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Abstract 
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for Accurate and Efficient Gradient Estimation 

on Unstructured Grid 
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Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

    The present work proposes accurate and efficient gradient estimation on unstructured 

grid by designing a switching function between two Least-Square methods. Through 

various test cases, it is shown that gradient by Green-Gauss theorem, one of the most 

widely preferred gradient estimation on unstructured grid, is inherently inconsistent, and 

gradient by Least-Square methods show higher gradient accuracy on viscous boundary 

layer and general grid compared to Green-Gauss approach.  

    Regarding the observation, switching between two Least-Square methods, relatively 

efficient compact weighted Least-Square method and accurate extended weighted Least-
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Square method, is pursued. Since condition number of the Least-Square matrix can be 

calculated from the geometric information of the given grid, and shows correlation with 

the gradient error, it is chosen as the switching criterion. To implement on general grid, 

the condition number is analyzed and formulated as the function of number of stencils and 

angle between stencil vectors using trigonometric relations. Then, it is confirmed that 

average condition number of extended weighted Least-Square method is suitable switching 

criterion value.  

    The switching mechanism is demonstrated through two and three-dimensional simple 

cases. Finally, comparison of gradient accuracy and computational cost of three Least -

Square methods are addressed on two-dimensional airfoil, three-dimensional wing-body 

and modern fighter configuration to show the excellence of SWLSQ. 

 

 

Keywords: Gradient, Gradient estimation method, Least-Square method, Switching 

Function, Condition number, Green-Gauss theorem, Unstructured grid 
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Chapter 1 

Introduction 

 

 

1.1 Background 

In modern compressible flow CFD code, Monotonic Upwind Scheme for Conservation 

Laws (MUSCL) type schemes with second-order accurate spatial discretization are widely 

used in Finite Volume Method (FVM) cell-centered frame. In the solution reconstruction 

stage of MUSCL type schemes [1], as well as for calculation of viscous flux and turbulent 

source term, gradient estimation plays an important role for the accuracy and robustness 

of the dependent variable.   

 

Figure 1.1 Solution reconstruction stage in MUSCL scheme with and without a limiter 
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Unlike the structured grid, unstructured grid does not have an ordered cell-connectivity 

that classic ways of estimating a gradient used in structured grid are not applicable. On 

unstructured grid, gradient estimation by Green-Gauss theorem (GG) and Least-Square 

method (LSQ) are widely preferred approaches, but no optimal solution exists in terms of 

accuracy, robustness and efficiency. Mavriplis [2] indicated that gradient accuracy of non-

weighting, compact LSQ can be poor on high aspect ratio cell with surface curvature. 

Diskin et al. [3] and Correa et al. [4] compared existing gradient estimation methods on 

various regular and irregular meshes. Meanwhile, Shima et al. [5] tried to combine the 

advantages of two gradient estimation methods, gradient by Green Gauss theorem and 

gradient by Least-Square methods.  

On the other hands, it was found that bad grid quality around the complex geometry of 

the aircraft, especially at the small space between the control surface and the nozzle as 

presented in Fig. 1.2 and Fig. 1.3, deteriorates the gradient accuracy. This gradient 

accuracy degradation brings about the numerical oscillation at the region, eventually 

leading to the computation failure. Full configuration of the aircraft is not presented here 

for confidentiality policy. 

The objective of this work to propose accurate and efficient gradient estimation method 

on arbitrary unstructured grid. More specifically, we propose a switching criterion that can 

be applied to conversion between CWLSQ and EWLSQ, by analyzing it qualitatively and 

quantitively.  

This thesis is organized in the following order. To begin with, chapter 2 introduces the 

numerical methods covered in this work, including basic information of the governing 
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equations and existing gradient estimation methods. Next, chapter 3 outlines analysis made 

on preceding gradient estimation approaches. Chapter 4 deals with process of how the 

switching criterion is established, forming the Switching Least-Square method. Chapter 5 

compares the SWLSQ with two LSQ methods, CWLSQ and EWLSQ, on two and three-

dimensional flow problems to show the excellence of SWLSQ. Lastly, conclusions and 

necessity of future work are addressed in Chapter 6.  

