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Abstract 

 

Parameter Identification of Structures   

under Earthquake Excitations          

Using Adaptive Particle Filter and 

Ensemble Learning Method 

Kim, Minkyu 

Department of Civil & Environmental Engineering 

The Graduate School 

Seoul National University 

 

Social demand for accurate post-evaluation and monitoring of infrastructure 

has been increasing since the earthquake in Gyeongju in 2016 and Pohang in 2017. 

To increase the accuracy of post-evaluation and monitoring, an accurate estimation 

of system equation, (i.e. system parameters) is required.  

Among other machine learning methods based on the data assimilation, a 

sampling-based particle filter was used to estimate systems with strong nonlinearity, 

which achieved high accuracy in estimation of system parameters. However, 

damage, such as stiffness degradation, that occurs during extreme events can cause 

sudden changes in the system parameters. The existing methods have shown poor 

performance in this case because they assume that the system parameters are 
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constant over the time.  

In this study, an adaptive particle filter is introduced to accurately estimate 

system parameters that suddenly change in extreme events. The adaptive particle 

filter is intended to artificially increase the parameter estimation noise of the 

particle filter according to the situation in order to estimate the system parameters 

that change over time as damage occurs. Furthermore, we propose modified 

adaptive particle filter that allocates different parameter estimation noises to each 

degree of freedom based on measurements.  

However, the adaptive particle filter has the problem of increasing the 

variance of estimation. Therefore, this study introduces an ensemble learning 

method that obtains the final estimate by aggregating estimates from usable parallel 

algorithms. In this study, Bootstrap Aggregating or Bagging is used, which 

aggregates estimates with the same weight from parallel algorithms to obtain the 

final estimate. 

We expect that a more accurate and effective post-evaluation and monitoring 

of infrastructures can be carried out, and effective maintenance can be possible 

through accurate information about the damaged element obtained from the 

proposed method. 

 

Keywords: earthquake disaster, structural response, system identification, 

data assimilation, adaptive particle filter, ensemble learning method 

Student Number: 2017-20456 
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1. Introduction 
 

 

1.1. Research Background 

 

In 2016 and 2017, major earthquakes with 5.8 and 5.4 magnitude have 

occurred in Gyeongju and Pohang, respectively. As a result, many damages 

occurred as shown in Figure 1.1. South Korea had little experience in such a large-

scale earthquake, and there was the lack of countermeasure to deal with the 

earthquake disaster. Accordingly, social interest and concerns about seismic 

disasters greatly increased, and the need for the post-evaluation of infrastructure 

after the earthquake and a study of Structural Health Monitoring (SHM) increased 

significantly. 

System identification is essential for post-evaluation of a structure. However, 

accurate system identification requires a method that requires a lot of money and 

time, such as field investigation. In this way, it is impossible to respond quickly in 

the event of an earthquake. Therefore, it is essential with the limited information to 

forecast an indirect estimation of the condition of an infrastructure, such as the 

response of a structure at the time of the earthquake (Bisht & Singh, 2014). 

In the event of an earthquake, the structure suffers from a high degree of 

displacement in a very short period. Therefore, system parameters can change 

rapidly in a short period such as stiffness degradation due to local damage. Figure 

1.2 shows the local failure of the bridge in the Xingyiu area of China. The bridge 

was damaged by the Sichuan earthquake in 2008. Change in the system parameters 
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has a serious effect on the bridge structure, such as the degradation of the structural 

performance and loss of life. If damage to the structure is not identified in time and 

the damaged structure is used continuously without any maintenance, the structure 

may collapse leading to serious secondary damage after the earthquake. However, 

change in these system parameters is difficult to identify without going through 

field investigations, such as destructive or non-destructive testing. 

As signal processing techniques develop, frequency domain methods such as 

Fast Fourier Transform (FFT) have been widely used in SHM an the indirect 

estimation. However, the frequency domain method has a disadvantage. The 

measurement noise causes an ill-conditioned problem in the estimated solution has 

non-stability and non-uniqueness (Alvin et. al., 2003). These issues encourage 

researchers to consider time domain methods such as the Kalman Filter (KF) (Yang 

et. al., 2006). KF is a recursive filter that estimates the state of linear dynamics, 

which has the advantage of enabling real-time online estimation based on the 

measurements. 

Especially, the indirect estimation of system parameters through machine 

learning methods is receiving attention. The aforementioned KF is known to be the 

most accurate estimator in linear and Gaussian system. However, most of the 

structural systems are non-linear and non-Gaussian. Many versions of the KF have 

been developed, such as the Extended Kalman Filter (EKF) and Unscented Kalman 

Filter (UKF). These are designed and modified to estimate nonlinear system 

estimation (Simon, 2006). Modified versions of KF are widely used in a various 

engineering fields in these days. 

However, the KF-based methods are ineffective in non-Gaussian systems 
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because they assume a Gaussian system. Hence, studies on the Particle Filter (PF), 

developed for estimating nonlinear Gaussian systems, were conducted, which 

showed high accuracy in estimating system parameters. Because PF is based on a 

sampling method, it also has the advantage of being able to estimate complicated 

probability distributions.  

However, existing methods assume that system parameters do not change over 

time. Thus, it is difficult to estimate parameters correctly when system parameters 

change, such as stiffness degradation. Accordingly, Liu et. al. (2005) proposed the 

Adaptive Particle Filter (APF) to estimate parameters that change over time. The 

APF detects when a system change occurs and artificially increases the parameter 

estimation noise at that moment. The increase of noise enables the PF to estimate 

system parameters that change over time. In this study, we propose that the 

modified APF can improve the method for the increase of noise. 

The APF has the advantage of increasing noise, which helps the PF to adapt 

quickly to the situation. However, at the same time, the variance of estimation is 

significantly increased due to the noise increased by adaptive coefficient. To reduce 

the variance of estimation, an ensemble learning method is often introduced to the 

machine learning problems. The ensemble learning method combines each estimate 

from the executable algorithms to obtain the final estimate. It is known that the 

variance of estimation obtained from the ensemble learning method is always 

smaller than the one obtained from a single algorithm (Nasrabadi, 2007).  

