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Abstract 

 

Structures deteriorate naturally when they are used for a long time. Therefore, 

it is essential to accurately check the degree of deterioration of a structure in order 

to prevent accidents such as collapse. However, numerical values to detect the degree 

of deterioration such as the effective thickness are often difficult to measure directly. 

Thus, it is required to indirectly estimate values associated with deterioration by 

using direct observations such as strain or displacement obtained from a loading test. 

In this case, if the number of measurable direct observation is limited due to external 

factors, it is desirable to choose direct observation locations that can improve the 

accuracy of indirect estimations under a small number of direct observations. 

This study proposes a sequential measurement location optimization method to 

improve the accuracy of an effective thickness indirect estimation of a structure when 

the number of strain observations is limited. For this goal, the effective thickness 

distribution of the structure is approximated first by using Karhunen-Loève 

expansion. Second, system identification based on Bayesian updating using Markov 

chain Monte Carlo simulation is performed to estimate mean and standard deviation 

of the effective thickness under given strain measurements. Third, three sequential 

direct observation selection methods are proposed using the estimated mean and 

standard deviation of the effective thickness. This study compares the accuracy of 

the sequentially selected observation locations with simultaneously selected 

observation locations by applied to the structure. The accuracy of the three sequential 

measurement location selection methods is also compared. 
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Through the proposed methods, it is possible to determine the next strain 

measurement location, which can effectively improve the accuracy of the effective 

thickness estimation, and can maximize the accuracy of the effective thickness 

estimation under a small number of strain observation locations. It is expected that 

the proposed methods can be applied to improve the accuracy of estimation of 

various properties related to the structural deterioration, which can be estimated 

indirectly. 

 

Keyword: Structural deterioration, Effective thickness, Karhunen-Loève 

expansion, Markov chain Monte Carlo simulation, Bayesian updating, System 

Identification  

Student Number: 2017-24757 
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Chapter 1. Introduction 

 

1.1. Research Background 

 

 A number of residential buildings in South Korea (hereafter, Korea) were built 

when the population grew rapidly in the 1960s and 1970s. Many of the residential 

buildings have already been demolished due to the implementation of reconstruction, 

but a considerable number of people still live in seemingly deteriorated apartments 

as shown in Figure 1.1. Other structures such as bridges are also often used in 

deteriorated condition. Furthermore, structures may deteriorate for a short use period 

because of fraudulent work. 

Figure 1.1. Deteriorated apartment 

(Gangnam Apartment, Gwanak-gu, Seoul, built in 1974) 
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Structures deteriorate naturally as the useable period becomes longer. If the 

deteriorated structure is not repaired or removed in advance, a lot of material damage 

and human fatality due to the destruction during use of the structure can happen. 

Therefore, it is essential to accurately evaluate the degree of deterioration of the 

structure in order to effectively manage the structure in use and to prevent 

unexpected accidents caused by damage or collapse of the structure. 

However, numerical values such as the effective thickness that can detect the 

degree of deterioration, require a large amount of budget and time to directly measure 

using a non-destructive test. In addition, it is often difficult to directly measure the 

degree of deterioration due to the size and weight of the inspection equipment. Here, 

the effective thickness of the structure refers to the actual thickness of the structure 

excluding the portion where it cannot support the loads of the structure due to the 

corrosion of the steel or cracks in the concrete. 

Therefore, it is required to indirectly estimate the deterioration of the structure 

by using direct observations such as strain and displacement obtained through a 

simple test. However, there are many cases in which the number of measureable 

values is limited due to various problems. In this context, it is also important to select 

observation locations that can obtain an estimated value which is close to the actual 

value and reduce the standard deviation of the estimated value under a small number 

of observations. 

To indirectly estimate values related to deterioration, various methods have 

been proposed to predict the random field of unknown quantity. Karhunen-Loève 

expansion, Bayesian approach and Markov chain Monte Carlo (MCMC) have been 

proposed for a nonlinear system identification problem when an unknown quantity 
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is a random field (Kučerová & Sýkora, 2013; Lee & Song, 2017; Li, 2015; Mondal 

et al., 2014). For example, Yi and Song (2018) estimated the effective thickness of a 

structure using the strain of the structure. 

However, literature only suggests indirect estimation methods which use 

directly observed values at a predetermined location. There is a lack of research on 

the difference of system identification accuracy caused by location of direct 

observations. The results of system identification using MCMC involves an error 

with the actual value and the standard deviation of the results. These values also vary 

according to the observed location of the actual values. Therefore, additional 

research is needed to maximize the accuracy of system identification with MCMC 

by minimizing errors and standard deviations as much as possible. 

In this regard, if it is possible to directly measure the desired value, various 

studies have been carried out on algorithms for selecting sequential observation 

locations that are expected to maximize the accuracy based on the estimation results 

of the corresponding values using the previous observations results (Kleijnen et al., 

2011; Matthias, 1997; Picheny et al., 2010). However, since the algorithms and 

methodologies proposed in these researches assume that the desired value can be 

observed directly, it is difficult to use these algorithms and methodologies directly 

for system identification. 

This study proposes a method for selecting the direct sequentially observed 

location, which is expected to maximize the system identification accuracy of the 

indirectly estimated value by using the results of the aforementioned researches. 
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1.2. Research Objectives 

 

The goal of this study is to indirectly estimate the effective thickness of a 

structure with the highest accuracy under a small number of strain observations. 

From the contents described in Chapter 1.1, the indirectly estimated value is selected 

as the effective thickness of the structure, and the directly measured value is selected 

as a strain of the structure. 

When selecting the strain measurement location for system identification, 

observation locations for increased accuracy are changed depending on the state of 

the load acting on the structure and the actual effective thickness distribution of the 

structure. Therefore, it would be more effective to sequentially select the observation 

locations that are supposed to maximize the accuracy by using the applied load and 

the estimated effective thickness distribution, rather than intuitive selection of 

observation locations simultaneously. Consequently, this study uses the sequential 

optimization method to select the next strain measurement location where the highest 

accuracy improvement is expected based on the estimated effective thickness 

distribution. 

The optimization technique used in this study is divided into two steps. The first 

step is to measure the strain at the previously determined location, and then to 

estimate distribution of the effective thickness using the measured values. Here, the 

previously determined location is arbitrary initial locations at the beginning, and the 

selected next strain measurement locations are added afterwards. 

The second step is to determine the next strain measurement location using the 
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estimated effective thickness. The strain measurement location is chosen to satisfy 

two goals: minimize the error between the estimated effective thickness and the 

actual effective thickness; and minimize the standard deviation of the estimated 

effective thickness. The two steps are iterated to finally determine the effective 

thickness under a limited number of strain measurements. Figure 1.2 briefly 

summarizes the optimization process of this study. 

 This study is divided into three parts. In the first part, the effective thickness 

distribution of the structure is estimated using the directly observed strain values. In 

the second part, three methods are proposed to select the next strain measurement 

location using the estimation result. In the third part, the proposed methodology is 

verified as a numerical example using a plate structure. Comparing the results of 

each phase between the proposed methodologies, and also comparing the final 

results of the proposed methodology with intuitively and simultaneously selected 

observation positions. 

 

Figure 1.2. Summary of the optimization process in this study 
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1.3. Outline 

 

Chapter 1 proposes the research background, research objectives, and outline 

of this study. 