 

Figure 1.2 The region where gradient deterioration occurs around the aircraft 

 

 
Figure 1.3 Poor gradient accuracy around the complex geometry of the aircraft  
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Chapter 2 

Numerical Methods 

 

2.1 Governing Equations 

The governing equations are three-dimensional Navier-Stokes equations, which can be 

written in an integral form as follows for control volume Ω and surrounding control 

surface S 

 
∂

𝜕𝑡
∫ �⃗⃗⃗� 𝑑Ω 

 

Ω

+ ∮ (𝐹 𝑐 − 𝐹 𝑣)
 

𝜕Ω

𝑑S =  ∫ �⃗� 𝑑Ω
 

Ω

. (2.1) 

�⃗⃗⃗�  stands for a vector of the conservative variable consisting of five components  

 �⃗⃗⃗� =  

[
 
 
 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸]

 
 
 
 

 (2.2) 

where 𝜌, u, v and w are density, x-direction velocity, y-direction velocity, z-direction 

velocity respectively. Furthermore, E is total energy per unit mass of a fluid obtained from 

summation of internal energy per unit mass, e, and its kinetic energy per unit ass |𝑣|2/2, 

i.e,  

 𝐸 =  𝑒 +
|𝑣|2

2
= 𝑒 +

𝑢2 + 𝑣2 + 𝑤2

2
. (2.3) 

In addition, 𝐹 𝑐 is the vector of convective fluxes which describes the contribution of flow 

quantities going through the control surface with the velocity 𝑣  
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 𝐹 𝑐 = 

[
 
 
 
 

𝜌𝑉
𝜌𝑢𝑉 + 𝑛𝑥𝑝
𝜌𝑣𝑉 + 𝑛𝑦𝑝

𝜌𝑤𝑉 +
𝜌𝐻𝑉 ]

 
 
 
 

 (2.4) 

in which V is the velocity normal to the surface element 𝑑S, or contravariant velocity, 

with definition  

 𝑉 ≡  𝑣 ∙ 𝑛 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 + 𝑤𝑛𝑧. (2.5) 

 𝐹 𝑣 is the vector of viscous fluxes  

 𝐹 𝑣 = 

[
 
 
 
 

0
𝑛𝑥𝜏𝑥𝑥 + 𝑛𝑦𝜏𝑥𝑦 + 𝑛𝑧𝜏𝑥𝑧

𝑛𝑥𝜏𝑦𝑥 + 𝑛𝑦𝜏𝑦𝑦 + 𝑛𝑧𝜏𝑦𝑧

𝑛𝑥𝜏𝑧𝑥 + 𝑛𝑦𝜏𝑧𝑦 + 𝑛𝑧𝜏𝑧𝑧

𝑛𝑥Θ𝑥 + 𝑛𝑦Θ𝑦 + 𝑛𝑧Θ𝑧 ]
 
 
 
 

 (2.6) 

where  

 

Θ𝑥 =  𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 + 𝑘
𝜕𝑇

𝜕𝑥
, 

Θ𝑦 =  𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 + 𝑘
𝜕𝑇

𝜕𝑦
, 

Θ𝑧 =  𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 + 𝑤𝜏𝑧𝑧 + 𝑘
𝜕𝑇

𝜕𝑧
 

(2.7) 

are terms expressing the work of the viscous stress and of the heat conduction in the fluid 

respectively. 𝜏𝑖𝑗 denotes a stress component of the viscous stress tensor, originated from 

the friction between the fluid and the surface of an element. Under the assumption of 

Newtonian fluid, 𝜏𝑖𝑗 is thought to be proportional to the velocity gradient  

 

𝜏𝑥𝑥 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 2𝜇 

𝜕𝑢

𝜕𝑥
, 

𝜏𝑦𝑦 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 2𝜇 

𝜕𝑣

𝜕𝑦
, 

(2.8) 
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𝜏𝑧𝑧 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) + 2𝜇 

𝜕𝑤

𝜕𝑧
, 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
), 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
), 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) 

 

where 𝜆 is referred to as the second viscosity coefficient, and 𝜇 represents the dynamic 

viscosity coefficient. Lastly, �⃗�  in Eq. (2.1) is the source term with the components 

 �⃗� =  

[
 
 
 
 
 

0
𝜌𝑓𝑒,𝑥

𝜌𝑓𝑒,𝑦

𝜌𝑓𝑒,𝑧

𝜌𝑓 𝑒 ∙ 𝑣 + 𝑞ℎ̇]
 
 
 
 
 

 (2.9) 

with 𝜌𝑓𝑒,𝑖 accounting for the effect of body forces, such as gravitational force, and 𝑞ℎ̇ 

denoting time rate of heat transfer.  
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2.2 Gradient Estimation Methods on Unstructured Grids 

 

2.2.1 Least-Square Method 

  Least-Square method is a general approach to find optimal solution for overdetermined 

system by minimizing the sum of the square of the residuals. Residual means the difference 

between the fitted value and observed data. In overdetermined system, the number of 

equations is greater than the number of unknowns so that no exact solution exists, except 

for the case where one equation is linear combination of others.  

