
RESEARCH ARTICLE Open Access

Predicting interval and screen-detected
breast cancers from mammographic
density defined by different brightness
thresholds
Tuong L. Nguyen1, Ye K. Aung1, Shuai Li1, Nhut Ho Trinh1, Christopher F. Evans1, Laura Baglietto1,8,
Kavitha Krishnan1, Gillian S. Dite1, Jennifer Stone3, Dallas R. English1,2, Yun-Mi Song4, Joohon Sung5,7,
Mark A. Jenkins1, Melissa C. Southey6,9, Graham G. Giles1,2 and John L. Hopper1*

Abstract

Background: Case–control studies show that mammographic density is a better risk factor when defined at higher
than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers.

Method: We conducted a nested case–control study within the prospective Melbourne Collaborative Cohort Study
including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls,
respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional
threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were
transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI
by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA),
calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the
likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information
criterion (ΔBIC).
Results: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a
percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85–2.92); all ΔBIC > 14), and the association with BMI was
independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all
P> 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus
measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P> 0.07).

Conclusion: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk,
while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval
breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically
important information about different outcomes.
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Background
Mammographic images can be used for more than identi-
fying existing breast tumours – they contain information
that predicts both (1) the risk of future breast cancers and
(2) the likelihood of existing tumours being missed due to
masking [1]. This has important implications for future
breast cancer control because of the widespread use of
mammography screening. Women could be triaged
according to their risk of disease and/or masking so as to
implement tailored screening, and deal with the ongoing
need to improve cost-effectiveness, minimise harm [2, 3],
and help address the issue of “dense breasts” [4].
Conventionally, mammographic density has been defined

as the white or bright areas on a mammogram and, after
adjusting for age and body mass index (BMI), has been
found to be a risk factor for both interval and screen-de-
tected breast cancers [1, 5, 6]. Screen-detected breast can-
cers are cancers detected via a screening programme and
interval breast cancers are those detected within 2 years of
a mammographic screen that did not detect any breast can-
cer. Interval cancers are in general more aggressive [6–11],
so it is important to understand if the relationship between
mammographic density measures and breast cancer risk
differs by mode of detection [12].
We previously found, from case-control studies of

both Australian [13] and Korean [14, 15] women, that
by defining mammographic density at higher than con-
ventional pixel-brightness thresholds we obtained better
discrimination between women with and without breast
cancer. This applied for both film and digital mammo-
grams. It is not known, however, if this observation differs
according to mode of detection. In this study, we have
used a prospective cohort and asked if, and how well, the
conventional and our new mammographic density mea-
sures apply to interval and screen-detected breast cancers.

Materials and methods
Subjects
We used the prospective Melbourne Collaborative Cohort
Study of Australian-born, Italian-born, and Greek-born
male and female adult residents of Melbourne [16, 17]. We
conducted a nested case–control study in which cases were
women who had been diagnosed with a first diagnosis of
ductal carcinoma in situ or invasive adenocarcinoma of the
breast (C50.0-C50.9) since the baseline survey. Cases were
ascertained by record linkage to the population-complete
Victorian Cancer Registry and to the Australian Cancer
Database. Controls had been matched for year at birth,
year of baseline interview, and country of origin [12, 18].
Controls were selected randomly from those who had not
been diagnosed with breast cancer at the age of diagnosis
of the case. Participants completed interviewer-adminis-
tered questionnaires that captured standard risk factors for
breast cancer, including reproductive history. Height and

weight were measured directly according to standard pro-
tocols and BMI was calculated from these. We studied
only those female cohort members who had attended
BreastScreen Victoria (the state-organised, free, 2-yearly,
mammographic screening service for women aged 50 to
69 years) at least once for a mammogram, and did not have
a diagnosis of breast cancer when they completed their
baseline questionnaire. Family history of breast cancer in
any blood relative, as collected by BreastScreen Victoria,
was available for all participants.
Breast cancers were identified by BreastScreen Victoria,

or by linkage with the Victorian Cancer Registry. Breast
cancers diagnosed outside the screening service before the
next scheduled scan (2 years) after a negative scan were
classified as interval cancers, and those subsequently iden-
tified by BreastScreen Victoria at a scheduled scan were
classified as screen-detected. Consequently, the study in-
cluded two subgroups: 422 women with screen-detected
breast cancers (357 of which were invasive) with 1197
matched controls and 168 women with interval breast
cancers (148 of which were invasive) with 498 matched
controls. For this study, we selected the mammogram
closest to baseline (average 2 years difference [18]), and
this was on average 5 or 6 years prior to diagnosis for
interval and screen-detected cases, respectively; see Table 1
in a previous publication [12]. The study was approved by
the human research ethics committees of the University of
Melbourne and the Cancer Council Victoria.