In this study, we use bootstrap aggregation (bagging) to give equal weights to 

the estimates from each algorithm to obtain the final estimate. Therefore, this study 

improves an accuracy of estimation by reducing the variance while estimating 
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parameters that change over time. 
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Figure 1.1 Severe damage caused by the Pohang earthquake              

(Staff and agencies, 2017) 

 

 

Figure 1.2 Local failure of bridge caused by the Sichuan earthquake    

(“Images from the Sichuan,” 2009) 
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1.2. Research Objectives and Scope 

 

This study has two main objectives. First, for the accurate estimation of the 

process of the stiffness degradation, which occurred during an earthquake disaster 

in real time, this study suggests the ways of improving the existing adaptive 

particle filter. The adaptive particle filter uses the method to increase the parameter 

estimation noise through a single adaptive coefficient. However, this method has a 

problem in that the variance of estimation greatly increases due to the increase in 

all components of the noise vector. Therefore, this study proposes the modified 

adaptive particle filter. In the modified adaptive particle filter, the noise vector is 

multiplied by a vector consisting of several different adaptive coefficients. That is, 

each component of the noise is increased by different adaptive coefficients. This 

method helps the adaptive particle filter to estimate time-varying parameters with 

small variance. 

Second, this study proposes a method that combine estimates from parallel 

algorithms by using bagging, which is one of the ensemble learning method, to 

reduce the variance of estimation and to increase the accuracy of the estimation in 

the modified adaptive particle filter. Although the modified adaptive particle filter 

decreases the variance in comparison to the existing methods, it still has a large 

variance of estimation because the method is based on the increase of noise. 

Therefore, bagging combines the estimates from several modified adaptive particle 

filters to obtain the final estimate. 

This study is divided into two parts. The first part provides a theoretical 

explanation about state estimation, particle filter and adaptive particle filter, which 
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are the basis of the proposed methodology. This study also provide a theoretical 

explanation about the proposed modified adaptive particle filter with the ensemble 

learning method.  

The second part validates the method proposed in the first part with a 

numerical example using actual seismic data. In the numerical example, we assume 

that the earthquake caused the stiffness degradation in the structure. This proves 

that the proposed method has better estimation performance than the existing 

methods. 
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1.3. Outline 

 

Chapter 1 is the Introductions, which present the research background, objects 

and scopes and outline. Chapter 2 provides the theoretical background about the 

state estimation, particle filter, and adaptive particle filter, which are the basis for 

the method proposed in this study. Chapter 3 presents the modified adaptive 

particle filter proposed in this study based on the methods presented in Chapter 2. 

This study also presents theoretical explanations about the introduced ensemble 

learning method introduced for enhancing the performance of the proposed method 

and application of the modified adaptive particle filter. Chapter 4 presents a 

numerical example to validate the proposed method in Chapter 3. In this study, 

simulations are performed using the linear shear building structures with actual 

seismic data. This study presents the results of the particle filter, the modified 

adaptive particle filter and the modified adaptive particle filter using the ensemble 

learning method for the given numerical example and validates the performance of 

the proposed methodology. Chapter 5 summarizes the study and provides academic 

and practical implications, study limitation, and suggestions for future research. 
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2. Theoretical Background 
 

 

2.1. Estimation in the State Space 

 

As mentioned in Chapter 1, the time domain method based on machine 

learning is widely used in the real-time estimation. Among them, the Kalman filter 

has been widely used since the 1950s in the engineering fields because it is easy to 

implement. 

To estimate the system using the time domain estimator based on the Kalman 

filter method, the given system needs to be expressed in the state-space 

representation. The state-space representation is a mathematical model for 

expressing the physical system in the first-order differential equation through input, 

output, and state that needs to be estimated. Here, the state refers to a minimum 

subset of the system variables that can represent the overall system status at any 

time. 

State-space representations can be expressed in linear and nonlinear equations 

depending on the characteristics of the system. State-space representation of linear 

systems over continuous time is expressed as Eq. 2.1 and Eq.2.2, and State-space 

representation of nonlinear systems is expressed as the following Eq. 2.3 and Eq. 

2.4. Generally, it is common to assume that noise vectors  tw  and  tv  are 

random noises that follow the Gaussian distribution. However, if the distribution 

characteristics of  tw  and  tv  are known, the non-Gaussian noise also can 

be used.  
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        t t t t  x Ax Bu w   (2.1) 

        t t t t  y Cx Du v   (2.2) 

         , ,t f t t tx x u w   (2.3) 

       ,t h t ty x v   (2.4) 

In addition, state-space representation of linear systems at discrete times can 

be expressed as the following Eq. 2.5, Eq. 2.6, Eq. 2.7 and Eq.2.8 for the nonlinear 

systems. 

 
1k k k k
  x Ax Bu w   (2.5) 

 
kk k k y Cx Du v   (2.6) 

 1 ( , , )k k k kf x x u w   (2.7) 

 ( , , )
kk k khy x u v   (2.8) 

For a simple example, the linear structure system's equation of motion is 

expressed as the following Eq. 2.9. The state vector  tz  can be set with the 

displacement u  and the speed vector u  as shown in Eq. 2.10. Then, the state-

space representation of the equation of motion can be written as the linear equation 

as shown in Eq. 2.11 when all other system parameters are known.  

        t t t t  Mu Cu Ku F   (2.9) 

    
T

t z u u   (2.10) 
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    
 

 
11 1

00 DOF
t t t

t

I
 

  
         

z z w
M FM K M C

  (2.11)  

However, when estimating system parameters such as stiffness and damping 

coefficients, these system parameters need to be added to the state vector, as shown 

in Eq. 2.12. For this reason, it is unable to express as the linear equation of Eq. 2.11. 

Therefore, the equation of motion is represented by the nonlinear equation, as 

shown in Eq. 2.13. 

       
T

t t tz u u    (2.12) 

         , , at t t tfz z F w   (2.13)  

 
a

tw  is a noise vector containing the original noise vector  tw  and an 

added parameter estimation vector  t


w , which can be written as the following 

equation. 

       
T

a t t t


 w ww   (2.14)  

Because the system parameters are assumed to be constant over time,  t


w  

is set to be small enough. Here,  t


w  plays a role similar to the learning step 

size of the machine learning method. Here, setting  t


w  too large make the 

estimate diverge. Conversely, if  t


w  is set too small, the convergence speed 

may be too slow to converge within a given time period. Therefore, it is important 

to set an appropriate size of  t


w . In many studies, it is common to select the 

value between 0.01% and 1% of the parameter's initial value as the standard 
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deviation of the distribution of  t


w . 

