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Abstract

In this thesis, we study quantum algorithms, espectially using the quan-
tum Fourier transform. At first, we introduce quantum Fourier transform
on groups and using this, we study how to solve problems with quantum

algorithms.
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Chapter 1

Introduction

Manin and Feynman observed that computers built from quantum com-
ponents are suitable to simulating quantum mechanics. To deal with n
quantum bits, a quantum computer need only n quantum bits, whereas
a classical computer requires storing 2" classical bits, exponentially many
ones. Therefore, we can think of using a quantum computer is more effec-
tive.

He found through concrete examples that quantum computers are better.
He discovered in 1994 that a quantum computer could efficiently factor inte-
gers and calculate discrete logarithms. These are related to cryptosystems,
RSA and Diffie-Hellman key exchange protocol, respectively. The security
of these cryptosystems is based on the difficulty of solving these problems
classically. The result of Shor drastically reduced the runtime that had clas-
sically solved algebraic problems as well as these problems. A key point of
Shor’s algorithms is to use the quantum Fourier transforms.

In this thesis, we introduce the definition of the quantum Fourier trans-

form on groups and we solve some problems with quantum algorithms using



CHAPTER 1. INTRODUCTION

the quantum Fourier transform. The main body of this thesis is organized
as follows. In chapter 2, we give a brief introduction to the representation
theory and the quantum mechanics. In chapter 3, we define the quantum
Fourier transform. In chapter 4, we describe quantum algorithms for prob-
lems involving number fields. In chapter 5, we describe the hidden subgroup
problem. We show how to solve the problems with the quantum Fourier
transform. We introduce a quantum algorithm for the dihedral hidden sub-

group problem.



Chapter 2

Preliminaries

2.1 Basic Representation Theory

Let G be a finite group. A representation of G is a group homomor-
phism 7 from G into the group GL(Vy), where V; is a vector space and
GL(V;) denotes the group of invertible linear maps V; — V. The dim(V})
is called the dimension of w, denoted by d;. A homomorphism be-
tween representations w1 and o is a linear map 1" : Vi, — Vi, such that
Tmi(z) = ma(x)T for all x € G. The set of all such operators is denoted by
C (w1, m2). Two representations m; and 7y are equivalent if C'(71,m2) con-
tains a bijective one. In particular, C(m) := C(m, 7). A closed subspace M
of V; is called an invariant subspace for 7 if 7(z)M C M for all x € G.
If M is invariant and # 0, the restriction of 7 to M, 7™ (z) = = (z)|M,
defines a representation of G on M, called a subrepresenatation of .
If 7 admits an invariant subspace that is nontrivial, then 7 is called re-
ducible, otherwise 7 is irreducible. For two representations 7 and o

of G, the direct sum of m; and 7 is the representation 7 & mo of G on
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V = Vi, & V,, defined by (71 & m2)(x)(v1 & v2) = m1(x)(v1) & m2(x)(v2)
for x € G and vy € V, and vy € V. For two representations 7; and m of
G, the tensor product of m; and w9 is the representation 71 ® m of G on
V = V5 ® Vp,, defined by (m ® m2)(z) = m1(z) ® ma(x) for z € G.

Lemma 2.1.1 (Schur’s Lemma). A representation @ of G is irreducible if

and only if C(m) contains only scalar multiples of the identity.

Corollary 2.1.1. If G is abelian, then every irreducible representation of

G is one-dimensional.

We denote by G the set of equivalence classes of irreducible representa-
tions of G.

Example 2.1.1. Z//Z\k ~ Z/Z}., with the pairing (m,n) = e2™mn/k,
Proposition 2.1.1. If G1, G2 are finite groups, then
(Gy x GQ)A: (/J\l X C/}\g
Theorem 2.1.1. For a subgroup H of G,
G//?I ~ kerH,
where kerH := {r € G : w(h) = 1 for all h € H}.

The character of 7 is the function x, on G taking complex values defined
by

e

g Tr(n(g) = 3 n(g)is

i=1
Then x(1) = dx.

We denote by F(G) the vector space of functions on G taking values in C.
The left regular representation L of G on F(G) is given by (L(g) f)(h) =

4



CHAPTER 2. PRELIMINARIES

f(g7'h). For a basis (§4)gec: of F(G) defined by §, = 1if g = 1, 0 otherwise.
Then the left regular representation L of G satisfies L(G)(dp) = 04, Then

‘G‘v g=1

Tr(L(g»:{ 0 0o

Proposition 2.1.2.

L= @dﬂw.

WGG

Theorem 2.1.2. By the previous proposition,

o ‘G’7 g= 1
Z dﬂ'XTl'(g) - { 0, g#1

WEG’

In particular,

> di=|aGl.

re@

2.2 Basic Quantum Mechanics

A classical bit can have a state of either 0 or 1. A qubit(quantum bit)
can be in a linear combinations of states |0), |1), also known as a superpo-
sition. In a quantum computer, the superposition means that a quantum
register exists in a superposition of all its possible configurations of 0’s and
1’s at the same time, unlike a classical system. we can write a quantum

state in a general form
1) = a|0) 4 50),

where a, 8 € C, and |a|? +|8|?> = 1. We can think of |¢) as a unit vector in
the 2-dimensional complex plane spanned by the two basis |0), [1). A state
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in the n qubit system is a superposition of 2" basis states

6= 3 ale),

z€{0,1}™

where a; € C with 3 g 1y laz|* = 1. Given a group G, we write |g) for a
computational basis state corresponding to the group element g € G, and
|9) = > 4eq bglg), where by € C with - |bg|> = 1. For a finite set S, the
state 1

S) = — ).

|S) 75 SEZS! )
A quantum state |¢) is a column vector, also known as a ket, whereas a
state (1| is the row vector dual to |¢), also known as bra. The adjoint of
[9) is (J¥)t := (¥|. The inner product of two quantum states |z1) and
|x2) is defined as (x1|-|z2) = (x1|x2). The outer product of two quantum
states |z1) and |z9) is defined as |x1) X (xa| = |x1)(x2|. Let {|B;)}icr be a
basis for a vector space. When we measure a state [¢)), we obtain f; as a

measurement outcome, and the probability obtaining the outcome g; is

p(i) = (V|Bi)(Bil),

and the state after the measurement is

|Bi) (Bil)

p(i)

We denote the Hadamard gate by

gL (11
VR S

To solve a decision problem, it suffices to give an algorithm with the

success probability bounded above 1/2 (say, at least 2/3), since we can

6
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repeat the computation many times and take a majority vote to reduce
exponentially the probability of outputting an incorrect answer.