As for FVM cell-centered schemes, the gradient as well as other flow quantities are 

assumed to be located at centroid of each control volume, which is identical to a grid cell.

 Herewith, Least-Square formulation is derived from the Taylor series approximation with 

respect to the cell where the gradient is to be evaluated. Taylor series approximation of the 

cell i to the neighboring cell j (or stencil) can be expressed as follows 

 𝜙𝑗 = 𝜙𝑖 + 𝛻𝜙𝑖 ∙ 𝑑 𝑖𝑗 + 𝛰(ℎ2) (2.10) 

 𝛻𝜙𝑖 ∙ 𝑑 𝑖𝑗 = ∆𝜙𝑖𝑗 + 𝛰(ℎ2) (2.11) 

where 𝜙 is flow variable at the cell-center, and 𝑑 𝑖𝑗 = 𝑑 𝑗 − 𝑑 𝑖 is the distance vector from 

the cell i to the stencil j. Further, 𝛰(ℎ2) denotes second-order truncation error, which is 

usually neglected in Least-Square formulation, and h is a characteristic grid spacing. 

Writing down Eq. (2.11) to all neighboring cell j, we obtain following overdetermined 

system of linear equations 
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[

∆𝑥𝑖1 ∆𝑦𝑖1 ∆𝑧𝑖1

∆𝑥𝑖2 ∆𝑦𝑖2 ∆𝑧𝑖2

⋮        ⋮        ⋮
∆𝑥𝑖𝑁 ∆𝑦𝑖𝑁 ∆𝑧𝑖𝑁

]

[
 
 
 
 
 
 (

𝜕𝜙

𝜕𝑥
)
𝑖

(
𝜕𝜙

𝜕𝑦
)
𝑖

(
𝜕𝜙

𝜕𝑧
)
𝑖]
 
 
 
 
 
 

= [

∆𝜙𝑖1

∆𝜙𝑖2

 ⋮
∆𝜙𝑖𝑁

] (2.13) 

with ∆(∙)𝑖𝑗 = (∙)𝑗 − (∙)𝑖, and N is the number of stencils used for estimation of gradient. 

In abbreviation, Eq. (2.13) is expressed as 

 𝐴x⃗ = �⃗� . (2.14) 

On the other hand, choices of stencil for the Least-Square method have been studied by 

many researchers [3,6,7,8]. In this paper, two types of scope of stencil will be mainly dealt 

with, compact stencil and extended stencil. When we use neighboring cells, who are 

sharing a cell face with the target cell, where the gradient is estimated, these neighboring 

stencils are called compact stencil, leading to Compact stencil Weighted Least-Square 

method (CWLSQ). Extended stencil, covering larger range than compact stencil, means 

neighboring cells who are sharing a node with the target cell, also referred to as Extended 

stencil Weighted Least-Square method (EWLSQ). Fig. 2.1 illustrates the stencil 

configuration of Least-Square method using compact and extended stencil.  
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CWLSQ 

EWLSQ 

: target cell 

: stencil 

Figure 2.1 Stencil configuration of CWLSQ and EWLSQ 
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2.2.1.1 The Method of Normal Equations 

  A generally adopted approach to solve Least-Square problem is the method of normal 

equations. In mathematical sense, overdetermined system, where no solution x exists 

satisfying Eq. (2.14), implies �⃗�  is not in the column space of A as described in Fig. 2.2.    

