𝒚𝒍, 𝒚𝒉

𝒙𝑺_𝒓 𝒙𝑻_𝒇

𝒙𝑻_𝒓𝒙𝑺_𝒇

Generator 

Source to Target

Generator 

Target to Source

Source domain

Discriminator

Target domain

Discriminator

Head orientation

classifier

Lateral offset

classifier
LEFT

CENTER

RIGHT

LEFT

STRAIGHT

RIGHT
real/fake

Legend:

𝒙𝑺_𝒓 : a source real image

𝒙𝑺_𝒇 : a source fake image

𝒙𝑻_𝒓 : a target real image

𝒙𝑻_𝒇 : a target fake image

𝒚𝒍 : lateral labels

𝒚𝒉 : head labels

Figure 3.2: An overview of the proposed method.

3.3 Network Architecture

We adopt similar approach with [38, 79]. As shown in Figure 3.2, our model is com-

posed of two generators and the two discriminator for the source domain and the target

domain, and the classifier. A pair of the source domain generator and the source do-

main discriminator is responsible for making source domain images look like target

domain images, and the other pair of the generator and the discriminator is respon-

sible for making target domain images look like source domain images. We present

technical details of each component of our model. Specification of each component is

detailed at Section 4.2

21



3.3.1 Generator

To translate images across the source domain and the target domain, we adopt the

encoder-decoder based architecture with skip connections for the generator [32]. The

encoder-decoder network gradually down-samples the input image until a bottleneck

layer, and then, upscales down-sampled input to the original resolution of the input

via up-sampling or transposed-convolution. However, without skip connections, such

architecture results that all information signal should pass through all layers, and this

behavior causes low-level features from the input not to be shared across the network.

Since the input image and the translated output image share underlying structure to

some degree, we add skip connections so the low-level information near the input can

be connected to layers near the output, as similar with the U-NET [57]. Concretely,

for the total number of layers n, we connect layer i to the layer n − i except the

middle bottleneck layer. We use 4×4 spatial filters for all convolution and transposed

convolution layers with the Relu activation function. As different to the U-NET, we

remove the max-pooling layer and down-sample with the convolution layer with stride

2, and we utilize transposed-convolution layers for up-sampling.

3.3.2 Discriminator

PatchGAN

As we adopt the reconstruction L1 loss term for the cyclic consistency, this loss term

fails to reconstruct high-frequency parts of the original image. Using L2 loss term,

instead of L1 loss term, leads to more blurry images because minimizing L2 loss is

equivalent to maximizing log-likelihood of a Gaussian so fails to capture different

modes of real samples. Even though L1 loss term results in less blurry images, it also

fails to reconstruct sharp parts of the image and only able to capture low-frequency

parts of the image. However, the GAN is able to represent more sharp images than L1

and L2 reconstruction loss terms because the generator is trained to fool the discrim-

22



inator so the generator is encouraged to represent more accurately as real samples. In

the standard GAN [19], the discriminator produces a single output from the whole in-

put image. To facilitate modeling high-frequency regions for local patches in the input

image, we adopt a PatchGAN [32], that the discriminator produces N by N grid out-

put. For one element of the discriminator’s output, its receptive field in the input image

should be one small local patch in the input image, so the discriminator aims to distin-

guish each patch in the input image. To achieve this, we remove the fully-connected

layer in the last part of the discriminator in the standard GAN. As the discriminator

becomes fully convolution networks, so it can be applied to arbitrary size of the input

image. As a matter of fact, a PatchGAN is equivalent to adopting multiple discrimina-

tors for every patches of the image, so makes the discriminator help the generator to

represent more sharp images locally. In addition, we average out all the discriminator’s

value into a single scalar for the objective function [32].

Mini-batch Discrimination

We also adopt the mini-batch discrimination technique to encourage the generator to

capture sample’s diversity [35]. The mini-batch discrimination was firstly proposed by

[60], allowing the discriminator look at not only individual examples, but also mul-

tiple examples in a mini-batch to avoid the mode collapse of the generator. To make

the discriminator process each example with the correlation of other examples, it mod-

els a mini-batch layer in an intermediate layer of the discriminator, which calculates

L1-distance based statistics of samples in a mini-batch. By adding such statistics to the

discriminator, each example in a mini-batch can see how far or close to other examples

in the mini-batch and this information can be internally utilized by the discriminator,

which helps the discriminator reflect samples’ diversity to the output. For the aspect

of the generator, it tries to make similar statistics as those of real samples in the dis-

criminator by adversarial learning procedure. In this paper, we simplify the mini-batch

discrimination as in [35]. We do not adopt a tensor which projects statistics as in [60].

23



Rather, we use the mean of the standard deviation for each features (channels) in each

spatial location over the mini-batch [35].

3.3.3 Classifier

We use the Resnet [26] based networks, which is widely known to be effective in

deep convolution neural networks for the classification problem by making residual

connection [26]. In the Resnet, the input image is progressively down-sampled to a

coarse feature map. However, many down-samplings to a tiny feature map make the

spatial information almost crushed. We highly need a spatial structure of the input

image such as the location of a road and the border line of a road from the background.

Motivated by [77], we partially adopt dilation convolution, which increases resolution

of the feature map without decreasing receptive fields of latter layers. Originally, we

apply down-sampling three times at Resnet based classifier. We replace last down-

sampling layer with dilation convolution. By doing that, we increase a final resolution

of the output feature map without reducing receptive fields of latter layers.

3.4 Objective Functions

The objective function, L, for training our UAV navigation model, is as follows:

L = κLA + µLC (3.1)

where κ, µ, and γ are the weights of an adversarial loss term, LA, and a classification

loss term, LC , respectively.