Let f be a function from X to Y. We know sets X and f(X), but not
correspondence relation of f. It is called a black-box function. We assume
the target set Y is a subset of integers. In fact, Y need not to be a subset of
integers, for example, a color set {red,yellow,blue,---}. But we consider
to correspond each element in Y to an integer. A classical gate defined by
x +— f(x) is not reversible. Unlike classical, qunatum circuits have to use
unitary operators. So we consider the reversible gate (x,y) — (x,y® f(x)).
In quantum setting, we use similar argument. On a quantum computer, we
copy the answer into an ancilla register, and then perform the computation
in reverse. The ancilla register is considered as a vector space with a basis
including {|0), |f(z)) : * € X}. An operator U defined by

|z, y) = |z, y @ f(x))
is unitary. In fact,

(UTU |z, ), 12",y ) =(Ula,y), Ul2',y/))
=(|z,y ® f(x)), 2",y @ f(z')))
=(z,2")(y @ f(x),y ® f(z'))

:5:c,x’5y7y”

2] S &)



Chapter 3

Quantum Fourier Transform

3.1 Quantum Fourier Transform on Z/NZ

Let V' be a N-dimensional vector space with basis |0), - -+, [N —1). Define

an operator on V' by

2

Z 7rza:y/N|y

y=0
We call the operator Qunatum Fourier Transform(shortly, QFT) or
QFT on Z/NZ. We can write the operator as

N-1
1 g
QFT := —= Y %K) (j|.
VN o

Theorem 3.1.1. QFT is unitary.

Proof. The adjoint of QFT is

N—-1
1 L
QFT! = —= e~ 2 ak/IN| 53 (k).
7,k=0

o~
Il

8



CHAPTER 3. QUANTUM FOURIER TRANSFORM

Then
| Nl - N-—
QFTTQFT_ e—?ﬂzgk/N|j><k| Z 27rz]’k;’/N’k </|
\/Nj,k=0
1 Nl o A
=5 2 ST
7,5" k=0
1 N-1 N-1 o
=¥ 2 (Z@Z’””” WN) )]
J,4'=0 \k=0
1 N—-1 /N-1
N ( 62”0"“”) 1941
=0 \ k=0
N-—1
=) |nil=1
§=0

O]

The adjoint of QFT is called Inverse QFT. In particular, in the case
where N = 2" we represent |j) = |j1---jn), where j = j1...j, = j12" 1 +
-+ 7.2 Apply QFT to |j), then

2" —1

\/27 Z eQﬂ'Z]kJ/?" |k‘

[y
[y

SR k)

k1=0 kn=0

27rk2_ 27Tk2l
\/272 Z@ ijky \/27@ Z: 15k

=0 kn=0 l=1

~(10) + €209 1)) @ - - @ (|0) 4 20T I 1))
- Yoo ,
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In this case, the circuit for QFT is the following.

l71) 4 Rn Rn | coo Jun)
|j2) 77 Rou—oH Rp1 —Ik [tn 1)

|jn—1> * r |’MQ>
7n) ceeok Jug)
In this circuit, |ug) = |0) + e2™0JkIn|1) and

1 0
Ry, = ( 0 e2mii/2k ) :

3.2 Quantum Fourier Transform on a Finite Abelian

Group

Let G be a finite abelian group. Since a finite abelian group is isomorphic
to the product of finite cyclic groups of the form Z/NZ, we can write QFT
on a finite abelian group G.

Let G ~ Hle Z/N;Z. By using the following correspondence

k k
r€G e (w1, ) €[[Z/INZ = |z) «— Q) |2a),
=1 =1

10
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then
k k 1 N;—1
— ® ‘$Z> — ® Z 627”yi1'iyi/Ni|yi>
i=1 i=1 | Vil 3 =0
1
:w ® Z Yi(zi)|yi)
=1 y¢€ZTZ\FZ

\/ﬁ Z Z yl? * 5 Uk ($17' : 7xk)‘y17"' 7yk>

y1€Z/N1Z ykEZ/NkZ

1
=@ ="

This operator is also unitary because it is the tensor product of unitary

operators.

3.3 Quantum Fourier Transform on a General Group

Let G be a group. The QFT of the state |z) corresponding to the group
element x € G denoted by

Zd |y |7 (

ﬂ'EG’
where d; is the dimension of the representation ,
dx

() k 1
E ’ T, E k, k).

gk=1 k=1 “

If G is abelian, |w(x)) is a complex number with |7(z)| = 1. We can write

the operator as

Ro= Yl = X Y 5 x

zeG 2€G ey J,k=1

k) xl.

11
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The operator Fi is also unitary.
Theorem 3.3.1. Fg is unitary.

Proof. At first, we need to calculate two things.

& (@) I a(y)yw
(m(@ (“ Vi J,k) (j%:l NP ]Jf))

b

1 dr 1 dr
= 4 m(w)jkm(Y)jk = a. m(x l)k,ﬂT(Z/)J,k
jk=1 jk=1
1 & —1 1
= a P (77($ )W(y))kjk = :TT (ﬂ-(x y))

TelG
1
= 1A 7T ! =0y
i Z d.Tr (7r(:1c y)) ,y
TeG
Finally,
FLFg = (Z |:c><:fc|> <Z |93f><x'|> = Y [a)(ale
zeG ' eG z,x'€G
= > |@)bew (@] = |z)(a| =1
z,x'€eG zeG
12



Chapter 4
Quantum Algorithms

In this chapter, we present quantum algorithms using QFT on Z/NZ for

some integer N.

