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Abstract

In this thesis, we study quantum algorithms, espectially using the quan-

tum Fourier transform. At first, we introduce quantum Fourier transform

on groups and using this, we study how to solve problems with quantum

algorithms.
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Chapter 1

Introduction

Manin and Feynman observed that computers built from quantum com-

ponents are suitable to simulating quantum mechanics. To deal with n

quantum bits, a quantum computer need only n quantum bits, whereas

a classical computer requires storing 2n classical bits, exponentially many

ones. Therefore, we can think of using a quantum computer is more effec-

tive.

He found through concrete examples that quantum computers are better.

He discovered in 1994 that a quantum computer could efficiently factor inte-

gers and calculate discrete logarithms. These are related to cryptosystems,

RSA and Diffie-Hellman key exchange protocol, respectively. The security

of these cryptosystems is based on the difficulty of solving these problems

classically. The result of Shor drastically reduced the runtime that had clas-

sically solved algebraic problems as well as these problems. A key point of

Shor’s algorithms is to use the quantum Fourier transforms.

In this thesis, we introduce the definition of the quantum Fourier trans-

form on groups and we solve some problems with quantum algorithms using

1



CHAPTER 1. INTRODUCTION

the quantum Fourier transform. The main body of this thesis is organized

as follows. In chapter 2, we give a brief introduction to the representation

theory and the quantum mechanics. In chapter 3, we define the quantum

Fourier transform. In chapter 4, we describe quantum algorithms for prob-

lems involving number fields. In chapter 5, we describe the hidden subgroup

problem. We show how to solve the problems with the quantum Fourier

transform. We introduce a quantum algorithm for the dihedral hidden sub-

group problem.
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Chapter 2

Preliminaries

2.1 Basic Representation Theory

Let G be a finite group. A representation of G is a group homomor-

phism π from G into the group GL(Vπ), where Vπ is a vector space and

GL(Vπ) denotes the group of invertible linear maps Vπ → Vπ. The dim(Vπ)

is called the dimension of π, denoted by dπ. A homomorphism be-

tween representations π1 and π2 is a linear map T : Vπ1 → Vπ2 such that

Tπ1(x) = π2(x)T for all x ∈ G. The set of all such operators is denoted by

C(π1, π2). Two representations π1 and π2 are equivalent if C(π1, π2) con-

tains a bijective one. In particular, C(π) := C(π, π). A closed subspace M

of Vπ is called an invariant subspace for π if π(x)M ⊂ M for all x ∈ G.

If M is invariant and 6= 0, the restriction of π to M , πM (x) = π(x)|M ,

defines a representation of G on M , called a subrepresenatation of π.

If π admits an invariant subspace that is nontrivial, then π is called re-

ducible, otherwise π is irreducible. For two representations π1 and π2

of G, the direct sum of π1 and π2 is the representation π1 ⊕ π2 of G on

3



CHAPTER 2. PRELIMINARIES

V = Vπ1 ⊕ Vπ2 , defined by (π1 ⊕ π2)(x)(v1 ⊕ v2) = π1(x)(v1) ⊕ π2(x)(v2)

for x ∈ G and v1 ∈ Vπ1 and v2 ∈ Vπ2 . For two representations π1 and π2 of

G, the tensor product of π1 and π2 is the representation π1 ⊗ π2 of G on

V = Vπ1 ⊗ Vπ2 , defined by (π1 ⊗ π2)(x) = π1(x)⊗ π2(x) for x ∈ G.

Lemma 2.1.1 (Schur’s Lemma). A representation π of G is irreducible if

and only if C(π) contains only scalar multiples of the identity.

Corollary 2.1.1. If G is abelian, then every irreducible representation of

G is one-dimensional.

We denote by Ĝ the set of equivalence classes of irreducible representa-

tions of G.

Example 2.1.1. Ẑ/Zk ' Z/Zk, with the pairing 〈m,n〉 = e2πimn/k.

Proposition 2.1.1. If G1, G2 are finite groups, then

(G1 ×G2)̂ ' Ĝ1 × Ĝ2.

Theorem 2.1.1. For a subgroup H of G,

Ĝ/H ' kerH,

where kerH := {π ∈ Ĝ : π(h) = 1 for all h ∈ H}.

The character of π is the function χπ on G taking complex values defined

by

g 7→ Tr(π(g)) =

dπ∑
i=1

π(g)ii.

Then χπ(1) = dπ.

We denote by F(G) the vector space of functions on G taking values in C.

The left regular representation L of G on F(G) is given by (L(g)f)(h) =

4



CHAPTER 2. PRELIMINARIES

f(g−1h). For a basis (δg)g∈G of F(G) defined by δg = 1 if g = 1, 0 otherwise.

Then the left regular representation L of G satisfies L(G)(δh) = δgh. Then

Tr(L(g)) =

{
|G|, g = 1

0, g 6= 1
.

Proposition 2.1.2.

L =
⊕
π∈Ĝ

dππ.

Theorem 2.1.2. By the previous proposition,

∑
π∈Ĝ

dπχπ(g) =

{
|G|, g = 1

0, g 6= 1
.

In particular, ∑
π∈Ĝ

d2π = |G|.

2.2 Basic Quantum Mechanics

A classical bit can have a state of either 0 or 1. A qubit(quantum bit)

can be in a linear combinations of states |0〉, |1〉, also known as a superpo-

sition. In a quantum computer, the superposition means that a quantum

register exists in a superposition of all its possible configurations of 0’s and

1’s at the same time, unlike a classical system. we can write a quantum

state in a general form

|ψ〉 = α|0〉+ β|0〉,

where α, β ∈ C, and |α|2 + |β|2 = 1. We can think of |ψ〉 as a unit vector in

the 2-dimensional complex plane spanned by the two basis |0〉, |1〉. A state

5



CHAPTER 2. PRELIMINARIES

in the n qubit system is a superposition of 2n basis states

|φ〉 =
∑

x∈{0,1}n
ax|x〉,

where ax ∈ C with
∑

x∈{0,1}n |ax|2 = 1. Given a group G, we write |g〉 for a

computational basis state corresponding to the group element g ∈ G, and

|φ〉 =
∑

g∈G bg|g〉, where bg ∈ C with
∑

g∈G |bg|2 = 1. For a finite set S, the

state

|S〉 :=
1√
S

∑
s∈S
|s〉.

A quantum state |ψ〉 is a column vector, also known as a ket, whereas a

state 〈ψ| is the row vector dual to |ψ〉, also known as bra. The adjoint of

|ψ〉 is (|ψ〉)† := 〈ψ|. The inner product of two quantum states |x1〉 and

|x2〉 is defined as 〈x1| · |x2〉 = 〈x1|x2〉. The outer product of two quantum

states |x1〉 and |x2〉 is defined as |x1〉 × 〈x2| = |x1〉〈x2|. Let {|βi〉}i∈I be a

basis for a vector space. When we measure a state |ψ〉, we obtain βi as a

measurement outcome, and the probability obtaining the outcome βi is

p(i) = 〈ψ|βi〉〈βi|ψ〉,

and the state after the measurement is

|βi〉〈βi|ψ〉√
p(i)

.

We denote the Hadamard gate by

H =
1√
2

(
1 1

1 −1

)
.

To solve a decision problem, it suffices to give an algorithm with the

success probability bounded above 1/2 (say, at least 2/3), since we can

6



CHAPTER 2. PRELIMINARIES

repeat the computation many times and take a majority vote to reduce

exponentially the probability of outputting an incorrect answer.