For the adversarial loss, LA, we adopt loss terms of the Fisher GAN [51] for each

domain. The Fisher GAN belongs to the IPM framework [67] as described in Sec-

tion 2.1.1, which is known to be strongly and consistently convergent [28, 66]. The

Fisher GAN has useful properties: it is computationally efficient, and the estimated dis-

tance is naturally bounded while maintaining stable training property of the WGAN

[3, 51]. As mentioned in Section 3.3, we also add cyclic L1 loss term for LA for

24



each domain [38, 79]. In addition, we note that Gθgs/Dθds stand for source domain

generator/discriminator/noise vector, and Gθgt/Dθdt
stand for target domain genera-

tor/discriminator/noise vector. Gθgt is a generator which transfers the source domain

image into the target domain, while Gθgs transfers the target domain image into the

source domain. We only describe object function for the target domain for simplicity.

The adversarial loss LA is defined as follows:

LA = αA1 lAf + αA2 lAc (3.2)

where αA1 and αA2 refer to weights of each loss term of LA, respectively.

To train two generators and two discriminators from each domain, we use Fisher

GAN objective term lAf as follows:

lAf =Φ(θdt , θgt) + λ(1− Ω(θdt , θgt))−
ρ

2
(Ω(θdt , θgt)− 1)2 (3.3)

where λ is the Lagrange multiplier and ρ is the quadratic penalty weight coefficient

[51]. Φ(θtd, θ
t
g) and Ω(θtd, θ

t
g) for each domain are the IPM equation inspired from

augmented Lagrangian [18] and a constraint of the Fisher IPM metric [28, 51], respec-

tively. Φ(θtd, θ
t
g) and Ω(θtd, θ

t
g) are defined as follows:

Φ(θtd, θ
t
g) = Ex∼PT

Dθtd
(x)− Ex∼PS

Dθd(Gθg(x) (3.4)

Ω(θtd, θ
t
g) =

1

2
(Ex∼PT

D2
θtd

(x) + Ex∼PS
D2
θtd

(Gθtg(x))) (3.5)

To impose cyclic consistency for each domain, we use cyclic loss term lAc for the

target domain as follows:

lAc = Ex∼PS
‖Gθgt (Gθgs (x))− x‖1 (3.6)

This cyclic consistency role has an important role in the learning process. Since this

term forces the generator to reconstruct to the original domain, major parts of the image

such as road, should be maintained during adversarial learning process. Without this

25



term, there is no reason for the generator to preserve the content and shape of the

image. It should be noted that object loss terms for the source domain can be derived

in a similar manner. Object functions for the both domain are jointly used for training.

The classification loss term, LC , is defined by

LC = αC1 lCe + αC2 lCn + αC3 lCp (3.7)

where le is a soft-max cross entropy term. ln and lp are a negative entropy regulariza-

tion term and a penalty loss term, respectively, for an extreme failure [65]. αC1 , αC2 ,

and αC3 refer to weights of each loss term of LC , respectively.

The soft-max cross entropy term for our multi-class classification problem is as

follows:

lCe = −
∑
i

yi log(pi)−
∑
j

yj log(pj) (3.8)

where pi and pj are classifier predictions of head position, i ∈ {left, straight, right},

and classifier predictions of lateral position, j ∈ {left, center, right}, respectively. yi

and yj are the ground truth labels of head and lateral positions, respectively.

Additionally, we add the negative entropy regularization term, ln, and the penalty

loss term, lp, motivated by [65]. ln prevents the classifier from producing extremely

sharp results. lp penalizes the classifier so that it will not swap left and right labels of

lateral and head classes, respectively. ln and lp are defined as follows:

lCn =
∑
i

pi log(pi) +
∑
j

pj log(pj) (3.9)

lCp = phead
l/r + phead

r/l + plateral
l/r + plateral

r/l (3.10)

where pl/r and pr/l refer to a left label prediction probability when the ground truth is

right and a right label prediction probability when the ground truth is left respectively.

26



Chapter 4

EXPERIMENT

4.1 Experiment setup

We generated about 8000 images for each lateral and head class by randomizing the

position of the UAV in the simulator and by fixing the titled angle by -45,0,45 degrees,

with respect to the road. Aside from the simulator images to be used as the source

domain data, we gathered around total 30,000 images for the target domain data by

recording on a local mountain trail. In both cases, we fixed the altitude of UAV to

approximately 1.5 m to maintain the UAV’s frame of view consistently.

We built our simulator environment using Gazebo [40], a widely known robot

simulator. Because our navigation model targeted a local road made of the asphalt sur-

rounded by bushes and tall trees, we built a simulated environment that was similar to

the targeted real environment. We built our simulator environment in two phases. First,

we generated various curved and straight roads by determining road’s curvature and

length heuristically. We then created many objects, such as a maple tree, a ginkgo tree,

bushes, fences, etc., using an open source CAD tool Blender so as to make simulator

image as much as look like outdoor environment. We arranged these objects along the

road, randomly.

We used the parrot Bebop2 drone for our experiment. To send a command from

27



the trained model to a drone, we utilized parrot Bebop ROS package with a joystick

connection. We implemented our UAV navigation system with [1]. During the test, we

calculated our model’s prediction output every 50ms with NVIDIA GTX 1060. We set

our commanding interval to every one second for robust navigation.

4.1.1 Steering Command

Our model gives no steering commands; it provides probabilities of each class. Thus,

we need an additional steering controller module when we navigate the UAV in the

inference phase. When our model provides soft-max output [plateral
left , plateral

center , p
lateral
right ]

for the lateral classes and [phead
left , p

head
straight, p

head
right] for the head classes, our steering con-

troller sends two velocity commands as follows:

vy = β1(plateral
right − plateral

left )

wz = β2(phead
right − phead

left )
(4.1)

where vy is a y-axis linear velocity andwz is a z-axis angular velocity with coefficients,

β1 and β2. A positive y-axis linear velocity cause the UAV to move left and a positive

z-axis angular velocity causes the UAV to rotate counter-clockwise. Additionally, the

UAV flies forward with a constant velocity, by default. Unlike the steering controller

of Smolyanskiy et al. [65], we send the median of five successive commands to prevent

abrupt behavior of the UAV.