4.1 Phase Estimation

Problem 4.1.1. Suppose an unitary operator U has an eigenvector |u)

with eigenvalue e*™*. Estimate x.

Suppose estimate ¢ within error 1/2N. If one wants to estimate n bit,
set N =2".

Algorithm 1.
1. Prepare the state

13



CHAPTER 4. QUANTUM ALGORITHMS
2. Apply Y00 ) (x| @ U”.

1 N-1 ’
—= D T w)le).
v

Omit the second qubit.
3. Apply Inverse QFT.

1 N-1 ‘ 1 N-1 ' 1 N—-1 /N—-1
ﬁ Z e2m¢z ﬁ Z 6—27rzmy/N|y> _ N Z (Z 2mi(p—y/N)z > |y>
=0 y=0

4. Measure the state.

The measurement outcome is y with probability

N-1

T — 2 :
1 S ito-uNe| 1|1 PN _ 1 sin®(N7(¢ —y/N))
N &~ N? |1 — e2rnito—y/N)|* — N? sin® (n(¢ —y/N))
Set 2( )
sin“(Nnx 1
f(z) = “sin(rz) g(x) = sin2(rz)’

Two functions have period 1 and symmetry by z = 0 and z = 1/2. So it’s
enough to consider these functions on (07 2) We know that 11mx_>0 f(z) =
N2. The function f is decreasing on (0, ]{,) from N2 to 0. Since W <% +
flz) > f( W) = 1/sin? (%) on ( 2N> 2N) Since there is at least one
integer in (N ¢ — %, No¢ + %), the probability obtaining the measurement
result y such that y/N is the closest to ¢ is at least 12 f (QN) = A}Qg (2}\,)
Since f < g and g is decreasing on [0, 2} that probability is greater than
the others.

14



CHAPTER 4. QUANTUM ALGORITHMS

Remark 4.1.1. If ¢ is exactly k bit for k < n, there is y such that ¢ —
y/2" = 0. Then, in step 4, the amplitude of |y) is 1. Therefore the others are

zero becasue all state are unit vectors. In step 5, we obtain y with probability
1.

4.2 Period Finding

Suppose a periodic function f: Z/NZ — S with period r, where a finite
set S. Suppose N is a multiple of r.

Algorithm 2.

1. Prepare
;| Nl
— z)|0
77 2 )
Define the unitary operator U by |x)|y) — |z)|y + f(z)).
2. Apply U.
1 N2l ;] =l N/r-1
— )| f(x)) = —= c+rk)
7 LI = 53 3 et rhlie)

3. Measure the second qubit. Suppose the measurement result is f(c). Then

the post state is

i

N/r—
Z c+rk).
k=0

15



CHAPTER 4. QUANTUM ALGORITHMS

4. Apply Inverse QFT.

1 N/r—1 1 N—1
Z Z —27rz'(c+7'k:)j/N|-
e 7)
N = \/szo
N—1 N/r—1
:% e—27rijc/N Z e—Qﬂijrk/N |]>
=0 k=0
= 3 TN () )
jigr/NeZ
r—1

1 o
- e 2mije/N

N,>
=i,
r

The second equality uses the following fact that

N/r—1 L
Z o 2mijrk/N :{ 0, if jr/N ¢ Z

Py N/r, ifjr/NeZ

5. Measure the first qubit.

g

The measurement outcomes are 0, N/r, ---, N(r — 1)/r with uniform
probability. Divide N. Suppose the result is k/r. The denominator of k/r is
r/ ged(k, 7). Repeat the above procedure, we suppose another denominator
r/ged(K',r). If ged(k, k') = 1, lem(r/ ged(k,r),r/ ged(k’, 7)) = r. The prob-
ability that two integers have p as a factor is 1/p?, and [] (1 — i) =
% ~ 0.61. This means that the algorithm success with probability at least

0.61.

p:prime p2

16



CHAPTER 4. QUANTUM ALGORITHMS

4.3 Period Finding on Z

Problem 4.3.1. Suppose a periodic function f : Z — S with period r,
where a finite set S. Find r.

Since Z is not finite, we cannot use QFT on Z. To use QFT, we consider
Z modulo N for a suitable N. Then f :Z/NZ — S may not be a periodic
function. But f looks like a periodic function with period r, where N is
not a multiple of . Set a proper N such that N > 3r2. In fact, we cannot
choose such N since we don’t know r. We start with N = 2! and repeatedly
double N until N > 3r2. The runtime incurred by this procedure is only
poly(logr).

Algorithm 3.

1. Prepare
1 N-1
—= 2 [©)]0).
v =
Define the unitary operator U by |x)|y) — |z)|y + f(z)).
2. Apply U.
r—1n.—1
c=0 k=0
where

+1 f3kezZstr|Y J<c+rk<N}

otherwise

\FNZ \ﬁZZk—I—rk: |f(c)

The n, means the number of f(c) from f(0) to f(IN —1).
3. Measure the second qubit. Suppose the measurement result is f(c). Then

the post state is

ne—1
Vite 120

17

).



CHAPTER 4. QUANTUM ALGORITHMS

4. Apply QFT.
1 ne—1 1 N—-1
Z 27ri(c+rk)y/N|

e Y)
\/TTC k=0 \/N y=0
1 1 N—-1 /ne.—1

_ 2mi(c+rk)y/N |

= € Y)-

5. Measure the first qubit.

The measurement outcome m with probability

ne—1

111 — e2miryne/N |2 1 1 sin*(7ryne/N)

27i( c+rk)y/N
v L

The measurement outcome m, which has a high probability of being ob-
tained, is the closest integer to multiples of N/r. At first, we consider the

lower bound of the probability.