Let f be a function from X to Y . We know sets X and f(X), but not

correspondence relation of f . It is called a black-box function. We assume

the target set Y is a subset of integers. In fact, Y need not to be a subset of

integers, for example, a color set {red, yellow, blue, · · · }. But we consider

to correspond each element in Y to an integer. A classical gate defined by

x 7→ f(x) is not reversible. Unlike classical, qunatum circuits have to use

unitary operators. So we consider the reversible gate (x, y) 7→ (x, y⊕f(x)).

In quantum setting, we use similar argument. On a quantum computer, we

copy the answer into an ancilla register, and then perform the computation

in reverse. The ancilla register is considered as a vector space with a basis

including {|0〉, |f(x)〉 : x ∈ X}. An operator U defined by

|x, y〉 7→ |x, y ⊕ f(x)〉

is unitary. In fact,

〈U †U |x, y〉, |x′, y′〉 〉 =〈U |x, y〉, U |x′, y′〉 〉

=〈 |x, y ⊕ f(x)〉, |x′, y′ ⊕ f(x′)〉 〉

=〈x, x′〉〈y ⊕ f(x), y′ ⊕ f(x′)〉

=δx,x′δy,y′ .

7



Chapter 3

Quantum Fourier Transform

3.1 Quantum Fourier Transform on Z/NZ

Let V be a N -dimensional vector space with basis |0〉, · · · , |N−1〉. Define

an operator on V by

|x〉 7→ 1√
N

N−1∑
y=0

e2πixy/N |y〉.

We call the operator Qunatum Fourier Transform(shortly, QFT) or

QFT on Z/NZ. We can write the operator as

QFT :=
1√
N

N−1∑
j,k=0

e2πijk/N |k〉〈j|.

Theorem 3.1.1. QFT is unitary.

Proof. The adjoint of QFT is

QFT † =
1√
N

N−1∑
j,k=0

e−2πijk/N |j〉〈k|.

8



CHAPTER 3. QUANTUM FOURIER TRANSFORM

Then

QFT †QFT =

 1√
N

N−1∑
j,k=0

e−2πijk/N |j〉〈k|

 1√
N

N−1∑
j′,k′=0

e2πij
′k′/N |k′〉〈j′|


=

1

N

N−1∑
j,j′,k=0

e2πi(−jk/N+j′k/N)|j〉〈j′|

=
1

N

N−1∑
j,j′=0

(
N−1∑
k=0

e2πi(−j+j
′)k/N

)
|j〉〈j′|

=
1

N

N−1∑
j=0

(
N−1∑
k=0

e2πi·0·k/N

)
|j〉〈j|

=
N−1∑
j=0

|j〉〈j| = I

The adjoint of QFT is called Inverse QFT. In particular, in the case

where N = 2n, we represent |j〉 = |j1 · · · jn〉, where j = j1...jn = j12
n−1 +

· · ·+ jn20. Apply QFT to |j〉, then

|j〉 7→ 1√
2n

2n−1∑
k=0

e2πijk/2
n |k〉 =

1√
2n

1∑
k1=0

· · ·
1∑

kn=0

e2πij(
∑n
l=1 kl2

−l)|k1 · · · kn〉

=
1√
2n

1∑
k1=0

· · ·
1∑

kn=0

n⊗
l=1

e2πijkl2
−l |kl〉 =

1√
2n

n⊗
l=1

 1∑
kl=0

e2πijkl2
−l |kl〉


=

1√
2n

n⊗
l=1

(
|0〉+ e2πij2

−l |1〉
)

=

(
|0〉+ e2πi0.jn |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi0.j1···jn |1〉

)
√

2n
.

9



CHAPTER 3. QUANTUM FOURIER TRANSFORM

In this case, the circuit for QFT is the following.

|j1〉 H R2 · · · Rn−1 Rn · · · · · · × |un〉

|j2〉 • · · · H · · · Rn−2 Rn−1 · · · · · · × |un−1〉
...

|jn−1〉 · · · • · · · • · · · H R2 · · · × |u2〉

|jn〉 · · · • · · · • · · · • H · · · × |u1〉

In this circuit, |uk〉 := |0〉+ e2πi0.jk···jn |1〉 and

Rk :=

(
1 0

0 e2πij/2
k

)
.

3.2 Quantum Fourier Transform on a Finite Abelian

Group

Let G be a finite abelian group. Since a finite abelian group is isomorphic

to the product of finite cyclic groups of the form Z/NZ, we can write QFT

on a finite abelian group G.

Let G '
∏k
i=1 Z/NiZ. By using the following correspondence

x ∈ G←→ (x1, · · · , xk) ∈
k∏
i=1

Z/NiZ =⇒ |x〉 ←→
k⊗
i=1

|xi〉,

10



CHAPTER 3. QUANTUM FOURIER TRANSFORM

then

|x〉 =

k⊗
i=1

|xi〉 7→
k⊗
i=1

 1√
|Ni|

Ni−1∑
yi=0

e2πiyixiyi/Ni |yi〉


=

1√
|G|

k⊗
i=1

∑
yi∈Ẑ/NiZ

yi(xi)|yi〉

=
1√
|G|

∑
y1∈Ẑ/N1Z

· · ·
∑

yk∈Ẑ/NkZ

(y1, · · · , yk)(x1, · · · , xk)|y1, · · · , yk〉

=
1√
|G|

∑
π∈Ĝ

π(x)|π〉.

This operator is also unitary because it is the tensor product of unitary

operators.

3.3 Quantum Fourier Transform on a General Group

Let G be a group. The QFT of the state |x〉 corresponding to the group

element x ∈ G denoted by

|x̂〉 :=
1√
|G|

∑
π∈Ĝ

dπ|π〉|π(x)〉,

where dπ is the dimension of the representation π,

|π(x)〉 :=

dπ∑
j,k=1

π(x)j,k√
dπ
|j〉|k〉 = (π(x)⊗ Idπ)

dπ∑
k=1

1√
dπ
|k, k〉.

If G is abelian, |π(x)〉 is a complex number with |π(x)| = 1. We can write

the operator as

FG :=
∑
x∈G
|x̂〉〈x| =

∑
x∈G

∑
π∈Ĝ

√
dπ
|G|

dπ∑
j,k=1

π(x)j,k|π, j, k〉〈x|.

11
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The operator FG is also unitary.

Theorem 3.3.1. FG is unitary.

Proof. At first, we need to calculate two things.

〈π(x)|π(y)〉 =

 dπ∑
j,k=1

π(x)j,k√
dπ
〈j, k|

 dπ∑
j′,k′=1

π(y)j′,k′√
dπ
|j′, k′〉


=

dπ∑
j,k=1

dπ∑
j′,k′=1

π(x)j,k√
dπ

π(y)j′,k′√
dπ
〈j, k|j′, k′〉

=
1

dπ

dπ∑
j,k=1

π(x)j,kπ(y)j,k =
1

dπ

dπ∑
j,k=1

π(x−1)k,jπ(y)j,k

=
1

dπ

dπ∑
k=1

(
π(x−1)π(y)

)
k,k

=
1

dπ
Tr
(
π(x−1y)

)
.

