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Abstract

Robustness and Upper Bound
of Generalization Error in Deep
Neural Networks

Hyoje Lee

Department of Mathematical Sciences
The Graduate School

Seoul National University

The generalization of Deep Neural Networks(DNNs) is a crucial issue. While
DNNs perform well in many domains, it is hard to explain theoretically why
DNNs generalize well. The robustness, introduced in Xu, is a good notion to
explain the generalization of DNNs. In this work, we branch off the notion
of the robustness and generalization error. In addition, we assume that the
input space is a bounded d-dimensional subspace of R™ and derive a new upper
bound of the generalization error in DNNs. We attempt to demonstrate our
work by using the Jacobian regularizer, suggested by Sokolic, based on the
Jacobian matrix in DNNs. Also we visualize the result by using t-SNE.

Key words: Robustness, Generalization Error, Jacobian regularization, Deep
Learning
Student Number: 2016-20246
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Chapter 1

Introduction

In recent years, Deep Neural Networks(DNNs) have been achieving the state-
of-the-art performance in many domains. These architectures have dramat-
ically improved in visual object recognition, object detection, segmentation,
speech recognition and many other fields[5, 4, 16, 8, 18, 12].

In the early stages of DNNs, overfitting, the problem that the learning al-
gorithm provides a good performance for training data but not test data, was
a serious obstacle. To solve this problem, there were many efforts. Dropout in
[20] is a good way to prevent the overfitting problem. The idea is to randomly
drop out units(hidden and visible) in a given neural network. It is helpful to
prevent the overfitting problem. Batch normalization, suggested in [9], is also
a good way to address the overfitting problem. Before the activating function,
normalize the output of each layer. The weight decay [11] is also a universal
method to prevent the overfitting problem. These techniques are relevant to
generalize DNNs.

The issue of generalization of DNNs has attracted increasing amount of
research interest. The work in [2] shows that the generalization of DNNs does
not depend on the number of weights (or hidden units) in each layer but
depends on the size of the weights in each layer. There are several works that
provide theoretical or mathematical reasons to explain why DNNs generalize
well. The robustness, introduced in Xu [22], is a good notion to explain the
generalization of DNNs. The robust learning algorithm means that the algo-
rithm provides a stable performance even after adding a noise to the training



dataset. Thus the generalization of DNNs is relevant to the robustness of
DNNs.

The notion of robustness can be applied to various learning algorithms.
Originally, Xu [22] derives the generalization bounds in various supervised
learning, for example, SVM, LASSO, etc. There were also other attempts
influenced by Xu [22] to apply the notion of robustness to other learning
algorithms. Some work adapt the robustness to metric learning [3].

The work in Sokolic [19] suggests the notion of generalization error of
DNNs via their classification margin. Their analysis shows that a bounded
norm of Jacobian matriz is crucial for DNNs to generalize well. Moreover,
Sokolic [19] suggests the Jacobian regularizer to lower the generalization error.

In this paper, we propose to study the notion of robustness of DNNs and
show the related experiment results. We adapt the framework of Sokolic [19]
on the other conditions. While Sokolic [19] assume that the input space is a
Cr regular d-dimensional manifold, introduced in [21], we assume that the
input space is a bounded d-dimensional subspace of R™. In this part, the
crucial part is how to calculate the covering number [17] of input space. So
we present here how to calculate the covering number of our input space. We
already know heuristically that DNNs generalize well when we normalize the
data before input. We try to explain why the normalization of input data is
a good method to generalize DNNs by our generalization bound. Moreover,
we show the related experiment results. We use the Jacobian regularizer and
its regqularizer constant A. We use several constants and report the results
correspondingly.

The rest of the paper is organized as follows. We introduce the notion
of robustness and generalization error in Chapter 2, as well as suggesting
our input space. We propose to explain the structure of DNNs and Jacobian
regularizer in Chapter 3. The experiments and its results are in Chapter 4.
We conclude in Chapter 5. Some explanations and proofs are in Appendix.



Chapter 2

Robustness in Deep Neural
Networks

2.1 Robustness and Generalization Error

We will review the theory of robustness in this section. The notion is intro-
duced in Xu [22]. First, we consider the input vector x € X C R"™ and the label
y € Y, where X is the input space and Y = {1,2,3,..., N} is the label space
with N labels(classes). Then we can consider the sample space S = X x Y and
its element is s = (x, y)€ S. Also we assume that samples are drawn from S
with distribution P. In this paper, we use a notation S,, to denote a training
sample set with m samples drawn from P by S,, = (s1, 82, ..., Sn). Note that
s means an arbitrary sample in the sample space S and s; means a training
sample in the training sample set S,, in this paper.