Measurement of mammographic density
The cases’ contralateral mammograms that had been
taken at or before diagnosis were used for analysis. All
mammograms were screen-film and were digitised by
the Australian Mammographic Density Research Facility
using an Array 2905 Laser Film Digitizer at 12-bit depth.
The Cumulus computer-assisted thresholding method

was used to measure mammographic density [19]. Five of
the authors (TLN, YKA, SL, CFE, and NHT) independently
measured mammographic density blinded to case-control
status, mode of detection, and any other density measures
already performed on the mammogram. Mammographic
density was measured using the conventional definition of
the white or bright areas, and we call these measures
Cumulus. Mammographic density was further defined
as the bright or brighter areas, in effect at higher
pixel-brightness thresholds, and we call these measures
Altocumulus and Cirrocumulus, respectively. These mea-
surements have been described in our previous publica-
tions [13–15]. As when using the programme Cumulus,
the measurer moves a toggle to select two thresholds
(grey-level values). The first threshold distinguishes the
breast from the background and the programme calcu-
lates the total area of the breast. The second threshold,
known as the pixel density threshold, is based on what the
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measurer considers to be the dense tissue and the
programme calculates the absolute dense area. This is
done separately for the three density measures, each
according to their different definitions of density, given
above.
Figure 1 shows, for a particular section of the same

mammogram, how the dense areas (outlined in green) vary
depending on the definition of mammographic density.
The left panel shows the region classified as Cumulus, and
the centre panel shows that within this region there are
brighter areas that are classified as Altocumulus. Similarly,
within the latter regions, the right panel shows that there
are even brighter areas that are classified as Cirrocumulus.

For each definition of mammographic density, we used
the average over all measurers of their transformed, age-
adjusted, BMI-adjusted and standardised measures so as to
maximise the accuracy; see “Statistical methods”. Correl-
ation between the resulting dense area and percent density
measures was 0.87, 0.92, and 0.96 for Cumulus, Alto-
cumulus, and Cirrocumulus, respectively. Correlation
between the Cumulus and Altocumulus measures was
0.86 for dense area and 0.88 for percent density. The
corresponding correlation between the Cumulus and Cirro-
cumulus measures was 0.82 and 0.82, respectively, and the
corresponding correlation between the Altocumulus and
Cirrocumulus measures was 0.82 and 0.82, respectively.

Table 1 Characteristics (mean (SD), or number (percentage)) of patients (cases) and controls, by mode of detection (screen-detected
or interval breast cancer)

Interval cancer Screen-detected cancer

Cases (n = 168)
Mean (SD)

Controls (n = 498)
Mean (SD)

Pa Cases (n = 422)
Mean (SD)

Controls (n = 1197)
Mean (SD)

Pa

Age at mammogram (years) 56.0 (6.8) 56.2 (6.8) 0.2 58.8 (7.5) 58.4 (7.6) 0.007

Body mass index (kg/m2) 26.7 (5.3) 26.5 (4.9) 0.8 27.3 (5.0) 26.5 (4.8) 0.002

Number of live births 2.6 (0.9) 2.7 (0.9) 0.2 2.8 (1.0) 2.7 (0.9) 0.96

N (%) N (%) P N (%) N (%) P

Parity

Yes 139 (83) 425 (85) 0.4 359 (85) 1046 (87) 0.3

No 29 (17) 73 (15) 63 (15) 151 (13)

Menopausal status

Premenopausal 67 (40) 197 (40) 0.6 127 (30) 359 (30) 0.3

Postmenopausal 101 (60) 301 (60) 295 (70) 838 (70)

Breast feeding

Yes 123 (73) 380 (76) 0.5 327 (77) 937 (78) 0.7

No 41 (25) 110 (22) 88 (21) 240 (20)

Missing 4 (2) 8 (2) 7 (2) 20 (2)

Family history of breast cancer

Yes 44 (26) 75 (15) 0.001 91 (22) 165 (14) < 0.001

No 124 (74) 423 (85) 331 (78) 1032 (86)

Ever alcohol consumption

Yes 119 (71) 318 (64) 0.08 248 (59) 759 (63) 0.2

Never 49 (29) 180 (36) 174 (41) 438 (37)

Ever use of oral contraceptive

Yes 102 (61) 324 (65) 0.2 247 (59) 711 (59) 0.8

Never 66 (39) 172 (35) 174 (41) 492 (40)

Missing 0 (0) 2 (0) 1 (0) 4 (1)

Ever use of hormonal therapy

Yes 54 (32) 141 (28) 0.3 134 (32) 333 (28) 0.1

Never 113 (67) 355 (71) 284 (67) 859 (72)