Lemma 4.3.1. Let m be a measurement outcome the closest integer to

multiples of N/r.

11 2N

p(m) > 1 1sin 2(rrne/ )

N ne sin?(nr/2N)
Proof. Set
sin?(rrne/2N
fla) i= 2ot 2N)

sin®(7r/2N)

The function f has period N/r and symmetry by z = 0 and x = N/2r.
So it’s enough to consider f on (O, %) For k € Z, lim, o f(x) = n2. f is
decreasing on [0, N/rn.] from n2 to 0. Since 1/2 < N/rn,,

1\ _ sin®(mrng/2N)
f(@) > f <i2>  sin?(ar/2N)

18

neN [1—e2 /N2~ n. N sin®(rry/N)
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on (—%, %) Since there is at least one integer in (k% — %, k% + %), SO we

obtain the outcome m such that m is the closest to the multiples of N/r

with probability at least

1 1 sin?(7rn./2N)
N n. sin?(7r/2N)

O]

Denote my, by the closest integer to the k% Set My, := Zﬁ(kM - k% + X

r 2r?

{my}. If we prove that f(my) > f(n) for all n € My, for each k € Z, the

probability obtaining the measurement outcome my, is higher than others.
Lemma 4.3.2. f(my) > f(n) for alln € My, for each k € Z.

Proof. Define f as in the previous proof and Set
g(x) :=1/sin®(zrz/N).

Then g also has period % and symmetry by x = 0, and = = % and f <g

and g is decreasing on (0, %) So we can assume that k£ = 0 and consider

these functions on (0, %) For any n € My,

kN 1 kN r—1 1 r+1 kN N
’mo— r <§:> mo ==y = 2r <§’ 2r S‘n— r | = 2r’
kN 1 3 kN N
’mo— :§:> ig n——T §—2T.

Then f(mo) > f(1/2) and g((r+1)/2r) > g(n) > f(n). If we obtain
f(1/2) > g((r+1)/2r), the desired result follows. To prove that, the
amount of decrease from g(1/2) to f(1/2) is less than that of decrease from
9(1/2) to g(1/2 + 1/2r). For the latter, consider a line [ passing through

19
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(N/2r,1) and (1/2,9(1/2)). Since g is convex, g < [ on [1/2, N/2r]. It’s
enough to show

9(1/2) —g(N/2r) 1
N/2r —1/2  2r

9(1/2) — f(1/2) <
If N >3r? and N > 3r,

_ 1 —sin®(mrng/2N) _1- sin? ((rr) (X —1)/2N)

LHS
sin?(7r/2N)  — sin?(7r/2N)
1 —sin?®(n/2 — nr/2N) 1 —cos*(3%)
= ) - ) = 1, and
sin®(7r/2N) sin®(7r/2N)
;2 _ ain2
RHSZl/Sln (mr/2N) —1 _ 1 51n‘(72r7°/2N) _ 1 cot? (ﬂ)
N-—-r (N —r)sin®(7r/2N) (N —r) 2N
1 ( m 2N>2 N?
V-n\avawr) V-V
0
Now, we get k/r using the continued fraction of m/2". For k =0,--- ,r—

1, since we choose N such that N > 3r2 > r2,

my — —
r

e

1
2 N r

Definition 4.3.1. A continued fraction is defined by a collection ag, -- -,

an of positive integers such that

an.- -+ .Qa = q -|——
[07 ) N] 0 al_'_ﬁ
aN

Define the n-th convergent (0 < n < N) of this continued fraction for

[CLO)' te 7an]-

20
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Theorem 4.3.1. Suppose s/r is a rational number such that

S 1
2ol < —.
)r ¢’ - 2r2
Then s/r is a convergent of the continued fraction for ¢.
Lemma 4.3.3. If N > 3r? and |% — %| < ﬁ, then k/r will be the only

convergent of m/N with its denominator < v/3N.

Proof. Suppose a/b is a convergent of m/N satisfying ‘% — é’ < ﬁ
and b < +3N.
a k

b r

1

_N'

a m| |m k

<
— b N N r
Then |ar —bk| < br/N < 1. Since both ar and bk are integers, ar = bk. [

Now we obtain k/r with high probability. From this point forward, it is

the same as the case where r|N.

4.4 Period Finding Using Phase Estimation

Now we solve the same problem with other way, using phase estimation.
Recall the Problem 4.3.1:

Problem 4.3.1. Suppose a periodic function f : Z — S with period r,
where a finite set S. Find r.

Set N such that N > 3r2. We need the following lemma for using the

phase estimation.

Lemma 4.4.1. For each £ =0,--- ,7 — 1, define a state

r—1

- i 6727ri€x/r -
|fe) - \/;;) |f(2))-

21
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Then, for x € Z/NZ,

r—1
1 2milz /T
=—> e | fe)-
\/,F =0

Proof.

Z 27rz£x/r|f \}’F Z 627r1€z/r \/» Z 727rz£x/r|f >

r 1
— S () = | (@)
£=0

1
y:O —

Algorithm 4.

1. Prepare
;| N
— 0
75 2 0
Define the unitary operator U by |z)|y) — |z)|y + f(z)).
2. Apply U.
;| N ; N =
- _ - 2milx /r
T Dbstan = o 3 (G i
r—1 N—-1

1 Z Z eQme/r‘x ‘fé
f 0

0 z=
3. Measure the second qubit. Suppose the measurement result is f;. Then

the post state is
| Nl
2milx /1
— e x).
~ Z_:O )
After this step, it is the same as the Algorithm 1.
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a

From the obtained measurement outcome, we have ¢/r using the contin-

ued fraction, and finally we have r.

4.5 Order Finding

Problem 4.5.1. Let =, N are positive integers such that ged(x, N) = 1.
Find the order ord(z) of x modulo N .