As explained in Chapter 1, Kalman filter is known as the best estimator for 

linear and Gaussian systems such as Eq. 2.11. However, Kalman filter is not 

effective in estimating the non-linear problems such as Eq. 2.13 as well as non-

Gaussian systems (Simon, 2006). Therefore, the particle filter, which is an 

appropriate estimator for the non-linear and non-Gaussian system, is introduced in 

this study. 
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2.2. Particle Filter 

 

Many modified versions of Kalman filter have been developed to solve 

nonlinear problems with Kalman filter that is optimized only for the linear 

problems. Among them, extended Kalman filter and unscented Kalman filter 

mentioned in Chapter 1 are widely used in many problems. 

The extended Kalman filter is the method that uses the first-order 

differentiated nonlinear system equation, such as Eq. 2.3 and Eq. 2.4, at the 

current state of the estimate (Ljung, 1979). However, because it is low-order 

approximation method, there is a stability problem in that the estimate can be 

diverged as the nonlinearity of a given system increases (Simon, 2006). 

The unscented Kalman filter uses the statistical characteristics of the current 

estimated states to obtain the final estimate after obtaining the estimates at various 

points that is called the sigma points. The unscented Kalman filter combines the 

estimates from the sigma points, which has same values of ensemble mean and 

variance with the current estimated state (Wan & Van Der Merwe, 2000). However, 

if the probability distribution of the system has complicated form, it is difficult to 

estimate them. 

The particle filter is developed to solve this kind of problem. The particle 

filter is a real-time machine learning-based estimation method for state estimation 

based on Bayesian statistics and the importance sampling method. Unlike the 

Kalman filter-based methods, the particle filter generates random samples, or 

particles, from the initial probability distribution, and then updates the state of the 
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particles recursively using the given information, system equations and 

measurements. The state and weight of each particle is combined to estimate the 

state of each time-step and the probability distribution (Chatzi & Smyth, 2009). 

This is why the particle filter is also known as Bayesian recursive filter. Unlike 

aforementioned Kalman filter-based methods, the particle filter is based on the 

sampling method, which has the advantage of approximation of the complicated 

probability distribution and application to the nonlinear problems. 

The particle filter operates based on the recursive Bayesian state estimator. 

The recursive Bayesian state estimator is a method to update state recursively by 

obtaining the prior distribution every time step using Bayes' theorem and the 

system equation, and then obtaining the posterior distribution based on the 

measurements at that time. 

Let us assume that the nonlinear system such as Eq. 2.7 or Eq. 2.8 is given. 

Here, it is assumed that the initial probability distribution of states, shown in Eq. 

2.15, is known regardless of the measurement. 

    0 0 0
|p px Y x   (2.15)  

Before obtaining measurements at the time step k , the prior distribution of 

state obtained by updating the state of each particle with the given system equation 

is written as Eq. 2.16. Here,  
1

|
kk

p


xx  is obtained from the system equation, and 

 
1 1

|
k k

p
 

x Y  is the posterior distribution of the previous step. 

      
1 11 1 1

|| |
k kk k k k k

dp p p
   

  x xx Y x x Y   (2.16)  

After obtaining the measurement at the time step k , the posterior distribution 
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obtained by updating the distribution through the likelihood of measurement is 

written as Eq. 2.17. Here,  
1

|
k k

p


x Y  is the prior distribution obtained in the 

previous step 1k  , and  |
k k

p y x  is the likelihood of the measurement obtained 

in the time step k  (Ang & Tang, 2007).  

  
   

   

1

1

|

|

|
|

|
k

k k k k

k k

k k k k
d

p p
p

p p







 x

y x x Y
x Y

y x x Y
  (2.17)  

As with the recursive Bayesian state estimator, the particle filter also has two 

main stages, prediction and measurement update, which are shown in Figure 2.1. 

Before performing the main part of the algorithm, 
p

N  particles are extracted from 

the initial distribution of state shown in Eq. 2.15. The performance of the particle 

filter is greatly affected by 
p

N , and the more complex problem, the larger 
p

N  is 

needed. If 
p

N  is too small, the estimate can be trapped in the local minima which 

leads to divergence of estimation, or if 
p

N  is too large, significant computational 

effort is needed. 

First is Prediction step to propagate the state of the initial or previous stage 

particles to the next time strop based on the system equation and the prior 

distribution. The state propagation of 
th

i  particle from time step 1k   to k  is 

performed with the system equation shown in Eq. 2.7 and this equation can be 

rewritten as Eq. 2.18 for each particle. 

  , 1 1, 1, 1, 1, ,( , , )         
pk i k k i k i k i i Nf 

    x x u w   (2.18)  

Second is the measurement update step to estimate the posterior distribution 
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of state based on the measurement 
k

y  obtained at the current time step k . As 

shown in Eq. 2.17, the posterior distribution is proportional to the likelihood of 

measurement  |
k k

p y x . Based on this, particle filter approximates the posterior 

distribution using the weight of each particle. In addition, since the area below the 

probability distribution is always one, the weight obtained from likelihood of 

measurement needs to be normalized to obtain the final value. This can be written 

as Eq. 2.19 and Eq. 2.20. 

    *

,
|

k k k ii
y y x xq p


       (2.19)  

 

1

p

i

i N

jj

q
q

q





  (2.20)  

If measurement 
k

y  follows the Gaussian distribution, the weight 
i

q  is 

proportional to the equation shown in Eq. 2.21 (Simon, 2006). 

 

   

 

   

*

,

* 1 *

, ,

/ 2 1/ 2

|

1
   ~ exp

22

k k k i

T

k i k i

m

i
y y x x

y h x y h x

q p





  

 

  

   

        
 
 

R

R

  (2.21)  

The particle filter repeats these two steps to obtain an optimal estimate at each 

time step. However, if this process is repeated many times, a few particles take 

most of the weights in some case. This phenomenon is called the sample deletion. 

As a result, the estimate is caught on the local minimum and the numerical issues 

that increase computational cost and make estimation inaccurate are caused in the 

sampling process. 

To solve this problem, a new step called the resampling is introduced. Here, 
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unweighted particles are resampled proportionately to the size of the previous 

weights as the number of particles is maintained. That is, particles with large 

weight are preserved, but particles with large weight are discarded. The resampling 

is performed when the effective number of 
eff

N  is smaller than the threshold 

thresh
N  as presented in Eq. 2.22 and Eq. 2.23. 