 

�⃗�  

𝑨�⃗� ∗ 

ห𝑨𝐱 
∗
− �⃗� ห 

𝐶(𝐴) 

ห𝑨𝐱 
∗
− �⃗� ห: Residual to be minimized 

�⃗� : Solution difference 

𝐱 
∗
: Least-Square solution  

𝑪(𝑨) : Column space of 𝐴  

𝑨�⃗� ∗: Projection of �⃗�  on 𝑪(𝑨)   

Figure 2.2 Schematic of the method of normal equations for Least-Square problem 
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The optimal Least-Square solution �⃗� ∗ that minimizes the residual is the projection of the 

�⃗�  to the column space of 𝐴, 𝑪(𝑨). Meanwhile, from the relation of 𝑪(𝑨) to the null 

space 

 𝐶(𝐴)⊥ = 𝑁(𝐴𝑇) (2.15) 

, and since 𝐴x⃗ ∗ − �⃗�  is an element of orthogonal complement of column space of A 

 (𝐴x⃗ ∗ − �⃗� ) ∈ 𝐶(𝐴)⊥, (2.16) 

following normal equation can be derived 

 𝐴𝑇(𝐴x⃗ ∗ − �⃗� ) = 0. (2.17) 

Expanding and rearranging the normal equation, we obtain 

 𝐴𝑇𝐴x⃗ ∗ − 𝐴𝑇�⃗� = 0 (2.18) 

 𝐴𝑇𝐴x⃗ ∗ = 𝐴𝑇�⃗�  (2.19) 

, or in matrix form 

 

[
 
 
 
 
 
 
 
 
 
∑(∆𝑥𝑗)

2
𝑁

𝑗

∑∆𝑥𝑗∆𝑦𝑗

𝑁

𝑗

∑∆𝑥𝑗∆𝑧𝑗

𝑁

𝑗

∑∆𝑥𝑗∆𝑦𝑗

𝑁

𝑗

∑(∆𝑦𝑗)
2

𝑁

𝑗

∑∆𝑦𝑗∆𝑧𝑗

𝑁

𝑗

∑∆𝑥𝑗∆𝑧𝑗

𝑁

𝑗

∑∆𝑦𝑗∆𝑧𝑗

𝑁

𝑗

∑(∆𝑧𝑗)
2

𝑁

𝑗 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 (

𝜕𝜙

𝜕𝑥
)
𝑖

∗

(
𝜕𝜙

𝜕𝑦
)
𝑖

∗

(
𝜕𝜙

𝜕𝑧
)
𝑖

∗

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
∑∆𝑥𝑗∆𝜙𝑖𝑗

𝑁

𝑗

∑∆𝑦𝑗∆𝜙𝑖𝑗

𝑁

𝑗

∑∆𝑧𝑗∆𝜙𝑖𝑗

𝑁

𝑗 ]
 
 
 
 
 
 
 
 
 

. (2.20) 

Finally, taking the inverse of (𝐴𝑇𝐴), x⃗ ∗ is expressed as follows 

 x⃗ ∗ = (𝐴𝑇𝐴)−1𝐴𝑇�⃗� . (2.21) 
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2.2.1.2 Weighting Function 

Least-Square method without proper weighting function may present bad gradient 

accuracy at a cell with high aspect ratio on surface curvature [2]. After weighting function 

is applied to each stencil, Eq. (2.20) can be cast into the following form 

[
 
 
 
 
 
 
 
 
 
∑𝑤𝑗(∆𝑥𝑗)

2
𝑁

𝑗

∑𝑤𝑗∆𝑥𝑗∆𝑦𝑗

𝑁

𝑗

∑𝑤𝑗∆𝑥𝑗∆𝑧𝑗

𝑁

𝑗

∑𝑤𝑗∆𝑥𝑗∆𝑦𝑗

𝑁

𝑗

∑𝑤𝑗(∆𝑦𝑗)
2

𝑁

𝑗

∑𝑤𝑗∆𝑦𝑗∆𝑧𝑗

𝑁

𝑗

∑𝑤𝑗∆𝑥𝑗∆𝑧𝑗

𝑁

𝑗

∑𝑤𝑗∆𝑦𝑗∆𝑧𝑗

𝑁

𝑗

∑𝑤𝑗(∆𝑧𝑗)
2

𝑁

𝑗 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 (

𝜕𝜙

𝜕𝑥
)
𝑖

∗

(
𝜕𝜙

𝜕𝑦
)
𝑖

∗

(
𝜕𝜙

𝜕𝑧
)
𝑖

∗

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
∑𝑤𝑗∆𝑥𝑗∆𝜙𝑖𝑗

𝑁

𝑗

∑𝑤𝑗∆𝑦𝑗∆𝜙𝑖𝑗

𝑁

𝑗

∑𝑤𝑗∆𝑧𝑗∆𝜙𝑖𝑗

𝑁

𝑗 ]
 
 
 
 
 
 
 
 
 

 (2.22) 

or in abbreviation  

 �̅�x⃗ ∗ = �⃗� . (2.23) 

A typical treatment of weighting function is taking inverse square of distance between two 

points, the target cell and the stencil 

 𝑤𝑗 = 1/ห𝑑 𝑖𝑗ห
2
 (2.24) 

where 𝑑 𝑖𝑗 is same as in Eq. (2.11). In this study, this approach will be used as the basic 

weighting function. Meanwhile, alternative choices of weighting function have been 

analyzed by other research [5,10].  
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2.2.1.3 QR Factorization 

To solve the linear system of equations Eq. (2.23), a matrix inversion is essential. 