Let C : X — Y be a classifier. Our purpose is to obtain a good classifier
which satisfies C(x)=y by learning algorithm. In this paper, our classifier is
based on DNNs. To measure a quality of the classifier, we measure the loss of
outputs by using the loss function £(C(x),y), where £ is a loss function which
measure a loss between the predicted label and the true label, x is an input
vector and y is a corresponding label. Now we define the following losses and
error:

Definition 2.1 (in Xu [22]). Let S be the sample space and S,, a training
sample set with m samples. Let s=(x, y), s;=(x;, y;) be elements of S and

3



Sy, respectively. For a classifier C, the empirical loss of training set S,,,
denoted Lep,p, ts defined by

L) = 2 3 £(Cx). 1), 2.

the expected loss (true loss) over distribution P, denoted L., is defined by
Leap(C) = Esnp[L£(C(x),y)], (2.2)

and the generalization error, denoted GE(C), is defined by
GE(C) = [Leap — Lempl- (2.3)

Of course, we cannot measure the expected loss because we cannot know
the distribution P of sample space S. Our goal of learning is to predict the
expected loss by using the empirical loss. It means that if we want to generalize
the learning algorithms, then the generalization error need to be small. Hence
we want to leverage the generalization error when algorithm is learning. Now
we dwell on the bound of generalization error in Xu [22].

First, we define the robustness of a learning algorithm.

Definition 2.2 (in Xu [22]). Let S be a sample space and S,, a training
sample set with m samples. Let s=(x, y), s;=(x;, y;) be elements of S and
Sm, respectively. A classifier C of a learning algorithm is (K, €(S,,))-robust
, for K € Nje: S™ — R, if the sample space S can be partitioned K disjoint
sets, denoted by {C;}I<,, such that for all s; € Sy, and all's €S,

si,8 € C) = |£(C(x),y:) — £(C(%), )| < €(Sm)- (2.4)

The above definition means that if a classifier is (K, €(S,,))-robust, then
the difference of losses between the samples which are in the same set Cj is
less than the €(S,,), i.e., two samples in same set C; are close. In Xu [22],
they suggest that the bound of the generalization error by using the notion
of robustness.



Theorem 2.3 (Theorem 3 in Xu [22]). If a classifier C of learning algorithm
is (K, €(Sp) )-robust and £(C(x),y) < M for all s=(x,y) € S, then for any
0 > 0, with probability at least 1 — ¢,

GE(C) < ¢(S) + M\/2K ‘log 2+ 2log(3) (2.5)

m

Note that our purpose of learning is to minimize the generalization error.
So we need to leverage the upper bound of generalization error. Of course,
the upper bound decrease as m — oo, where m is the number of training
samples. However it is difficult in practical, so we leverage the other terms.
Now we define the classification margin as follows:

Definition 2.4. The classification margin of a training sample s; =
(x4, y;) 1s defined by

D(s;) =sup{l:]| xi —x || <1l = f(x)=y; Vx}. (2.6)

Above the classification margin of s; means that if we consider the ball of
radius [' centered at x;, then all samples x in the ball will be classified the
same label y;, where y; is the label corresponding to x;.

However, the bound on the number of partitions K depends on the cover-
1ng number of the input space X. So we define the covering number as follows

Definition 2.5 (in [17]). Let X be (a subspace of ) R" and v € R. We call a
set C' C X is an y-cover of X if for each x € X, there exists x € C' such that
| x — % [[2< 7. The y-covering number of X, denoted N'(X;~), is defined
by

N(X;7) = min{ |C| : C is a y-cover of X}. (2.7)

Note that the sample space S is the Cartesian product of the input space
X and the label space Y with |Y| = N. Since the label space Y is discrete,
N(S;v) < N - N(X;7), where N is the number of labels. Thus we have the
following Lemma 2.6.



Lemma 2.6 (Theorem 2 in Sokolic [19]). If there exist v > 0 such that
I'(s;)) >v Vs, €8S, (2.8)

then the classifier C is (N -N(X; 1), 0)-robust, where N is the number of labels,
i.e., |Y|=N.

By Theorem 2.3 and Lemma 2.6, we can conclude that GE(C) with a
classification margin I' is bounded as follows.

