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Abstract

Robustness and Upper Bound
of Generalization Error in Deep

Neural Networks

Hyoje Lee

Department of Mathematical Sciences

The Graduate School

Seoul National University

The generalization of Deep Neural Networks(DNNs) is a crucial issue. While

DNNs perform well in many domains, it is hard to explain theoretically why

DNNs generalize well. The robustness, introduced in Xu, is a good notion to

explain the generalization of DNNs. In this work, we branch off the notion

of the robustness and generalization error. In addition, we assume that the

input space is a bounded d-dimensional subspace of Rn and derive a new upper

bound of the generalization error in DNNs. We attempt to demonstrate our

work by using the Jacobian regularizer, suggested by Sokolic, based on the

Jacobian matrix in DNNs. Also we visualize the result by using t-SNE.

Key words: Robustness, Generalization Error, Jacobian regularization, Deep

Learning
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Chapter 1

Introduction

In recent years, Deep Neural Networks(DNNs) have been achieving the state-

of-the-art performance in many domains. These architectures have dramat-

ically improved in visual object recognition, object detection, segmentation,

speech recognition and many other fields[5, 4, 16, 8, 18, 12].

In the early stages of DNNs, overfitting, the problem that the learning al-

gorithm provides a good performance for training data but not test data, was

a serious obstacle. To solve this problem, there were many efforts. Dropout in

[20] is a good way to prevent the overfitting problem. The idea is to randomly

drop out units(hidden and visible) in a given neural network. It is helpful to

prevent the overfitting problem. Batch normalization, suggested in [9], is also

a good way to address the overfitting problem. Before the activating function,

normalize the output of each layer. The weight decay [11] is also a universal

method to prevent the overfitting problem. These techniques are relevant to

generalize DNNs.

The issue of generalization of DNNs has attracted increasing amount of

research interest. The work in [2] shows that the generalization of DNNs does

not depend on the number of weights (or hidden units) in each layer but

depends on the size of the weights in each layer. There are several works that

provide theoretical or mathematical reasons to explain why DNNs generalize

well. The robustness, introduced in Xu [22], is a good notion to explain the

generalization of DNNs. The robust learning algorithm means that the algo-

rithm provides a stable performance even after adding a noise to the training
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dataset. Thus the generalization of DNNs is relevant to the robustness of

DNNs.

The notion of robustness can be applied to various learning algorithms.

Originally, Xu [22] derives the generalization bounds in various supervised

learning, for example, SVM, LASSO, etc. There were also other attempts

influenced by Xu [22] to apply the notion of robustness to other learning

algorithms. Some work adapt the robustness to metric learning [3].

The work in Sokolic [19] suggests the notion of generalization error of

DNNs via their classification margin. Their analysis shows that a bounded

norm of Jacobian matrix is crucial for DNNs to generalize well. Moreover,

Sokolic [19] suggests the Jacobian regularizer to lower the generalization error.

In this paper, we propose to study the notion of robustness of DNNs and

show the related experiment results. We adapt the framework of Sokolic [19]

on the other conditions. While Sokolic [19] assume that the input space is a

CM regular d-dimensional manifold, introduced in [21], we assume that the

input space is a bounded d-dimensional subspace of Rn. In this part, the

crucial part is how to calculate the covering number [17] of input space. So

we present here how to calculate the covering number of our input space. We

already know heuristically that DNNs generalize well when we normalize the

data before input. We try to explain why the normalization of input data is

a good method to generalize DNNs by our generalization bound. Moreover,

we show the related experiment results. We use the Jacobian regularizer and

its regularizer constant λ. We use several constants and report the results

correspondingly.

The rest of the paper is organized as follows. We introduce the notion

of robustness and generalization error in Chapter 2, as well as suggesting

our input space. We propose to explain the structure of DNNs and Jacobian

regularizer in Chapter 3. The experiments and its results are in Chapter 4.