〈x̂|ŷ〉 =

 1√
|G|

∑
π∈Ĝ

dπ〈π, π(x)|

 1√
|G|

∑
π′∈Ĝ

dπ′ |π′, π′(x)〉


=

1

|G|
∑
π∈Ĝ

d2π〈π(x)|π(y)〉

=
1

|G|
∑
π∈Ĝ

dπTr
(
π(x−1y)

)
= δx,y.

Finally,

F †GFG =

(∑
x∈G
|x〉〈x̂|

)(∑
x′∈G
|x̂′〉〈x′|

)
=
∑
x,x′∈G

|x〉〈x̂|x̂′〉〈x′|

=
∑
x,x′∈G

|x〉δx,x′〈x′| =
∑
x∈G
|x〉〈x| = I.

12



Chapter 4

Quantum Algorithms

In this chapter, we present quantum algorithms using QFT on Z/NZ for

some integer N .

4.1 Phase Estimation

Problem 4.1.1. Suppose an unitary operator U has an eigenvector |u〉
with eigenvalue e2πix. Estimate x.

Suppose estimate φ within error 1/2N . If one wants to estimate n bit,

set N = 2n.

Algorithm 1.

1. Prepare the state

1

N

N−1∑
x=0

|x〉|φ〉.

13



CHAPTER 4. QUANTUM ALGORITHMS

2. Apply
∑N−1

x=0 |x〉〈x| ⊗ Ux.

1√
N

N−1∑
x=0

e2πiφx|x〉|φ〉.

Omit the second qubit.

3. Apply Inverse QFT.

1√
N

N−1∑
x=0

e2πiφx

 1√
N

N−1∑
y=0

e−2πixy/N |y〉

 =
1

N

N−1∑
y=0

(
N−1∑
x=0

e2πi(φ−y/N)x

)
|y〉.

4. Measure the state.

2

The measurement outcome is y with probability∣∣∣∣∣ 1

N

N−1∑
x=0

e2πi(φ−y/N)x

∣∣∣∣∣
2

=
1

N2

∣∣1− e2πiN(φ−y/N)
∣∣2∣∣1− e2πi(φ−y/N)
∣∣2 =

1

N2

sin2 (Nπ(φ− y/N))

sin2 (π(φ− y/N))
.

Set

f(x) :=
sin2(Nπx)

sin2(πx)
, g(x) :=

1

sin2(πx)
.

Two functions have period 1 and symmetry by x = 0 and x = 1/2. So it’s

enough to consider these functions on
(
0, 12
)
. We know that limx→0 f(x) =

N2. The function f is decreasing on
(
0, 1

N

)
from N2 to 0. Since 1

2N ≤
1
N ,

f(x) ≥ f
(
± 1

2N

)
= 1/ sin2

(
π
2N

)
on
(
− 1

2N ,
1
2N

)
. Since there is at least one

integer in
(
Nφ− 1

2 , Nφ+ 1
2

)
, the probability obtaining the measurement

result y such that y/N is the closest to φ is at least 1
N2 f

(
1
2N

)
= 1

N2 g
(

1
2N

)
.

Since f ≤ g and g is decreasing on [0, 12 ], that probability is greater than

the others.

14



CHAPTER 4. QUANTUM ALGORITHMS

Remark 4.1.1. If φ is exactly k bit for k ≤ n, there is y such that φ −
y/2n = 0. Then, in step 4, the amplitude of |y〉 is 1. Therefore the others are

zero becasue all state are unit vectors. In step 5, we obtain y with probability

1.

4.2 Period Finding

Suppose a periodic function f : Z/NZ→ S with period r, where a finite

set S. Suppose N is a multiple of r.

Algorithm 2.

1. Prepare

1√
N

N−1∑
x=0

|x〉|0〉.

Define the unitary operator U by |x〉|y〉 7→ |x〉|y + f(x)〉.
2. Apply U .

1√
N

N−1∑
x=0

|x〉|f(x)〉 =
1√
N

r−1∑
c=0

N/r−1∑
k=0

|c+ rk〉|f(c)〉.

3. Measure the second qubit. Suppose the measurement result is f(c). Then

the post state is

1√
N

N/r−1∑
k=0

|c+ rk〉.

15



CHAPTER 4. QUANTUM ALGORITHMS

4. Apply Inverse QFT.

1√
N

N/r−1∑
k=0

 1√
N

N−1∑
j=0

e−2πi(c+rk)j/N |j〉


=

1

N

N−1∑
j=0

e−2πijc/N

N/r−1∑
k=0

e−2πijrk/N

 |j〉
=

1

N

∑
j:jr/N∈Z

e−2πijc/N (N/r) |j〉

=
1

r

r−1∑
j=0

e−2πijc/N
∣∣∣∣Nr j

〉
.

The second equality uses the following fact that

N/r−1∑
k=0

e−2πijrk/N =

{
0, if jr/N /∈ Z

N/r, if jr/N ∈ Z
.

5. Measure the first qubit.

2

The measurement outcomes are 0, N/r, · · · , N(r − 1)/r with uniform

probability. Divide N . Suppose the result is k/r. The denominator of k/r is

r/ gcd(k, r). Repeat the above procedure, we suppose another denominator

r/ gcd(k′, r). If gcd(k, k′) = 1, lcm(r/ gcd(k, r), r/ gcd(k′, r)) = r. The prob-

ability that two integers have p as a factor is 1/p2, and
∏
p:prime

(
1− 1

p2

)
=

6
π2 ≈ 0.61. This means that the algorithm success with probability at least

0.61.
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4.3 Period Finding on Z

Problem 4.3.1. Suppose a periodic function f : Z → S with period r,

where a finite set S. Find r.

Since Z is not finite, we cannot use QFT on Z. To use QFT, we consider

Z modulo N for a suitable N . Then f : Z/NZ→ S may not be a periodic

function. But f looks like a periodic function with period r, where N is

not a multiple of r. Set a proper N such that N ≥ 3r2. In fact, we cannot

choose such N since we don’t know r. We start with N = 21 and repeatedly

double N until N ≥ 3r2. The runtime incurred by this procedure is only

poly(log r).

Algorithm 3.

1. Prepare

1√
N

N−1∑
x=0

|x〉|0〉.

Define the unitary operator U by |x〉|y〉 7→ |x〉|y + f(x)〉.
2. Apply U .

1√
N

N−1∑
x=0

|x〉|f(x)〉 =
1√
N

r−1∑
c=0

nc−1∑
k=0

|c+ rk〉|f(c)〉,

where

nc =

{ ⌊
N
r

⌋
+ 1 if ∃ k ∈ Z s.t r

⌊
N
r

⌋
< c+ rk ≤ N}⌊

N
r

⌋
otherwise

.

The nc means the number of f(c) from f(0) to f(N − 1).

3. Measure the second qubit. Suppose the measurement result is f(c). Then

the post state is

1
√
nc

nc−1∑
k=0

|c+ rk〉.

17
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4. Apply QFT.

1
√
nc

nc−1∑
k=0

 1√
N

N−1∑
y=0

e2πi(c+rk)y/N |y〉


=

1
√
nc

1√
N

N−1∑
y=0

(
nc−1∑
k=0

e2πi(c+rk)y/N

)
|y〉.

5. Measure the first qubit.

2

The measurement outcome m with probability∣∣∣∣∣ 1
√
nc

1√
2n

nc−1∑
k=0

e2πi(c+rk)y/N

∣∣∣∣∣
2

=
1

nc

1

N

|1− e2πirync/N |2

|1− e2πiry/N |2
=

1

nc

1

N

sin2(πrync/N)

sin2(πry/N)
.