Missing 1 (1) 2 (1) 4 (1) 5 (0)

SD standard deviation
aP indicates the significance of differences between cases and matched controls based on conditional logistic regression
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Repeatability was assessed by performing the measure-
ments in 18 sets of 100 mammograms with the same ratio
of cases and controls and including 10% repeat samples
randomly in each set, to estimate intra-class correlation
within the set. In the 5th, 10th, and 15th sets, there was
also a 10% repeat sample from the first batch to estimate
intra-class correlation between the sets. Consequently,
110 images were included in all batches except for batches
5, 10, and 15, which had 120 images.
For dense area, the within-set repeatability was 0.95 (95%

confidence interval 0.94–0.96), 0.96 (0.94–0.97) and 0.94
(0.90–0.94) for the average of Cumulus, Altocumulus, and
Cirrocumulus, respectively. For dense area, the between-set
repeatability was 0.95 (0.93–0.97), 0.95 (0.94–0.96) and
0.94 (0.92–0.94) for the average of Cumulus, Altocumulus,
and Cirrocumulus, respectively. Similar repeatability was
obtained for the percent density measures. The average of
the inter-observer correlation was 0.90, 0.92, and 0.87 for
Cumulus, Altocumulus, and Cirrocumulus, respectively.

Statistical methods
Unconditional logistic regression was used to test for
differences between independent sub-groups of cases
defined by mode of detection. Conditional logistic regres-
sion was used to test for differences between cases and
matched controls, and to estimate odds ratios between the
mammographic density measures and breast cancer risk,
separately for screen-detected breast cancer and interval
breast cancer, adjusting for covariates. Given the change
in direction of association between BMI and breast cancer
risk with increasing age, we included an interaction term
to test if the odds ratio for BMI in relation to breast
cancer risk depended on age at mammogram. Each
mammographic density measure was transformed using
a Box–Cox power transformation to have an approxi-
mately normal distribution by using maximum likelihood
to estimate the parameter λ such that (Yλ – 1)/λ is closest

to a normal distribution [20]. For each fitted model, the
mean of the transformed measures for the controls was
adjusted for age and BMI to derive the residuals, from
which their standard deviation was calculated.
As in our previous publications [13–15], we used this ad-

justed standard deviation and conditional logistic regression
to estimate the odds ratio per adjusted standard deviation
(OPERA, [21]). OPERA is a measure of the ability of a risk
factor (appropriately adjusted for the covariates taken into
account by design and analysis) to discriminate between
cases and controls. When we fitted two standardised
density measures, X1 and X2, into the same model, we
presented the risk estimates in terms of their standard
deviation (SD) after adjusting also for the other measure; see
(14). We did this by multiplying the log(OR) estimate from
fitting Xj by SD= [(1 – r2)]0.5, where r is the correlation
between X1 and X2, and then exponentiated it to obtain
the appropriate OPERA. The inter-quartile risk ratio
(IQQR) corresponding to a given OPERA is approximately
OPERA2.5. We also used the area under the receiver oper-
ator curve (AUC) to measure the discriminatory ability of
measures. All statistical analyses were conducted using the
software Stata [22], and following convention, P < 0.05 was
considered to be statistically significant.
Parameter estimates were derived under asymptotic

maximum likelihood theory. We compared the fits of
nested models using the likelihood ratio criteria; under
the null hypothesis, twice the absolute difference in the
(maximum) log likelihood (ΔLL) has an approximately
χ2 distribution with degrees of freedom equal to the
difference in number of parameters. The fits of models
were also compared based on the differences in the
Bayesian information criterion (ΔBIC), which for models
with the same number of parameters is 2ΔLL. If ΔBIC is
the BIC of model A minus the BIC score of model B, then
exp (-ΔBIC) is approximately equal to the posterior odds
in favor of model A; for example, ΔBIC = − 6 or − 14

Fig. 1 Identification of dense regions (outlined in green) on the same mammogram according to the Cumulus (left panel), Altocumulus (centre
panel) and Cirrocumulus (right panel) definitions of mammographic density
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means that model A is roughly 400 or 1,000,000 times,
respectively, more likely to be the model that generated
the data than model B. The strengths of evidence against
the model with the poorest fit are conventionally inter-
preted as non-existent if < 2, positive if 2–6, strong if 6–
10, and very strong if ≥ 10 [23].