4.2 Implementation Details

We implemented our model with Tensorflow [1], which is a popular deep learning li-

brary. We resized input image as 256 by 256, which thought to be most suitable size

for generation. We initialize all weight variables with truncated normal initialization

of standard deviation of 0.02. We used batch size of 4 to compensate large usage of

memory. We used adam optimizer [39] with learning rate 0.0002 and did not decay

28



learning rate. We used a data augmentation technique such as image contrast, bright-

ness, saturation and injecting gaussian noise with probability 0.5 to diverse sample

images.

Related to training of GANs, we intentionally reduce the power of the discrimi-

nator. Practically, the discriminator often overwhelms the generator so makes training

imbalanced. We inject additive gaussian noise of standard deviation 0.1 to the hidden

layers of the discriminator. In addition, we also add dropout to the discriminator to

prevent over-fitting to the generated data.

We adapt our architecture from [8, 33]. Table 4.1, 4.2 and 4.3 show architecture

details of the generator, discriminator and classifier, respectively. We denote a filter

size, a stride, the number of feature map and a dilation rate as F, S, C, and D, respec-

tively. For example, F3S1C64 stands for a convolution layer where 3×3 spatial filter

are applied with stride 1, generating 64 feature maps. If D is appended, the dilation

convolution is applied with a corresponding dilation rate. In Tab. 4.1, arrows repre-

sent concatenation to latter layers of the generator. In Tab. 4.3, layers with two multi

rows involve a residual connection. In Tab. 4.2, Lrelu denotes a leaky relu function

with a slope of 0.2. It should be noted that we do not apply non-linear activations and

normalization to the last layer of each component.

4.3 Result

4.3.1 Off-line Test Result

We conducted off-line tests for our trained model prior to testing outside. We not only

measured classification accuracy, we also monitored steering commands on the test

target domain data which was not used in the training phase. We checked both because

the navigation depends on steering commands, not on classification accuracy. There-

fore, though the classifying accuracy for the center/straight class is quite low, UAV

may goes forward well because the commander does not let UAV move. Table 4.4 and

29



Table 4.5 list classification accuracies and average steering commands, respectively.

Because our approach focuses on using a simulator and unlabeled real data, not the ar-

chitecture of the model, we compared our model to a supervised learning (SL) model

with source domain data and another with target domain data.

Table 4.4 lists the off-line test results (see captions for detail). Our model suc-

ceeded in giving correct commands in all cases, as like the target image SL model,

whereas both source SL models failed. Furthermore, even though classification accu-

racies of some classes listed in Table 4.4 were relatively low in our model’s result, the

UAV could reasonably move because a steering command with a correct sign guides

it to move properly. One may argue that the probability of a right lateral in the target

image SL model is lower than other classes in Tab. 4.4. Although we have another

target image SL model which has 99 % accuracy in the right lateral label, this model

performed worse on outdoor navigation than the target image SL model of Table 4.4.

4.3.2 Outdoor Navigation On-line Test Results

In the outdoor on-line test, we verified the performance of our approach based on two

criteria, as is commonly carried out in this field [65]. First, we ask, ”how many human

interrupts are required to finish navigation in certain trail courses?” to see navigation

performance. Second, we ask, ”how well UAV recovers from intentional disturbance?”

to see the ability to handle unexpected situation. Because the source mask SL model

showed the lowest performance in the off-line test, we omitted that case from naviga-

tion results.

Autonomous navigation

We tested our model on three courses. The length of each was approximately 190 m,

60 m, and 110 m, respectively.

Course 1 in Figure 4.1, where we gathered real images, has relatively slight curves.

Courses 2 and 3, where we did not gather images, have more sharp curves compared to

30



left curve right curve

Figure 4.1: Navigation test courses. (a) Course 1: two slight corners. (b) Course 2: two

sharp curves, unseen street during the training phase. (c) Course 3: different environ-

ment, not asphalt but sidewalk road with two corners. These courses are thought to be

sufficient to test our model because they contain road curving to the left and right.

Course 1. We argue that tests on these three courses were appropriate to demonstrate

the effectiveness of our model. We observed not only navigation performance but also

robustness of our model by testing on the course of which scene was used during

training (i.e., Course 1) and courses unseen prior (i.e., Courses 2 and 3) even with

different environments.

Table 4.6 shows the average number of human interrupts until the UAV finished

each course with three models. The source image SL models failed to finish the course

within reasonable trials. We omitted the performance of source image SL on Courses

2 and 3, because Course 1 could be regarded as the easiest course. Our model showed

successful performance compared to the target image SL model.

Given the performance of the source image SL models, we could conclude that

applying the model trained only with the simulator data into outdoor environment is

prone to failure. This means that domain adaptation is essential.

31



Recovery from disturbance

We tested our model for successful recovery from disturbances. A vehicle should avoid

objects, including humans. In the case of a UAV, the wind blows in the outdoor and

strong air currents are caused by the UAV, itself. Thus, the UAV tends to lose its sta-

bility and deviate from the desirable location or path. It is very important to recover

from these deviations during autonomous navigation. We placed the UAV in a non-

desirable position intentionally to measure its ratio of successful returns to the desired

position. Tab. 4.7 shows the ratios in extreme cases (i.e., lateral left/head left and lat-

eral right/head right). We set 20 undesirable positions for each case and measured the

number of UAV that returned to the normal path (i.e., lateral center/head straight) in a

reasonable time. Our model successfully recovered as much as the target SL model.

4.3.3 Image Transfer

Since we train the classifier of our model with transferred images, which are paired

with corresponding head/lateral labels, a visual quality of transferred images to target

domain directly affects the performance of the classifier. Figure 4.2 shows source im-

ages, transferred images and target images. Though transferred images in Figure 4.2

are not sharp, they look like target images at some degree.