Theorem 2.7 (in Sokolic [19]). Let C be a classifier with a classification
margin I'. Assume that there exist v > 0 such that I'(s;) > v for all s; € S,,.
Then for any 6 > 0, with probability at least 1 — 0,

GB(C) < M\/2N~N(X;g) 102 + 21og(}) 29)

m

There are various loss functions. One of them, the 1-0 indicator function
is a loss function that if the predicted label is equal to the true label, then
it corresponds to 0, otherwise it corresponds to 1. If we take a loss function
to be the 1-0 indicator function, then £(C(x),y) < 1. Also if we neglect the
2 log(%) term, then we have the inequality

GE(C) <

~Y

. - 2) .
\/ZN N(X;2) log 2 (2.10)
m

2.2 Upper Bound of Generalization Error

In Sokolic [19], the assumption of their work is that the input space X is a
Chs-regular d-dimensional manifold with AV(X;v) < (%)d, suggested in [21].
However, we suggest that let X be a bounded d-dimensional subspace of R".
In here, we present our adaptation of the covering number of X. The concept

is similar to [17].

Lemma 2.8 (adapted from FEzample 27.1 in [17]). Suppose that X is a
bounded d-dimensional subspace of R™ and there exists u € R such that



| x [[2< p for all x € X. Then the y-covering number of X is bounded by

<M>d, 1.€., )
N(Xi7) < (%3) . (2.11)

vy
Proof. The detailed proof is in Appendix A.2. ]

Now we get the upper bound of the covering number of X. Thus we can
get the upper bound of the generalization error. The follow Corollary adapted
from in Sokolic [19].

Corollary 2.9 (adapted from Corollary 1 in Sokolic [19]). Let C be a classifier
with a classification margin I'. Suppose that X is a bounded d-dimensional
subspace of R™ and there exists p1 € R such that || x |[2< p for all x € X. If
there exist v > 0 such that I'(s;) >~y for all s; € S,,, then for any 6 > 0, with
probability at least 1 — 0,

d
N . 2d+1. (u\/c_l) -log 2 + 2log ()

v m

GE(C) < (2.12)

Proof. The Corollary is followed by Theorem 2.7 and Lemma 2.8. n

If we neglect the 2log(3) term of the inequality (2.12), then we have

d
. 9d+1 . .
GE(C) S ne <WE> o8 2.
vt m

[l

(2.13)

Since our purpose is to lower the generalization error, we need to leverage
7, so that the upper bound of GE(C) decreases in (2.12). By Corollary 2.9,
we can get several results.

First, the normalization before input the data could be helpful to gener-
alization of DNNs. If we normalize the data before input, then the norm of
data is bounded. So u of the input space X could be small. Thus we have less
upper bound of generalization error.

2] S )] &)
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Second, if we could leverage ~, then we would get less upper bound of the
generalization error. Thus now, we dwell the relation between the Jacobian
matrix and the classification margin in the next chapter.

&) s

1

I

11



Chapter 3

Deep Neural Networks and
Jacobian regularizer

3.1 Jacobian Matrix in Deep Neural Networks

Let f be a Deep Neural Network(DNN) in a classification problem. In a
classification problem, C(x) = arg max(f(x);), where x is a input vector and
f(x); is a i-th component of f(x). In here, f can be considered as a function
f:R™ — RY, where n is the dimension of input vector and N is the number
of labels. So we can consider the Jacobian matriz of f. Since DNN consists
of several or many layers.

In this section, we state the Jacobian matrix of each layer which is de-
scribed in Sokolic [19]. In here, the output of I-th layer is denoted by u’ where
[ =1,2,...,L; input layer and last layer are denoted by u’ = x and u = f(x).

Linear and Softmax Layers

In DNN; there are linear layers, especially the last layer. It can be described

as follows:
=1, a=Wiart +pl, (3.1)



where W, is a weight matrix, by, is a bias vector in last layer and u” is a
output of a L-th layer. We note that Jacobian matrix of a linear layer is :

dul I

In other words, Jacobian matrix of a linear layer is equal to its weight matrix.
For last layer, we usually use the softmax layer. It is described as follows:

u” = [@otmars 0= What ! £ b, (3.3)

where []softmaz : R” = R™ is the softmax function such that its i-th compo-

nent ([Usoftmaz)i 1S :

et
([u]softmaz)i = = , W, : i-th component of u. (3.4)
e'
j=1
Then its Jacobian matrix is :
du” du  da

Tz (35)

- (_[ﬂ]softmam : [ﬂ]ioftmax + diag([ﬁ]softmax)) : WL' (36)

We defer the detailed explanation for equation (3.6) to Appendix A.1.