 
2

1

1

p
eff N

ii
q

N






  (2.22)  

 
Resample

Accecpt

  

  

thresh

eff

thresh

N
N

N










  (2.23)  

If 
eff

N  is satisfied with the criteria for resampling, the resampling is 

performed based on a uniform sampling procedure to remove particles with small 

weight. The resampling extracts new particles with uniform weight from an 

approximated discrete posterior distribution. 

    ,

1

|
p

N

i k k i

i

k k
qp 





  x xx Y   (2.24)  

There are many types of resampling. Among them, multinomial, systematic, 

and residual method resampling are most often used. In this study, the systematic 

resampling is used. The systematic resampling is performed in the following order 

(Candy, 2016). This is illustrated in Figure 2.2.  

1. 
p

N -ordered variates ˆ
j

u  are generated as the following equation, by 

inverse transforming a uniform sampler:  
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1 1

ˆ  for  , 1,   and  ~ 0,  
j j p k

p p

i
u u i j N u U

N N


  

 
 
 

  (2.25)  

2. For 1, ,
p

j N , the existing particle 
,k i

x  is replaced by 
,k i

x  when ˆ
j

u  

is larger than the sequential sum of 
i

q . Here, new weights are uniform, 

1 /
j p

q N . 

The entire particle filter algorithm as explained so far is schematized in Figure 

2.3. This figure illustrates that how weights of particles change repeating main 

steps and resampling, and approximate prior and posterior distribution. 
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Figure 2.1 Flow chart of particle filter algorithm 

 

Figure 2.2 Systematic resampling based on uniform resampler 
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Figure 2.3 Schematized algorithm of particle filter 
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2.3. Adaptive Particle Filter 

 

The particle filter explained in the previous section shows better performance 

in nonlinear and non-Gaussian problems than the Kalman filter-based methods. 

Especially, the particle filter is effective in estimating time-invariant system 

parameters, shown in Eq. 2.13. This helps the particle filter to enable effective 

system identification through indirect estimation for complex systems with limited 

information. 

However, the original particle filter is not effective in estimating parameters 

that change rapidly, such as stiffness degradation, caused by damage to the 

structure over a short period, such as an earthquake (Lei et. al., 2016). This is 

because it is assumed that the system parameters do not change with time when the 

aforementioned artificial noise 
,k

w  is introduced. In other words, the particle 

filter cannot adapt quickly to the rapid changes in the system parameter, which in 

turn results in very poor estimation performance. 

To address this, Liu et. al. (2005) proposed the adaptive particle filter that can 

adapt quickly to rapid change in the system parameter. It is a modified version of 

particle filter where the adaptation step is added to algorithm before the 

measurement update step, as shown in Figure 2.4. 

The adaptive particle filter is a method of artificially increasing noise 
,k

w , 

multiplying by an Adaptive coefficient 
k

  that changes over time. That is, the 

method of artificially increasing the variance of the prior distribution of the system 
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parameters 
k

  at the prediction step to find estimates of 
k

  over a wider range. 

k
  increases when the difference between the theoretical measurement ˆ

k
y  

obtained from the given measurement equation, Eq. 2.8, and the actual 

measurement 
k

y . That is, when a sudden change in the system occurs, the value of 

k
  increases accordingly. 

k
  is defined as the following equations.  

 
 
 0

tr

tr

k

k

V

M
    (2.26)  

 
0 0

0

  if  1

1    if  1
k

 





 


  (2.27)  

Here, 
k

V  is the covariance matrix of the actual residual, and 
k

M  is the 

covariance matrix of the theoretical residual. This shows that 
k

  increases when 

the difference between the theoretical and actual covariance becomes larger. 
k

V  

and 
k

M  are defined as the following Eq. 2.28 and Eq. 2.29 respectively.  
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T
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 
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  
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 











 
  

  












  (2.28)  

   
1

1| 1| 1| 1|

0 1

ˆ ˆ
1 pNk

T
i i

k j j j j j j j j

j ip

y yM y y
kN



   

 

     (2.29)  
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Here, 
i

k
  refers to the actual residual, and  1| 1|

ˆ
i

j j j j
y y

 
  is the theoretical 

residual. Here,   is the forgetting factor and 0.95   is selected generally (Liu 

et. al., 2005). As shown in Eq. 2.26, 
k

V  is a weighted mean of the covariance 

matrix of the actual residual and 
1k

V


 with the weight equal to  . In other word, 

only portion of 
1k

V


 is considered to obtain 
k

V . In addition, as shown in Eq. 2.29, 

k
M  is the average of the covariance of the actual residual for each particle over all 

time. 

After obtaining 
k

  at the time step k , algorithm returns back to the 

prediction step and propagates the state again with the new artificial noise 

multiplied by 
k

 . That is, 
,a k

w , shown in Eq. 2.14, can be rewritten with the 

following equation. 

 
,,

T

k k ka k 
   w ww   (2.30)   

The adaptive particle filter repeats these processes every time step to help 

algorithm to adapt quickly when the system changes. This method can greatly 

reduce the bias of estimation, which is the issue of the original particle filter, by 

estimating 
k

  from wide range. 

However, as mentioned earlier, the adaptive particle filter cannot consider 

information of measurement from each degree of freedom because all elements of 

artificial noise 
,k

w  are multiplied by one constant 
k

  expressed with 
k

V  and 

k
M . In other words, the elements of 

,k
w  estimating system parameters that have 
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not changed are increased by 
k

 . Accordingly, it is inevitable that the increase in 

overall noise increases the variance of the estimation. To solve this problem, in this 

study, the modified adaptive particle filter is proposed in Chapter 3, multiplying 

each element of 
,k

w  by different adaptive coefficients by taking into account the 

information from each measurement of degree of freedom. 
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Figure 2.4 Flow chart of adaptive particle filter 
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3. Proposed Modified Adaptive Particle Filter    

with Ensemble Learning Method 

 

 

3.1. Modified Adaptive Particle Filter 

 

As mentioned in section 2.3, the adaptive particle filter, where 
,k

w  is 

multiplied by the same 
k

  at every time step k , has problems in that the 

information obtained from each degree of freedom through measurement was not 

fully used and the variance of estimates was greatly increased. 