The measurement outcome m, which has a high probability of being ob-

tained, is the closest integer to multiples of N/r. At first, we consider the

lower bound of the probability.

Lemma 4.3.1. Let m be a measurement outcome the closest integer to

multiples of N/r.

p(m) ≥ 1

N

1

nc

sin2(πrnc/2N)

sin2(πr/2N)
.

Proof. Set

f(x) :=
sin2(πrnc/2N)

sin2(πr/2N)
.

The function f has period N/r and symmetry by x = 0 and x = N/2r.

So it’s enough to consider f on
(
0, N2r

)
. For k ∈ Z, limx→0 f(x) = n2c . f is

decreasing on [0, N/rnc] from n2c to 0. Since 1/2 ≤ N/rnc,

f(x) ≥ f
(
±1

2

)
=

sin2(πrnc/2N)

sin2(πr/2N)

18
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on
(
−1

2 ,
1
2

)
. Since there is at least one integer in

(
kNr −

1
2 , k

N
r + 1

2

)
, so we

obtain the outcome m such that m is the closest to the multiples of N/r

with probability at least

1

N

1

nc

sin2(πrnc/2N)

sin2(πr/2N)

Denotemk by the closest integer to the kNr . SetMk := Z∩
(
kMr −

N
2r , k

M
r + N

2r

)
−

{mk}. If we prove that f(mk) ≥ f(n) for all n ∈ Mk for each k ∈ Z, the

probability obtaining the measurement outcome mk is higher than others.

Lemma 4.3.2. f(mk) ≥ f(n) for all n ∈Mk for each k ∈ Z.

Proof. Define f as in the previous proof and Set

g(x) := 1/ sin2(πrx/N).

Then g also has period N
r and symmetry by x = 0, and x = N

2r and f ≤ g

and g is decreasing on
(
0, N2r

)
. So we can assume that k = 0 and consider

these functions on
(
0, N2r

)
. For any n ∈M0,∣∣∣∣m0 −

kN

r

∣∣∣∣ < 1

2
⇒

∣∣∣∣m0 −
kN

r

∣∣∣∣ ≤ r − 1

2r
<

1

2
,

r + 1

2r
≤
∣∣∣∣n− kN

r

∣∣∣∣ ≤ N

2r
,∣∣∣∣m0 −

kN

r

∣∣∣∣ =
1

2
⇒ 3

2
≤
∣∣∣∣n− kN

r

∣∣∣∣ ≤ N

2r
.

Then f(m0) ≥ f(1/2) and g ((r + 1)/2r) ≥ g(n) ≥ f(n). If we obtain

f(1/2) > g ((r + 1)/2r), the desired result follows. To prove that, the

amount of decrease from g(1/2) to f(1/2) is less than that of decrease from

g(1/2) to g(1/2 + 1/2r). For the latter, consider a line l passing through
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(N/2r, 1) and (1/2, g(1/2)). Since g is convex, g ≤ l on [1/2, N/2r]. It’s

enough to show

g(1/2)− f(1/2) <
g(1/2)− g(N/2r)

N/2r − 1/2

1

2r
.

If N ≥ 3r2 and N ≥ 3r,

LHS =
1− sin2(πrnc/2N)

sin2(πr/2N)
≤

1− sin2
(
(πr)(Nr − 1)/2N

)
sin2(πr/2N)

=
1− sin2(π/2− πr/2N)

sin2(πr/2N)
=

1− cos2( πr2N )

sin2(πr/2N)
= 1, and

RHS =
1/ sin2(πr/2N)− 1

N − r
=

1− sin2(πr/2N)

(N − r) sin2(πr/2N)
=

1

(N − r)
cot2

( πr
2N

)
≥ 1

(N − r)

(
π

2
√

3

2N

πr

)2

=
N2

(N − r)(
√

3r)2
≥ 1.

Now, we get k/r using the continued fraction of m/2n. For k = 0, · · · , r−
1, since we choose N such that N ≥ 3r2 ≥ r2,∣∣∣∣mk −

kN

r

∣∣∣∣ ≤ 1

2
⇒

∣∣∣∣mk

N
− k

r

∣∣∣∣ ≤ 1

2N
≤ 1

2r2
.

Definition 4.3.1. A continued fraction is defined by a collection a0, · · · ,

aN of positive integers such that

[a0, · · · , aN ] := a0 +
1

a1 + 1
···+ 1

aN

.

Define the n-th convergent (0 ≤ n ≤ N) of this continued fraction for

[a0, · · · , an].
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Theorem 4.3.1. Suppose s/r is a rational number such that∣∣∣s
r
− φ

∣∣∣ ≤ 1

2r2
.

Then s/r is a convergent of the continued fraction for φ.

Lemma 4.3.3. If N > 3r2 and
∣∣m
N −

k
r

∣∣ ≤ 1
2N , then k/r will be the only

convergent of m/N with its denominator ≤
√

3N .

Proof. Suppose a/b is a convergent of m/N satisfying
∣∣m
N −

k
r

∣∣ ≤ 1
2N

and b ≤
√

3N . ∣∣∣∣ab − k

r

∣∣∣∣ ≤ ∣∣∣ab − m

N

∣∣∣+

∣∣∣∣mN − k

r

∣∣∣∣ ≤ 1

N
.

Then |ar− bk| ≤ br/N < 1. Since both ar and bk are integers, ar = bk.

Now we obtain k/r with high probability. From this point forward, it is

the same as the case where r|N .

4.4 Period Finding Using Phase Estimation

Now we solve the same problem with other way, using phase estimation.

Recall the Problem 4.3.1:

Problem 4.3.1. Suppose a periodic function f : Z → S with period r,

where a finite set S. Find r.

Set N such that N ≥ 3r2. We need the following lemma for using the

phase estimation.

Lemma 4.4.1. For each ` = 0, · · · , r − 1, define a state

|f`〉 :=
1√
r

r−1∑
x=0

e−2πi`x/r|f(x)〉.
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Then, for x ∈ Z/NZ,

|f(x)〉 =
1√
r

r−1∑
`=0

e2πi`x/r|f`〉.

Proof.

1√
r

r−1∑
`=0

e2πi`x/r|f`〉 =
1√
r

r−1∑
`=0

e2πi`x/r

 1√
r

r−1∑
y=0

e−2πi`x/r|f(y)〉


=

1

r

r−1∑
y=0

r−1∑
`=0

e2πi(x−y)`/r|f(y)〉 = |f(x)〉.

Algorithm 4.

1. Prepare

1√
N

N−1∑
x=0

|x〉|0〉.

Define the unitary operator U by |x〉|y〉 7→ |x〉|y + f(x)〉.
2. Apply U .

1√
N

N−1∑
x=0

|x〉|f(x)〉 =
1√
N

N−1∑
x=0

|x〉

(
1√
r

r−1∑
x=0

e2πi`x/r|f`〉

)

=
1√
rN

r−1∑
`=0

N−1∑
x=0

e2πi`x/r|x〉|f`〉.

3. Measure the second qubit. Suppose the measurement result is f`. Then

the post state is

1√
N

N−1∑
x=0

e2πi`x/r|x〉.

After this step, it is the same as the Algorithm 1.
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2

From the obtained measurement outcome, we have `/r using the contin-

ued fraction, and finally we have r.

4.5 Order Finding

Problem 4.5.1. Let x, N are positive integers such that gcd(x,N) = 1.