Non-Linear Layers

In non-linear layers of DNN, we use a non-linear function o, for example, Rec-
tified Linear Unit(ReLU), Sigmoid, Hyperbolic tangent, etc. These non-linear
functions are well explained in [7]. A [-th non-linear layer can be described
as follows:

u =[4),, a=Whu"'+b) (3.7)

where [-], : R" — R™ is a function such that its i-th component ([u],); is :

([4]y); = o(;), 1 : i-th component of w. (3.8)

10



It is easy to know that

du B dO’(lAll) _ a
du e
(g)is =0 ifi#j

So the Jacobian matrix of a non-linear layer is :

du' du'  da

du—l  da du! (39)
= diag({o’(0}) : i =1,2,---}) - WE. (3.10)
Pooling Layer
A pooling layer is described as follows :
u' = Pl(u' ) (3.11)

where P!(u'~1) is the pooling matrix(average pooling, max pooling, etc). Since
the pooling matrix is linear, so its Jacobian matrix is equal to itself :

du'

m = Pl(ul_l). (312)

3.2 Jacobian Regularizer

In this section, we state the Jacobian regularizer which is suggested in Sokolic
[19]. Before define the Jacobian regularizer, we need the notion of score.

Definition 3.1 (in Sokolic [19]). The score of a training sample s; = (X;, y;)

ofsi) = min v2[(f(x:)),, — (f(x:));)- (3.13)

J#Yi

By the definition of the score, note that one of goal is maximizing the
score in the training. Now we state the following Theorem.

11



Theorem 3.2 (in Sokolic [19]). Assume that a DNN f classifies a training
sample s; with the score o(s;) > 0. Then the classification margin I'(s;) can
be bounded by

O(SZ‘)
I(s) > (3.14)
SUPx:||x—x;l2<I(s;) | J(x) |2
o(s;)
= (3.15)
SUPxeconv(X) H J(X) H2
o(s:) (3.16)

>

T lwew [ W2

> o)
[wew | W llr

where W is a set of weight matrices of the DNN f.

(3.17)

In the result of Theorem 3.2, we could obtain several facts. The equation
(3.16) may be an answer why the weight decay [11] generalize the DNNs well.
By the relation between inequalities (3.14) and (3.16), the norm of Jacobian
matrix may be more effective than the norm of weight matrix if we focus
on aspect to lower the generalization error. Some results to be shown later
support these opinions.

Now we could conclude the following Corollary adapted from Corollary 3
in Sokolic [19].

Corollary 3.3. Let C be a classifier with a classification margin I' and X a
bounded d-dimensional subspace of R"™. Suppose that there exists 1 € R such
that || x ||o< p for all x € X. Then for any § > 0, with probability at least
1-96,

d d
2041 N - (M\/C_i> 1082 - (SUDyx—x, Jo<rs) || T (%) [l2)
GE(C) < y , (3.18)
o(s;))*m
og( L

if we neglect the term %.

Proof. The proof is followed by Corollary 2.9 and Theorem 3.2. n
12

2] S )] &)
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Since the norm of Jacobian matrix can regularize the DNNs, Sokolic [19]
suggests the Jacobian regularizer as follows :

Ry(f) = -3 11 360 [ (3.19)

where {x;}", are training samples and J(x;) is the Jacobian matrix of f at
a training sample x;. Hence the loss of the DNN is

total loss = original loss+ R ;. (3.20)

However, we suggest a constant A\, the reqularizer constant, so that we could
handle the effect of Jacobian regularizer. Therefore

total loss = original loss+ X - R. (3.21)

In the next chapter, we use the Jacobian regularizer and attempt to
demonstrate our theory.

13
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Chapter 4

Experiments

In here, we apply the theory to real datasets. We use the MNIST [14] and
the CIFAR10 [10]. The MNIST dataset is a database which consists of 28 x28
handwritten digits with a training set of 60,000 examples and a test set of
10,000 examples. The CIFAR10 dataset is a database which consists of 32x32
color images in 10 classes with a training set of 50,000 examples and a test
set of 10,000 examples. The classes are airplane, automobile, bird, cat, etc.
These datasets are popular in DNNs, so it could be the yardstick how this
experiments are reasonable and comparable to the other experiments of other
works. We have implemented our experiments in Theano [1], which includes
the Automatic Differentiation. Our experiments were implemented on Tesla
K80.