Since we can not judge the quality of image transfer only by looking images, we

show the similarity between the two distributions by embedding images from each

to a low dimensional space, using t-SNE [46], isomap [68], and principal component

analysis (PCA) [73]. Figure 4.3, Figure 4.5 and 4.4 represent the embedding results

by isomap , PCA and t-SNE, respectively. Each figure shows the embedded points for

random sampled 1000 images from the source domain S, the transferred domain F

and the target domain T, respectively. The transferred images were closer to the real

images than the source images, meaning that our model successfully transferred source

images as similar as target images.

32



Figure 4.2: A figure of source images in row (a), transferred images in row (b) and

target images in row (c). Note that target images are picked up as most similar ones as

transferred images.

33



Layer Index UNET

Input 256×256×3 Image

L - 1 Conv, F4S2C64, Relu

L - 2 Conv, F4S2C128, Relu

L - 3 Conv, F4S2C256, Relu

L - 5 Conv, F4S2C512, Relu

L - 6 Conv, F4S2C512, Relu

L - 7 Conv, F4S2C512, Relu

L - 8 Conv, F4S2C512, Relu

L - 9 Conv, F4S2C512, Relu

L - 10 Deconv, F4S2C512, Relu

L - 11 Deconv, F4S2C512, Relu

L - 12 Deconv, F4S2C512, Relu

L - 13 Deconv, F4S2C512, Relu

L - 14 Deconv, F4S2S256, Relu

L - 15 Deconv, F4S2C128, Relu

L - 16 Deconv, F4S2C128, Relu

L - 17 Deconv, F4S2C3

Table 4.1: Architecture details of the generator.

34



Layer Index Discriminator

Input 96×96×3 Image

L - 1

Conv, F4S1C64, Lrelu

Dropout, ρ = 0.5

Gaussian noise, σ = 0.2

L - 2

Conv, F4S2C128, Lrelu

Dropout, ρ = 0.5

Gaussian noise, σ = 0.2

L - 3

Conv, F4S2C256, Lrelu

Dropout, ρ = 0.5

Gaussian noise, σ = 0.2

L - 4

Conv, F4S2C512, Lelu

Dropout, ρ = 0.5

Gaussian noise, σ = 0.2

L - 14 Conv, F4S2C1024, Lrelu

L - 15 Conv, F1S1C1

Table 4.2: Architecture details of the discriminator.

35



Layer Index Classifier

Input 96×96×3 Image

L - 1 Conv, F7S2C64, Relu

L - 2
Conv, F3S1C64, Relu

Conv, F3S1C64, Relu

L - 3
Conv, F3S1C64, Relu

Conv, F3S1C64, Relu

L - 6 2×2 max-pool, S2

L - 4
Conv, F3S1C128, Relu

Conv, F3S1C128, Relu

L - 5
Conv, F3S1C128, Relu

Conv, F3S1C128, Relu

L - 6
Conv, F3S1C256D1, Relu

Conv, F3S1C256D2, Relu

L - 7
Conv, F3S1C256D2, Relu

Conv, F3S1C256D2, Relu

L - 8
Conv, F3S1C512D2, Relu

Conv, F3S1C512D4, Relu

L - 9
Conv, F3S1C512D4, Relu

Conv, F3S1C512D4, Relu

L - 10 Conv, F3S1C512D2, Relu

L - 11 Conv, F3S1C512D2, Relu

L - 12 Conv, F3S1C512, Relu

L - 13 Conv, F3S1C512, Relu

L - 14 Global average pooling

Branches for command

L - 15 FC, C5

Table 4.3: Architecture details of the classifier.

36



Table 4.4: The off-line test result. Source image supervised model (SL) model

is supervised-trained with unmasked source images. The source mask SL model

is supervised-trained with masked source images. The target image SL model is

supervised-trained with real images and their lateral/head labels. The steering com-

mands for images having a left/straight/right lateral label and a left/center/right head

label should be negative, zero, and positive, respectively.

Model
Lateral offset label Head orientation label

left center right left straight right

Source image SL 0.0 % 65.5 % 55.2 % 76.8 % 64.1 % 45.0 %

Source mask SL 31.4 % 0.0 % 30.3 % 1.7 % 45.2 % 46.4 %

Target image SL 90.1 % 99.8 % 55.4 % 91.7 % 100.0 % 96.9 %

Our model 92.0 % 52.8 % 46.5 % 70.6 % 55.8 % 57.7 %

Table 4.5: Average steering command. The steering commands for images having

a left/straight/right lateral label and a left/center/right head label should be negative,

zero, and positive, respectively. As absolute values of a steering command get larger,

the UAV experiences bigger movements. It should be noted that probability of right

lateral in target image SL model is quite low than other classes in Table 4.4. Even

though we have another target image SL model which has 99% accuracy in right lat-

eral, this model does much poor performance on outdoor navigation than Table 4.4

target SL model. We list up more well-behaved target image SL model into this table.

Despite of low accuracy, appropriate command can lead to good navigation.

Model
Lateral offset label Head orientation label

left center right left straight right

Source image SL 0.07±0.19 0.35±0.40 0.55±0.44 -0.70±0.52 0.09±0.55 0.04±0.89

Source mask SL 0.35±0.83 -0.28±0.79 -0.32±0.75 0.29±0.34 0.52±0.29 0.57±0.28

Target image SL -0.83±0.22 0.002±0.04 0.52±0.37 -0.89±0.23 -0.004±0.01 0.94±0.16

Our model -0.87±0.37 -0.14±0.59 0.31±0.66 -0.68±0.46 0.03±0.59 0.40±0.70

37



Table 4.6: Average number of human interrupts to finish. We counted the total

number of interrupts in five navigation trials on each course. Our model showed com-

parable performance with a target image SL model.