Results
Table 1 shows that women with interval breast cancer
did not differ from their matched controls in any base-
line characteristic, including BMI, except for family
history (P ≤ 0.001). Screen-detected cases differed from
their matched controls in family history (P < 0.001) and
BMI (P = 0.003).
Table 2 shows that the unadjusted Cumulus, Altocumulus

and Cirrocumulus measures of dense area were all greater
for cases than for controls, for both interval and screen-de-
tected breast cancer (all P < 0.01). Percent dense area mea-
sured by Cumulus, Altocumulus and Cirrocumulus was
greater for cases with interval breast cancers compared with
(1) their controls (all P < 0.001), and (2) cases with
screen-detected breast cancers (all P < 0.001).
For interval cancer, the association with BMI did not

depend on age at mammogram (P > 0.8). There was no as-
sociation with BMI overall (see Table 1). Screen-detected
cancer was associated with BMI and the association
became stronger with age at mammogram (P < 0.02).
Table 3 shows that, for interval breast cancer, after

adjusting for age and BMI all of the dense area measures

were associated with breast cancer risk (all P < 0.001).
The log (OPERA) was 0.61, 0.50 and 0.61 for Cumulus,
Altocumulus and Cirrocumulus, respectively (all P < 0.001),
There was very strong evidence that the Cumulus and
Cirrocumulus measures gave a better fit than the Alto-
cumulus measure (both ΔBIC ≥ 10).
For percent density measures, there was very strong

evidence that the OPERA estimates were all higher than
for their corresponding absolute density measure (all
ΔBIC ≥ 10), especially for Cumulus where log (OPERA)
was 0.85 compared with 0.65 and 0.72 for Altocumulus
and Cirrocumulus, respectively (all P < 0.001). and that the
Cumulus measure gave a better fit than the Cirrocumulus
and Altocumulus measures (both ΔBIC ≥ 10). The risk
gradient for Cirrocumulus was 30% and 17% higher than
for the other two measures, respectively. Furthermore,
there was very strong evidence that the Cumulus percent
density measure gave a better fit than the Cumulus
absolute density measure (ΔBIC = 28), with an estimated
risk gradient 39% higher. Univariately, therefore, the
Cumulus percent density measure gave a better fit for
interval cancers, with an estimated risk gradient equivalent
to an IQQR ~ 8-fold (95% CI 5–15).
Table 4 shows that, for screen-detected breast cancer,

all the dense area measures were associated with risk,
after adjusting for age and BMI as an interaction due to
the aforementioned findings (paragraph 3, “Results”) (P <
0.001). The log OPERA was 0.22, 0.22 and 0.28 for the
transformed, normalized and standardized Cumulus,

Table 2 Mammographic density measurements for cases and controls, by mode of detection (screen-detected or interval cancer)

Interval cancer Screen-detected cancer

Cases (n = 168)
Mean (SD)

Controls (n = 498)
Mean (SD)

Pa Cases (n = 422)
Mean (SD)

Controls (n = 1197)
Mean (SD)

Pa

Cumulus

Dense area (cm2) 25 (13) 19 (11) < 0.001 21 (13) 19 (12) 0.001

Non-dense area (cm2) 110 (54) 126 (56) 0.001 132 (59) 127 (55) 0.2

Percent dense area 21 (11) 15 (9) < 0.001 16 (10) 14 (9) 0.01

Total area (cm2) 135 (56) 145 (56) 0.04 153 (58) 146 (55) 0.04

Altocumulus

Dense area (cm2) 12 (8) 9 (7) < 0.001 10 (7) 9 (8) 0.01

Non-dense area (cm2) 124 (57) 137 (57) 0.008 144 (59) 138 (55) 0.09

Percent dense area 11 (8) 7 (6) < 0.001 7 (6) 7 (6) 0.04

Total area (cm2) 136 (57) 146 (57) 0.05 154 (59) 147 (55) 0.04

Cirrocumulus

Dense area (cm2) 6.8 (6.2) 4.2 (4.6) < 0.001 4.8 (5.3) 3.9 (4.9) 0.002

Non-dense area (cm2) 129 (55) 141 (56) 0.01 148 (58) 142 (55) 0.09

Percent dense area 6.0 (5) 3.0 (4) < 0.001 4.0 (4) 3.0 (3) 0.003

Total area (cm2) 135 (56) 145 (56) 0.05 153 (58) 146 (55) 0.05

SD standard deviation
aP indicates significance of differences between cases and matched controls based on conditional logistic regression
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Altocumulus and Cirrocumulus measures, respectively (all P
< 0.001). There was strong evidence that the Cirrocumulus
measure gave a better fit than the Cumulus and Altocumu-
lus measures (ΔBIC= 8). On the log odds scale, the risk gra-
dient for Cirrocumulus was 24% higher than for the other
two measures. Results were similar for the percent density
measures adjusted for age and BMI.
Table 5 shows that, for interval breast cancer, once we

adjusted for Cumulus as a percentage, using the likeli-
hood ratio test and comparing with the log likelihood of
192.48 from Table 3 showed there was no evidence that
adding one or both of the other measures improved the fit
(all P > 0.1). For example, when fitted together the OPERAs
for the Cumulus attenuated but remained significant
(P < 0.001) whereas the Altocumulus and Cirrocumulus