To solve these problems, this study proposes the modified adaptive particle 

filter. In the original methods, the total parameter estimation noise 
,k

w  was 

increased by the value of 
k

 . In contrast, the proposed method multiplies the 

different coefficients, with the information obtained from each measurement, by 

each element of 
,k

w . In other words, the proposed method multiplies the adaptive 

coefficient vector kλ  of the following equation by each element of 
,k

w  instead 

of multiplying a single coefficient by whole 
,k

w  as shown in Eq. 2.28. 

 
,,

T

k k ka k 
   w λ ww   (3.1)   

 Here, the symbol of   means element-wise multiplication. The adaptive 

coefficient vector kλ  is defined as the following equation. 
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 1, ,

T

k k N k
    λ   (3.2)   

Here, for 1, ,
DOF

i N  and 1, ,j N


 ,
,j k  is defined as the 

geometric mean of all 
,i k

  related with the parameter 
j

  at time step. 
,i k

  is 

defined as the following equations. 

 
 
 0,

,

,

k
i

k

i i

i i

V

M
    (3.3)  

 
0, 0

,
0

  if  1

1    if  1

i

i k

 












  (3.4)  

 ,k i iV  and  ,k i iM  are the 
th

i  diagonal element of kV  and kM , 

defined as Eq. 2.26 and Eq. 2.27. That is, this is the ratio of actual and theoretical 

covariance about 
th

i  degree of freedom.  

As shown in Eq. 2.26 and Eq. 2.27 used in the original adaptive particle filter, 

information from all degrees of freedom was considered at once by obtaining trace 

of the covariance matrix. However, the method proposed in this study obtains the 

geometric mean of the covariance ratio of each degree of freedom, and multiplies it 

by the specific noise element that estimates the relevant system parameters. That is, 

the system information obtained from each degree of freedom is considered only 

with the related parameter estimation noise elements. 

As a simple example, as illustrated in Figure 3.1, the system identification of 

five degrees of freedom structural system is performed. It is assume that an 

extreme event caused the degradation at third stiffness element 
3

k . Due to the 
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change in 
3

k , responses of some degree of freedom close to 
3

k  are also changed. 

The greater the degree of freedom is adjacent to the 
3

k , the greater change in 

response occurs. That is, the actual responses of second and third degrees of 

freedom obtained from measurements differ greatly from the theoretical responses 

obtained from the given system equation. Therefore, 
3,k

  increasing the specific 

noise element 
3,k

w  that estimates the system parameter 
3

k  can be obtained as 

shown in the following equation. 

 
3, 2, 3,k k k     (3.5)  

Eq. 3.5 means that it is only considered that the information about parameter 

3
k  obtained from relevant degree of freedom 

2,k
  and 

3,k
 . Accordingly, each 

size of 
,j k

  is calculated differently in accordance with the degree of change in 

each system parameter. In other words, elements of 
,k

w  estimating parameters 

with large change increase largely, but elements of 
,k

w  estimating parameters 

with small change increase small. Therefore, the proposed method has the 

advantage in estimating precisely with smaller variance than the original method. 

The modified adaptive particle filter proposed in this study also increases the 

artificial noise similar with the original method. Thereby, the bias of estimates is 

reduced through widely distributed particles. However, since the methods proposed 

in this study are also based on the methodology that increase the elements of 
,k

w , 

there is still problem with increasing uncertainty of the estimation due to the 

increase in variance. In other words, the estimates from each iteration of the 
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algorithm may be different every time. In addition, as mentioned in Chapter 1, the 

accuracy of the estimation is greatly affected by how the user chooses the 

parameter estimation noise 
,k

w . To solve these problems, the ensemble learning 

method is adopted to aggregate each estimate from all executable algorithms in 

Section 3.2 to obtain the final estimate. 
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Figure 3.1 Simple example showing how to calculate adaptive coefficient in 

modified adaptive particle filter 
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3.2. Ensemble Learning Method 

 

In general, it is difficult for users to have a one model or algorithm that finds 

optimal solution for the given problem. Even if there is an optimal model within a 

set of executable algorithms, it is challenging to identify optimal algorithm.  

The ensemble learning method is a way to find the final estimate by weighting 

each estimate from executable algorithms, rather than performing estimation with 

just one model. A simple diagram of concept of the ensemble learning method is 

shown in Figure 3.2. Each estimate is taken from executable N  algorithms with 

input x , then the final estimate y  is calculated by combining estimates with 

weights 
n

w . 

For model-based estimation problems, the expected error can be divided into 

bias and variance terms, as shown in Eq. 3.6.  

 

    

           

2

2 2

;

 ; ; ;

D

D D D

E y x D h x

E y x D h x E y x D E y x D



   

 
 

 
 

  (3.6) 

The first term of the right side represents bias, and the second term represents 

the variance. Here, x , D  and y  mean input, dataset and exact solution 

respectively. 

The final goal is to minimize the expected errors. However, there is a trade-off 

relationship between bias and variance. This is called bias-variance tradeoff. That 

is, flexible models have low bias and high variance, while strict models have high 

bias and low variance. The optimal model is to have a balance between bias and 
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variance, which means that the error has minimum value. 

In general, the variance of solutions obtained by combining different flexible 

models using the ensemble learning method are canceled each other (Friedman 

et.al., 2001). In other word, the combined estimate from ensemble learning method 

is more accurate and stable than the estimate obtained from a single model. 

There are several ways to combine executable models. Among them, the 

simplest and effective method is to use the average of the estimates obtained in 

each model as the final estimate. This method is referred to as committee method 

or bootstrap aggregating (bagging). That is, the bagging method gives equal weight 

to the estimate from each model, so that all models are considered equally 

important.  

 
1

1 N

COM n

n

y
N

y


    (3.7) 

Here, 
n

y  and 
COM

y  are the estimate from a single model and from the 

bagging method respectively. The bagging method can reduce the variance of 

estimation and prevent the overfitting by improving unstable procedure. In the 

bagging, sum of squared error 
AV

E  and the mean error 
COM

E  can be written as 

Eq. 3.8 and Eq. 3.9 respectively (Breiman, 1996).  

  
2

1

1 N

AV n

n

E E
N




  
  x

x   (3.8) 
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  
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Here,  n
 x  is error between exact solution and estimation. If  n

 x  has 

zero-mean and errors are not correlated with each other, the following equation is 

valid. 