We conclude in Chapter 5. Some explanations and proofs are in Appendix.
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Chapter 2

Robustness in Deep Neural

Networks

2.1 Robustness and Generalization Error

We will review the theory of robustness in this section. The notion is intro-

duced in Xu [22]. First, we consider the input vector x ∈ X ⊆ Rn and the label

y ∈ Y, where X is the input space and Y = {1, 2, 3, . . . , N} is the label space

with N labels(classes). Then we can consider the sample space S = X×Y and

its element is s = (x, y)∈ S. Also we assume that samples are drawn from S
with distribution P. In this paper, we use a notation Sm to denote a training

sample set with m samples drawn from P by Sm = (s1, s2, . . . , sm). Note that

s means an arbitrary sample in the sample space S and si means a training

sample in the training sample set Sm in this paper.

Let C : X → Y be a classifier. Our purpose is to obtain a good classifier

which satisfies C(x)=y by learning algorithm. In this paper, our classifier is

based on DNNs. To measure a quality of the classifier, we measure the loss of

outputs by using the loss function L(C(x), y), where L is a loss function which

measure a loss between the predicted label and the true label, x is an input

vector and y is a corresponding label. Now we define the following losses and

error:

Definition 2.1 (in Xu [22]). Let S be the sample space and Sm a training

sample set with m samples. Let s=(x, y), si=(xi, yi) be elements of S and
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Sm, respectively. For a classifier C, the empirical loss of training set Sm,

denoted Lemp, is defined by

Lemp(C) =
1

m

m∑
i=1

L(C(xi), yi), (2.1)

the expected loss (true loss) over distribution P, denoted Lexp, is defined by

Lexp(C) = Es∼P [L(C(x), y)], (2.2)

and the generalization error, denoted GE(C), is defined by

GE(C) = |Lexp − Lemp|. (2.3)

Of course, we cannot measure the expected loss because we cannot know

the distribution P of sample space S. Our goal of learning is to predict the

expected loss by using the empirical loss. It means that if we want to generalize

the learning algorithms, then the generalization error need to be small. Hence

we want to leverage the generalization error when algorithm is learning. Now

we dwell on the bound of generalization error in Xu [22].

First, we define the robustness of a learning algorithm.

Definition 2.2 (in Xu [22]). Let S be a sample space and Sm a training

sample set with m samples. Let s=(x, y), si=(xi, yi) be elements of S and

Sm, respectively. A classifier C of a learning algorithm is (K, ε(Sm))-robust

, for K ∈ N, ε : Sm → R, if the sample space S can be partitioned K disjoint

sets, denoted by {Cj}Kj=1, such that for all si ∈ Sm and all s ∈ S,

si, s ∈ Cj =⇒ |L(C(xi), yi)− L(C(x), y)| < ε(Sm). (2.4)

The above definition means that if a classifier is (K, ε(Sm))-robust, then

the difference of losses between the samples which are in the same set Cj is

less than the ε(Sm), i.e., two samples in same set Cj are close. In Xu [22],

they suggest that the bound of the generalization error by using the notion

of robustness.
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Theorem 2.3 (Theorem 3 in Xu [22]). If a classifier C of learning algorithm

is (K, ε(Sm))-robust and L(C(x), y) ≤ M for all s=(x, y) ∈ S, then for any

δ > 0, with probability at least 1− δ,

GE(C) ≤ ε(Sm) +M

√
2K · log 2 + 2 log(1

δ
)

m
. (2.5)

Note that our purpose of learning is to minimize the generalization error.

So we need to leverage the upper bound of generalization error. Of course,

the upper bound decrease as m → ∞, where m is the number of training

samples. However it is difficult in practical, so we leverage the other terms.

Now we define the classification margin as follows:

Definition 2.4. The classification margin of a training sample si =

(xi, yi) is defined by

Γ(si) = sup{l :‖ xi − x ‖2 ≤ l =⇒ f(x) = yi ∀x}. (2.6)

Above the classification margin of si means that if we consider the ball of

radius Γ centered at xi, then all samples x in the ball will be classified the

same label yi, where yi is the label corresponding to xi.