Find the order ord(x) of x modulo N .

We choose a large N0 such that 3 (ord(x))2. Unlike the period finding, we

know ord(x) ≤ N . So it is sufficient to choose N0 ≥ 3N2.

Algorithm 5.

1. Prepare

1√
N0

N0−1∑
x=0

|x〉|1〉.

Define U : |x〉|y〉 7→ |x〉|nxy (mod N0)〉.
2. Apply U .

1√
N0

N0−1∑
x=0

|x〉|nx(mod N0)〉.

After this step, it is the same as the Algorithm 3.

2

4.6 Factorization

Problem 4.6.1. Factorize an integer N .

The following algorithm returns an integer as a factor in N . If we get the

integer x, use the algorithm from the top with N/x instead of N .
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Algorithm 6.

1. If N is even, return the factor 2.

From now on, we assume N is odd integer.

2. Choose a number a ∈ {1, · · · , N − 1}. Compute gcd(a,N) using the

Euclidean algorithm. If gcd(a,N) 6≡ 1, return gcd(a,N). If gcd(a,N) = 1,

go next step.

3. Determine the order r of a modulo N using the Order Finding.

4. If r is odd, the algorithm has failed. Then return to the step 1. If r is

even, go next step.

5. If ar/2 ≡ −1 (mod N), the algorithm fails. If ar/2 6≡ −1(mod N), then

return a non trivial factor of gcd(ar/2 − 1, N) or gcd(ar/2 + 1, N).

2

Theorem 4.6.1. Suppose 1 ≤ x ≤ N such that x2 ≡ 1(mod N) and

x 6≡ ±1(mod N). Then at least one of gcd(x − 1, N) and gcd(x + 1, N) is

a non-trivial factor of N .

By definition of order, ar ≡ 1 but ar/2 6≡ 1. So if ar/2 6≡ −1, by thm, at

least one of gcd(ar/2 − 1, N) and gcd(ar/2 + 1, N) is a non-trivial factor of

N . Now we show this algorithm successes with high probability.

Lemma 4.6.1. Let N = pm1
1 · · · p

mk
k for k ≥ 2 and distinct odd primes pi,

and x be uniformly at random in Z/NZ×. Then r := ord(x) is even and

xr/2 6= ±1 (mod N) with probability at least 1− (1/2)k−1.

Proof. By the Chinese remainder theorem, choosing x uniformly at random

from Z/NZ× is equivalent to choosing xi uniformly at random Z/pmii Z×

for each i independently.

Let ri := ord(xi). r = lcm{r1, · · · , rk}. Let ri = 2tisi and si are odd. If r

is odd, then ri is odd, and ti = 0, and all ti = 0. If r is even and xr/2 = −1
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(mod N), then x
r/2
i = −1 (mod pmii ), and ri - r/2, and r/ri is odd, and the

number of factor 2 in r = the number of factor 2 in ri, and all ti are equal.

This means that p([r:odd] or [r:even and xr/2 = −1 (mod N)])≤ p(all ti is

equal). To calculate RHS, we need to prove

p(ti = a nonnegative integer j) ≤ 1

2
. (4.6.1)

In other words, if we choose y uniformly at random in Z/pmZ× and ord(y) =

2tysy for sy is odd, the number of y such that ty = j is at most |Z/pmZ×|/2.

Let |Z/pmZ×| =: 2uv, where v is odd. Let g be a generator of Z/pmZ×. Then

g2
uv ≡ 1 (mod pm). For any b ∈ Z/2uvZ, let ord(gb) =: 2ubvb. Choosing

y ∈ Z/pmZ× is equivalent to choosing b ∈ Z/2uvZ. The number of y such

that ty = j is the same as the number of b such that ub = j. Therefore

(4.6.1) means that The number of b ∈ Z/2uvZ such that ub = j is at most

2uv/2. Then ub ≤ u and 2uv|b2ubvb. If b is odd, u ≤ ub. So ub = u. The

number of such b is at least 2uv/2. If b is even, ub ≤ u− 1. The number of

b such that ub ≤ u− 1 is at least 2uv/2. Thus the size of two sets is equal

with 2uv/2. We complete to prove (4.6.1). Finally,

p(all ti is equal) =
∞∑
j=0

p(all ti = j)

=
∞∑
j=0

k∏
i=1

p(ti = j)

≤
(

1

2

)k−1 ∞∑
j=0

p(t1 = j) =

(
1

2

)k−1
.

Therefore p
(
r:even and xr/2 6= −1 (mod N)

)
≥ 1−

(
1
2

)k−1
.
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4.7 Discrete Logarithm

Problem 4.7.1. Let a, N be integers such that gcd(a,N) = 1 and b = as

(mod N) for some integer s. Find s.

Assume we already know the order of a is r. Define f : Z/rZ×Z/rZ→ S

by (x, y) 7→ bxay.

Algorithm 7.

1. Prepare

1

r

r−1∑
x=0

r−1∑
y=0

|x〉|y〉|0〉.

Define the unitary operator U by |x1〉|x2〉|y〉 7→ |x1〉|x2〉|y + f(x1, x2)〉.
2. Apply U .

1

r

r−1∑
x=0

r−1∑
y=0

|x〉|y〉|f(x, y)〉 =
1

r

r−1∑
x=0

r−1∑
y=0

|x〉|y〉|asx+y〉.

3. Measure the third qubit. Suppose the outcome is ac. Lc := {(x, y) ∈
Z/rZ× Z/rZ : sx+ y = c}.

|Lc〉 :=
1√
r

r−1∑
x=0

|x, c− sx〉.

4. Apply QFT over Z/rZ× Z/rZ on the first two qubits.

1√
r

r−1∑
x=0

(
1√
r

r−1∑
x′=0

e2πixx
′/r|x′〉

) 1√
r

r−1∑
y′=0

e2πi(c−sx)y
′/r|y′〉


=

1

r
√
r

r−1∑
x,x′,y′=0

e2πi(xx
′+(c−sx)y′)/r|x′, y′〉

=
1√
r

r−1∑
y′=0

e2πicy
′/r|y′s, y′〉.
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The second equality uses the following fact that

r−1∑
x=0

e2πi(x
′−sy′)s/r =

{
r, x′ − sy′ ≡ 0

0, x′ − sy′ 6= 0
.

5. Measure the second qubit.

2

We obtain a pair (y′s, y′) for a uniformly random y′ ∈ Z/rZ. Repreat

the above process, We obtain another pair (z′s, z′). If gcd(y′, z′) = 1, then

∃λ1, λ2 such that λ1y
′+λ2z

′ = 1. we obtain s = λ1(sy
′)+λ2(sz

′) with high

probability.

4.8 Discrete Logarithm Using Phase Estimation

We recall the Problem 4.7.1:

Problem 4.7.1. Let a, N be integers such that gcd(a,N) = 1 and b = as

(mod N) for some integer s. Find s.

We also need the following lemma for using the phase estimation.

Lemma 4.8.1. For each ` ∈ Z/rZ, define a state

|f`〉 :=
1√
r

r−1∑
x=0

e−2πi`x/r|f(0, x)〉.

Then, for x1, x2 ∈ Z/rZ,

|f(x1, x2)〉 =
1√
r

r−1∑
`=0

e2πi`(sx1+x2)/r|f`〉.
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Proof.