However, it is known that a cell with highly stretched cell is prone to become an ill-

conditioned system, which subsequently brings about another remedy, QR Factorization 

[11,12].  

Following is the description of QR factorization procedure explained in the reference 

[13]. By using the Gram-Schmidt process, the Least-Square the matrix �̅� = [𝑎 1, 𝑎 2, 𝑎 3] 

from Eq. (2.23) can be decomposed into orthogonal matrix 𝑄 = [𝑞 1, 𝑞 2, 𝑞 3] and upper 

triangular matrix R, whose component is denoted as r𝑖𝑗,  

 (𝑄𝑅)x⃗ ∗ = �⃗�  (2.25) 

where 

 
𝑞 1 =

1

𝑟11
𝑎 1, 

𝑞 2 =
1

𝑟22
(𝑎 2 −

𝑟12

𝑟11
𝑎 1), 

𝑞 3 =
1

𝑟33
[𝑎 3 −

𝑟23

𝑟22
𝑎 2 − (

𝑟13

𝑟11
−

𝑟12

𝑟11

𝑟23

𝑟22
) 𝑎 1]. 

 

(2.26) 

 

𝑟11 = √∑(∆𝑥𝑖𝑗)
2

𝑁𝐴

𝑗=1

, 

𝑟12 =
1

𝑟11
∑∆𝑥𝑖𝑗∆𝑦𝑖𝑗

𝑁𝐴

𝑗=1

, 

(2.27) 
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𝑟22 = √∑(∆𝑦𝑖𝑗)
2
− 𝑟12

2

𝑁𝐴

𝑗=1

, 

𝑟13 =
1

𝑟11
∑∆𝑥𝑖𝑗∆𝑧𝑖𝑗

𝑁𝐴

𝑗=1

, 

𝑟23 =
1

𝑟22
(∑∆𝑦𝑖𝑗∆𝑧𝑖𝑗

𝑁𝐴

𝑗=1

−
𝑟12

𝑟11
∑∆𝑥𝑖𝑗∆𝑧𝑖𝑗

𝑁𝐴

𝑗=1

), 

𝑟33 = √∑(∆𝑧𝑖𝑗)
2
− (𝑟13

2

𝑁𝐴

𝑗=1

+ 𝑟23
2 ). 

Here, weighting function 𝑤𝑗 is set to unity for convenience. Since Q is an orthogonal 

matrix, transpose of Q is same as inverse of Q, i.e. 

 𝑄𝑇 = 𝑄−1 (2.28) 

Therefore, substituting the above relation to solve the Eq. (2.25) for x⃗ ∗, 

 x⃗ ∗ = 𝑅−1𝑄𝑇�⃗� . (2.29) 
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2.2.2 Green-Gauss Theorem 

The gradient estimation by Green-Gauss theorem, or divergence theorem, is derived 

from the relation that volume integral of first derivative of the flow variable ∇𝜙 is equal 

to the surface integral of the flow variable  𝜙 at the given location 

 
∭ ∇𝜙𝑑𝑉

𝑉

= ∯ 𝜙�⃗� 𝑑𝐴
𝐴

 (2.30) 

where 𝑉  and A denote the control volume and the surrounding surface respectively. 