However, the bound on the number of partitions K depends on the cover-

ing number of the input space X. So we define the covering number as follows

:

Definition 2.5 (in [17]). Let X be (a subspace of) Rn and γ ∈ R. We call a

set C ⊂ X is an γ-cover of X if for each x ∈ X, there exists x̂ ∈ C such that

‖ x − x̂ ‖2≤ γ. The γ-covering number of X, denoted N (X; γ), is defined

by

N (X; γ) = min{ |C| : C is a γ-cover of X}. (2.7)

Note that the sample space S is the Cartesian product of the input space

X and the label space Y with |Y| = N . Since the label space Y is discrete,

N (S; γ) ≤ N · N (X; γ), where N is the number of labels. Thus we have the

following Lemma 2.6.
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Lemma 2.6 (Theorem 2 in Sokolic [19]). If there exist γ > 0 such that

Γ(si) > γ ∀si ∈ Sm, (2.8)

then the classifier C is (N ·N (X; γ
2
), 0)-robust, where N is the number of labels,

i.e., |Y|=N.

By Theorem 2.3 and Lemma 2.6, we can conclude that GE(C) with a

classification margin Γ is bounded as follows.

Theorem 2.7 (in Sokolic [19]). Let C be a classifier with a classification

margin Γ. Assume that there exist γ > 0 such that Γ(si) > γ for all si ∈ Sm.

Then for any δ > 0, with probability at least 1− δ,

GE(C) ≤M

√
2N · N (X; γ

2
) · log 2 + 2 log(1

δ
)

m
. (2.9)

There are various loss functions. One of them, the 1–0 indicator function

is a loss function that if the predicted label is equal to the true label, then

it corresponds to 0, otherwise it corresponds to 1. If we take a loss function

to be the 1–0 indicator function, then L(C(x), y) ≤ 1. Also if we neglect the

2 log(1
δ
) term, then we have the inequality

GE(C) .
√

2N · N (X; γ
2
) · log 2

m
. (2.10)

2.2 Upper Bound of Generalization Error

In Sokolic [19], the assumption of their work is that the input space X is a

CM -regular d-dimensional manifold with N (X; γ) ≤ (CM
γ

)d, suggested in [21].

However, we suggest that let X be a bounded d-dimensional subspace of Rn.

In here, we present our adaptation of the covering number of X. The concept

is similar to [17].

Lemma 2.8 (adapted from Example 27.1 in [17]). Suppose that X is a

bounded d-dimensional subspace of Rn and there exists µ ∈ R such that
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‖ x ‖2≤ µ for all x ∈ X. Then the γ-covering number of X is bounded by(
µ
√
d

γ

)d
, i.e.,

N (X; γ) ≤

(
µ
√
d

γ

)d

. (2.11)

Proof. The detailed proof is in Appendix A.2.

Now we get the upper bound of the covering number of X. Thus we can

get the upper bound of the generalization error. The follow Corollary adapted

from in Sokolic [19].

Corollary 2.9 (adapted from Corollary 1 in Sokolic [19]). Let C be a classifier

with a classification margin Γ. Suppose that X is a bounded d-dimensional

subspace of Rn and there exists µ ∈ R such that ‖ x ‖2≤ µ for all x ∈ X. If

there exist γ > 0 such that Γ(si) > γ for all si ∈ Sm, then for any δ > 0, with

probability at least 1− δ,

GE(C) ≤

√√√√N · 2d+1 ·
(
µ
√
d
)d
· log 2 + 2 log

(
1
δ

)
γd m

. (2.12)

Proof. The Corollary is followed by Theorem 2.7 and Lemma 2.8.

If we neglect the 2 log(1
δ
) term of the inequality (2.12), then we have

GE(C) .

√√√√N · 2d+1 ·
(
µ
√
d
)d
· log 2

γd m
. (2.13)

Since our purpose is to lower the generalization error, we need to leverage

γ, so that the upper bound of GE(C) decreases in (2.12). By Corollary 2.9,

we can get several results.

First, the normalization before input the data could be helpful to gener-

alization of DNNs. If we normalize the data before input, then the norm of

data is bounded. So µ of the input space X could be small. Thus we have less

upper bound of generalization error.
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Second, if we could leverage γ, then we would get less upper bound of the

generalization error. Thus now, we dwell the relation between the Jacobian

matrix and the classification margin in the next chapter.
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Chapter 3

Deep Neural Networks and

Jacobian regularizer

3.1 Jacobian Matrix in Deep Neural Networks

Let f be a Deep Neural Network(DNN) in a classification problem. In a

classification problem, C(x) = arg max
i

(f(x)i), where x is a input vector and

f(x)i is a i-th component of f(x). In here, f can be considered as a function

f : Rn → RN , where n is the dimension of input vector and N is the number

of labels. So we can consider the Jacobian matrix of f . Since DNN consists

of several or many layers.