We compare the performances of the Convolutional Neural Network(CNN)
[13] with the Jacobian regularizer or with the L2-regularization(weight decay)
[11]. The L?-regularization is a standard regularization method in DNNs. We
propose to show the results of our experiments. In addition, We show the
visualization by using t-SNE, the technique suggested by [15].

4.1 Model of Convolutional Neural Network

In our work, what we want to know is the effect of the Jacobian regularizer.
Thus we do not use other techniques likewise the dropout [20], the Xavier
initialization [6], etc. In here, we use a standard CNN likewise, LeNet [14].

14



# training samples
1,000 5,000 10,000 30,000 60,000

train 100.0 100.0 99.95 99.73 99.75

2_
L -reg. test 93.85 97.18 98.03 98.63 98.92
\_1o train 97.52 95.93 94.18 94.62 99.99
- test 93.91 94.73 94.16 94.79 98.87
\_g5 frain 99.08 96.67 96.87 96.70 96.44
- test 94.83  96.19 96.75 96.91 97.14
\_oq (rain 100.0 99.67 99.50 99.25 98.85
=Y test 93.61 97.61  98.29  98.77 98.78
\_ogs train 100.0 99.93 99.52 99.54 99.29
- test 93.76 97.54 98.16 98.78  99.02
\_og train 100.0 100.0 99.62 99.98 99.41
= test 93.54 97.97 98.10  98.97  98.94

Table 4.1: Accuracy(%) on the MNIST. 15 row : L*regularization(weight
decay). 274 ~ 6" rows : Jacobian regularizer with a constant A\. We show
the train accuracy and test accuracy both.

We use a 4-layer CNN as follows: (5 x 5)-32 filters, (2 x 2)-max-pool, (5% 5)-32
filters, (2 x 2)-max-pool, flat-layer and the network ends with a 10-way fully
connected layer with a softmax. The cost function is the cross-entropy and
we use the Stochastic Gradient Descent(SGD) algorithm with batch-size is
256. The activation function in all hidden layers is a ReLLU, identically. Unlike
Sokolic [19], we use the various regularizer constants of Jacobian regularizer.

4.2 Results

4.2.1 Result of Convolutional Neural Network
MNIST

Since the performance of CNNs on the MNIST dataset is originally very
high, the difference between the accuracy of the L?-regularization and the

15



# training samples
1,000 5,000 10,000 25,000 50,000

train 99.21 100.0 99.99 81.05 80.43

2
L -reg. test 929.44 37.73 4116 46.27 49.95
\_1o train 40.17 34.91 97.53 30.08 31.75
- test 30.26 33.99 99.43 97.62 30.74
\_g5 frain 52.48 41.98 34.67 35.03 36.15
- test 33.06  38.54 34.49 35.45 33.59
\_oq (rain 73.30 53.02 49.52 46.04 43.99
=Y test 31.35  42.17 4274 44.82 40.78
\_ogs train 85.02 62.10 54.47 49.87 47.24
- test 30.59 41.73 45.42 4721 45.06
\_og train 98.17 83.03 70.37 58.46 53.74
= test 929.54 4032  45.44  49.31  51.61

Table 4.2: Accuracy(%) on the CIFAR10. 1% row : L*-regularization(weight
decay). 274 ~ 6" rows : Jacobian regularizer with a constant A\. We show
the train accuracy and test accuracy both.

Jacobian regularizer is very small. However, if we only focused on the aspect
of regularization of DNN, then the Jacobian regularizer provides a dramatic
performance. Unlike Sokolic [19], we use various regularizer constants. We
demonstrate that these are effective. The results are in Table 4.1.

We observe that the Jacobian regularizer provides a similar performance of
the L?-regularization. Some cases outperform the result of the L?-regularization.
According to the Jacobian regularizer constant A, the performances are little
different. For example, the CNN trained using 1,000 training samples pro-
vides the highest performance when A = 0.5, 94.83%, and the CNN trained
using 60,000 training samples provides the highest accuracy when A = 0.05,
99.02%.

16
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CIFAR10

While the MNIST dataset is a database which consists of simple figures, the
CIFARI10 dataset is a database which consists of complex figures. Thus the
accuracy of our simple CNN on the CIFARI10 is relatively low. Also it is easy
to overfit our simple CNN on the CIFAR10. Thus we could observe the effect
of regularization with the Jacobian regularizer in here. The results are in
Table 4.2.