Course 1 Course 2 Course 3

Source image SL > 10 · ·

Target image SL 0.2 (1/5) 1.2 (6/5) 0.2 (1/5)

Our model 0.8 (4/5) 1.4 (7/5) 0.0 (0/5)

Table 4.7: Success rate to recover. We counted the number of successful recover-

ies after 20 intentional disturbances at extreme cases. Left/left and right/right refer to

lateral left/head left and lateral right/head right, respectively.

left/left right/right

Target image SL 95 % (19/20) 60 % (12/20)

Our model 95 % (19/20) 60 % (12/20)

38



source
transferred
target

Figure 4.3: A figure of t-SNE result with 1000 images are randomly sampled from the

source domain S, the transferred domain F and the target domain T.

39



Figure 4.4: A figure of PCA result with 1000 images are randomly sampled from the

source domain S, the transferred domain F and the target domain T.

40



Figure 4.5: A figure of isomap result with 1000 images are randomly sampled from

the source domain S, the transferred domain F and the target domain T.

41



Chapter 5

DISCUSSION

5.1 Training

5.1.1 Content Similarity Loss

In [8], they adopt the content similarity loss LS to make the location of a road in an

image should be invariant between the source and transferred images for successful

domain adaptation, which guides the road part of an image to be invariant. Given the

mask of the road in a simulator image, we use a masked mean squared error term for

the content similarity loss term LS as follows:

LS = E(x,z)∼(PS,pz)

[
1

n
‖(x−GθgS (x, z)) ◦m‖22

]
(5.1)

where n is the number of pixels of x, ‖ · ‖22 is the squared L2 norm, m is a binary

road mask, and ◦ refers to element-wise multiplication. Intuitively, it is highly similar

to cyclic consistency term in Equation 3.6 in that Equation 5.1 tries to reconstruct the

masked part of the input image. Therefore, we do not use LS for our objective function

since cyclic consistency term takes a role of reconstruction including the important

content of the input image.

42



5.1.2 Normalization

Adversarial components

We experiment various normalization techniques such as batch normalization [31], in-

stance normalization [30, 64, 69] and pixel normalization [35] to our model. Instance

normalization is a specific normalization technique for the style transfer suggested

by [69], and aims to impose contrast normalization of the content image. It can be

thought as instance specific normalization, differs from batch normalization in that the

batch normalization applies normalization to a whole input batch. This makes neu-

ral networks to be invariant channel-wide shifts and scaling (contrast normalization)

[64]. On the other hand, pixel normalization do not compute across spatial dimensions

(width and height). Rather, it normalizes the feature vector in each pixel in spatial di-

mensions to unit length, so it can preserve local response across spatial dimensions

and make signal magnitudes of the generator and the discriminator not increase [35].

Among three of them, we adopt pixel normalization for style transfer between the

source domain and the target domain. Batch normalization and instance normalization

almost show similar result for transferring and not seem to help transferred images to

be sharp and acute. In contrast, pixel normalization maintains transferred images to be

sharp because it normalizes with respect to each pixel, so maintaining local responses.

We add pixel normalization to every layer before a non-linear activation except the last

layer to the generator and the discriminator.

Task component

We originally add the batch normalization to every layer before a non-linear activation

except the last layer to the task classifier. However, the performance of batch nor-

malization is degenerated as batch size gets smaller, since a small number of samples

in a batch is not guaranteed to represent whole dataset. Moreover, with a small size

of batch, the mean and covariance are not consistent, which exacerbates the stabil-

43



ity of training. Our model is composed of two generator, discriminator and one task

classifier, which require large memory size. To compensate for large memory usage,

we inevitably have to reduce batch size. Motivated by this reason, we adopt group

normalization [74] for the task classifier. Group normalization is similar to instance

normalization and layer normalization [4] in that they do normalization independent of

batch size. Group normalization can be interpreted as the fusion of layer normalization

and instance normalization, where it performs normalization by grouping some part of

channel dimension. We add group normalization to every layer before a non-linear

activation except the last layer to the task classifier, so try to avoid the performance

degeneration of batch normalization with a small batch size.

5.2 Failure Cases

We succeeded in navigating a UAV automatically without any labels for real images.

To the best of the authors’ knowledge, this is the first attempt to apply domain adapta-

tion with adversarial learning to an autonomous vehicle navigation task. This approach

may extend the scope of autonomous navigation to various outdoor environments that

can be simulated. Additionally, we showed the potential robustness of our approach

by demonstrating reasonable navigation performance in courses where no scene was

used during training.

Despite our successful results, there were some failure cases. First, our model was

not robust to weather conditions such as strong sunlight, mist, and snow. We collected

real images during the hours of 3-5 pm in the fall and winter. Thus, almost all im-

ages were exposed to small amounts of sunlight. Thus, the transferred image was

necessarily biased to the similar state. When the sun was strong, the road in a real

image changed its color from gray to yellow, causing navigation to fail. To be robust

to weather conditions, many images under various conditions may be required.

Second, both our model and the target image SL model failed when branches

44



from trees protruded the road from above. Though a UAV was on the road, protrud-

ing branches collided with the wing of the UAV, leading to failure. Because the road

remained visible through pine leaves, it was difficult for the UAV to avoid those obsta-

cles.

5.3 Future Works

5.3.1 Regression Problem

As mentioned in Section 3.1, we defined autonomous navigation as a head/lateral clas-

sification problem. From probabilities for each class, we gave proper commands to a

UAV at head orientation and lateral offset. However, though this classification based

control can approximate real steering command, it is not accurate. In fact, estimating

steering command by a regression problem is more proper than a classification prob-

lem if corresponding accurate label can be taken. [65] approached autonomous navi-

gation with a steering command regression problem and [12] also tackled autonomous

navigation with a regression problem, which estimates steering commands and ac-

celeration. However, getting continuous accurate labels for a regression problem is

difficult even at simulator environment. Moreover, labels are mostly zero with sparse

non-zero signals, which make a probability distribution of labels discontinuous. There-

fore, we treated autonomous navigation with a classification aspect. With classification

approach, we can get labels relatively easy by grouping a specific range of labels as

one class and accomplish autonomous navigation successfully. If we can acquire more

delicate steering labels, a regression problem can be a better solution for autonomous

navigation.