In this section, we state the Jacobian matrix of each layer which is de-

scribed in Sokolic [19]. In here, the output of l-th layer is denoted by ul where

l = 1, 2, . . . , L; input layer and last layer are denoted by u0 = x and u = f(x).

Linear and Softmax Layers

In DNN, there are linear layers, especially the last layer. It can be described

as follows:

uL = û, û = WLuL−1 + bL, (3.1)
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where WL is a weight matrix, bL is a bias vector in last layer and uL is a

output of a L-th layer. We note that Jacobian matrix of a linear layer is :

duL

duL−1
= WL. (3.2)

In other words, Jacobian matrix of a linear layer is equal to its weight matrix.

For last layer, we usually use the softmax layer. It is described as follows:

uL = [û]softmax, û = WLuL−1 + bL, (3.3)

where [·]softmax : Rn → Rn is the softmax function such that its i-th compo-

nent ([u]softmax)i is :

([u]softmax)i =
eui
n∑
j=1

euj
, ui : i-th component of u. (3.4)

Then its Jacobian matrix is :

duL

duL−1
=
duL

dû
· dû

duL−1
(3.5)

= (−[û]softmax · [û]tsoftmax + diag([û]softmax)) ·WL. (3.6)

We defer the detailed explanation for equation (3.6) to Appendix A.1.

Non-Linear Layers

In non-linear layers of DNN, we use a non-linear function σ, for example, Rec-

tified Linear Unit(ReLU), Sigmoid, Hyperbolic tangent, etc. These non-linear

functions are well explained in [7]. A l-th non-linear layer can be described

as follows:

ul = [û]σ, û = Wlul−1 + bl, (3.7)

where [·]σ : Rn → Rn is a function such that its i-th component ([u]σ)i is :

([û]σ)i = σ(ûi), ûi : i-th component of û. (3.8)

10



It is easy to know that

(
du

dû
)ii =

dσ(ûi)

dûi
= σ′(ûi)

(
du

dû
)ij = 0 if i 6= j

So the Jacobian matrix of a non-linear layer is :

dul

dul−1
=
dul

dû
· dû

dul−1
(3.9)

= diag({σ′(ûli) : i = 1, 2, · · · }) ·WL. (3.10)

Pooling Layer

A pooling layer is described as follows :

ul = Pl(ul−1)zl−1, (3.11)

where Pl(ul−1) is the pooling matrix(average pooling, max pooling, etc). Since

the pooling matrix is linear, so its Jacobian matrix is equal to itself :

dul

dul−1
= Pl(ul−1). (3.12)

3.2 Jacobian Regularizer

In this section, we state the Jacobian regularizer which is suggested in Sokolic

[19]. Before define the Jacobian regularizer, we need the notion of score.

Definition 3.1 (in Sokolic [19]). The score of a training sample si = (xi, yi)

o(si) = min
j 6=yi

√
2[(f(xi))yi − (f(xi))j]. (3.13)

By the definition of the score, note that one of goal is maximizing the

score in the training. Now we state the following Theorem.
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Theorem 3.2 (in Sokolic [19]). Assume that a DNN f classifies a training

sample si with the score o(si) > 0. Then the classification margin Γ(si) can

be bounded by

Γ(si) ≥
o(si)

supx:‖x−xi‖2≤Γ(si)
‖ J(x) ‖2

(3.14)

≥ o(si)

supx∈conv(X) ‖ J(x) ‖2

(3.15)

≥ o(si)∏
W∈W ‖W ‖2

(3.16)

≥ o(si)∏
W∈W ‖W ‖F

, (3.17)

where W is a set of weight matrices of the DNN f .

In the result of Theorem 3.2, we could obtain several facts. The equation

(3.16) may be an answer why the weight decay [11] generalize the DNNs well.

By the relation between inequalities (3.14) and (3.16), the norm of Jacobian

matrix may be more effective than the norm of weight matrix if we focus

on aspect to lower the generalization error. Some results to be shown later

support these opinions.

Now we could conclude the following Corollary adapted from Corollary 3

in Sokolic [19].