1√
r

r−1∑
`=0

e2πi`(sx1+x2)/r|f`〉

=
1√
r

r−1∑
`=0

e2πi`(sx1+x2)/r

(
1√
r

r−1∑
x=0

e−2πi`x/r|f(0, x)〉

)

=
1

r

r−1∑
`=0

r−1∑
x=0

e2πi`(sx1+x2−x)/r|f(0, x)〉

=
1

r

r−1∑
x=0

(
r−1∑
`=0

e2πi`(sx1+x2−x)/r

)
|f(0, x)〉

=|f(0, sx1 + x2)〉 = |f(x1, x2)〉.

Algorithm 8.

1. Prepare

1

r

r−1∑
x=0

r−1∑
y=0

|x〉|y〉|0〉.

Define the unitary operator U by |x1〉|x2〉|y〉 7→ |x1〉|x2〉|y + f(x1, x2)〉.
2. Apply U .

1

r

r−1∑
x=0

r−1∑
y=0

|x〉|y〉|f(x, y)〉

=
1

r

r−1∑
x=0

r−1∑
y=0

|x〉|y〉

(
1√
r

r−1∑
`=0

e2πi`(sx+y)/r|f`〉

)

=
1

r
√
r

r−1∑
`=0

(
r−1∑
x=0

e2πi`sx/r|x〉

)r−1∑
y=0

e2πi`y/r|y〉

 |f`〉.
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3. Measure the second qubit. Suppose the measurement result is f`. Then

the post state is

1

r

(
r−1∑
x=0

e2πi`sx/r|x〉

)r−1∑
y=0

e2πi`y/r|y〉

 .

After this step, it is the same as the Algorithm 1.

2

From the obtained measurement outcome, we have (`s, `) using the con-

tinued fraction, and finally we have s.
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Chapter 5

Hidden Subgroup Problem

For a group G, we are given a function f : G→ S, where S is a finite set.

We say f hides a subgroup H if f(x) = f(y) if and only if x − y ∈ H for

any x, y ∈ G. In other words, f is constant on the cosets of the subgroup

H, and distinct on each coset.

Problem 5.0.1 (Hidden Subgroup Problem). Suppose f : G → S hides a

subgroup H of a group G. Find H.

We denote Hidden Subgroup Problem by HSP, shortly.

5.1 Abelian Hidden Subgroup Problem

Abelian HSP is a HSP where G is abelian. Some algorithms in the last

chapter are examples of Abelian HSP.

Example 5.1.1 (Period finding). Suppose f : Z→ S has a period r. That

is, f(0), · · · , f(r− 1) are all distinct and there exists the smallest integer r

such that f(x+ r) = f(x) for all x ∈ Z. Then f hides a subgroup H = 〈r〉.
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Example 5.1.2 (Order finding). Let a, N be integers such that gcd(a,N) =

1 and r be the order of a modulo N . Suppose f : Z → S by x 7→ ax (mod

N). Then f hides a subgroup H = 〈r〉.

Example 5.1.3 (Discrete logarithm). Let a, N be integers such that gcd(a,N) =

1 and r be the order of a modulo N . Let b = as (mod N) for some integer s.

Suppose f : Zr×Zr → S by (x1, x2) 7→ bx1ax2 (mod N). f hides a subgroup

H = {(`,−s`) : ` ∈ Zr}. Find H.

Proof. We need to show that for (x1, x2) ∈ Zr × Zr,

f(x1, x2) = f(y1, y2)⇔ (x1, x2)− (y1, y2) ∈ H.

Suppose f(x1, x2) = f(y1, y2). Then s(x1 − y1) + x2 − y2 ≡ 0 (mod r).

Let ` = x1 − y1. Then x2 − y2 ≡ −s` (mod r). For the converse, suppose

x2 − y2 = −s(x1 − y1). Then 1 = ax2−y2+s(x1−y1) = bx1−y1ax2−y2 , and

bx1ax2 = by1ay2 . Therefore f(x1, x2) = f(y1, y2).

The following is an algorithm for solving the Abelian HSP.

Algorithm 9. Suppose G is finite.

1. Prepare
1√
|G|

∑
g∈G
|g〉|0〉.

Define a unitary operator U by |x〉|y〉 7→ |x〉|y + f(x)〉.

2. Apply U . Let G = ∪
|G|
|H|−1
i=0 (ai +H).

1√
|G|

∑
g∈G
|g〉|f(g)〉 =

1√
|G|

|G|
|H|−1∑
i=0

∑
h∈H
|ai + h〉|f(ai)〉.
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3. Measure the second qubit. Suppose the measurement outcome is f(c).

Then the post state is

1√
|H|
|G|

1√
|G|

∑
h∈H
|c+ h〉 =

1√
|H|

∑
h∈H
|c+ h〉.

4. Apply QFT.

1√
|H|

∑
h∈H

 1√
|G|

∑
π∈Ĝ

π(c+ h)|π〉


=

1√
|H|

1√
|G|

∑
π∈Ĝ

π(c)

(∑
h∈H

π(h)

)
|π〉

=

√
|H|
|G|

∑
π|H=1

π(c)|π〉.

The second equality uses the following fact that∑
h∈H

π(h) =

{
|H| if H ⊂ kerπ
0 if ∃ h0 ∈ H s.t π(h0) 6= 1

.

For the second case, suppose π(h0) 6= 1.∑
h∈H

π(h) =
∑
h∈H

π(h0 + h) = π(h0)
∑
h∈H

π(h).

Thus
∑

h∈H π(h) = 0.

5. Measure.

2

We obtain π ∈ Ĝ such that π(h) = 1 for all h ∈ H with uniform propa-

bility |H||G| . Repeat the entire process t times, Then we get π1, · · · , πt. Set

Kt :=
⋂

1≤i≤t
kerπi,
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where kerπ := {g ∈ G : π(g) = 1}. Then H ≤ Kt ≤ G. After t+ 1 process,

suppose Kt 6= H and πt+1 such that Kt ⊂ kerπt+1. Then Kt+1 = Kt. This

probability is ∑
π:Kt⊂kerπ

|H|
|G|

=
|H|
|G|
|G|
|Kt|

=
|H|
|Kt|

≤ 1/2.

Since {Kt} is reduced by half (or more) with probability at least 1/2. Define

indicator random variables X1, · · · , XT by

Xi =

{
1, if Ki = H or Ki+1 ( Ki

0, otherwise
.

Then we have E(Xi) = p(Xi = 1) ≥ 1/2, and E(
∑
Xi) =

∑
E(Xi) ≥ T/2.

Lemma 5.1.1. If G =: K0 ) K1 ) · · · ) Ks = Kr for all r ≥ s, s ≤
log2 |G|.

Proof. If s > log |G|, 2s > |G|.

|Ks| ≤
|Ks−1|

2
≤ · · · ≤ |K1|

2s−1
≤ |G|

2s
< 1.

If
∑
Xi > log2 |G|, this algorithm successes.

Lemma 5.1.2. Yi := E[
∑T Xi|X1, · · · , Xi]. Then Yi is a martingale.

Proof.

E[Yi|X1, · · · , Xi−1] = E[E[
∑

Xi|X1, · · · , Xi]|X1, · · · , Xi−1]

= E[
∑

Xi|X1, · · · , Xi−1] = Yi−1
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Let X ′k be an independent copy of Xk.
∑
X ′i :=

∑
Xi −Xk +X ′k.