5.3.2 Command Condition

Our task is to follow a trail without an intersection. However, if a vehicle encoun-

ters to an intersection, where should a vehicle go to? With the sole image input, a

45



vehicle would fail navigation because it simply does not know where to go. In such

non-functional situation, we need to feed additional command input which reflects a

driver’s intention to the goal. [12] suggest branched architecture where each branch

estimates steering commands for each command such as go straight, turn left or turn

right. As [12], our approach can be further extended to refer a driver’s intention at an

intersection.

5.3.3 Other Vehicles

Although we used a UAV to validate our method of autonomous navigation, it would be

possible to apply our method to other types of vehicles. The task we conducted in this

study is a version of lane-tracking, which is one of many components of autonomous

driving. As we have shown with the validity of our method to use a simulator in au-

tonomous navigation, we are planning to perform more complex navigation tasks by

expanding our method and incorporating other machine learning techniques, including

reinforcement learning.

46



Chapter 6

CONCLUSION

In this dissertation, we demonstrated the method of autonomous navigation, using do-

main adaptation with generative adversarial networks. We succeeded the trail tracking

task with the only sole image input. Our method do not depend on any kinds of sensors.

Most importantly, our method does not need label information of real environment im-

age as other supervised learning based approaches. We acquired label information in

simulator environment, and transferred those knowledge to real environment by do-

main adaptation.

In chapter 2, we described the background of generative adversarial networks and

domain adaptation. Particularly, among lots of application where GANs are utilized,

we focused on image translation and domain adaptation, which are specific subjects for

our approach. In addition, we commented prior approaches of autonomous navigation,

where most of them are based on supervised learning method or its variants.

In chapter 3, we demonstrated our method. To transfer knowledge of simulator

environment, we adopt cycle concept of image translation with task classifier. We also

detailed the architecture and objective functions of our model, which are highly crucial

for successful training.

In chapter 4, we show the performance of our method by navigating the UAV along

trails. We succeeded in navigating the UAV automatically in three outdoor courses of

47



up to about 300 meters by training our deep learning model using a myriad of simulator

images with auto-generated labels and real images without any label. We note that our

approach performed as much as pure supervised method model, which tells us the

possibility of truly autonomous navigation in various environments using enormous

and accessible simulator images.

In chapter 5, we discussed the performance of our model in detail. Particularly,

though our method accomplished the trail following task, it is not robust to various

weather condition and can not avoid obstacles. We remain these advanced tasks as fu-

ture works. In addition, we demonstrated possible application of our approach, which

can improve our method in aspect of practicality.

48



Bibliography

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.

Tensorflow: Large-scale machine learning on heterogeneous distributed systems.

arXiv preprint arXiv:1603.04467, 2016.

[2] Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and

Mario Marchand. Domain-adversarial neural networks. arXiv preprint

arXiv:1412.4446, 2014.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv

preprint arXiv:1701.07875, 2017.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[5] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-

driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2):289–

309, 2014.

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-

akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

49



[7] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bern-

hard Schölkopf, and Alex J Smola. Integrating structured biological data by

kernel maximum mean discrepancy. Bioinformatics, 22(14):e49–e57, 2006.

[8] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and

Dilip Krishnan. Unsupervised pixel-level domain adaptation with generative ad-

versarial networks. arXiv preprint arXiv:1612.05424, 2016.

[9] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kel-

cey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Kono-

lige, et al. Using simulation and domain adaptation to improve efficiency of deep

robotic grasping. arXiv preprint arXiv:1709.07857, 2017.

[10] Olivier Chapelle and Alexander Zien. Semi-supervised classification by low den-

sity separation. In AISTATS, pages 57–64. Citeseer, 2005.

[11] Felipe Codevilla, Matthias Müller, Alexey Dosovitskiy, Antonio López, and

Vladlen Koltun. End-to-end driving via conditional imitation learning. arXiv

preprint arXiv:1710.02410, 2017.

[12] Felipe Codevilla, Matthias Müller, Alexey Dosovitskiy, Antonio López, and

Vladlen Koltun. End-to-end driving via conditional imitation learning. arXiv

preprint arXiv:1710.02410, 2017.

[13] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The

mahalanobis distance. Chemometrics and intelligent laboratory systems, 50(1):

1–18, 2000.

[14] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908, 2016.

[15] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training

50



generative neural networks via maximum mean discrepancy optimization. arXiv

preprint arXiv:1505.03906, 2015.

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[17] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P

Rodrı́guez, Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmid-

huber, Gianni Di Caro, et al. A machine learning approach to visual perception

of forest trails for mobile robots. IEEE Robotics and Automation Letters, 1(2):

661–667, 2016.

[18] Ronald Glowinski and Patrick Le Tallec. Augmented Lagrangian and operator-

splitting methods in nonlinear mechanics, volume 9. SIAM, 1989.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. In Advances in neural information processing systems, pages 2672–

2680, 2014.

[20] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for

object recognition: An unsupervised approach. In Computer Vision (ICCV), 2011

IEEE International Conference on, pages 999–1006. IEEE, 2011.

[21] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy mini-

mization. In Advances in neural information processing systems, pages 529–536,

2005.

[22] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. A kernel two-sample test. Journal of Machine Learning Re-

search, 13(Mar):723–773, 2012.

51



[23] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. Improved training of wasserstein gans. arXiv preprint

arXiv:1704.00028, 2017.

[24] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron Courville. Improved training of wasserstein gans. arXiv preprint

arXiv:1704.00028, 2017.