We choose a large Ny such that 3 (ord(z))?. Unlike the period finding, we
know ord(z) < N. So it is sufficient to choose Ny > 3N2.

Algorithm 5.

1. Prepare
No—1

ﬁvo 3 @),
=0

Define U : |z)|y) — |z)|n"y (mod Np)).

2. Apply U.
No—1

LS (2| (mod No)).
x=0

VN

After this step, it is the same as the Algorithm 3.

4.6 Factorization

Problem 4.6.1. Factorize an integer N.

The following algorithm returns an integer as a factor in V. If we get the

integer x, use the algorithm from the top with N/x instead of N.
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Algorithm 6.

1. If N is even, return the factor 2.

From now on, we assume N is odd integer.

2. Choose a number a € {1,---,N — 1}. Compute ged(a, N) using the
Euclidean algorithm. If ged(a, N) # 1, return ged(a, N). If ged(a, N) = 1,
go next step.

3. Determine the order r of @ modulo N using the Order Finding.

4. If r is odd, the algorithm has failed. Then return to the step 1. If r is
even, go next step.

5.If /2 = —1 (mod N), the algorithm fails. If a’/2 # —1(mod N), then
return a non trivial factor of ged(a’/? — 1, N) or ged(a’/? + 1, N).

a

Theorem 4.6.1. Suppose 1 < x < N such that x> = 1(mod N) and
x # t£1(mod N). Then at least one of ged(x — 1, N) and ged(z + 1, N) is

a non-trivial factor of N.

By definition of order, a” = 1 but a’/2 # 1. So if a”/?2 # —1, by thm, at
least one of ged(a™/? — 1, N) and ged(a’/? 4 1, N) is a non-trivial factor of
N. Now we show this algorithm successes with high probability.

Lemma 4.6.1. Let N = p" ---p"* for k > 2 and distinct odd primes p;,
and x be uniformly at random in Z/NZ*. Then r := ord(x) is even and
2"/2 % 41 (mod N ) with probability at least 1 — (1/2)%~1.

Proof. By the Chinese remainder theorem, choosing z uniformly at random
from Z/NZ* is equivalent to choosing z; uniformly at random Z/p;"Z*
for each 7 independently.

Let r; := ord(z;). r = lem{ry,--- , 7 }. Let r; = 2%s; and s; are odd. If r
is odd, then r; is odd, and ¢; = 0, and all ¢; = 0. If r is even and 2/2 = —1
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(mod N), then :1:;/2 = —1 (mod p;"), and r; { /2, and r/r; is odd, and the
number of factor 2 in r = the number of factor 2 in r;, and all ¢; are equal.
This means that p([r:odd] or [r:even and z'/2 = —1 (mod N)])< p(all t; is

equal). To calculate RHS, we need to prove
. . 1
p(t; = a nonnegative integer j) < 3 (4.6.1)

In other words, if we choose y uniformly at random in Z/p™Z* and ord(y) =
2lvs, for s, is odd, the number of y such that ¢, = j is at most |Z/p™Z*|/2.
Let |Z/p™mZ*| =: 2%v, where v is odd. Let g be a generator of Z/p"™Z*. Then
g*"" =1 (mod p™). For any b € Z/2%Z, let ord(¢g®) =: 2%wv,. Choosing
y € Z/p™Z* is equivalent to choosing b € Z/2%vZ. The number of y such
that ¢, = j is the same as the number of b such that u; = j. Therefore
(4.6.1) means that The number of b € Z/2%vZ such that u, = j is at most
2%y /2. Then u, < u and 2%v|b2"wvy. If b is odd, u < up. So up = u. The
number of such b is at least 2"v/2. If b is even, up < u — 1. The number of
b such that up < u — 1 is at least 2%v/2. Thus the size of two sets is equal
with 2%v/2. We complete to prove (4.6.1). Finally,

p(all t; is equal) = Zp(aﬂ ti =J)

25



CHAPTER 4. QUANTUM ALGORITHMS

4.7 Discrete Logarithm

Problem 4.7.1. Let a, N be integers such that ged(a,N) =1 and b = a°

(mod N ) for some integer s. Find s.

Assume we already know the order of a is r. Define f : Z/rZxZ/rZ — S
by (x,y) — b*aY.

Algorithm 7.

1. Prepare
r—1r—1

*ZZ\% 9)]0).

=0 y=0
Define the unitary operator U by |z1)|z2)|y) = |21)|z2)y + f(21,72)).
2. Apply U.

r—1r—1 r—1r—1
*ZZW ) f(z,9)) ZZIOE ly)|a" ).
z=0 y=0 z=0y=0

3. Measure the third qubit. Suppose the outcome is a. L. := {(z,y) €
Z/rZ x Z)rZ : sx +y = c}.

= \}77 g) |z, c — sx)
4. Apply QFT over Z/rZ x Z/rZ on the first two qubits.
1 S (1 S eQWixz’/r|$l>) 1 S e2mile—sa)y' /7]y
i 2\ U 2 2

1

27rza:m+c sz)y')/r
N Z 2, 4/)

z,z’,y’'=0
:i Z 627ricy’/7’|yls y/>
R .
2
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The second equality uses the following fact that
r—1 / / —
Z e27ri(:1:’75y’)s/7" _ r, T —S8Yy = .
= 0, 2/ —sy #0
5. Measure the second qubit.

|

We obtain a pair (y's,y’) for a uniformly random y’ € Z/rZ. Repreat
the above process, We obtain another pair (2’s, 2’). If ged(y/, 2') = 1, then
A1, A2 such that A1y’ + Aoz’ = 1. we obtain s = A\1(sy’) + A2(s2’) with high
probability.

4.8 Discrete Logarithm Using Phase Estimation

We recall the Problem 4.7.1:

Problem 4.7.1. Let a, N be integers such that ged(a, N) =1 and b = a®
(mod N ) for some integer s. Find s.

We also need the following lemma for using the phase estimation.