 
1

COM AV
E E

N
   (3.10) 

However, Eq. 3.10 is not valid in many cases because of the errors are highly 

correlated with each other generally. Even if the above conditions are not valid, 

COM
E  is always smaller than 

AV
E , which means the Bagging can improve the 

accuracy of the estimation in all cases (Nasrabadi, 2007).  

As the modified adaptive particle filter proposed in section 3.1 increases the 

artificial noise, the bias is decreased but the variance is increased. This is a more 

flexible model than the original particle filter. Therefore, in order to increase the 

accuracy of the proposed method in this study, the bagging method is introduced to 

the modified adaptive particle filter at every time step. In addition, the parameter 

estimation noise 
,k

w  is randomly selected from the uniform distribution with the 

range mentioned in Chapter 2, and the modified adaptive particle filter with 

selected noise is set as an individual algorithm. In time step k , Eq. 3.11 is 

relationship between 
,

ˆ
n k

z , the estimate of the state obtained from an individual 

model and ˆ
k

z  the final estimate obtained by Bagging.  

 
,

1

1
ˆ ˆ

N

k n k

nN 

 z z   (3.11) 

A schematic of the final proposed method is shown in Figure 3.3. 
,k

w  in 
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each modified adaptive particle filter is set up differently at the initialize step.  

Then, the estimates are obtain from each algorithm through parallel computing 

each time step. Finally, the final estimate is obtained through the bagging method. 

The method proposed in Chapter 3 is demonstrated in Chapter 4 through the 

numerical example. 
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Figure 3.2 Simple concept of ensemble learning method 

 

 

Figure 3.3 Estimation process of modified adaptive particle filter with bagging 

method 
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4. Verification of Proposed Method 
 

 

4.1. Numerical Example 

 

In this section, it is presented that a numerical example to confirm the validity 

of the methodologies presented in Chapter 3. The target structure is a 10 degree of 

freedom shear building. It is assumed that local damage in the target structure 

occurs during the earthquake event using the actual record data of ground 

acceleration as input data. 

 

4.1.1. Target Structural System 

 

The target structure is a 10 degree of freedom shear building as shown in 

Figure 4.1. For 1,  ,  10i  , displacement, velocity and acceleration of each 

degree of freedom is set 
i

u , 
i

u  and 
i

u . The ground acceleration presented in the 

section 4.1.2 is set to 
g

u . The structural properties of each degree of freedom, 

mass, damping coefficient, and stiffness are set as 
1 10
,  , 100 kgm m  , 

1 10
,  , 5 N-s/mc c   and 

1 10
,  , 180 N/mk k   respectively. 

When the seismic force is applied to the structure, the seismic force is written 

as  
g

t u F M . Accordingly, the equation of motion for the target structure is 

the following equation in the earthquake event (Jia, 2014).  
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       gt t t u   Mu Cu Ku M   (4.1) 

Here, M , C  and K are mass, damping and stiffness matrix, presented in 

the following Eq. 4.2, Eq. 4.3 and Eq. 4.4 respectively.  

  
1

1 10

10

  diag

m

m m

m

 
  
 
  

M   (4.2) 
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 

  
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 
 
 
 
 
  

K   (4.4) 

To estimate Eq. 4.1 using the Particle Filter in the time domain, state is set to 

displacement u  and u  velocity. The state vector  tz  is shown in Eq.4.5. In 

addition, the system parameters to be estimated in this study are set to all stiffness 

k . The augmented state vector  
a

tz  can be written as Eq. 4.6.  

        1 10 1 10    t t u u u ut    u uz   (4.5) 

            1 10
,  ,

a

T
t t t t kt k    z kz u u   (4.6) 

 
a

tz  in Eq. 4.6 is used as the state of the Particle Filter to perform the 



 

 

 
38 

estimation. Then, the equation of motion in Eq. 4.1 is expressed as the nonlinear 

function in the state-space representation. 

  , ,a a g af uz z w   (4.7) 

Here, 
a

w  is the augmented noise vector in which the parameter estimation 

noise w  is attached to the noise w for  tz , as Eq. 4.8. 

 
T

a    w ww   (4.8) 

Acceleration from all degree of freedom are measurement, and measurement 

equation is the following Eq. 4.9. The measurement update in every time step is 

performed by comparing the theoretical measurement y  as shown in Eq. 4.9, 

using u , u  and k  from  
a

tz , with the actual measurement ŷ . 

 
1 1

gu     y u M Cu M Ku   (4.9) 

 

4.1.2. Ground Acceleration 

 

The ground acceleration used as input is the N-S component of the El Centro 

earthquake that occurred in the Imperial Valley in 1940. It was the first major 

earthquake to be recorded by a strong-motion seismograph located next to a fault 

rupture. For this reason, El Centro earthquake is one of the most commonly used 

seismic record in many related studies. 

The El Centro earthquake recorded 0.3g of the Peak Ground Acceleration 
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(PGA), and 6.9 of moment magnitude. It was recorded as the largest earthquake to 

hit the Imperial Valley. The measurement frequency is 50 Hz, i.e. observed every 

0.02 s. The raw acceleration record is as shown in Figure 4.2 (Chopra, 2017).  

4.1.3. Stiffness Degradation 

 

To test the performance of proposed modified adaptive particle, it is assumed 

that severe stiffness degradation occurs in stiffness 
1

k , 
2

k  and 
3

k , as shown in 

Figure 4.3,. 

The reason why stiffness degradation occurs in 1st, 2nd and 3rd floor of the 

building, Dya et. al. (2015) verified that the vulnerability index in these floors was 

significantly higher than other floors. This means that first, second and third floor 

are more vulnerable to earthquakes than other floors. 

It is assumed that 
1

k  is degraded from 180 N/m  to 150 N/m , then degraded 

to 120 N/m  at 10 sec and 20 sec respectively. A severe degradation in 
2

k  occurs 

at 10 sec, which is decreased from 180 N/m  to 130 N/m . 
3

k  is degraded from 

180 N/m  to 140 N/m  at 15 sec. The process of degradation is shown in Figure 4.3. 

This pattern of degradation is more exaggerated than real data. The reason for this 

setting is to verify that the proposed methodology well estimates in these extreme 

situations. 
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Figure 4.1 Target Structure (10 story shear building) 

 

 

Figure 4.2 Ground acceleration record of El Centro earthquake 
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4.2. Verification Results and Discussion 

 

In this section, the result of the original Particle Filter, shown in Chapter 2, for 

the numerical example of Section 4.1 is presented. After that, the proposed method 

is verified by comparing the results of modified adaptive particle filter without and 

with the bagging method with the result of original particle filter. 