[25] Leonid G Hanin. Kantorovich-rubinstein norm and its application in the theory

of lipschitz spaces. Proceedings of the American Mathematical Society, 115(2):

345–352, 1992.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[27] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate

Saenko, Alexei A Efros, and Trevor Darrell. Cycada: Cycle-consistent adver-

sarial domain adaptation. arXiv preprint arXiv:1711.03213, 2017.

[28] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. How genera-

tive adversarial nets and its variants work: An overview of gan. arXiv preprint

arXiv:1711.05914, 2017.

[29] Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and

Alex J Smola. Correcting sample selection bias by unlabeled data. In Advances

in neural information processing systems, pages 601–608, 2007.

[30] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adap-

tive instance normalization. CoRR, abs/1703.06868, 2017.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

52



deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[32] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-

to-image translation with conditional adversarial networks. arXiv preprint

arXiv:1611.07004, 2016.

[33] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. arXiv preprint, 2017.

[34] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Plato:

Policy learning using adaptive trajectory optimization. arXiv preprint

arXiv:1603.00622, 2016.

[35] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

[36] Beomjoon Kim and Joelle Pineau. Maximum mean discrepancy imitation learn-

ing. In Robotics: Science and systems, 2013.

[37] Jong-Hyuk Kim, Salah Sukkarieh, and Stuart Wishart. Real-time navigation,

guidance, and control of a uav using low-cost sensors. In Field and Service

Robotics, pages 299–309. Springer, 2003.

[38] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim.

Learning to discover cross-domain relations with generative adversarial net-

works. arXiv preprint arXiv:1703.05192, 2017.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[40] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an

53



open-source multi-robot simulator. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2149–2154, Sendai, Japan, Sep 2004.

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[42] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. Towards a

swarm of agile micro quadrotors. Autonomous Robots, 35(4):287–300, 2013.

[43] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren

Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards

fully autonomous driving: Systems and algorithms. In Intelligent Vehicles Sym-

posium (IV), 2011 IEEE, pages 163–168. IEEE, 2011.

[44] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás

Póczos. Mmd gan: Towards deeper understanding of moment matching network.

arXiv preprint arXiv:1705.08584, 2017.

[45] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning trans-

ferable features with deep adaptation networks. In International Conference on

Machine Learning, pages 97–105, 2015.

[46] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Jour-

nal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[47] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and

control for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, pages 2520–2525. IEEE, 2011.

[48] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation and

control for precise aggressive maneuvers with quadrotors. The International

Journal of Robotics Research, 31(5):664–674, 2012.

54



[49] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, An-

drea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu,

et al. Learning to navigate in complex environments. arXiv preprint

arXiv:1611.03673, 2016.

[50] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

[51] Youssef Mroueh and Tom Sercu. Fisher gan. arXiv preprint arXiv:1705.09675,

2017.

[52] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering, 22(10):1345–1359, 2010.

[53] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering, 22(10):1345–1359, 2010.

[54] Sinno Jialin Pan, James T Kwok, and Qiang Yang. Transfer learning via dimen-

sionality reduction. In AAAI, volume 8, pages 677–682, 2008.

[55] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adap-

tation via transfer component analysis. IEEE Transactions on Neural Networks,

22(2):199–210, 2011.

[56] Svetlozar Todorov Rachev et al. Duality theorems for kantorovich-rubinstein and

wasserstein functionals. 1990.

[57] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on

Medical Image Computing and Computer-Assisted Intervention, pages 234–241.

Springer, 2015.

[58] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas

Wendel, Debadeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning

55



monocular reactive uav control in cluttered natural environments. In Robotics

and Automation (ICRA), 2013 IEEE International Conference on, pages 1765–

1772. IEEE, 2013.

[59] Fereshteh Sadeghi and Sergey Levine. cad2rl: Real single-image flight without a

single real image. arXiv preprint arXiv:1611.04201, 2016.

[60] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in Neural

Information Processing Systems, pages 2234–2242, 2016.

[61] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Adversarial representation

learning for domain adaptation. arXiv preprint arXiv:1707.01217, 2017.

[62] Shaojie Shen, Nathan Michael, and Vijay Kumar. Autonomous multi-floor indoor

navigation with a computationally constrained mav. In Robotics and automation

(ICRA), 2011 IEEE international conference on, pages 20–25. IEEE, 2011.

[63] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang,

and Russ Webb. Learning from simulated and unsupervised images through ad-

versarial training. arXiv preprint arXiv:1612.07828, 2016.

[64] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to

unsupervised domain adaptation. arXiv preprint arXiv:1802.08735, 2018.

[65] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birchfield. To-

ward low-flying autonomous mav trail navigation using deep neural networks for

environmental awareness. arXiv preprint arXiv:1705.02550, 2017.

[66] Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard

Schölkopf, and Gert RG Lanckriet. On integral probability metrics,\phi-

divergences and binary classification. arXiv preprint arXiv:0901.2698, 2009.

56



[67] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard

Schölkopf, and Gert RG Lanckriet. Hilbert space embeddings and metrics on

probability measures. Journal of Machine Learning Research, 11(Apr):1517–

1561, 2010.

[68] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric

framework for nonlinear dimensionality reduction. science, 290(5500):2319–

2323, 2000.

[69] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture net-

works: Maximizing quality and diversity in feed-forward stylization and texture

synthesis. In Proc. CVPR, 2017.

[70] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,

MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-

tonomous driving in urban environments: Boss and the urban challenge. Journal

of Field Robotics, 25(8):425–466, 2008.

[71] Chaoyue Wang, Chang Xu, Chaohui Wang, and Dacheng Tao. Percep-

tual adversarial networks for image-to-image transformation. arXiv preprint

arXiv:1706.09138, 2017.

[72] Max Welling. Fisher linear discriminant analysis. Department of Computer Sci-

ence, University of Toronto, 3(1), 2005.

[73] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[74] Yuxin Wu and Kaiming He. Group normalization. arXiv preprint

arXiv:1803.08494, 2018.