Corollary 3.3. Let C be a classifier with a classification margin Γ and X a

bounded d-dimensional subspace of Rn. Suppose that there exists µ ∈ R such

that ‖ x ‖2≤ µ for all x ∈ X. Then for any δ > 0, with probability at least

1− δ,

GE(C) ≤

√√√√2d+1 ·N ·
(
µ
√
d
)d
· log 2 ·

(
supx:‖x−xi‖2≤Γ(si)

‖ J(x) ‖2

)d
o(si)d m

, (3.18)

if we neglect the term

√
2 log( 1

δ )
m

.

Proof. The proof is followed by Corollary 2.9 and Theorem 3.2.
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Since the norm of Jacobian matrix can regularize the DNNs, Sokolic [19]

suggests the Jacobian regularizer as follows :

RJ(f) =
1

m

m∑
i=1

‖ J(xi) ‖2
2, (3.19)

where {xi}mi=1 are training samples and J(xi) is the Jacobian matrix of f at

a training sample xi. Hence the loss of the DNN is

total loss = original loss + RJ . (3.20)

However, we suggest a constant λ, the regularizer constant, so that we could

handle the effect of Jacobian regularizer. Therefore

total loss = original loss + λ ·RJ . (3.21)

In the next chapter, we use the Jacobian regularizer and attempt to

demonstrate our theory.
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Chapter 4

Experiments

In here, we apply the theory to real datasets. We use the MNIST [14] and

the CIFAR10 [10]. The MNIST dataset is a database which consists of 28×28

handwritten digits with a training set of 60,000 examples and a test set of

10,000 examples. The CIFAR10 dataset is a database which consists of 32×32

color images in 10 classes with a training set of 50,000 examples and a test

set of 10,000 examples. The classes are airplane, automobile, bird, cat, etc.

These datasets are popular in DNNs, so it could be the yardstick how this

experiments are reasonable and comparable to the other experiments of other

works. We have implemented our experiments in Theano [1], which includes

the Automatic Differentiation. Our experiments were implemented on Tesla

K80.

We compare the performances of the Convolutional Neural Network(CNN)

[13] with the Jacobian regularizer or with the L2-regularization(weight decay)

[11]. The L2-regularization is a standard regularization method in DNNs. We

propose to show the results of our experiments. In addition, We show the

visualization by using t-SNE, the technique suggested by [15].

4.1 Model of Convolutional Neural Network

In our work, what we want to know is the effect of the Jacobian regularizer.

Thus we do not use other techniques likewise the dropout [20], the Xavier

initialization [6], etc. In here, we use a standard CNN likewise, LeNet [14].

14



# training samples
1,000 5,000 10,000 30,000 60,000

L2-reg.
train 100.0 100.0 99.95 99.73 99.75
test 93.85 97.18 98.03 98.63 98.92

λ = 1.0
train 97.52 95.23 94.18 94.62 99.99
test 93.91 94.73 94.16 94.79 98.87

λ = 0.5
train 99.08 96.67 96.87 96.70 96.44
test 94.83 96.19 96.75 96.91 97.14

λ = 0.1
train 100.0 99.67 99.50 99.25 98.85
test 93.61 97.61 98.29 98.77 98.78

λ = 0.05
train 100.0 99.93 99.52 99.54 99.29
test 93.76 97.54 98.16 98.78 99.02

λ = 0.01
train 100.0 100.0 99.62 99.98 99.41
test 93.54 97.27 98.10 98.97 98.94

Table 4.1: Accuracy(%) on the MNIST. 1st row : L2-regularization(weight
decay). 2nd ∼ 6th rows : Jacobian regularizer with a constant λ. We show
the train accuracy and test accuracy both.

We use a 4-layer CNN as follows: (5×5)-32 filters, (2×2)-max-pool, (5×5)-32

filters, (2× 2)-max-pool, flat-layer and the network ends with a 10-way fully

connected layer with a softmax. The cost function is the cross-entropy and

we use the Stochastic Gradient Descent(SGD) algorithm with batch-size is

256. The activation function in all hidden layers is a ReLU, identically. Unlike

Sokolic [19], we use the various regularizer constants of Jacobian regularizer.