estimates were reduced substantially and were no longer
significant (all P > 0.07). In particular, adding the Cirro-
cumulus measure made no improvement to the fit
(ΔLL = 0.7).
On the other hand, Table 5 shows that for screen-de-

tected breast cancer it was Cirrocumulus that was a sig-
nificant predictor (all P < 0.01) irrespective of which
other measure(s) were in the model, and for both dense
area and percent dense area measures. After adjusting for
Cirrocumulus, using the likelihood ratio test and compar-
ing with the log likelihoods of − 538.21 and − 536.75 from
Table 4, respectively, showed no evidence that adding the
other measures improved the fit (all ΔLL < 0.1). In particu-
lar, the Cumulus measures no longer predicted risk in all
multivariable models; their OPERAs were close to 1.0 and

Table 3 For interval breast cancer, marginal odds ratios, area
under the receiver operating characteristic curve (AUC) and log
likelihood (LL) for Cumulus, Altocumulus and Cirrocumulus
measures of dense area and percent density, adjusted for age
and body mass index (BMI)

Dense area Percent density

OR (95% CI)a OR (95% CI)a

Cumulus Q1 = 20b – 10 –

Q2 = 29 1.53 (0.81–2.89) 26 2.51 (1.14–5.52)

Q3 = 41 2.09 (1.14–3.85) 41 5.11 (2.37–11.1)

Q4 = 78 4.34 (2.43–7.73) 91 10.4 (4.98–21.8)

OPERA 1.84 (1.50–2.26) 2.33 (1.85–2.92)

AUC (95%CI)c 0.70 (0.65–0.74) 0.75 (0.70–0.79)

LL − 206.95 − 192.48

Altocumulus 24 – 18 –

25 1.06 (0.57–1.98) 22 1.25 (0.62–2.50)

49 1.82 (1.04–3.18) 48 2.73 (1.46–5.09)

70 3.09 (1.78–5.36) 80 4.74 (2.57–8.72)

OPERA 1.65 (1.35–2.00) 1.92 (1.55–2.36)

AUC (95% CI)c 0.67 (0.63–0.72) 0.70 (0.66–0.75)

LL − 212.59 − 204.60

Cirrocumulus 18 – 15 –

31 1.47 (0.75–2.88) 29 1.78 (0.90–3.51)

39 2.33 (1.21–4.49) 40 3.37 (1.71–6.66)

80 4.64 (2.51–8.58) 84 6.56 (3.44–12.5)

OPERA 1.84 (1.51–2.25) 2.06 (1.67–2.54)

AUC (95% CI)c 0.70 (0.66–0.75) 0.73 (0.68–0.77)

LL − 205.43 − 198.45

Odds ratios (OR) are shown by quartiles (number of cases shown
in parentheses)
OPERA change in OR per adjusted standard deviation, CI confidence interval
aOdds ratio per standard deviation adjusted for age and BMI
bQuartiles (Q1–Q4) defined by distribution of the measure adjusted for age,
BMI and number of livebirths
cAUCs for mammographic measurements after adjusting for age and BMI

Table 4 For screen-detected breast cancer, marginal odds
ratios, area under the receiving operating characteristic curve
(AUC) and log likelihood (LL) for Cumulus, Altocumulus and
Cirrocumulus measures of dense area and percent density
adjusted for age and body mass index (BMI)

Dense area Percent density

OR (95% CI)a OR (95% CI)a

Cumulus Q1 = 88b – 81 –

Q2 = 96 1.01 (0.72–1.41) 94 1.20 (0.85–1.69)

Q3 = 88 0.99 (0.70–1.39) 98 1.12 (0.80–1.59)

Q4 = 150 1.66 (1.22–2.27) 149 1.95 (1.41–2.70)

OPERA 1.25 (1.12–1.40) 1.30 (1.16–1.45)

AUC (95% CI)c 0.63 (0.60–0.66) 0.64 (0.61–0.67)

LL − 542.27 − 539.87

Altocumulus 81 – 85 –

97 1.19 (0.84–1.66) 85 1.00 (0.71–1.42)

98 1.28 (0.92–1.79) 114 1.31 (0.95–1.81)

146 1.86 (1.35–2.56) 138 1.72 (1.24–2.37)

OPERA 1.25 (1.12–1.40) 1.27 (1.14–1.43)

AUC (95% CI)c 0.63 (0.60–0.66) 0.64 (0.60–0.67)

LL − 542.23 − 541.29

Cirrocumulus 79 – 72 –

94 1.32 (0.93–1.87) 408 1.63 (1.15–2.32)