Lemma 4.8.1. For each { € Z/rZ, define a state

r—1
o) = } S e2rite/r| £(0, 7).
x=0

Then, for x1,x9 € Z/1rZ,

1
|
—

1 .
|f(x1, x2)> _ €2m€(8$1+w2)/r‘fg>.

0

3
~
Il
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Proof.

r—1
1 ; .
W Z e27rz£(sx1+x2)/ ‘fé>

lezemasmm ( \/Z e2mal" (0, x)>)
r—1r—1

:} Z Z 627ri€(sm1+x27:v)/r|f(07 ZE))
r

£=0 =0

1 r—1 /r—1 ‘
_= Z (Z €2m£(sx1+x2—x)/r> ’f((), ZL‘)>
r =0 \/¢=0

=1£(0, 521 + 22)) = |f(21,22)).

Algorithm 8.

1. Prepare
r—1r—1

*ZZ\SE 19)/0).

=0 y=0

Define the unitary operator U by |z1)|x2)|y) — |z1)|z2)|y + f(21,22)).

2. Apply U.
r—1r—1
*ZZIﬂC W) f(z,y)
=0 y=0
r—1r—1 1 r—1 ‘
722@ ‘y <262ﬂ1€(51+y)/r’ff>>
z=0 y=0 ﬁ /=0

r—1 /r—1
:% Z (Z Qﬂzﬁsx/r ) (Z e27rz€y/r‘y ) ’f@)
=0
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3. Measure the second qubit. Suppose the measurement result is fy. Then

the post state is

1 r—1 ) r—1 '
; (Z 627r1€sx/r|x>> Z 627m€y/r|y>
=0 y=0

After this step, it is the same as the Algorithm 1.

a

From the obtained measurement outcome, we have (¢s, ) using the con-

tinued fraction, and finally we have s.
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Chapter 5
Hidden Subgroup Problem

For a group G, we are given a function f : G — S, where S is a finite set.
We say f hides a subgroup H if f(x) = f(y) if and only if x —y € H for
any x,y € G. In other words, f is constant on the cosets of the subgroup

H, and distinct on each coset.

Problem 5.0.1 (Hidden Subgroup Problem). Suppose f : G — S hides a
subgroup H of a group G. Find H.

We denote Hidden Subgroup Problem by HSP, shortly.

5.1 Abelian Hidden Subgroup Problem

Abelian HSP is a HSP where G is abelian. Some algorithms in the last
chapter are examples of Abelian HSP.

Example 5.1.1 (Period finding). Suppose f:Z — S has a period r. That
is, £(0), ---, f(r—1) are all distinct and there exists the smallest integer r
such that f(x +1r) = f(x) for all z € Z. Then f hides a subgroup H = (r).
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CHAPTER 5. HIDDEN SUBGROUP PROBLEM

Example 5.1.2 (Order finding). Let a, N be integers such that ged(a, N) =
1 and r be the order of a modulo N. Suppose f : Z — S by x — a® (mod
N). Then f hides a subgroup H = (r).

Example 5.1.3 (Discrete logarithm). Let a, N be integers such that ged(a, N) =

1 and r be the order of a modulo N. Let b = a® (mod N ) for some integer s.
Suppose [ :Z, xZ, — S by (r1,22) — b*1a® (mod N). f hides a subgroup
H={{,—st):teZ}. Find H.

Proof. We need to show that for (z1,z2) € Z, x Z,,
f(@1,m2) = f(y1,92) & (v1,22) — (y1,92) € H.

Suppose f(z1,22) = f(y1,y2). Then s(z1 — y1) + 22 —y2 = 0 (mod 7).

Let ¢ = 1 — y1. Then 29 — yo = —sf (mod r). For the converse, suppose
Ty —yos = —s(xy — y1). Then 1 = %2 ¥2ts@—v) — pri-vigr2=v2  and
b*1a®2 = b¥1a¥2. Therefore f(x1,z2) = f(y1,y2)- O

The following is an algorithm for solving the Abelian HSP.

Algorithm 9. Suppose G is finite.
1. Prepare

\WZIQ\O

geG

Define a unitary operator U by |x)|y) — |z)|ly + f(x)).
Gl
2. Apply U. Let G = u‘H‘ (ai + H).

|G|
o
91/ (g Jai + )| £ (a:)).
\/rG ZG ! \/rGr ZO ,;,
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3. Measure the second qubit. Suppose the measurement outcome is f(c).

Then the post state is

1 1 1
WWZ‘HMZWZ‘HM

heH heH

4. Apply QFT.

\/72 72 (c+h)|m)

heH 7r€G

}}; (5
- Z &)lm).

7r|H 1

al=

The second equality uses the following fact that

Z (h) |H| if H C kermn
T —
heH 0 if 3 hyp € H st W(ho);ﬁl

>

For the second case, suppose 7(hg) # 1.

> w(h) = w(ho+h) =m(ho) > w(h).

heH heH heH

Thus ) gy m(h) =0.
5. Measure.

a

We obtain 7 € G such that 7(h) = 1 for all h € H with uniform propa-
bility 18] Repeat the entire process t times, Then we get my, ---, m. Set

Gl
ﬂ kerm;,

1<e<t
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where kerm:={g € G :m(g) =1}. Then H < K; < G. After t 4+ 1 process,
suppose K; # H and 7,11 such that K; C kermq. Then K11 = Ky. This
probability is
T H| _ 216 _ H] _ <1/2.
Gl |G K| K|

m:K¢Ckerm

Since { K} is reduced by half (or more) with probability at least 1/2. Define

indicator random variables X1, -, X¢ by

1, if Kz =H or Ki+1 g Kz

X, =
0, otherwise

Then we have E(X;) = p(X; =1) > 1/2, and E(>_ X;) = > E(X;) > T/2.