4.2 Results

4.2.1 Result of Convolutional Neural Network

MNIST

Since the performance of CNNs on the MNIST dataset is originally very

high, the difference between the accuracy of the L2-regularization and the
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# training samples
1,000 5,000 10,000 25,000 50,000

L2-reg.
train 99.21 100.0 99.99 81.05 80.43
test 29.44 37.73 41.16 46.27 49.95

λ = 1.0
train 40.17 34.91 27.53 30.08 31.75
test 30.26 33.99 29.43 27.62 30.74

λ = 0.5
train 52.48 41.98 34.67 35.03 36.15
test 33.06 38.54 34.49 35.45 33.59

λ = 0.1
train 73.30 53.02 49.52 46.04 43.99
test 31.35 42.17 42.74 44.82 40.78

λ = 0.05
train 85.02 62.10 54.47 49.87 47.24
test 30.59 41.73 45.42 47.21 45.06

λ = 0.01
train 98.17 83.03 70.37 58.46 53.74
test 29.54 40.32 45.44 49.31 51.61

Table 4.2: Accuracy(%) on the CIFAR10. 1st row : L2-regularization(weight
decay). 2nd ∼ 6th rows : Jacobian regularizer with a constant λ. We show
the train accuracy and test accuracy both.

Jacobian regularizer is very small. However, if we only focused on the aspect

of regularization of DNN, then the Jacobian regularizer provides a dramatic

performance. Unlike Sokolic [19], we use various regularizer constants. We

demonstrate that these are effective. The results are in Table 4.1.

We observe that the Jacobian regularizer provides a similar performance of

the L2-regularization. Some cases outperform the result of the L2-regularization.

According to the Jacobian regularizer constant λ, the performances are little

different. For example, the CNN trained using 1,000 training samples pro-

vides the highest performance when λ = 0.5, 94.83%, and the CNN trained

using 60,000 training samples provides the highest accuracy when λ = 0.05,

99.02%.
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CIFAR10

While the MNIST dataset is a database which consists of simple figures, the

CIFAR10 dataset is a database which consists of complex figures. Thus the

accuracy of our simple CNN on the CIFAR10 is relatively low. Also it is easy

to overfit our simple CNN on the CIFAR10. Thus we could observe the effect

of regularization with the Jacobian regularizer in here. The results are in

Table 4.2.

We observe that the Jacobian regularizer provides a dramatic performance

on the aspect of regularization. While the CNN trained using relatively less

training samples with the L2-regularization reveals the overfitting problem,

the CNN trained with the Jacobian regularizer does not, relatively. Note that

the difference of the training accuracy and test accuracy in results trained

by the Jacobian regularizer is relatively small. Also the Jacobian regular-

izer outperforms the L2-regularization. For example, the CNN trained using

10,000, 25,000 and 50,000 training samples provides the highest accuracy

when λ = 0.01, 45.44%, 49.31% and 51.61%, respectively.

4.2.2 Visualization using t-SNE

In here, we show the visualization of our result by using t-SNE. The t-

SNE(Stochastic Neighbor Embedding) is a method, suggested by [15], to vi-

sualize high dimensional data in a low dimensional map. We use the feature

map from the layer right before the fully connected layer, by utilizing 10,000

test data. So we can only use the result passed through convolutional layers.

The number of scattered data on the map is 10,000 and the learning rate of

t-SNE is 1000.

The visualization shows that the classified data are clustered well in each

label. Thus we can observe how well classify given datasets in our experiments.

The figure 4.1 shows that the scattered data trained by using the Jacobian

regularizer are similar to the data trained by using the L2-regularization. Some

classified labels trained by the Jacobian regularizer may be better clustered

than by the L2-regularization.
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Figure 4.1: Visualization using t-SNE with a learning rate 1000 on MNIST.
L2-regularization (Left). Jacobian regularization with λ = 0.1 (Right).
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Chapter 5

Conclusion

In this paper, we studied the notion of the robustness and generalization er-

ror in Deep Neural Networks. We assumed that the input space is a bounded

d-dimensional subspace of Rn and obtained the covering number of the sug-

gested input space. Thus we derived the new upper bound of the generaliza-

tion error. By the upper bound of the generalization error, we tried to explain

what factors have an effect to the generalization of Deep Neural Networks.