102 1.38 (0.98–1.94) 99 1.35 (0.95–1.92)

147 2.08 (1.50–2.87) 143 2.29 (1.63–3.22)

OPERA 1.32 (1.18–1.48) 1.35 (1.20–1.52)

AUC (95% CI)c 0.64 (0.61–0.67) 0.64 (0.61–0.68)

LL −538.21 −536.75

Odds ratios (OR) are shown by quartiles (number of cases shown
in parentheses
OPERA change in OR per adjusted standard deviation, CI confidence interval
aOR per standard deviation adjusted for age and BMI
bQuartiles (Q1–Q4) defined by distribution of the measure adjusted for age,
BMI and number of livebirths
cAUCs for mammographic measurements after adjusting for age and BMI
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not significant whether considered as percent or absolute
dense area.
Figures 2 and 3 illustrate the relative stability of the risk

measures by plotting the OPERAs and their confidence
intervals as reported in Table 3, 4 and 5, on the log scale.
For the percentage measures and interval cancers, the
Cumulus measure dominates (see Fig. 2), while for dense
measures and interval cancers the Cirrocumulus measure
dominates (see Fig. 3). The patterns in estimates across
the models are seen to be clearly different for the two
outcomes.
Additional file 1: Tables S1 and S2 show the results of

analyses when restricted to invasive cancers only. The
aforementioned general patterns observed were maintained.
Additional file 1: Table S3 shows that fitting different

models to different modes of detection made a highly
significant improvement in fit compared with fitting one
model to the combined data - which assumes that estimates

are the same for both screen-detected and interval cancers -
for all models (all P < 0.005).

Discussion
We found that the risk predictors for breast cancer differ
by mode of detection. First, there was very strong evidence
that interval breast cancers are best predicted when
mammographic density was defined conventionally as
the white or bright areas, the more so when defined as
a percentage. It was more than 20,000 times more likely
to be the measure that generated the data than either of
the other two measures. Addition of the other measures
did not add information, and BMI did not appear to be a
predictor of interval disease. On the other hand, we found
very strong evidence that screen-detected breast cancers
are best predicted by mammographic density when de-
fined as the brighter areas on a mammogram, whether as
an absolute or percentage measure. The Cirrocumulus

Table 5 For interval and screen detected breast cancer, multivariable odds ratios, area under the receiving operating characteristic
curve (AUC), and log likelihood (LL) for Cumulus, Altocumulus and Cirrocumulus measures of dense area and percent density adjusted
for age and body mass index (BMI)

Interval cancer P LL Screen-detected cancer P LL

OPERA (95% CI) OPERA (95% CI)

Dense area

Model 1a Cumulus 1.40 (1.15–1.72) 0.001 − 206.91 1.05 (0.94–1.19) 0.3 − 541.75

Altocumulus 0.97 (0.80–1.18) 0.8 1.06 (0.94–1.19) 0.3

Model 2b Cumulus 1.16 (0.94–1.43) 0.2 − 204.46 0.98 (0.87–1.10) 0.8 − 538.16

Cirrocumulus 1.26 (1.02–1.53) 0.03 1.19 (1.06–1.34) 0.005

Model 3c Altocumulus 0.94 (0.76–1.16) 0.6 − 205.27 0.98 (0.87–1.10) 0.8 − 538.18

Cirrocumulus 1.49 (1.20–1.87) < 0.001 1.19 (1.06–1.34) 0.005

Model 4d Cumulus 1.27 (0.99–1.62) 0.06 − 203.34 0.99 (0.85–1.14) 0.8 − 538.16

Altocumulus 0.84 (0.65–1.07) 0.2 0.99 (0.86–1.15) 0.9

Cirrocumulus 1.36 (1.07–1.72) 0.01 1.19 (1.04–1.36) 0.008

Percent density

Model 1a Cumulus 1.67 (1.36–2.07) < 0.001 − 191.69 1.11 (0.99–1.25) 0.09 − 539.81