[75] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of

driving models from large-scale video datasets. arXiv preprint, 2016.

57



[76] Jaeyoon Yoo, Yongjun Hong, and Sungrho Yoon. Autonomous uav navigation

with domain adaptation. arXiv preprint arXiv:1712.03742, 2017.

[77] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks.

In Computer Vision and Pattern Recognition, volume 1, 2017.

[78] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-

end autonomous driving. arXiv preprint arXiv:1605.06450, 2016.

[79] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. arXiv preprint

arXiv:1703.10593, 2017.

[80] Simon Zingg, Davide Scaramuzza, Stephan Weiss, and Roland Siegwart. Mav

navigation through indoor corridors using optical flow. In Robotics and Automa-

tion (ICRA), 2010 IEEE International Conference on, pages 3361–3368. IEEE,

2010.

58



초록

대립적 생성 신경망은 (GANs) 중간 지도 학습, 이미지 전이, 도메인 적응 등

과 같은 머신 러닝의 중요한 문제들에 대한 중요한 해법으로 각광받고 있다. 특히,

대립적 생성 신경망은 기존의 생성 모델에 비해 확률 분포에 대한 가정 없이 더욱

구체적이고실제같은데이터를생성할수있다.

본 논문에서는 로보틱스, 기계 공학, 머신 러닝 등에서 중요한 문제였던 자율

주행에 대립적 생성 신경망을 적용하였다. 깊은 인공신경망을 자율 주행에 이용한

기존 접근 방법들은 데이터에 대한 라벨 정보을 많이 모은 후, 인공신경망을 지도

학습 방법으로 훈련시켰다. 하지만 라벨 정보가 있는 거대한 데이터 집합은 이러

한방법에필수불가결하며라벨정보가있는실제데이터는얻기어렵고부정확한

경우가많다.

우리는이문제를대립적생성신경망을이용한도메인적응기법으로해결하였

다. 시뮬레이션 환경에서는 다양한 종류의 라벨 정보들을 쉽게 얻을 수 있다. 라벨

정보가있는인공데이터를시뮬레이터로부터추출하고도메인적응기법으로실제

환경에서의라벨문제를완화하였다.더불어,대립적생성신경망을통해인공데이

터를 실제 데이터와 비슷하게 만들어 실제 환경에서의 라벨이 없이도 자율 주행이

성공하도록하였다.

주요어:대립적생성신경망,자율주행,도메인적응

학번: 2014-21634

59



TO MY FAMILY

60


	1 INTRODUCTION
	2 BACKGROUND
	2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . .
	2.1.1 Integral Probability Metric . . . . . . . . . . . . . . . . . . .
	2.1.2 Image to Image Translation . . . . . . . . . . . . . . . . . .

	2.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . .
	2.3 Autonomous Navigation . . . . . . . . . . . . . . . . . . . . . . . .
	2.3.1 Non-learning Based Approaches for Autonomous Navigation
	2.3.2 Learning Based Approaches for Autonomous Navigation . . .
	2.3.3 Employing a Simulator for Autonomous Navigation . . . . .


	3 METHOD
	3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2 Domain Adaptation with Adversarial Learning . . . . . . . . . . . .
	3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.3.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.3.2 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.3.3 Classiﬁer . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	3.4 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .

	4 EXPERIMENT
	4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.1.1 Steering Command . . . . . . . . . . . . . . . . . . . . . . .

	4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . .
	4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.3.1 Off-line Test Result . . . . . . . . . . . . . . . . . . . . . . .
	4.3.2 Outdoor Navigation On-line Test Results . . . . . . . . . . .
	4.3.3 Image Transfer . . . . . . . . . . . . . . . . . . . . . . . . .


	5 DISCUSSION
	5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.1.1 Content Similarity Loss . . . . . . . . . . . . . . . . . . . .
	5.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . .

	5.2 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.3.1 Regression Problem . . . . . . . . . . . . . . . . . . . . . .
	5.3.2 Command Condition . . . . . . . . . . . . . . . . . . . . . .
	5.3.3 Other Vehicles . . . . . . . . . . . . . . . . . . . . . . . . .


	6 CONCLUSION
	Abstract(In Korean)


<startpage>9
1 INTRODUCTION 1
2 BACKGROUND 4
  2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . 4
    2.1.1 Integral Probability Metric . . . . . . . . . . . . . . . . . . . 5
    2.1.2 Image to Image Translation . . . . . . . . . . . . . . . . . . 10
  2.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
  2.3 Autonomous Navigation . . . . . . . . . . . . . . . . . . . . . . . . 17
    2.3.1 Non-learning Based Approaches for Autonomous Navigation 17
    2.3.2 Learning Based Approaches for Autonomous Navigation . . . 17
    2.3.3 Employing a Simulator for Autonomous Navigation . . . . . 18
3 METHOD 19
  3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
  3.2 Domain Adaptation with Adversarial Learning . . . . . . . . . . . . 20
  3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 21
    3.3.1 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
    3.3.2 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . 22
    3.3.3 Classiﬁer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
  3.4 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 EXPERIMENT 27
  4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
    4.1.1 Steering Command . . . . . . . . . . . . . . . . . . . . . . . 28
  4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 28
  4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
    4.3.1 Off-line Test Result . . . . . . . . . . . . . . . . . . . . . . . 29
    4.3.2 Outdoor Navigation On-line Test Results . . . . . . . . . . . 30
    4.3.3 Image Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 DISCUSSION 42
  5.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
    5.1.1 Content Similarity Loss . . . . . . . . . . . . . . . . . . . . 42
    5.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 43
  5.2 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
  5.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
    5.3.1 Regression Problem . . . . . . . . . . . . . . . . . . . . . . 45
    5.3.2 Command Condition . . . . . . . . . . . . . . . . . . . . . . 45
    5.3.3 Other Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 CONCLUSION 47
Abstract(In Korean) 59
</body>