Chapter 2 estimates the average and standard deviation of the effective 

thickness at each node of the structure. For this goal, this chapter first presents 

theoretical explanations of Karhunen-Loève expansion, Bayesian updating and 

MCMC. 

Chapter 3 proposes three methods for generating effective thickness samples of 

a structure using the average and standard deviation of the estimated effective 

thickness in Chapter 2. First, explain each sample generation method and compare 

the strengths and the weaknesses. Next, describe how to select the next strain 

observation position using the generated sample effected thickness, and define the 

value named ‘Sensitivity of Strain Variation’ for this purpose. 

Chapter 4 verifies the proposed methodology using numerical examples with 

steel plate structures. The numerical examples are divided into three types according 

to the direction of the strain. Each example first compares the results of each of the 

phases between the proposed methodologies. The validity of the proposed 

methodology is then verified by comparing the final results of the proposed 

methodology with intuitive and simultaneous selection of observation locations. 

Chapter 5 summarizes the study and provides academic and practical 

implications, study limitations, and suggestions for future research. 
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Chapter 2. System Identification of Structures by 

Physical Measurements 

 

The first step of indirect measurement locations optimization for accurate 

system identification of structures is to estimate the distribution of the material 

properties by using the measured observations at the specified measurement location. 

For this goal, this chapter first introduces Karhunen-Loève Expansion which can 

approximate an arbitrary distribution of material properties with a combination of 

specific random variables. Next, the process is explained that how to obtain the 

information of the random variables of the Karhunen-Loève Expansion through 

Bayesian updating using MCMC from the measured observations. Finally, a method 

is proposed to estimating the distribution of indirectly estimated material properties 

of structures.  

 

2.1. Karhunen-Loève Expansion 

 

Kari karhunen and Michel Loève proved that an arbitrary stochastic process is 

represented by a linear combination of infinite orthogonal functions, and this is 

called the Karhunen-Loève Theorem (Karhunen, 1947; Loeve, 1963). In addition, 

the linear combination of functions in this theorem is called the Karhunen-Loève 

expansion (K-L expansion). K-L expansion accurately preserves the stochastic 

properties of the stochastic process, such as the average and auto-covariance. 
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The stochastic process in this study is restricted to the two-dimensional 

Gaussian random field used to represent the uncertain deterioration state of the 

structure in Yi and Song (2018). K-L expansion formularizes an arbitrary random 

field 𝑤(𝑥, 𝑦) as follows: 

 𝑤(𝑥, 𝑦) = 𝑤̅ + ∑ √𝜆𝑖𝜑𝑖(𝑥, 𝑦)𝜉𝑖

∞

𝑖=1

 (2.1) 

where 𝑤̅ is the mean of the random field, and 𝜉1,   𝜉2, … are independent standard 

normal random variables to determine the distribution shape of the random field. 

𝜉1,   𝜉2, … are generally called KL random variables, and these are used as weights 

of 𝜆𝑖  and 𝜑𝑖 . 𝜆𝑖  and 𝜑𝑖  are deterministic values that determine the correlation 

property. 𝜆𝑖 and 𝜑𝑖 can be obtained by solving the Fredholm integral equation of 

the second kind: 

 ∫ 𝐶(𝑥1, 𝑥2)𝜑𝑖(𝑥2)𝑑𝑥2 = 𝜆𝑖𝜑𝑖(𝑥1)
𝐷

 (2.2) 

where 𝐶(𝑥1, 𝑥2) is the autocovariance function of the random field 𝑤(𝑥, 𝑦), 𝜆𝑖 is 

the eigenvalue, and 𝜑𝑖  is the orthogonal eigenfunction which is a solution of 

Equation (2.2). Various numerical solutions depending on the type of basis 

eigenfunction to obtaining 𝜆𝑖  and 𝜑𝑖  have been studied (Betz et al., 2014; 

Ghanem & Spanos, 1991). In this study, 𝜆𝑖 and 𝜑𝑖 are obtained using the finite 

element method using piecewise polynomial basis. 

Ignoring the case when the 𝜆𝑖 is small, the following truncated K-L expansion 

can be obtained. 
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 𝑤(𝑥, 𝑦) ≅ 𝑤̂(𝑥, 𝑦) = 𝑤̅ + ∑ √𝜆𝑖𝜑𝑖(𝑥, 𝑦)𝜉𝑖

𝑘

𝑖=1

 (2.3) 

This truncated K-L expansion also shows sufficiently small errors when using a 

small number of KL random variables (Huang et al., 2001). Therefore, it is assumed 

that the effective thickness distribution of the structure can be approximately 

formularized by using a small number of KL random variables. 

 

2.2. Obtain Samples of KL Random Variables by Bayesian 

Inference and Markov Chain Monte Carlo 

 

Suppose the autocovariance function of the effective thickness of a given 

structure is already known. Then, the effective thickness distribution of the structure 

can be obtained by determining the mean of the effective thickness and the KL 

random variable in Equation (2.3). To determine the values of these random variables, 

this study uses the Bayes’ rule with evidence of previously observed strain values at 

specific locations in the structure. If the previously observed strain values are given 

as 𝜺𝑚 = {𝜀𝑛
𝑚}, 𝑛 = 1, … , 𝑁, the posterior probability is obtained as follows (Yi & 

Song, 2018): 

𝑃(𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅|𝜺𝑚) = 𝑐 ∙ 𝐿(𝜺𝑚|𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅) ∙ 𝑃(𝜉1, 𝜉2,  … , 𝜉𝑘 ,  𝑤̅) (2.4) 

where 𝑐  is a normalizing constant, and 𝐿(𝜺𝑚|𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅)  is the likelihood 

function. Independent standard normal distribution is used as the prior distribution 
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of KL random variables. In addition, previously observed strain values are not related 

to the direction of strain, but using z-direction strain is avoided because observe z-

direction strain is relatively difficult. 

Suppose the effective thickness distribution determined by any given random 

variables 𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅. Assume that 𝜀𝑛
𝑟 is the strain value at the location where 

the strain value is 𝜀𝑛
𝑚, and strain measurement data follow an independent normal 

distribution with variance 𝜎𝑛
2. Therefore, likelihood 𝐿(𝜺𝑚|𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅) can be 

obtained as follows:  

 

𝐿(𝜺𝑚|𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅) = ∏ 𝐿(𝜀𝑛
𝑚|𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅)

𝑁

𝑛=1

 

                   = ∏ 𝑃(𝜀𝑛
𝑟 = 𝜀𝑛

𝑚)

𝑁

𝑛=1

= ∏ 𝜙 (
𝜀𝑛

𝑟 − 𝜀𝑛
𝑚

𝜎𝑛
)

𝑁

𝑛=1

 

(2.5) 

where 𝜙 is the probability density function of the standard normal distribution. 

If it is possible to find 𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅  with the largest 

𝑃(𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅|𝜺𝑚) for given 𝜺𝑚 in the Equation (2.4), the effective thickness 

distribution of the structure can be estimated by substitute these random variables to 

the K-L expansion. Normalization constant 𝑐  is formularized by Equation (2.6). 