The number of particles 
p

N  of all particle filter algorithms is set to 

20,000
p

N  . The initial value of state u  and u  is zero and of all parameters 

k  is 175 N/m .  

When a single algorithm is used (sections 4.2.1 and 4.2.2), the distribution of 

parameter estimation noise 


w  is assumed to be all  2
0,  10N


 (i.e. Gaussian 

noise). The standard deviation of the distribution is set to about 0.1% of the initial 

value of parameters. In case of using the bagging method in Section 4.2.3, total 300 

parallel algorithms are used. The standard deviation of 


w  in each algorithm is 

randomly sampled from uniform distribution  1 0
10 ,  10U


, and each is assumed 

to be Gaussian noise. 

 

4.2.1. Original Particle Filter 

 

The results of the original particle filter, which is fundamental algorithm of 

this study, are shown in Figure 4.4 and Figure 4.5. Figure 4.4 shows the estimated 

displacement, velocity, and acceleration of degree of freedom 1 and 10, 
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respectively. Figure 4.5 shows the estimated results for the system parameters 

1 5
~k k  and 

6 10
~k k  respectively. 

As mentioned in Chapter 2, the original particle filter assumes that the system 

parameters do not change over time. Because of this, the standard deviation of 

parameter estimation noise 


w  is set to be quite small. Therefore, the particle 

filter estimates over a narrow range. 

However, the numerical example in this study assumes that the system 

parameters changes considerably at the certain time. Therefore, as shown in Figure 

4.5, estimates of all parameters at 10 sec, when the first occurrence of the stiffness 

degradation occurs, are significantly inaccurate. It is shown that estimates of the 

state and acceleration in Figure 4.4 also become increasingly inaccurate after 10 

sec. 

From the results in Figure 4.5, it can be seen that the convergence rate of the 

estimation of 
1 3

~k k , where sudden change occurs, is significantly slow due to the 

small estimation noise. Because of this, there is difference between the theoretical 

measurement in Eq. 4.9 and the actual measurement. To reduce this difference, it 

can be seen that estimates of other parameters are also decreased. In other words, 

small estimation noise results in estimation being caught on the local minima, 

which differs from the exact solution. Even if an estimation is performed for a 

longer time, an inaccurate estimate continue and the difference between the 

theoretical and the actual measurement become larger which means divergence of 

estimation. 
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4.2.2. Modified Adaptive Particle Filter 

 

When estimating parameters that change over time, the fundamental problem 

with original particle filter is that it uses small parameter estimation noise that does 

not change over time. To address this, this study proposes modified adaptive 

particle filter, which is improved version of adaptive particle filter in constructing 

the adaptive coefficient vector. 

The results of the modified adaptive particle filter proposed in this study are 

shown in Figure 4.6 and Figure 4.7. As with the results of the original particle filter, 

Figure 4.6 is the result of estimation of the displacement, velocity and acceleration 

of degree of freedom 1 and 10, and Figure 4.7 is the estimation result of the system 

parameters, respectively. 

Comparing the results from Figure 4.6 and Figure 4.7 with those from the 

original particle filter shows a significant improvement in estimation accuracy. In 

particular, modified adaptive particle filter adapts quickly at the time when the 

stiffness degradation occurs, and that parameter estimates converges to the exact 

solution. The state and acceleration estimates are also almost same with the exact 

solution for all times. 

The improvement in accuracy is due to the adaptive coefficient vector 
k

  

proposed in Eq. 3.1 through Eq. 3.4. For 1,  , 5i  , Figure 4.8 shows the change 

of the adaptive coefficient 
,i k

  proposed in Eq. 3.3 and Eq. 3.4 over time. As 

shown in Figure 4.8, the value of 
,i k

  obtained from the relevant degree of 

freedom increases when stiffness degradation occurs in any system parameter. In 
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addition, the value of 
,i k

  related to time-invariant parameters does not change 

much. From these results, it is confirmed that the modified adaptive particle filter 

increases each element of parameter estimation noise 
,

i
k

w


 differently using the 

geometric mean 
,j k

  of related 
,i k

 . 

However, as shown in Figure 4.7, the bias in estimates is decreased 

significantly compared to the results of the original particle filter, but the variance 

is increased significantly. In particular, estimates of parameters where stiffness 

degradation does not occur vary significantly. As mentioned earlier, this is because 

the modified adaptive particle filter is based on increase of parameter estimation 

noise. As shown in Figure 4.8, even 
,i k

  related to time-invariant parameters have 

a value of more than one in many period. In other words, the variance of estimation 

increases in whole estimation time. In particular, all 
,i k

  have a greater value than 

the other duration from the time the stiffness degradation occurred until the 

estimates are converged. This is shown in the lower graph in Figure 4.7, showing a 

significant increase in variance of parameter estimation that does not change. 

Thus, there is possibility to reduce the estimation error, and of introducing the 

modified adaptive particle filter with the bagging method, which is final proposed 

method in this study. 

 

4.2.3. Modified Adaptive Particle Filter with Bagging 

 

As mentioned in the previous section, the modified adaptive particle filter 
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decreases the bias in estimation due to the introduction of adaptive coefficient. 

However, the variance of estimation is increased significantly. To solve this 

problem, the bagging method, which is one of the ensemble learning methods, is 

applied to modified adaptive particle filter in this study. 

The results of parameter estimation for modified adaptive particle filter with 

the bagging method are shown in Figure 4.9. As shown in Figure 4.7 in the 

previous section, the upper graph is the estimation result of 
1 5

~k k , and the lower 

graph is the estimation result of 
6 10

~k k . 