We can come to the conclusion that the normalization of input data is helpful

to generalize Deep Neural networks. Also the norm of the Jacobian matrix

in Deep Neural Networks affect to the upper bound of the generalization er-

ror. Thus we observed that the Jacobian regularizer, based on the Jacobian

matrix, leverages the generalization error.

Moreover, we provided the experimental analysis to support our theory.

We compared the regularization methods with L2-regularization and with

Jacobian regularizer. The Jacobian regularization performs as well as L2-

regularization. In some case, the result of the Jacobian regularization out-

performs the result of the L2-regularization. We visualized the classified data

to a two dimensional map by using t-SNE. Thus we demonstrated that the

Jacobian regularization performs well in a classification problem.
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Appendix A

Appendix

A.1 Equation

In here, we state the equation (3.6) in detail. It is easy to know that dûL

duL−1 =

WL. So it suffices to state that duL

dûL
. For convenience, we omit L. Note that

du
dû

is the Jacobian matrix. We denote (du
dû

)ij by a (i, j)-th component of du
dû

.

So we have

(
du

dû
)ii =

eûi · (
∑
k

euk)− eûi · eûi

(
∑
k

euk)2
=

−e2ûi

(
∑
k

euk)2
+

eûi∑
k

euk
,

and for i, j satisfying i 6= j,

(
du

dû
)ij =

−eûi · eûj

(
∑
k

euk)2

Therefore

duL

duL−1
= (−[ûL]softmax · [ûL]Tsoftmax + diag([ûL]softmax)) ·WL.
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A.2 Proof of Lemma

In here, we prove the Lemma 2.8. The idea is similar to [17]. Let {v1,v2, . . . ,vd}
be an orthonormal basis of X. For x ∈ X, x can be uniquely expressed by

x =
∑d

i=1 aivi. Note that maxi∈[d] |ai| =‖ a ‖∞≤‖ a ‖2 = ‖ x ‖2≤ µ since

{vi}di=1 is an orthonormal basis. Let ε ∈ R and consider a subset C of X
defined by

C = {
d∑
i=1

aivi : ai ∈ {−µ,−µ+ ε,−µ+ 2ε, . . . , µ− ε, µ}} (A.1)

We claim that for all x ∈ X, there exists x̂ ∈ C such that ‖ x − x̂ ‖2≤ ε
√
d

2
.

Note that we can choose x̂ ∈ C satisfying the follow property :

‖ x− x̂ ‖2
2 = ‖

d∑
i=1

(ai − âi)vi ‖2
2 ≤

d∑
i=1

|ai − âi|2 ‖ vi ‖2
2

≤
d∑
i=1

( ε
2

)2

‖ vi ‖2
2 ≤

ε2

4

d∑
i=1

‖ vi ‖2
2 =

ε2d

4

So there exists x̂ ∈ C with ‖ x− x̂ ‖2 ≤ ε
√
d

2
. Thus we can conclude that C is

a ε
√
d

2
-cover of X. Now let ε be 2γ√

d
, then ε

√
d

2
= γ. Therefore we have

N (X; γ) ≤ |C| ≤
(

2µ

ε

)d
=

(
µ
√
d

γ

)d

. (A.2)
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국문초록

깊은 신경망의 일반화는 중요한 문제이다. 깊은 신경망이 여러 분야에서

좋은 성능을 내고 있지만 깊은 신경망이 일반화가 잘 되는 이유를 이론적으로

설명하기는 어렵다. Xu에 의해서 제시된 강건성은 깊은 신경망의 일반화에

대해 설명할 수 있는 좋은 개념이다. 이 논문에서 우리는 Xu에 의해 제시된 강

건성과일반화오차를알아보고여기서파생된내용을이야기한다.추가적으로

우리는 입력 공간이 Rn에서의 유계인 d 차원 부분공간이라고 가정하고, 깊은

신경망에서의 일반화 오차의 상한을 새롭게 유도한다. Sokolic이 제시했던 깊

은신경망에서의야코비행렬을기반으로한야코비정칙화를이용하여우리의

이론을 실험을 통해 확인하고자 한다. 추가로 t–SNE를 이용하여 실험결과를

시각화한다.

주요어휘: 강건성, 일반화 오차, 야코비 정칙화, 깊은 신경망

학번: 2016-20246
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