However, there is a serious problem: the larger the number of KL random variables, 

the more exponentially the computational cost. Therefore, it is almost impossible to 

directly compute the integral: 

𝑐 = ∫ … ∫ 𝐿(𝜀𝑚|𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅)𝑃(𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅) 𝑑(𝜉1, 𝜉2,  … , 𝜉𝑘 , 𝑤̅) (2.6) 
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To overcome this difficulty, a study of Bayesian updating using Markov chain 

Monte Carlo(MCMC) sampling method was performed (Yi & Song, 2018). Instead 

of calculating the normalization constant 𝑐 directly, Yi and Song (2018) select the 

next random variable samples using the current random variables and independent 

posterior distribution and compare the probability of two random variable sample 

sets under a given strain observation through the likelihood and prior distribution to 

determine whether to choose a new sample. The Metropolis-Hastings algorithm was 

used to generate the Markov chain. Repeating the above steps, therefore the Markov 

chain {𝜉𝑖
(1)

, 𝜉𝑖
(2)

, … , 𝜉𝑖
(𝑁𝑀𝐶)

} , {𝑤̅(1), 𝑤̅(2), … , 𝑤̅(𝑁𝑀𝐶)} is generated directly for each 

random variable without calculating normalization constant 𝑐, where 𝑁𝑀𝐶 is the 

length of the Markov chain. Finally, the distribution of each random variable can be 

estimated using the generated Markov chain. In this regard, some number of samples 

at the beginning until the Markov chain reaches the stationary distribution are 

ignored as a burn-in period (Dickinson et al., 1993). 

 

2.3. Estimate Distribution of the Effective Thickness 

 

Mean and standard deviation of the effective thickness can be estimated under 

given strain observations by the contents of Chapter 2.1 and 2.2. This is largely 

divided into three steps. 

The First step is to estimate the mean of the effective thickness 𝑤̅ using the 

Bayesian updating method. Before obtaining the KL random variables {𝜉𝑖} , it is 

desirable to obtain the mean of the effective thickness because the initial value 
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setting is very important for Bayesian updating of other KL random variables. It is 

serious problem that the probability decreases very rapidly as the difference between 

the predicted value and the actual value increases. If the difference between the 

predicted initial value and the actual value is large, the prior distribution probability 

of 𝑤̅ becomes extremely small that it cannot be calculated exactly, and this makes 

a serious problem in comparing the prior and posterior probabilities of KL random 

variables. Therefore, to avoid the situation where the KL random variables generate 

a meaningless Markov chain, 𝑤̅ that has the highest probability of mean of random 

field is estimated by Bayesian updating before the Markov chain generation of KL 

random variables. Since the value of KL random variables are not known when 𝑤̅ 

is pre-estimated, assume that {𝜉𝑖} = 0, 𝑖 = 1, … , 𝑘  considering that KL random 

variables follow an independent standard normal distribution. The first step produces 

a single Markov chain for 𝑤̅, therefore it needs a relatively short Markov chain, and 

sets the length of the burn-in period short either. An example of the generated 

Markov chain of 𝑤̅ is shown in Figure 2.1. 

From the Markov chain, it is possible to obtain 𝑤̂̅𝑡𝑒𝑚𝑝 which is the expected 

value of 𝑤̅ as follows: 

 𝑤̂̅𝑡𝑒𝑚𝑝 =
1

𝑁1 − 𝑏1
∑ 𝑤̅𝑡𝑒𝑚𝑝

(𝑗)

𝑁1

𝑗=𝑏1

 (2.7) 

where 𝑁1 is the total length of the first step’s Markov chain, 𝑏1 is the length of the 

burn-in period of the first step’s Markov chain, and 𝑤̅𝑡𝑒𝑚𝑝
(𝑗)

 is the 𝑗th Markov chain 

value of 𝑤̅ under the assumption of {𝜉𝑖} = 0, 𝑖 = 1, … , 𝑘. 
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The second step is to estimate the KL random variables {𝜉𝑖} using the same 

Bayesian updating method as in the first step. Estimating the KL random variables 

requires a much longer Markov chain than estimating 𝑤̅ , because the larger the 

number of KL random variables, the longer the Markov chain length until the chain 

reaches the stationary distribution. Moreover, it is also the reason for the increase of 

the length of the Markov chain which the standard deviation of each 𝜉𝑖 is much 

larger than the standard deviation of 𝑤̅ . The length of the burn-in period is also 

relatively long compared to the first step. In addition, the Markov chain of 𝑤̅ must 

be obtained again because the 𝑤̂̅𝑡𝑒𝑚𝑝  value obtained in the first step is a value 

obtained by assuming {𝜉𝑖} = 0, 𝑖 = 1, … , 𝑘 temporarily for setting the initial value 

of 𝑤̅ in the second step. An example of the generated Markov chain of {𝜉𝑖} and 𝑤̅ 

is shown in Figure 2.2.  

Figure 2.1. Three different Markov chains of 𝑤̅ 
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From the Markov chain of the random variables of K-L expansion, it is possible 

to determine the expected values {𝜉𝑖̂} and 𝑤̂̅ as follows: 

 𝜉𝑖̂ =
1

𝑁2 − 𝑏2
∑ 𝜉𝑖

(𝑗)

𝑁2

𝑗=𝑏2

 (𝑖 = 1, … , 𝑘) (2.8a) 

 𝑤̂̅ =
1

𝑁2 − 𝑏2
∑ 𝑤̅(𝑗)

𝑁2

𝑗=𝑏2

 (2.8b) 

where 𝑁2 is the total length of the second step’s Markov chain, 𝑏2 is the length of 

the burn-in period of the second step’s Markov chain, and 𝜉𝑖
(𝑗)

 and 𝑤̅(𝑗) are the 

𝑗th Markov chain values of 𝜉𝑖 and 𝑤̅.  

 

Figure 2.2. Two different Markov chains of {𝜉𝑖} and 𝑤̅ 
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The final step is to estimate the mean and standard deviation of the effective 

thickness at each node by using the Markov chain of each random variable obtained 

in the second step. First, the Markov chain of 𝑤  for each node is obtained by 

substituting the Markov chain of 𝜉𝑖  and 𝑤̅  into Equation (2.3). Next, use the 

following equation to obtain the expected mean of the effective thickness at each 

node: 

 𝑤̂ =
1

𝑁2 − 𝑏2
∑ 𝑤(𝑗)

𝑁2

𝑗=𝑏2

 (2.9) 

Equation (2.9) have the same form of Equations (2.8a) and (2.8b) that obtain {𝜉𝑖̂} 

and 𝑤̂̅ which are expected values of {𝜉𝑖} and 𝑤̅. Alternatively, the same result can 

be obtained by substituting {𝜉𝑖̂} and 𝑤̂̅ obtained from Equations (2.8a) and (2.8b) 

into Equation (2.3), since 𝑤 in the K-L expansion is a linear combination of 𝜉𝑖 and 

𝑤̅. At last, calculate 𝜎̂𝑤 which is the expected value of the standard deviation of the 

effective thickness at each node. 𝜎̂𝑤 can be obtained as follows using the Markov 

chain of 𝑤 {𝑤(1), 𝑤(2), … , 𝑤(𝑁2)} for each node obtained above: 

 𝜎̂𝑤
2 =

𝜏𝑤

𝑁
𝑉𝑎𝑟[{𝑤(𝑗)}] (2.10) 

where 𝜏𝑤 is the integration autocorrelation time of 𝑤 defined as Equation (2.11a), 

(2.11b), and (2.11c) (Goodman & Weare, 2010): 

 𝜏𝑤 = 𝜏̂𝑤(𝑀𝑡) = 1 + 2 ∑ 𝜌̂𝑤(𝜏)

𝑀𝑡

𝜏=1

 (2.11a) 
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𝑐̂𝑤(𝜏) =
1

𝑁2 − 𝜏
∑ (𝑤(𝑗) −

1

𝑁2
∑ 𝑤(𝑘)

𝑁2

𝑘=1

) (𝑤(𝑗+𝜏) −
1

𝑁2
∑ 𝑤(𝑘)

𝑁2

𝑘=1

)

𝑁2−𝜏

𝑗=1

 (2.11c) 

 

where 𝑀𝑡  is the minimum value of 𝑀  which satisfies 𝑀 − 𝜏̂𝑤(𝑀) > 0 , and 

𝜌̂𝑤(𝜏) is called normalized autocorrelation function. 