Comparing the results of Figure 4.9 and Figure 4.7, it shows a significant 

reduction in variance in all time, with no significant change in bias. In particular, as 

shown in Figure 4.7, due to increased parameter estimation noise at the time of 

stiffness degradation, the variance of estimation of time-invariant parameters is 

increased greatly. In comparison, Figure 4.9 shows that the variance of estimation 

of time-invariant parameters is noticeably reduced. This verifies the validity of the 

modified adaptive particle Filter with the bagging methodology. 
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Figure 4.4 Displacement, velocity and acceleration estimation of degree of 

freedom 1 (upper) and 10 (lower) from particle filter 
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Figure 4.5 Parameter estimation of 
1 5

~k k (upper) and 
6 10

~k k  (lower) from 

particle filter 
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Figure 4.6 Displacement, velocity and acceleration estimation of degree of 

freedom 1 (upper) and 10 (lower) from modified adaptive particle filter 
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Figure 4.7 Parameter estimation of 
1 5

~k k (upper) and 
6 10

~k k  (lower) from 

modified adaptive particle filter 
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Figure 4.9 Parameter estimation of 
1 5

~k k (upper) and 
6 10

~k k  (lower) from 

modified adaptive particle filter with bagging method 
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5. Conclusion 
 

 

In this study, modified adaptive particle filter is introduced to estimate the 

sudden change in system parameters that occur during extreme events such as 

earthquakes. It is confirmed that changes in parameters, such as stiffness 

degradation, can be detected only with a small amount of measurement data and 

simple calculations over time with considerable accuracy comparing with the 

original particle filter. In addition, the variation of estimation increased by 

introducing of adaptive coefficient was greatly reduced by applying the ensemble 

learning method, the bagging method in this study.  

There are four major further studies based on this study. First, effective 

algorithm that requires lower computational effort can be developed by improving 

algorithm. The particle filter requires a significant amount of computational effort 

comparing with Kalman filter-based methodology. If the proposed method in this 

study is used in devices with low computational capacity, it will take considerable 

calculation time.  

Second is to improve the methodology to achieve high accuracy in nonlinear 

systems. In general, many infrastructure have high nonlinearity. However, this 

study only addressed estimation of a linear structure. Therefore, the methodology 

proposed in this study can be improved for nonlinear system. 

Third is to improve the methodology so that it can be estimated with small 

number of measurements. In this study, acceleration obtained from all degrees of 

freedom were used as measurement. However, the measurement can be obtained 
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only from about 5% of degree of freedom in practice. Therefore, it is essential to 

ensure accurate estimation with less measurement.  

Finally, the correlation between degree of freedom can be considered to 

construct the adaptive coefficient vector. In this study, the adaptive coefficient 

vector was constructed by simply geometric average the degree of freedom 

associated with specific parameter. In other words, the correlation between degrees 

of freedom was assumed to be zero. However, there is correlation between all 

degrees of freedom. Considering this, a more accurate estimation would be 

possible. 

Further studies based on results of this study are expected to enhance the 

effective post-evaluation. Accordingly, it is possible to establish the monitoring 

methodologies through indirect estimation that is more effective than the existing 

method. 
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국문 초록 

적응형 파티클 필터와 앙상블 학습 기법을 이용한  

지진동 응답 기반 구조 시스템 파라미터 추정 

김 민 규 

 

경주포항 지진 발생 이후 사회 기반 시설에 대한 정확한 사후 

평가와 모니터링에 대한 사회적 요구가 점차 증가하고 있다. 정확도를 

높이기 위해선 시스템 방정식, 즉 시스템 파라미터의 정확한 추정을 

통한 시스템 식별이 필수적이다. 그러나, 시스템 파라미터를 직접 

추정하는 방법은 많은 시간과 비용이 소요되어, 재난 재해 시 빠른 

대처가 불가능하다. 따라서, 제한된 데이터로 시스템을 추정하는 간접 

추정 방법이 개발되어왔다. 

이를 위해 많은 연구에서 자료 동화에 기반한 기계 학습 방법, 그 

중에서도 비선형성이 강한 시스템을 추정하기 위해 개발된 파티클 

필터를 사용했다.  파티클 필터는 샘플링에 기반하기 때문에 시스템 

파라미터 추정에서 높은 정확도를 달성했다. 그러나, 지진과 같은 극한 

상황 중에 발생하는 강성 열화와 같은 구조물의 손상은 시스템 

파라미터의 갑작스런 변화를 야기할 수 있다. 이러한 상황에서 기존의 



 

 

 
59 

파티클 필터 방법은 시스템 파라미터가 시간에 따라 일정하다고 

가정하기 때문에, 추정 성능이 떨어진다는 단점이 있다. 

선행 연구에서 급격히 변화하는 시스템 파라미터를 기존 파티클 

필터에 비해 정확하게 추정하기 위해 적응형 파티클 필터를 개발하였다. 

적응형 파티클 필터는 강성 열화와 같이 시간이 따라 변하는 시스템 

파라미터를 추정하기 위해, 상황에 따라 인위적으로 파티클 필터의 

파라미터 추정 노이즈를 증가시키는 상수를 도입하여 파티클 필터의 

수렴 속도를 증가시킨 추정 방법이다. 본 연구에선, 선행 연구 방법을 

발전시켜, 각 자유도에서 얻은 측정치를 기반으로 각각의 파라미터 추정 

노이즈에 다른 상수값을 할당하는 수정 적응형 파티클 필터를 

제안하고자 한다. 

그러나 적응형 파티클 필터는 추정의 편향은 감소하지만 파라미터 

추정 노이즈의 증가로 인해, 추정의 분산이 증가하는 문제점을 가지고 

있다. 이를 해결하기 위해, 본 연구는 사용 가능한 각각의 병렬 

알고리즘에서 각각 얻은 추정치를 조합하여 최종 추정치를 구하는 

앙상블 학습법을 도입했다. 그 중에서, 병렬 알고리즘에서 동일한 

가중치로 추정치를 조합하여 최종 추정치를 얻는 Bootstrap 

Aggregating 또는 Bagging 방법을 도입하여 추정의 분산을 감소시키는 

방법론을 제안한다. 

본 연구에서 제안한 방법을 통해, 보다 정확하고 효과적인 사후 

평가 및 모니터링이 수행될 수 있을 것이며, 구조물의 손상에 대한 
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정확한 진단을 통해 구조물의 응답과 같은 제한된 정보만으로 효과적인 

유지관리 및 보수가 가능할 것으로 기대된다. 

 

주요어: 지진 재해, 구조물 응답, 시스템 식별, 자료 동화, 적응형 파티클 

필터, 앙상블 학습법 
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