Altocumulus 0.88 (0.72–1.07) 0.2 1.02 (0.91–1.15) 0.7

Model 2b Cumulus 1.48 (1.19–1.95) < 0.001 − 192.00 1.02 (0.91–1.15) 0.7 − 536.68

Cirrocumulus 1.10 (0.90–1.36) 0.3 1.17 (1.03–1.31) 0.01

Model 3c Altocumulus 1.05 (0.85–1.31) 0.6 − 198.33 0.99 (0.89–1.11) 0.9 − 536.74

Cirrocumulus 1.43 (1.16–1.77) 0.001 1.20 (1.06–1.34) 0.003

Model 4d Cumulus 1.68 (1.30–2.19) < 0.001 − 190.33 1.05 (0.90–1.27) 0.5 − 536.56

Altocumulus 0.79 (0.61–1.02) 0.07 0.96 (0.82–1.12) 0.6

Cirrocumulus 1.21 (0.96–1.52) 0.1 1.18 (1.04–1.34) 0.01

The change in odds ratio per adjusted standard deviation (OPERA) adjusted for age and body mass index is shown by quartiles (number of cases shown
in parentheses)
CI, confidence interval
aCumulus and Altocumulus measures fitted together
bCumulus and Cirrocumulus measures fitted together
cAltocumulus and Cirrocumulus measures fitted together
dCumulus, Altocumulus and Cirrocumulus measures fitted together
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measure was more than 3000 times more likely to be the
measure that generated the data than either of the other
two measures. Addition of the conventional measures did
not add information. Also, in contrast to risk of interval
disease, the risk of screen-detected breast cancer associated
with BMI increased with age, similar to previous findings
on the risk of breast cancer per se [24].
Most importantly, the conventional conception of

mammographic density (which we call Cumulus) was
not predictive of screen-detected cancers once we fitted

mammographic density defined at, in effect, a high pixel-
brightness threshold. We have observed this before in
case-control studies of breast cancer, for both Australian
and Korean women, and when using screen-film and
digital mammograms [13–15].
Our general observation that risk prediction can be im-

proved by defining density at a higher pixel-brightness
threshold has been replicated by Wang and colleagues
[25] using digital mammograms. They found, as we have
repeatedly found, that once the measure at a higher
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Fig. 2 Log odds ratio per adjusted standard deviation (Log OPERA) estimates, 95% confidence intervals (CI) and goodness-of-fit relative to the
null model, given by twice the absolute change in log likelihood (2ΔLL) for the univariable, bivariable and trivariable model fits presented in
Tables 3 and 5, for interval breast cancer and percent density measures of Cumulus, Altocumulus and Cirrocumulus
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Fig. 3 Log odds ratio per adjusted standard deviation (Log OPERA) estimates, 95% confidence intervals (CI) and goodness-of-fit relative to the
null model, given by twice the absolute change in log likelihood (2ΔLL) for the univariable, bivariable and trivariable model fits presented in
Tables 4 and 5 , for screen-detected breast cancer and density measures of Cumulus, Altocumulus and Cirrocumulus
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threshold was included, addition of the conventional
measure made no improvement to the fit.
We previously argued that screen-detected cancers

mostly reflect inherent risk [12]. We found accumulating
evidence that the conventional concept of mammographic
density does not apply to risk per se and might be only a
surrogate for those aspects of a mammographic image
that truly predict risk.
We had also previously noted that interval cancers

could be influenced by masking, more rapid growth
and/or inherent risk [12]. In this regard, our finding (as
previously reported [12]) that the association between
BMI and risk of interval cancer did not depend on age,
whereas the association between BMI and screen-detected
cancer increased with age, is important. The latter is con-
sistent with the epidemiological literature on inherent
breast cancer risk (see most recently [26]). This is consistent
with risk of interval cancers being more due to masking and
more rapid growth than to an increased inherent risk per
se and might help explain why we found different mam-
mographic density measures better predicted the different
outcomes.
It is not true that, because the three measures are cor-

related, they are equal proxies of the same underlying
exposure. If this was true then the estimates of associ-
ation would all move towards the null and the width of
the confidence intervals would increase substantially
when the measures were modelled together. But this did
not happen. For screen-detected cancers, when absolute
Cirrocumulus was fitted with the other two measures, its
association remained significant while the other estimates
collapsed, and the standard error of its association of the
log scale increased by only 17% from 0.058 to 0.068. On
the other hand, the standard error for the now null Cumu-
lus and Altocumulus associations increased by 31% and
30%, respectively. Similar patterns were observed for inter-
val cancer, this time with the Cumulus estimate being the
stable one. In the previous study of breast cancer and
mammographic density using the Melbourne Collaborative
Cohort Study [18], a different set of investigators applied
the conventional definition to measure mammographic
density (correlation between the Cumulus measure used in
this study and the Cumulus measure used in the previous
study was 0.86 for dense area and 0.87 for percent dense
area). The consistency of our findings on interval cancers
with our previous findings based on measurements by
other investigators [12], gives confidence in the ability of
our investigators performing the measurements in the
current study.
The major implication of our findings is that analyses

of mammographic images can be used to predict both
masking and risk, but that different aspects of the image
need to be considered. To date, prediction of masking
has been based on BI-RADS, which has in effect been