Using the mean and standard deviation of the effective thickness obtained by 

Equation (2.9) and (2.10), the confidence interval of the effective thickness over the 

structure can be estimated as shown in Figure 2.3. 

 

 

 

𝜌̂𝑤(𝜏) =
𝑐̂𝑤(𝜏)

𝑐̂𝑤(0)
 (2.11b) 

Figure 2.3. Mean(blue) and 95% confidence interval(red) of the effective thickness 
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Chapter 3. Sequential Selection Technique of 

Measurement Locations 

 

The second step of indirect measurement locations optimization for accurate 

system identification of structures is to select the next directly measurement location 

which can increase the accuracy of indirect estimation as much as possible. This 

study proposes and compares three sequential measurement location selection 

methods. 

 

3.1. Goal of Measurement Locations Selection 

 

The goal of this study is to maximize the accuracy of the effective thickness 

estimation as much as possible. Increasing the accuracy of the effective thickness 

estimation can be roughly divided into two goals. The first is to minimize the error 

between the estimated mean of the effective thickness and the actual effective 

thickness. The reliability of the average of the estimated effective thickness lowered 

when the estimated mean of the effective thickness is significantly different from the 

actual effective thickness. Therefore, when using the same number of observed data, 

it is necessary to select the observation location where the error is minimized. The 

other is to reduce the standard deviation of the predicted effective thickness as much 

as possible. If the standard deviation of the predicted effective thickness is large, the 

probability that the difference between the estimated mean of the effective thickness 
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and the actual effective thickness becomes large. Consequently, the range of the 

confidence interval of the effective thickness becomes wider. This should be avoided 

because it may cause excessive conservative judgement when determining the 

stability of buildings. 

If it is possible to measure the effective thickness directly, the effective 

thickness on the structure can be estimated directly by apply Kriging (Ginsbourger 

et al., 2010) or Gaussian Process (Rasmussen & Williams, 2006) to the measured 

effective thickness data. In addition, sequential direct measurement location 

selection of the effective thickness is also possible using Efficient Global 

Optimization(EGO) algorithm and Expected Improvement (Jones et al., 1998). 

However, the effective thickness is not directly measurable value. Therefore, by 

using the directly observed strain data and the effective thickness distribution of the 

structure obtained by observed strain, it is desirable to determine the next strain 

measurement location which is expected to maximize the accuracy of the estimated 

effective thickness. However, since the relationship between the effective thickness 

and the strain is complex nonlinear, it is practically impossible to analytically 

represent the next strain measurement location using the estimated effective 

thickness distribution. Instead of analytical method, the experimental method is used. 

In order to select the strain measurement location that is expected to maximize 

the accuracy of the effective thickness estimation, the following procedure is 

performed: First, artificially generate various effective thickness distribution 

samples using the results obtained in Chapter 2. Next, obtain distributions of the 

strain when the loads are applied to the structures having each sample effective 

thickness. Finite element method is used to obtain the distributions of the strain. 
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Finally, find the location where the strain varied largest when the distribution of the 

effective thickness changes. The corresponding location is selected as the most 

sensitive location of the strain, and also used as the next strain measurement location. 

In Chapter 3.2, this study proposes various methods to generate effective thickness 

distribution samples. In Chapter 3.3, this study proposes a method to select the most 

sensitive location, i.e. the next strain measurement location, using the sample 

effective thickness distribution. 

 

3.2. Methods to Generate Sample Effective Thickness 

 

This chapter proposes three different methods of generating the effective 

thickness distribution sample, and compares the advantages and disadvantages of 

each method. 

 

3.2.1. Scheme 1: Sampling specific effective thickness 

The first scheme is to generate effective thickness distribution samples 

considering only the standard deviation of the specific location where the standard 

deviation of the effective thickness is greatest. This scheme requires one assumption 

before starting: the estimated effective thickness at the location where the strain 

measured is the exact value. In this case, the above assumption is made because the 

effective thickness at the location where the strain is measured has a high probability 

of being accurate. 

First, find the node with the largest standard deviation of the effective thickness 
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throughout the entire structure. Then, sampling the effective thickness at the 

corresponding node. Assume that the distribution of the effective thickness at the 

node follows the Gaussian distribution with the mean 𝑤̂ and variance 𝜎̂𝑤
2  obtained 

in Chapter 2.3. Next, perform a Gaussian process using the sampled effective 

thickness and the estimated effective thickness at the strain measurement location. 

For the implementation of the Gaussian process, accurate effective thickness at some 

locations are needed. This is the reason why the effective thickness estimation at the 

strain measurement location is assumed to be an accurate value. Finally, the results 

of the Gaussian process are used as the effective thickness distribution sample of the 

entire structure. Figure 3.1 shows the example of the entire standard deviation of the 

estimated effective thickness, the location where the standard deviation of the 

effective thickness is maximum, and the location where the strain is already 

measured. Using the results from Figure 3.1, examples of effective thickness 

distribution samples obtained from Scheme 1 can be seen in Figure 3.2. 

Because Scheme 1 changes only the effective thickness of one node, the number 

of the situation is very limited. Therefore, a very small number of samples can 

confirm various cases, and this means that the calculation cost of Scheme 1 is very 

low. However, since the standard deviation at other nodes excepting the node with 

the largest standard deviation is considered only by the result of the Gaussian process, 

it can be applied differently from the actual standard deviation. Therefore, locations 

of sequential strain observation using Scheme 1 have a relatively lower effect. 

Furthermore, an additional problem is that the estimated effective thickness at the 

strain measured location is not actually an exact value, i.e. there exist standard 

deviation of the effective thickness at the strain measurement location. 
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Figure 3.1. Distribution of the estimated effective thickness standard deviation 

Red: Maximum standard deviation, Others: Strain measurement locations  

Blue: x direction, Green: y direction, Black: both direction 

 

 

Figure 3.2. Examples of effective thickness samples obtained from scheme 1 
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3.2.2. Scheme 2: Sampling whole effective thickness 

The second scheme is to directly consider the standard deviation of the effective 

thickness at all nodes. This scheme independently sampling the effective thickness 

at all nodes of the structure. Similar to the Scheme 1, Scheme 2 assumed that the 

distribution of the effective thickness at each node follows the independent Gaussian 

distribution with the mean 𝑤̂ and variance 𝜎̂𝑤
2  at each node obtained in Chapter 

2.3. Effective thickness independently sampled at each node are directly used as the 

effective thickness distribution sample of the structure. Figure 3.3 shows an example 

of the effective thickness distribution sample obtained through the Scheme 2 

procedure. 