Lemma 5.1.1. If G =: Koy D K1 2 --- 2D Kg = K, forallr > s, s <
log, |G-

Proof. If s > log |G|, 2° > |G]|.

|K|<|KS21| .g|2i<11|g|2€|<1
0
If > X; > log, |G|, this algorithm successes.
Lemma 5.1.2. Y] := E[ZT Xi| X1, -+, Xi]. Then'Y; is a martingale.
Proof.
E[Yi| Xy, -, Xia] =EED_ Xi|X1,-, Xi]| Xy, -+, Xiq]
= E[ZXAXL e, X =Y

O
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Let X}, be an independent copy of Xi. > X, := > X; — X; + X}

EQ - X{IX1,-+, X)) =EQ_ X{|IX1,-++, Xp1) = Vi
Vi = Yia| = [EQ_ Xil Xy, -+, X)) —EQ_ Xl X1, -+, Xi)|

EQ Xl Xy, Xi) —EQ_ X{|X1,-+, X1, X5)]
— E(X — XL|Xy, - X)| < 1

Theorem 5.1.1 (Azuma’s inequality). Let (Y;)I"; be a martingale. |Y; —
Yi_1| < ¢ for all i. Then

p(Yn > Yo+ A) ( A2 >
<exp|-sww 3 )
p(Yn <Yo—A) 2316

By Azuma’s inequality,

T T T
p <Z Xi<T/2~ A) <p (ZXi <EQ_ X)) - /\> < e ¥/

If T = alog|G| and A\ = blog |G| such that § —b =1,

b2
P (ZX’L < log|G\) <exp <—2alog|G]) )

Therefore we get H with probability at least 1 — exp (—% log |G |>

5.2 Normal Hidden Subgroup Problem

Problem 5.2.1. Suppose f : G — S hides a normal subgroup H of G.
Find H.
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CHAPTER 5. HIDDEN SUBGROUP PROBLEM

Algorithm 10. nhsp
1. Prepare

g 2o
’G geG
Define a unitary operator U by |z)|y) — |z)|y + f(x)).
—1
2. Apply U. Let G = U‘H‘ (a;H).

erg\f rZZ\az ) F(ar)).

geG =0 heH

3. Measure the second qubit. Suppose the measurement outcome is f(c).

Then the post state is

|ch

4. Apply QFT.

\/‘% }; (\/% )3 dﬂw,ﬁ(ch»)

WZZdhhch

heH el

1
R dr|7) | |7(c w(h
T ;e@: | ><| <>h§€Hj <>>>
E dr|m)|m(c)

m:HCkerm

The third equality uses the following fact that

|H|I if HC kerm
> wh) = :
0 if 3ho € H st mw(ho) #1
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For the second case, suppose 7(hg) # 1 for some hg # 1. Then

S ab)w(x) =Y wlar tha) =Y w(z)r(@ ha) = w(x) Y w(h)

heH heH heH heH

since H is a normal subgroup of G. The operator ), ; m(h) commutes
with 7(x) for all 2 € G. By Schur’s lemma, then ), m(h) is a multiple
of the identity. Therefore ), 7(h) = 0 because

> w(h) = w(hoh) =m(ho) Y _ m(h).

heH heH heH

\H V| H|
S iy = Y YEI S )i k)

HCkerﬂ' HCkerm | ‘ 7,k=1

5. Measure the first qubit.

The probability of obtaining ©# when measuring the first qubit is

dr

dr|H \ 1H] \
Gok=1 |G| Gk=1
|H] |
dr .k
Z T
Hi
d2 |
TG
Repeat the entire process ¢ times, Then we get my, - - -, m. Set
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After t + 1 process, suppose K; # H and we obtain a m;1 such that
K C kermyq1. Then K;11 = K. This probability is

H| [H| H| |G| |H| _1
d3r| = = di:—7:7§,.
K%; Gl 1G] K%} Gl K| — K| ~ 2
As the Abelian HSP, we obtain H with high probability.

5.3 Hidden Subgroup Problem on the Dihedral
Group Dy

Problem 5.3.1. Suppose f: Dy — S hides a subgroup H of Dy. Find H.

Note that Dy 2 Z/NZ x Z/2Z with (z,a) - (y,b) = (z + (=1)%y,a + b).
The subgroups of Dy are either cyclic ((x,0)) or dihedral ((z,0), (y,1)).

Remark 5.3.1. We reduce the general dihedral HSP to the dihedral HSP
where the hidden subgroup is of the form ((y,1)) for somey € Z/NZ.

Proof. Suppose that f : Dy — S hides a subgroup H = ((z,0), (y,1)).
We can check that all cosets of H are (z,0)H for z = 0,--- ;2 — 1 and
(2,1)H = (2 —y,0)H. We assume that (z,0)H — f(z) for z=0,--- ,2—1.
Then f|z/nz hides {(x,0)). Since Z/NZ is abelian, we can find x.

Set H' = {(y,1)((,0))) = {(0,0){(z,0)), (3 1){(,0))}. Then H' is a
subgroup of Dy/{(z,0)). We can also check that all cosets of H' are of
the form (z,0)H’ and (2,0)H" — f(z) for 2 = 0,--- ,2 — 1. Define f’ :
Dn/{(x,0)) — S induced by f. Then f’ hides ((y,1){(z,0))). Dn/{(z,0))
is isomorphic to a dihedral group Dy ged(z,n)- SO /' hides the subgroup

<(y71)> of DN/gcd(x,N)' 0

Remark 5.3.2. In the problem, if we can determine the last bit of y (that

is, whether y is even or odd), we determine all the bits of y.
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Proof. Both subgroups {(2z,0), (2z,1) : £ =0,--- , N/2} and {(2z,0), (2z+
1,1) :x=0,---,N/2} are isomorphic to Dy/o < Dy. If yis even, ((y, 1)) <
{(22,0), (2z,1) : 2 =0,--- ,N/2}. If yis odd, ((y,1)) < {(2z,0), (2z+1,1) :
x=0,---,N/2}. We can restrict the problem to finding ((3/,1)) in Dyys,
where 3/ is ignored from the least bit of y. That is, ¢y = y/2 if y is even, and
y' = (y—1)/2 if y is odd. In this situation, determining the last bit of 3/
means that determining the second least bit of y. Continuing the process,

we can obtain all bits of y. O

We introduce an algorithm for the Dihedral HSP using QFT on Z/NZ.
Following the first 3 steps in the Algorithm 10, we obtain the state

[(c,0)H) := —=([¢,0) + |y + ¢, 1)) .