E(
∑

X ′i|X1, · · · , Xk) = E(
∑

X ′i|X1, · · · , Xk−1) = Yk−1

|Yi − Yi−1| = |E(
∑

Xi|X1, · · · , Xi)− E(
∑

Xi|X1, · · · , Xi−1)|

= |E(
∑

Xi|X1, · · · , Xi)− E(
∑

X ′i|X1, · · · , Xi−1, Xi)|

= |E(Xk −X ′k|X1, · · · , Xn)| ≤ 1.

Theorem 5.1.1 (Azuma’s inequality). Let (Yi)
n
i=1 be a martingale. |Yi −

Yi−1| ≤ ci for all i. Then

p(Yn ≥ Y0 + λ)

p(Yn ≤ Y0 − λ)

}
≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

By Azuma’s inequality,

p

(
T∑
Xi ≤ T/2− λ

)
≤ p

(
T∑
Xi ≤ E(

T∑
Xi)− λ

)
≤ e−λ2/2T .

If T = a log |G| and λ = b log |G| such that a
2 − b = 1,

p
(∑

Xi ≤ log |G|
)
≤ exp

(
− b

2

2a
log |G|

)
.

Therefore we get H with probability at least 1− exp
(
− b2

2a log |G|
)

.

5.2 Normal Hidden Subgroup Problem

Problem 5.2.1. Suppose f : G → S hides a normal subgroup H of G.

Find H.
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Algorithm 10. nhsp

1. Prepare
1√
|G|

∑
g∈G
|g〉|0〉.

Define a unitary operator U by |x〉|y〉 7→ |x〉|y + f(x)〉.

2. Apply U. Let G = ∪
|G|
|H|−1
i=0 (aiH).

1√
|G|

∑
g∈G
|g〉|f(g)〉 =

1√
|G|

|G|
|H|−1∑
i=0

∑
h∈H
|aih〉|f(ai)〉.

3. Measure the second qubit. Suppose the measurement outcome is f(c).

Then the post state is

1√
|H|
|G|

1√
|G|

∑
h∈H
|ch〉 =

1√
|H|

∑
h∈H
|ch〉.

4. Apply QFT.

1√
|H|

∑
h∈H

 1√
|G|

∑
π∈Ĝ

dπ|π, π(ch)〉


=

1√
|G||H|

∑
h∈H

∑
π∈Ĝ

dπ|π〉|π(ch)〉

=
1√
|G||H|

∑
π∈Ĝ

dπ|π〉

(
|π(c)

∑
h∈H

π(h)〉

)

=

√
|H|
|G|

∑
π:H⊂kerπ

dπ|π〉|π(c)〉.

The third equality uses the following fact that∑
h∈H

π(h) =

{
|H|I if H ⊂ kerπ
0 if ∃ h0 ∈ H s.t π(h0) 6= 1

.
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For the second case, suppose π(h0) 6= 1 for some h0 6= 1. Then∑
h∈H

π(h)π(x) =
∑
h∈H

π(xx−1hx) =
∑
h∈H

π(x)π(x−1hx) = π(x)
∑
h∈H

π(h)

since H is a normal subgroup of G. The operator
∑

h∈H π(h) commutes

with π(x) for all x ∈ G. By Schur’s lemma, then
∑

h∈H π(h) is a multiple

of the identity. Therefore
∑

h∈H π(h) = 0 because∑
h∈H

π(h) =
∑
h∈H

π(h0h) = π(h0)
∑
h∈H

π(h).

√
|H|
|G|

∑
H⊂kerπ

dπ|π〉|π(c)〉 =
∑

H⊂kerπ

√
dπ|H|√
|G|

dπ∑
j,k=1

π(c)j,k|π〉|j, k〉.

5. Measure the first qubit.

2

The probability of obtaining π when measuring the first qubit is

dπ∑
j,k=1

∣∣∣∣∣
√
dπ|H|√
|G|

π(c)j,k

∣∣∣∣∣
2

=

dπ∑
j,k=1

dπ
|H|
|G|

π(c−1)k,jπ(c)j,k

=

dπ∑
k=1

dπ
|H|
|G|

π(c−1c)k,k

=d2π
|H|
|G|

.

Repeat the entire process t times, Then we get π1, · · · , πt. Set

Kt :=
⋂

1≤i≤t
kerπi.
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After t + 1 process, suppose Kt 6= H and we obtain a πt+1 such that

Kt ⊂ kerπt+1. Then Kt+1 = Kt. This probability is∑
Kt⊂kerπ

d2π
|H|
|G|

=
|H|
|G|

∑
Kt⊂kerπ

d2π =
|H|
|G|
|G|
|Kt|

=
|H|
|Kt|

≤ 1

2
.

As the Abelian HSP, we obtain H with high probability.

5.3 Hidden Subgroup Problem on the Dihedral

Group DN

Problem 5.3.1. Suppose f : DN → S hides a subgroup H of DN . Find H.

Note that DN
∼= Z/NZ o Z/2Z with (x, a) · (y, b) = (x+ (−1)ay, a+ b).

The subgroups of DN are either cyclic 〈(x, 0)〉 or dihedral 〈(x, 0), (y, 1)〉.

Remark 5.3.1. We reduce the general dihedral HSP to the dihedral HSP

where the hidden subgroup is of the form 〈(y, 1)〉 for some y ∈ Z/NZ.

Proof. Suppose that f : DN → S hides a subgroup H = 〈(x, 0), (y, 1)〉.
We can check that all cosets of H are (z, 0)H for z = 0, · · · , x − 1 and

(z, 1)H = (z−y, 0)H. We assume that (z, 0)H 7→ f(z) for z = 0, · · · , x−1.

Then f |Z/NZ hides 〈(x, 0)〉. Since Z/NZ is abelian, we can find x.

Set H ′ := 〈(y, 1)〈(x, 0)〉〉 = {(0, 0)〈(x, 0)〉, (y, 1)〈(x, 0)〉}. Then H ′ is a

subgroup of DN/〈(x, 0)〉. We can also check that all cosets of H ′ are of

the form (z, 0)H ′ and (z, 0)H ′ 7→ f(z) for z = 0, · · · , x − 1. Define f ′ :

DN/〈(x, 0)〉 → S induced by f . Then f ′ hides 〈(y, 1)〈(x, 0)〉〉. DN/〈(x, 0)〉
is isomorphic to a dihedral group DN/ gcd(x,N). So f ′ hides the subgroup

〈(y, 1)〉 of DN/ gcd(x,N).

Remark 5.3.2. In the problem, if we can determine the last bit of y (that

is, whether y is even or odd), we determine all the bits of y.
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Proof. Both subgroups {(2x, 0), (2x, 1) : x = 0, · · · , N/2} and {(2x, 0), (2x+

1, 1) : x = 0, · · · , N/2} are isomorphic to DN/2 ≤ DN . If y is even, 〈(y, 1)〉 ≤
{(2x, 0), (2x, 1) : x = 0, · · · , N/2}. If y is odd, 〈(y, 1)〉 ≤ {(2x, 0), (2x+1, 1) :

x = 0, · · · , N/2}. We can restrict the problem to finding 〈(y′, 1)〉 in DN/2,

where y′ is ignored from the least bit of y. That is, y′ = y/2 if y is even, and

y′ = (y − 1)/2 if y is odd. In this situation, determining the last bit of y′

means that determining the second least bit of y. Continuing the process,

we can obtain all bits of y.

We introduce an algorithm for the Dihedral HSP using QFT on Z/NZ.