Scheme 2 generates effective thickness samples that directly consider the 

standard deviation of the effective thickness at all nodes. Therefore, the location of 

sequential strain observation using Scheme 2 will have a relatively higher effect. 

However, since Scheme 2 independently samples the effective thickness at all nodes, 

the diversity of situations in Scheme 1 exists independently at all nodes of Scheme 

2. This implies that Scheme 2 requires a large number of samples in exponential 

order compared to Scheme 1 in order to sufficiently confirm the number of cases, 

and this requires a very high computational cost. In addition, since the effective 

thickness at each node is sampled independently, there is a problem in that 

correlation of effective thicknesses of adjacent nodes cannot be considered. This 

means that the sample effective thickness distribution obtained from Scheme 2 is 

unrealistic when compared to samples obtained from other schemes. 
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3.2.3. Scheme 3: Sampling random variables of K-L expansion 

The third scheme is to indirectly consider the standard deviation of the effective 

thickness at all nodes. Scheme 1 and Scheme 2 directly sampled the effective 

thickness at the nodes, but Scheme 3 sampling the random variables in the K-L 

expansion equation instead of the effective thickness at the nodes.  

First, samples a value for each random variable {𝜉𝑖} and 𝑤̅ in the Markov 

chain obtained in Chapter 2.3. Note that the burn-in period should be excluded from 

the range of sample. Next, substitute sampled random variables to Equation (2.3). 

The result of the substitution is used as the sample of the effective thickness 

distribution of the structure. Figure 3.4 shows an example of sampling the value of 

each random variable in the Markov chain, and Figure 3.5 shows the process of 

Figure 3.3. Example of effective thickness samples obtained from Scheme 2 
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obtaining the sample of the effective thickness distribution through the Scheme 3 

procedure using the results of Figure 3.4. 

Scheme 3 samples KL random variables {𝜉𝑖} and the mean of the effective 

thickness 𝑤̅. Among them, KL random variables {𝜉𝑖} are used as the weight of the 

orthogonal eigenfunction 𝜑𝑖 of Equation (2.2). 

 ∫ 𝐶(𝑥1, 𝑥2)𝜑𝑖(𝑥2)𝑑𝑥2 = 𝜆𝑖𝜑𝑖(𝑥1)
𝐷

 (2.9) 

Since the orthogonal eigenfunction is a function having a predetermined value 

depending on the structure, an estimated effective thickness of the entire structure is 

also changed when the values of KL random variables are changed. Finally, Scheme 

3 also generates a sample of effective thickness that is indirect but considers the 

standard deviation of effective thickness at all nodes. Therefore, the location of 

sequential strain observation using Scheme 3 will also have a relatively higher effect, 

similar to the Scheme 2. Moreover, Scheme 3 only requires sampling of the random 

variables of K-L expansion, and the number of random variables is 𝑘 + 1 based on 

Equation (2.3).  

Therefore, Scheme 3 has relatively larger number of possible cases than Scheme 

1, but it has exponentially smaller number of possible cases than Scheme 2. This 

means that the number of required samples is relatively small, and it means that the 

required computational cost is low. However, if the number of strain observations is 

less than the number of random variables, it is difficult to clearly determine whether 

some random variables reach the stationary distribution. This makes an additional 

problem that the difference depending on the length of the burn-in period is large. 
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Figure 3.4. Example of sampling each random variable in the Markov chain 

 

 

Figure 3.5. Examples of effective thickness samples obtained from Scheme 3 
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3.2.4. Comparison between sample effective thickness generation 

methods 

 Schemes 1~3 presented above are summarized in Table 3.1. From the 

viewpoint of required calculation cost, Scheme 2 is the most expensive, and Scheme 

1 is the least expensive. From the viewpoint of expected effects, Scheme 2 and 

Scheme 3 are expected to be the most accurate, and Scheme 1 is expected to be the 

least accurate. 

 Scheme 1 Scheme 2 Scheme 3 

Sampling 

variables 

Effective thickness 

of node which has 

maximum standard 

deviation 

Effective thickness 

of all nodes 

Random variables of 

K-L expansion 

({𝜉𝑖} and 𝑤̅) 

Number of 

sampling 

variables 

1 node Number of nodes 

Number of random 

variables of K-L 

expansion 

Required 

calculation 

cost 

Very Low High Low 

Expected 

effects 
Low High High 

Other 

weakness 

Estimated effective 

thickness at the 

location where the 

strain is measured is 

not an exact value 

Correlation of 

effective thicknesses 

of adjacent nodes 

cannot be considered 

Difference depending 

on the length setting 

of the burn-in period 

is large 

Table 3.1. Comparison between methods to generate sample effective thickness 
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3.3. Methods to Determine Additional Measurement Location 

Using Samples 

 

The final process of this method is to select the sequential strain measurement 

locations using the sample of the effective thickness distribution which obtained 

previously. Using the finite element method, it is possible to obtain the strain at each 

node for each effective thickness sample by applying loads to the effective thickness 

sample of the structure. Since the strain value is measurable, it can be deduced that 

the standard deviation of the effective thickness can be reduced as much as possible 

by measuring the strain at the location where the strain is the most uncertain, i.e. 

where the change of strain is largest. Therefore, it is concluded that the location 

where the strain changes most is the most sensitive location when the effective 

thickness distribution is changed. 

However, selecting the next strain measurement location as the largest change 

of the strain amount causes a serious problem. The reason is that the location where 

the strain changes most when the distribution of the effective thickness changes is 

near the location where the absolute value of the strain is largest. 

For a simple example, consider the case where the equally distributed load acts 

on the entire simply supported beam with uniform effective thickness as shown in 

Figure 3.6. The deflection of the beam by the load is the solid line in Figure 3.7. If 

the effective thickness of the simply supported beam is uniformly reduced, the shape 

of the loaded beam changes to the dotted line in Figure 3.7. In other words, the strain 

is equally zero at the supported locations, and as the distance from the supported 
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location increases, the amount of strain variation increases. Finally, the amount of 

strain variation at the center of the beam is the maximum. 

This is similar to the case where the effective thickness of the part of the beam 

is reduced instead of the entire beam. For example, consider the case when the 

effective thickness decreases only in the right half of the beam. In this case, when 

the load is applied, the shape of the loaded beam changes to the dashed line in Figure 

3.7. Since the increase of strain is slow in the left half of the beam where the effective 

thickness is thick, and the increase of strain is fast in the right half of the beam where 

the effective thickness is thin. As a result, the location with the maximum strain is 

shifted to the right. However, since the change of the effective thickness is generally 

very small, the maximum strain location in this situation is almost the same as the 

center of the beam having the maximum strain before. Therefore, the location at 

which the amount of strain increase is maximum is also generated at a similar 

location.  

  

 

 

 

 

 

 

 

Figure 3.6. Simply supported beam 

Figure 3.7. Deformation of simply supported beam in three effective thickness 

distributions 
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For these reasons, it is difficult to use the raw observed strain data for the 

decision of the next measurement location. Alternatively, considering the fact that 

the amount of change of the strain and the absolute value of the strain is proportional. 

Therefore, the ratio of the amount of change of the strain to the absolute value of the 

strain could be used for determining the strain measurement location. However, it is 

difficult to determine the next strain measurement location by the ratio of the amount 

of change of the strain either, because the ratio can diverge to infinity at the location 

where the absolute value of the strain is close to zero. 