1
V2

Apply QFT on the first qubit. Then

1 N-1 1 N-1
e?mckz/N k 0) + 627ri(c+y)k/N k 1
((VNkzo o ”ng o)

0
N-1
< e27rzck/N|k <|0> 27rzyk/N|1>)>

k=0

Measure the first qubit. When the measurement outcome is k, the post

state is

) 1= = (10)+ =)
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Repeat this process, suppose we obtain |¥,), |¥,). Then

1 e 1 g
T, T,) -7 (yo) + €? yp/N|1>) ® 7 (|0> +é2 yq/zvp))
—5 (10.0) 4+ ey, 1) 4 e2rina/N o, 1) 42/ 1)
orgr (51 ooy o )
1 ; i ‘
2 ((|0> + 62my(P+q)/N|1>)‘0> i (62myq/N|0> + emep/N\1>)1>)
1 T
:\ﬁ ("I’p+q>‘0> +e? yq/N|\IJp_q>|1>) ’

If we measure the second qubit, we get |¥,4,) when the outcome is 0, and
|W,_q) when the outcome is 1 with uniform probability 1/2. Up to phase,
the information of |W_z) and |Uy) is the same since

1
V2

_ e—27riyk/N|\Ijk> )

X‘\I/,k> — (’1> + 8727riyk/N|0>> — efZWiyk/Ni <|0> +€27‘riyk/N|1>>

V2

Our goal is obtaining the state
1 Yy
[Ugna) = == (10) + (=1)[1)).

And apply H.

0), ifyiseven
1), if yis odd

Finally, measure the state. Then we know the parity of y.
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Algorithm 11. For some integer m,

1. Make a list Lo of copies of the state |Uy). Pair |¥),), |¥,) in Ly which
share the last m bits. Apply the above process to each pair. Collect |¥,,_,)
and make a list Ly of state |¥y) such that the last m bit of k is 0.

2. For each 0 < j < [2=1] — 1, we assume a list L; of states |¥j) such that
at least mj bits of k is 0. Pair |¥,), |¥,) in L; which share the last m(j+1)
bits. Extract the state |¥,_,) from each pair. Let the new list L;; consist
of |Wp_g).

3. For j = {”7_1] — 1, Pair [U,,), [¥y) in Li—1)/m)—1 Which share the last
(n—1) —m([2=1] — 1) bits. Extract the state |¥,_,) from each pair. The
final list Lf(,—1)/m] consists of [Wg) and [Won-1).

4. Measure H|WU,.-1). Determine the last bit of y.

g

Now, we choose the appropriate m. Since unpaired elements are at most
2m,
|Lj| —2™
1 .
Set |Lo| = 2. Then |L,_1y/m| > 272" 1D/m|Lo| = 26-2(=1)/m > 2m Then

|Ljt1] >

0> An—1) +m
m
We consider the minimum of RHS. By the arithmetic-geometric mean in-
equality, m = v/2v/n — 1 precisely. But for convenience of calculation, and
constant does not effect to complexity of this algorithm, m ~ /n — 1, so

(n—1)/m ~m and ¢ ~ 3m. Set
m:= [vn—1].

Note that m > v/n—1, and (n —1)/m < (n —1)/v/n—1 = v/n—1, and
[(n—1)/m] < m.
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Now think of the probability for success of this algorithm. For this, we
consider the number of elements of each L;. The meaning of the success
of this algorithm is existence of |Wy.—1) in the last set. If the last set has
sufficient many elements, we can find the qubit with high probability. It is
sufficient to consider L(,_1)/m], but now we calculate the probability for
Ly,.

For 1 <i < T, define an indicator random variable

X — 1, with probability 1/2
"] 0, with probability 1/2
Lemma 5.3.1 (Chernoff inequality). Let Xi,---, X7 be independent, un-

baised Bernoulli random variables. Then

P (ET:XZ < (1_26)N> < exp (—N2b2> .

Set |Lg| = Cp23™ for some Cp. Let P; be a maximal set of pairs |¥,),
|W,) in L;. Then

‘Lo’ —_9om B 0023m —_9om B 23m (CO _ 2—2m)

Pyl > —
Ll 2 2 2 ’
P 23m C _2—2m

|20|(1—b ) > ( 04 )(1—b0) = 012572

where by := 278/3 and C, > 3.

| Pol

3m—2 _ (1 —bo) [P
p(|L1] < C12 )<p |L1’—ZXz§f

2
< exp (—|P02|b0> < exp (—Qm/3_1> .
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The second inequality uses the Chernoff inequality. The third inequality
follows that

’P()’b(z) >23m(00 _ 2—2m) 2—8m/3
2~ 2 2
ZQm/?)—Q(CO o 2—2m) > 2m/3—2(c«0 _ 1) > 2m/3—1'

> 23m72(00 . 272m)278m/3

Thus we have
p(|L1] > C12°™7%) > 1 —exp (—2’”/3’1) )
For j=0,---, m—1, set
Cir 1= (Cj =27 W) (1= by), Coe=3, b= 2797405
Then 0 < Cj41 < Cj. Then by induction, we can prove, for j =1, ---, m,
P (]Lj] > Cj23m_2j’]Li\ > ;282 for § = -0, — 1) > 1—exp (_Qm/?’—l) )
By the chian rule,
p(IL;] > C;27 all j) > (1 — exp (—2m/3_1)>m.

We obtain the last bit of y with probability at least (1 — exp (—2’”/ 3_1))m.
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