Following the first 3 steps in the Algorithm 10, we obtain the state

|(c, 0)H〉 :=
1√
2

(|c, 0〉+ |y + c, 1〉) .

Apply QFT on the first qubit. Then

=
1√
2

((
1√
N

N−1∑
k=0

e2πick/N |k〉

)
|0〉+

(
1√
N

N−1∑
k=0

e2πi(c+y)k/N |k〉

)
|1〉

)

=
1√
2N

(
N−1∑
k=0

e2πick/N |k〉 ⊗
(
|0〉+ e2πiyk/N |1〉

))
.

Measure the first qubit. When the measurement outcome is k, the post

state is

|Ψk〉 :=
1√
2

(
|0〉+ e2πiyk/N |1〉

)
.
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Repeat this process, suppose we obtain |Ψp〉, |Ψq〉. Then

|Ψp,Ψq〉 =
1√
2

(
|0〉+ e2πiyp/N |1〉

)
⊗ 1√

2

(
|0〉+ e2πiyq/N |1〉

)
=

1

2

(
|0, 0〉+ e2πiy(p+q)/N |1, 1〉+ e2πiyq/N |0, 1〉+ e2πiyp/N |1, 0〉

)
CNOT→ 1

2

(
|0, 0〉+ e2πiy(p+q)/N |1, 0〉+ e2πiyq/N |0, 1〉+ e2πiyp/N |1, 1〉

)
=

1

2

(
(|0〉+ e2πiy(p+q)/N |1〉)|0〉+ (e2πiyq/N |0〉+ e2πiyp/N |1〉)1〉

)
=

1√
2

(
|Ψp+q〉|0〉+ e2πiyq/N |Ψp−q〉|1〉

)
.

If we measure the second qubit, we get |Ψp+q〉 when the outcome is 0, and

|Ψp−q〉 when the outcome is 1 with uniform probability 1/2. Up to phase,

the information of |Ψ−k〉 and |Ψk〉 is the same since

X|Ψ−k〉 =
1√
2

(
|1〉+ e−2πiyk/N |0〉

)
= e−2πiyk/N

1√
2

(
|0〉+ e2πiyk/N |1〉

)
= e−2πiyk/N |Ψk〉.

Our goal is obtaining the state

|Ψ2n−1〉 =
1√
2

(|0〉+ (−1)y|1〉) .

And apply H.

H|Ψ2n−1〉 =
1

2
((1 + (−1)y)|0〉+ (1− (−1)y)|1〉)

=

{
|0〉, if y is even

|1〉, if y is odd
.

Finally, measure the state. Then we know the parity of y.
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Algorithm 11. For some integer m,

1. Make a list L0 of copies of the state |Ψk〉. Pair |Ψp〉, |Ψq〉 in L0 which

share the last m bits. Apply the above process to each pair. Collect |Ψp−q〉
and make a list L1 of state |Ψk〉 such that the last m bit of k is 0.

2. For each 0 ≤ j <
⌈
n−1
m

⌉
− 1, we assume a list Lj of states |Ψk〉 such that

at least mj bits of k is 0. Pair |Ψp〉, |Ψq〉 in Lj which share the last m(j+1)

bits. Extract the state |Ψp−q〉 from each pair. Let the new list Lj+1 consist

of |Ψp−q〉.
3. For j =

⌈
n−1
m

⌉
− 1, Pair |Ψp〉, |Ψq〉 in Ld(n−1)/me−1 which share the last

(n− 1)−m(
⌈
n−1
m

⌉
− 1) bits. Extract the state |Ψp−q〉 from each pair. The

final list Ld(n−1)/me consists of |Ψ0〉 and |Ψ2n−1〉.
4. Measure H|Ψ2n−1〉. Determine the last bit of y.

2

Now, we choose the appropriate m. Since unpaired elements are at most

2m,

|Lj+1| ≥
|Lj | − 2m

4
.

Set |L0| = 2`. Then |L(n−1)/m| ≥ 2−2(n−1)/m|L0| = 2`−2(n−1)/m ≥ 2m. Then

` ≥ 2(n− 1)

m
+m.

We consider the minimum of RHS. By the arithmetic-geometric mean in-

equality, m =
√

2
√
n− 1 precisely. But for convenience of calculation, and

constant does not effect to complexity of this algorithm, m '
√
n− 1, so

(n− 1)/m ' m and ` ' 3m. Set

m := d
√
n− 1e.

Note that m ≥
√
n− 1, and (n − 1)/m ≤ (n − 1)/

√
n− 1 =

√
n− 1, and

d(n− 1)/me ≤ m.
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Now think of the probability for success of this algorithm. For this, we

consider the number of elements of each Li. The meaning of the success

of this algorithm is existence of |Ψ2n−1〉 in the last set. If the last set has

sufficient many elements, we can find the qubit with high probability. It is

sufficient to consider Ld(n−1)/me, but now we calculate the probability for

Lm.

For 1 ≤ i ≤ T , define an indicator random variable

Xi =

{
1, with probability 1/2

0, with probability 1/2
.

Lemma 5.3.1 (Chernoff inequality). Let X1, · · · , XT be independent, un-

baised Bernoulli random variables. Then

p

(
T∑
Xi ≤

(1− b)N
2

)
≤ exp

(
−Nb

2

2

)
.

Set |L0| = C02
3m for some C0. Let Pj be a maximal set of pairs |Ψp〉,

|Ψq〉 in Lj . Then

|P0| ≥
|L0| − 2m

2
=
C02

3m − 2m

2
=

23m
(
C0 − 2−2m

)
2

,

|P0|
2

(1− b0) ≥
23m

(
C0 − 2−2m

)
4

(1− b0) =: C12
3m−2,

where b0 := 2−8m/3 and C0 ≥ 3.

p
(
|L1| ≤ C12

3m−2) ≤ p
|L1| =

|P0|∑
Xi ≤

(1− b0)|P0|
2


≤ exp

(
−|P0|b20

2

)
≤ exp

(
−2m/3−1

)
.
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The second inequality uses the Chernoff inequality. The third inequality

follows that

|P0|b20
2
≥23m(C0 − 2−2m)

2

2−8m/3

2
≥ 23m−2(C0 − 2−2m)2−8m/3

≥2m/3−2(C0 − 2−2m) ≥ 2m/3−2(C0 − 1) ≥ 2m/3−1.

Thus we have

p
(
|L1| ≥ C12

3m−2) ≥ 1− exp
(
−2m/3−1

)
.

For j = 0, · · · , m− 1, set

Cj+1 :=
(
Cj − 2−2m+2j

)
(1− bj) , Cm := 3, bj := 2−j−4m/3.

Then 0 ≤ Cj+1 < Cj . Then by induction, we can prove, for j = 1, · · · , m,

p
(
|Lj | ≥ Cj23m−2j

∣∣∣|Li| ≥ Ci23m−2i for i = 1, · · · , j − 1
)
≥ 1−exp

(
−2m/3−1

)
.

By the chian rule,

p
(
|Lj | ≥ Cj2j all j

)
≥
(

1− exp
(
−2m/3−1

))m
.

We obtain the last bit of y with probability at least
(
1− exp

(
−2m/3−1

))m
.
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국 문 초 록

이 논문에서 양자 알고리즘을 공부하는데 특히 양자 푸리에 변환을 이용한

알고리즘을 다룬다. 군 위에서의 양자 푸리에 변환을 소개하고 양자 알고리즘

으로 문제들을 푸는 방법을 공부한다.
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