This study will determine the location of the next strain measurement by using 

the deviation of the strain of the node that makes up each element used in the finite 

element analysis of the structure. It is difficult to use the strain value raw data at each 

node because of the reason explained above. Therefore, this study considers elements 

instead of nodes. Calculate the difference of the maximum strain value and the 

minimum strain value of the nodes constituting each element, and check how much 

the difference varies with the change of the effective thickness. The difference of the 

maximum and minimum values of the strain in each element means the degree of 

deformation of the element. Here, a large change in the difference of the strain in the 

element means that the deformation of the element changes greatly. Therefore, there 

is a direct correlation between selecting the location with the greatest strain variation. 

In order to determine the location of the next strain measurement using the 

strain deviation of the element, a value named ‘Sensitivity of Strain Variation’(SSV) 

is defined. This value determines whether the strain variation is sensitive to the 

effective thickness variation, and is defined as follows: 
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SSV of the element =
1

𝑛
∑

max(𝜀𝑚𝑎𝑥
𝑚 − 𝜀𝑚𝑖𝑛

𝑚 ,   𝜀𝑚𝑎𝑥
𝑠𝑖 − 𝜀𝑚𝑖𝑛

𝑠𝑖 )

min(𝜀𝑚𝑎𝑥
𝑚 − 𝜀𝑚𝑖𝑛

𝑚 ,   𝜀𝑚𝑎𝑥
𝑠𝑖 − 𝜀𝑚𝑖𝑛

𝑠𝑖 )

𝑛

𝑖=1

 (3.1) 
 

where each value is defined as follows, and the subscript of strain refers to the vertex 

nodes in the square elements used in the finite element analysis of this study, shown 

in Figure 3.8. 

 

 𝜀𝑚: strain when the effective thickness is mean value 

 𝜀𝑠𝑖: strain when the effective thickness is i-th sample (the number of total 

sample = n) 

 𝜀𝑚𝑎𝑥
𝑚 = max(𝜀𝐴

𝑚,  𝜀𝐵
𝑚,  𝜀𝐶

𝑚,  𝜀𝐷
𝑚) 

 𝜀𝑚𝑖𝑛
𝑚 = min(𝜀𝐴

𝑚,  𝜀𝐵
𝑚,  𝜀𝐶

𝑚,  𝜀𝐷
𝑚) 

 𝜀𝑚𝑎𝑥
𝑠𝑖 = max(𝜀𝐴

𝑠𝑖 ,  𝜀𝐵
𝑠𝑖 ,  𝜀𝐶

𝑠𝑖 ,  𝜀𝐷
𝑠𝑖) 

 𝜀𝑚𝑖𝑛
𝑠𝑖 = min(𝜀𝐴

𝑠𝑖 ,  𝜀𝐵
𝑠𝑖 ,  𝜀𝐶

𝑠𝑖 ,  𝜀𝐷
𝑠𝑖) 

In the SSV value, 𝜀𝑚𝑎𝑥
𝑚 − 𝜀𝑚𝑖𝑛

𝑚  is the difference between the maximum and 

minimum values of the strain within the square element when the effective thickness 

is mean, and  𝜀𝑚𝑎𝑥
𝑠𝑖 − 𝜀𝑚𝑖𝑛

𝑠𝑖  is the difference between the maximum and minimum 

values of the strain within the square element when the effective thickness is i-th 

sample. In conclusion, in the definition of SSV, the equation inside the summation is 

a value indicating how much the strain of the element changes in each sample 

Figure 3.8. Square element 
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effective thickness distribution. This is consistent with the goal of obtaining the 

variance of the elements. 

The basic method for determining the next strain measurement location using 

the SSV value is to set the next strain measurement location where the SSV value is 

maximum. However, since the SSV value defined above is determined for each 

element, the SSV value of the node must be newly defined in order to determine the 

node which has the maximum SSV value. In this study, the sum of the SSV of the 

four elements around each node is used as the SSV of the node value. The previous 

SSVs were SSV of the element, and only the SSV of the node is used in the following 

description. 

However, the distribution of the SSV values varies with the addition of the 

measurement data of strain, but the location at which the SSV value is maximum 

may not change. When the strain is already measured at the location where the SSV 

value is maximum, first, find the locations where the SSV value is local maximum 

and the strain is not measured, and select the next strain measurement location where 

the SSV value is the largest among these locations. Here, the local maximum location 

refers to a location where the surrounded SSV values are smaller than the center. 

SSV value described above can be individually defined by the direction of the 

observed strain. However, as described in Chapter 2.2, z-direction strain is not used 

which is difficult to observe the strain value relatively. Therefore, SSV for the x-

directional strain and SSV for the y-directional strain are respectively obtained. If 

unidirectional strain data is used, SSV in the direction in which the strain is measured 

is used. If both directions of strain data are used, there are two ways. The first is to 

use the sum of SSVs obtained in each direction. In this method, the location at which 



 

 ３２ 

the sum of two SSV values is the maximum is selected as the measurement location 

for both the next x direction strain and next y direction strain. The other is to use the 

SSV for the x-direction strain and the SSV for the y-direction strain respectively. In 

this method, the next measurement location of x-direction strain is where the x-

direction SSV is the maximum, and the next measurement location of the y-direction 

strain is where the y-direction SSV is the maximum. Since the second method is an 

extension of using a unidirectional strain data, this study does not range over with 

the case of using a unidirectional strain data. Numerical examples of Chapter 4 

obtain the results of two methods when using both directions of strain, and compare 

those results. 
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Chapter 4. Numerical Example 

 

This section applies the sequential selection method of strain measurement 

location proposed in this study to a simple structure. Experiments are divided into 

two parts according to how the SSV in the x-direction and SSV in the y-direction are 

applied when selecting sequential strain measurement locations. In each part, three 

methods of generating sample effective thickness in Chapter 3.2 are applied. First, 

compare the results of the three effective thickness sample generation methods. Next, 

confirm the superiority of sequential strain measurement location selection method 

using SSV in comparison with the result of intuitive selection of strain observation 

locations simultaneously. Finally, use the results to conclude what is the more 

efficient way of applying SSV.  

 

4.1. Structure Overview 

 

The structure used in the experiment is a thin steel plate with a square shape 

when viewed from the top, as shown in Figure 4.1. The bottom edge of the left end 

and the right end of the steel plate are constrained by moment hinges. The 

information of the steel plate is as follows: 

 Size of the steel plate: 2.5m × 2.5m × 0.03m 

 Size of each elements: 0.15625m × 0.15625m × 0.0075m 

 Number of elements for each edge: 16 × 16 × 4 elements 
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 Number of total elements: 1024 elements 

 Number of nodes for each edge: 17 × 17 × 5 nodes 

 Number of total nodes: 1445 nodes 

 Stiffness of the steel plate: 200 GPa 

Because of the characteristics of the steel plate, the location where strain 

observe is available is limited to 289 nodes at the top of the steel plate. The initial 

node location of observe x-direction strain and y-direction strain for select sequential 

strain observation location are always located at the center of the top of the steel 

plate. 

Generally, Q8 element is used in many finite element analyses. However, the 

element used for finite element analysis of this numerical example is Q6 element. 

This is because if the finite element analysis uses the Q8 element, proposed methods 

have a disadvantage that the time required for each step of MCMC is too long when 

Bayesian updating is performed. However, only bending is important for this steel 

plate because of the moment hinges. Therefore, this numerical example uses the Q6 

element, which has the almost same bending results as the Q8 element and can 

reduce the computational cost considerably. 