We observe that the Jacobian regularizer provides a dramatic performance
on the aspect of regularization. While the CNN trained using relatively less
training samples with the L2-regularization reveals the overfitting problem,
the CNN trained with the Jacobian regularizer does not, relatively. Note that
the difference of the training accuracy and test accuracy in results trained
by the Jacobian regularizer is relatively small. Also the Jacobian regular-
izer outperforms the L?-regularization. For example, the CNN trained using
10,000, 25,000 and 50,000 training samples provides the highest accuracy
when A\ = 0.01, 45.44%, 49.31% and 51.61%, respectively.

4.2.2 Visualization using t-SNE

In here, we show the visualization of our result by using t-SNE. The t-
SNE(Stochastic Neighbor Embedding) is a method, suggested by [15], to vi-
sualize high dimensional data in a low dimensional map. We use the feature
map from the layer right before the fully connected layer, by utilizing 10,000
test data. So we can only use the result passed through convolutional layers.
The number of scattered data on the map is 10,000 and the learning rate of
t-SNE is 1000.

The visualization shows that the classified data are clustered well in each
label. Thus we can observe how well classify given datasets in our experiments.
The figure 4.1 shows that the scattered data trained by using the Jacobian
regularizer are similar to the data trained by using the L?-regularization. Some
classified labels trained by the Jacobian regularizer may be better clustered
than by the L?-regularization.

17
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Figure 4.1: Visualization using t-SNE with a learning rate 1000 on MNIST.

L2-regularization (Left). Jacobian regularization with A = 0.1 (Right).
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Chapter 5

Conclusion

In this paper, we studied the notion of the robustness and generalization er-
ror in Deep Neural Networks. We assumed that the input space is a bounded
d-dimensional subspace of R™ and obtained the covering number of the sug-
gested input space. Thus we derived the new upper bound of the generaliza-
tion error. By the upper bound of the generalization error, we tried to explain
what factors have an effect to the generalization of Deep Neural Networks.
We can come to the conclusion that the normalization of input data is helpful
to generalize Deep Neural networks. Also the norm of the Jacobian matrix
in Deep Neural Networks affect to the upper bound of the generalization er-
ror. Thus we observed that the Jacobian regularizer, based on the Jacobian
matrix, leverages the generalization error.

Moreover, we provided the experimental analysis to support our theory.
We compared the regularization methods with L?-regularization and with
Jacobian regularizer. The Jacobian regularization performs as well as L2-
regularization. In some case, the result of the Jacobian regularization out-
performs the result of the L2-regularization. We visualized the classified data
to a two dimensional map by using t-SNE. Thus we demonstrated that the
Jacobian regularization performs well in a classification problem.
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Appendix A

Appendix

A.1 Equation

In here, we state the equation (3.6) in detail. It is easy to know that dﬁﬁ% =

WE. So it suffices to state that Zf‘i—i. For convenience, we omit L. Note that

2—3 is the Jacobian matrix. We denote (g—g)ij by a (i,7)-th component of Z—f‘i.
So we have
eﬁi . (Z euk> _ eﬁi . efli ) )
(du) - P et N eli
T ) S
k k k

and for 7, j satisfying i # 7,

(d_u)“ _ M
da e (Z euk>2
k
Therefore
du” ] AL : AL L
m = (_[u ]softmax ’ [u ]softma:(: + dlag([u ]softmam)) - W
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A.2 Proof of Lemma

In here, we prove the Lemma 2.8. The idea is similar to [17]. Let {vy,va,...,v4}
be an orthonormal basis of X. For x € X, x can be uniquely expressed by
X = Zle a;v;. Note that max;cig |a;| =| a ||<| a |2 = || x [[o< @ since
{v;}%_, is an orthonormal basis. Let ¢ € R and consider a subset C of X
defined by

d
C:{Zaivi:ai S {_MJ_M+€7_M+2€7"'7M_€7N}} (Al)

=1

We claim that for all x € X, there exists X € C' such that || x — % [[,< 2.

Note that we can choose x € C satisfying the follow property :

ux—xHQ:HZ i I3 < Z\az—alﬁ i I3
d

€ ed
<S(5) v < Z;nviuzz =

=1

So there exists x € C' with || x —x |2 < 6‘/8 . Thus we can conclude that C' is

i—cover of X. Now let € be \2} then “[ = ~. Therefore we have

N(X;y) <|C] < (2—“)d - (“—‘/E> . (A.2)

€ ot
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