defined in terms of percent density as a categorical vari-
able. Given that we and others [1] have now found that
the most informative predictor of masking is a continu-
ous variable, Cumulus as a percentage, this raises issues
about whether the current thresholds for defining dense
breasts for the purposes of recommending other screening
modalities are appropriate. Moreover, the implications of
having mammographically dense breasts depend on a
woman’s underlying risk of breast cancer, and we have
shown that the Cirrocumulus, rather than the Cumulus,
measure is an important predictor of risk. Therefore, in
order to deal more effectively with the issue of mammogra-
phically dense breasts protocols should be devised that take
into account that there are multiple and different features
of mammographic images that give clinically-important
information about different outcomes.
Potential limitations of this study include the older age

at baseline of the cohort and, hence, the diagnosis of
breast cancer at older ages. It is interesting to note that
the OPERA for our predictors of screen-detected cancers
was about 1.4, even for Cirrocumulus, consistent with the
literature on conventional measures of risk [21], whereas
we previously found stronger risk discrimination for pre-
dicting breast cancers at younger ages for both Australian
[13] and Korean [14, 15] women. It is therefore plaus-
ible that the risk discrimination (in the sense we have
defined it) is weaker the older the age at measurement,
and the longer the time interval between measurement
and diagnosis (despite the very strong tracking in
age-adjusted mammographic density risk measures over
time [27]).
Another limitation is that this study used screen-film

images, whereas digital mammography is now the norm.
Our previous case–control studies have shown that similar
findings on risk arise from studies of digital and film mam-
mograms, but it is nevertheless important to replicate our
findings using digital mammography, and for diagnoses at
different ages and with different time intervals in different
populations. This requires new prospective studies, and we
and others are working on developing such resources.
Another limitation of this study is that we were not able
to divide the period of 2 years used to define interval
breast cancers occurring into shorter time periods, such
as 12months as in Boyd et al. [1].
A potential limitation of the translation of our findings

into clinical settings is that the measurements require
person time and expertise. With respect to expertise, the
investigators who performed the measurements are not
radiologists but have achieved high repeatability within
and between measurers, as aforementioned. We have
been funded to train radiologists using the online, and
therefore globally relevant, BreastScreen Reader Assess-
ment Strategy initiative [28]. We are also working with
colleagues on developing automated measures.
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One strength of this study is the highly statistically
significant and consistent results observed despite the
fact that multiple measurers have been used and the
definitions of the different density measurements involve
subjective judgements. This is testament to the high
repeatability of the average of risk measures across our
trained measurers. It also suggests that there is the poten-
tial to derive even better predictors of risk, as random
measurement error contributes to underestimation of risk
gradients. For example, the measurers were blinded to
their previous mammographic density measurements on
the same mammogram, and better risk prediction might
be possible if Cumulus, Cirrocumulus and Altocumulus
were measured in that order at the same time, un-blinded
to the previous measure. Automated methods would allow
multiple thresholds to be considered and, thus, could
determine an optimal risk-predicting threshold.
Another strength has been our use of the OPERA con-

cept, which allows us to put risk factors into perspective in
terms of their ability to differentiate cases from controls.
OPERA relies on deriving the standard deviation of the
risk factor after adjusting for other covariates and design
variables. Not taking into account the need to adjust the
standard deviation for covariates can make a substantial
difference. For example, for unadjusted transformed per-
cent mammographic density, the cross-sectional standard
deviation was 0.63 for controls. However, after adjusting
for age and body mass index, the standard deviation of the
residuals became 0.34. Consequently, the log (OPERA)
was 44% less than the log (OR) per cross-sectional stand-
ard deviation; not adjusting the standard deviation leads to
an almost 50% overestimate of the risk-predicting ability of
percent mammographic density.

Conclusion
In summary, we have found that more risk-predicting
information can be obtained from a mammogram than
from the conventional concept of mammographic, or
breast, density defined by the white or bright areas.
We have also confirmed that the conventional meas-
ure of percent mammographic density applies to interval
cancers and the masking phenomenon. When it comes to
risk per se, however, we have confirmed our previous find-
ings that the conventional measures are not the most in-
formative mammography-based predictors, given that they
are no longer significant after adjustment for our new mea-
sures based on higher pixel-brightness thresholds. Our
newer measures could also be clinically useful given that
we have shown that non-specialists can be easily trained
and achieve high repeatability within and between mea-
surers. For scientific accuracy, we have used the average of
five measurements by five investigators, but reasonable ac-
curacy was obtained by each individual investigator (data
not shown); see Fig. 2 of [15] which shows an example of

measures of the same mammograms conducted by differ-
ent investigators.
Our finding that areas of high pixel brightness might

better represent the breast tissue with a causal role in
breast cancer is very important for multiple disciplines,
such as biological research to identify specific tissue
markers [29], genetic research to try to find pathways
implicated in disease risk [30] and public health initia-
tives aimed towards targeted, or tailored screening, by
identifying women at increased risk of masking and/or
of the disease itself.
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