Figure 4.2 shows the load acting on the structure. The size of the square in 

Figure 4.2 is the sum of the four elements. The red part is the part where the upward 

load is applied, and the blue part is the part where the downward load as applied. 

The magnitude of both upward and downward loads is 1.28MPa. 
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Figure 4.2. Location and direction of distributed load acting on steel plate 

Figure 4.1. Structure to use in numerical examples: steel plate  
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Simultaneous strain observation locations to comparison with results of 

sequential strain observation locations are shown in Figure 4.3. Two cases of 

simultaneous strain observation locations are selected. In the situation where only 

the shape of the steel plate is known, these cases use the intuitively determined 

location that is evenly distributed. 

The covariance function used in this numerical example is not separable 

exponential covariance function, as follows: 

 𝐶(𝒙𝟏, 𝒙𝟐) = exp (−
√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

1.2
) (4.1) 

Because this covariance function is not separable, the finite element method using 

piecewise polynomial basis is used to solve the Fredholm equation of the second 

kind of this numerical example, as mentioned in Chapter 2.1. Eigenfunctions with 7 

high-weighted eigenvalues in the linear combination are shown in Figure 4.4, and 7 

eigenvalues corresponding to each eigenfunction are shown in Table 4.1. The reason 

why 𝜆2 and 𝜆3 have the same value is the shape of the steel plate of this example 

has symmetry. In this example, the order of the 𝜆2 and 𝜆3 is arbitrarily determined. 

Figure 4.3. Simultaneously selected strain observation location 

Left: case ‘Simultaneous 1’, Right: case ‘Simultaneous 2’ 
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The distribution of the effective thickness used in the numerical example was 

the same in both examples. Figure 4.5 shows the 3D plot and contour of the effective 

thickness distribution. In this example, the linear combination of the eigenfunctions 

of the K-L expansion is used as the effective thickness distribution of the structure 

to omit the process of approximating the actual effective thickness distribution of the 

plate using K-L expansion. The number of KL random variables {𝜉𝑖} is set to 7, and 

the total number of random variables is 8, including the mean of effective thickness 

𝑤̅. Table 4.2 shows the values of the random variables of the effective thickness 

distribution of this numerical example, which are sampled independently from the 

standard normal distribution. Since the number of random variables is 8, the 

maximum number of strain observations was also limited to 8, including the strain 

of x and y directions. Because the number of measurements in the x-direction and y-

direction are the same, there are four x-direction strain measurements and four y-

direction strain measurements in the final result. 

Random variable 𝜉1 𝜉2 𝜉3 𝜉4 

Value 0.1243 0.9271 0.7775 -0.0833 

Random variable 𝜉5 𝜉6 𝜉7 𝑤̅ 

Value 0.2509 0.6391 -0.6706 0.03 

Random variable 𝜆1 𝜆2 𝜆3 𝜆4 

Value 2.2831 0.6436 0.6436 0.2700 

Random variable 𝜆5 𝜆6 𝜆7  

Value 0.2043 0.1889 0.1132  

Table 4.1. Values of eigenvalues corresponding to each eigenfunction 

Table 4.2. Values of random variables of the effective thickness 
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Figure 4.4. Eigenfunctions with 7 high-weighted eigenvalues 
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Figure 4.5. Effective thickness distribution of steel plate 

Above: 3D plot, Below: contour 
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4.2. Numerical Example 1: Use the Sum of Two SSVs 

 

The first numerical example is the first of two methods using both of the x and 

y directional strain described in Chapter 3.3. The SSV in the x direction and the SSV 

in the y direction are added, and measure the next strain in both directions at the 

location where the added SSV value is maximum. Figure 4.6 shows the variation of 

the sum of two SSV values in 3D plot and contour when the number of strain 

observations increases sequentially in the order of 2, 4, and 6 in the Scheme 1. 

Figure 4.6. Variation of the sum of two SSV values in the Scheme 1 at Example 1 

(Number of observations: 2, 4, 6 from top) 
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Figure 4.7 shows the sequential strain measurement locations and order in three 

effective thickness sample generation schemes. The black circle in the center 

represent the initial measurement locations, and then the strain in the x-direction and 

y-direction both were measured in the order of the triangle locations. The strain 

measurement location of each scheme showed a considerable difference, especially 

Scheme 2. For example, Scheme 1 and scheme 3 were not measured at the lower half 

of the steel plate, and Scheme 2 was measured only once at the lower half of the steel 

plate. In the upper half of the plate, it is intuitively inferred to have been measured 

evenly. 

 

Figure 4.7. Sequential strain measurement locations and order at Example 1 

Upper left: Scheme 1, Upper right: Scheme 2, Below: Scheme 3 
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The upper graph of Figure 4.8 shows the variation of the error between the 

estimated effective thickness and the actual effective thickness, and the lower graph 

in Figure 4.8 shows the variation of the standard deviation of the estimated effective 

thickness when the number of strain observation increases for each effective 

thickness sample generation scheme. 

First, in the case of the average of the squared error, Scheme 2 showed the 

smallest error at the end. However, before the number of measurements reached the 

target value, the scheme with the smallest error varied. Furthermore, in the case of 

the average of standard deviation, the standard deviation of Scheme 1 was the 

smallest regardless of the number of sensors. In addition, the standard deviation 

increased slightly when the number of sensors is increased in Scheme 3. This is 

because the number of random variables to be determined is greater than the number 

of strain measurements, therefore ill-posedness has occurred. This situation did not 

occur when the number of strain measurement reaches the target value. 

Figure 4.9 compares the final errors and standard deviations for the case of 

selecting strain measurement locations sequentially and simultaneously. As a result, 

there was no significant difference in error and standard deviation between two cases. 

In conclusion, the efficiency of Scheme 1 in terms of error and Scheme 2 in 

terms of standard deviation is relatively good when the x-direction and y-direction 

strain are measured at the same location. However, there was no significant effect 

compared with the case that the observation locations are selected intuitively and 

simultaneously. In addition, errors and standard deviations before reaching the final 

number of sensors were not significant for comparison due to ill-posedness. As a 

result, Example 1 is an inefficient sequential measurement location selection method. 
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Figure 4.8. Above: The error between the estimated and actual effective thickness 

at the Example 1, Below: The standard deviation of the estimated effective 

thickness at the Example 1 
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Figure 4.9. Compare for the selecting strain measurement locations sequentially 

and simultaneously at Example 1, Above: error, Below: effective thickness 
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4.3. Numerical Example 2: Use Two SSVs Respectively 

 

The second numerical example is the second of two methods using both of the 

x and y directional strain described in Chapter 3.3. Measure the next x-direction 

strain at the location where the x-direction SSV is the maximum, and same to the y-

direction. Figure 4.10 shows the variation of the x-direction SSV values in 3D plot 

and contour when the number of strain observations increases sequentially in the 

order of 2, 4, and 6 in the Scheme 2, and Figure 4.11 shows the variation of the y-

direction SSV values in 3D plot and contour. 

Figure 4.10. Variation of the x-direction SSV values in the Scheme 1 at example 2 

(Number of observations: 2, 4, 6 from top) 
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Figure 4.12 shows the sequential strain measurement locations and order in 

three effective thickness sample generation schemes. The black circles in the center 

represent the initial measurement locations, and then strains in the x-direction were 

measured in the order of the triangle locations, and strains in the y-direction were 

measured in the order of the inverted triangle locations. Unlike Example 1 which 

measures both strains in two directions at the same location using the result of adding 

two SSVs, it can be intuitively inferred that strain measurement locations were 

distributed evenly in all three schemes.  

Figure 4.11. Variation of the y-direction SSV values in the Scheme 1 at example 2 

(Number of observations: 2, 4, 6 from top) 
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The upper graph in Figure 4.13 shows the variation of the error between the 

estimated effective thickness, and the lower graph in Figure 4.13 shows the actual 

effective thickness and the variation of the standard deviation of the estimated 

effective thickness when the number of strain observation increases for each 

effective thickness sample generation scheme. Unlike Example 1, Scheme 3 gives 

the best results regardless of the number of strain measurements in both error and 

standard deviation. In addition, standard deviations also increase slightly when the 

number of sensors is increased in Scheme 1 and Scheme 2. This situation is also 

presumed by the ill-posedness. 

Figure 4.12. Sequential strain measurement locations and order at example 2 

Upper left: Scheme 1, Upper right: Scheme 2, Below: Scheme 3 
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Figure 4.14 compares the final errors and standard deviations for the case of 

selecting strain measurement locations sequentially and simultaneously. In the case 

of the average of squared errors, Scheme 1 and Scheme 3 showed a significant 

decrease in error when compared to the Simultaneous 2 case which has a smaller 

error among the two simultaneous cases. Numerically, Scheme 1 showed an error 

reduction of about 58%, and Scheme 3 showed an error reduction of about 62% 

compared to Simultaneous 2 case. On the other hand, Scheme 2 showed an error 

similar to Simultaneous 2 case. This result was different from Chapter 3.2.2 which 

Scheme 2 is more accurate. It can be deduced that the disadvantage of cannot 

considering correlation of effective thickness of adjacent nodes has a great influence. 

Average of standard deviation showed a similar tendency. Scheme 1 showed a 

standard deviation reduction of about 38%, and Scheme 3 showed a standard 

deviation reduction of about 47% compared to Simultaneous 2 case. On the other 

hand, standard deviation of Scheme 2 is slightly larger than the simultaneous case, 

therefore the accuracy is also poor. 

In conclusion, the accuracy of Scheme 3 was highest for both error and standard 

deviation when x-direction strain measurement and y-direction strain measurement 

were performed at different locations, and accuracy of Scheme 1 was also high. In 

addition, it shows that there is a significant effect in the accuracy of selecting the 

sequential measurement location using SSV because it shows a significant difference 

compared with the case when the observation location is intuitively selected. This 

also means that determining the x-direction and y-direction strain measurement 

locations respectively are more effective than determining both direction strain 

measurement at the same location. 
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Figure 4.13. Above: The error between the estimated and actual effective thickness 

at the example 2, Below: The standard deviation of the estimated effective 

thickness at the example 2 
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Figure 4.14. Compare for the selecting strain measurement locations sequentially 

and simultaneously at example 2, Above: error, Below: effective thickness 
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Chapter 5. Conclusion 

 

When selecting strain measurement locations for system identification, large 

errors and deviations could occur when measurement locations are selected based on 

intuition or engineering judgement and simultaneously using only the shape of the 

structure and the applied load without prior information. Alternatively, if the strain 

measurement locations are selected sequentially, it is possible to estimate effective 

thickness temporarily. Using the temporarily estimated effective thickness, it is 

possible to select the next measurement location that is expected to improve 

estimation accuracy. 

In this study, the effective thickness and its confidence interval of the structure 

are indirectly estimated by using the given displacement measurement values, and 

the methods of sequentially determining additional observation locations are 

proposed to effectively reduce the error and standard deviation of the effective 

thickness estimation. It is confirmed that the finally estimated effective thickness 

distribution with selected strain locations by the sequential strain observation 

location selection method proposed in this study has smaller errors and standard 

deviations when compared with the selected strain measurement locations without 

estimated effective thickness distribution. 

Sequentially selected measurement locations using suggested schemes have 

higher accuracy than simultaneously selected measurement locations for estimate 

effective thickness. Based on this method, it will be possible to implement an initial 
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inspection of a large number of old structures which has the possibility of overall 

deterioration with a limited budget. 

Future research topics are identified as follows: first, if the number of possible 

observation is small, the selection of the sequential observation locations will be 

greatly affected by the initial location. Therefore, I want to study the selection of the 

initial observation location according to the applied load. In addition, because of the 

present SSV value may show a large value at the location where the strain is already 

observed, I will propose a new value that solves this problem. Lastly, since it takes 

a long time to select one measurement location at a time, it is desirable to select 

multiple measurement locations simultaneously while maintaining the estimation 

accuracy.  
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초 록 

 

구조물은 사용 기간이 오래될수록 자연히 열화되므로, 구조물 붕괴 

등의 사고를 미연에 방지하기 위해서는 구조물의 열화 정도를 정확히 

파악하는 것이 필수적이다. 그러나, 열화 정도를 파악할 수 있는 유효 

두께 등의 수치들은 직접 측정이 힘든 경우가 많으므로 하중 재하 시험 

등에서 얻을 수 있는 변형도나 변위 등의 역학적인 관측값을 이용하여 

간접적으로 추정해야 한다. 이 때, 외부 요인으로 인하여 가능한 직접 

측정 위치 개수가 한정되어 있다면, 한정된 개수의 관측값 하에서 

가능한 간접 추정 정확도를 향상시킬 수 있는 직접 측정 위치 선정을 

필요로 한다. 

본 연구에서는 변형도 측정 위치 개수가 제한되어 있을 때 구조물의 

유효두께 간접 추정의 정확도를 향상시키기 위해 순차적 측정 위치 

최적화 방식을 제시한다. 먼저 구조물의 유효 두께 분포를 Karhunen- 

Loève 모델을 사용하여 근사적으로 표현한 뒤, 마르코프 연쇄 

몬테카를로를 사용하는 베이즈 추론을 기반으로 한 역해석을 수행하여 

주어진 변형도 측정값 하에서 구조물 전체의 유효두께의 추정값과 

편차를 추정한다. 다음으로 추정된 유효두께의 추정값과 편차를 

이용하여 관측 위치를 선정하는 세 가지의 관측 위치 선정 방법을 

제안한다. 마지막으로, 제안된 방법들을 실제로 구조물에 적용해서 관측 
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위치 선정 방법들의 정확도를 비교하고, 또한 동시에 관측 위치를 

선정한 경우와 정확도를 비교한다. 

제안된 방법들을 통하여 유효두께 추정값의 정확도를 효과적으로 

향상시킬 수 있는 다음 변위 측정 위치를 결정할 수 있으며, 이를 통해 

한정된 관측 위치 개수 하 에서 유효두께 추정의 정확도를 최대화할 수 

있다. 제안된 방식은 유효두께뿐만 아니라, 샘플링을 통하여 간접적으로 

추론해낼 수 있는 다양한 구조물 열화 관련 물성치 추정의 정확도 

향상에도 적용될 수 있을 것으로 기대된다. 

 

주요어: 구조물 열화, 유효두께, Karhunen-Loève 모델, 마르코프 연쇄 

몬테카를로, 베이즈 추론, 역해석 

학번: 2017-24757 
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