Furthermore, dV and dA are infinitesimally small volume and surface element respectively 

with unit normal vector �⃗�  pointing outward of the cell. As for cell-centered FVM, 

assuming constant flow variable within the control volume, Eq. (2.30) can be rewritten as 

follows 

 
𝑉𝛻𝜙 = ∯ 𝜙�⃗� 𝑑𝐴

𝐴

 (2.31) 

with V indicating the volume of the grid cell. In the same context, surface integral on the 

right-hand side of Eq. (2.31) can be approximated by sum of the flow variable crossing the 

faces of the surrounding surface, called spatial discretization, 

  

𝑉𝛻𝜙 = ∑ �̅�𝑘�⃗� 𝑘𝐴𝑘

𝑁

𝑘=1

. (2.32) 

In the above Eq. (2.32), N refers to the number of faces of the control volume, and �̅�𝑘 is 

the average flow variable assumed to be placed at the midpoint of the k-th face. In addition, 

 �⃗� 𝑘 and 𝐴𝑘 are unit normal vector and face area of the k-th face respectively. Denoting a 
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specific cell using a subscript i and dividing both sides of the Eq. (2.32) by V, we can 

express the gradient by the Green-Gauss theorem as follows 

  

𝛻𝜙𝑖 =
1

𝑉
∑ �̅�𝑘�⃗� 𝑘𝐴𝑘

𝑁

𝑘=1

. (2.33) 

To estimate the gradient by using Eq. (2.33), one should identify �̅�𝑓, an average flow 

quantity at the midpoint of the k-th face. However, an exact value of �̅�𝑘  cannot be 

obtained directly, and thus an approximation for �̅�𝑘 is inevitable. In the following sub-

chapters, two ways of approximating the cell-interface value are dealt with. 

 

 

2.2.2.1 Simple Averaging 

A common way to interpolate the cell-interface value is simply taking the mean value 

from the left and right quantity of the face, because it is straightforward and requires little 

effort for implementation 

  
�̅�𝑓 =

1

2
(𝜙𝑙 + 𝜙𝑟) (2.34) 

where 𝜙𝑙 and 𝜙𝑟 are values from the left and right side of the interface respectively.    

For these reasons, gradient by Green-Gauss theorem with simple averaging (GGSA) is 

usually taken as the basic approach in other research where there is no relevant statement 

about the approximation of cell-interface value. Despite of advantages regarding simplicity, 

basically, this approach is not linear-exact, indicating that this method alone cannot restore 
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the gradient value of the given function even if the function used is linear. More details 

will be handled in next chapters.    

 

 

2.2.2.2 Node Averaging 

Another way of interpolating the cell-interface value is averaging the quantities of nodes 

consisting the face. The gradient by Green-Gauss theorem with node averaging (GGNA) 

are taken into two steps: flow quantities encompassing a node are averaged to obtain the 

node value, with or without inverse distance weighting, and the calculated node values are 

averaged to interpolate the cell-interface value.    

 Step1: �̅�𝑛 =
∑ �̅�𝑁

𝑗=1 𝑖
/ห𝑑 𝑗ห

∑ 1/ห𝑑 𝑗ห
𝑁
𝑗=1

. (2.35) 

 Step2: �̅�𝑓 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
(�̅�1 + �̅�2 + ⋯+ �̅�𝑛) (2.36) 

Here �̅�𝑛 indicates the node value, and 𝑑 𝑗 refers to a distance from the node to adjacent 

cell-center. Although GGNA often gives more accurate gradient estimation than GGSA, 

this methodology also is not free from linear-exactness problem; further explanation of 

this property will be dealt in next chapter together with GGSA. Stencil topology of GGSA 

and GGNA are illustrated in Fig 2.3.  
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GGSA 

GGNA 

: target cell 

: node  

: stencil 

Figure 2.3 Stencil configuration of GGSA and GGNA 
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Chapter 3 

Analysis on Preceding Approaches 

 

 

3.1 Numerical Test 

In this chapter, the existing gradient estimation methods, dealt with in previous chapter, 

are going to be analyzed on various grid types together with two test functions.  

 

3.1.1 Grid Type 

For numerical test, five types of grids are examined: quadrilateral grid, uniformly 

diagonalized triangular grid, randomly diagonalized triangular grid, mixed grid around a 

circular cylinder and unstructured NACA0012 airfoil grid. Basically, triangular and mixed 

grids are variants of the quadrilateral grid in a sense that they were obtained by 

manipulation of the grid around the cylinder. Meanwhile, all grid types include cells with 

high aspect ratio near the wall, which are usually observed at viscous boundary layer. Since 

these cells are known to degrade gradient accuracy estimated by Least-Square methods, 

this region has been the major concern of some work [8,14]. Fig. 3.1 illustrates five grid 

structures where as for the triangular and mixed grids, only magnified grid images are 

posted for brevity 
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(a) Quadrilateral grid around a circular cylinder 

(b) quadrilateral grid (magnified)  (c) uniformly diagonalized  

triangular grid (magnified) 
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(d) randomly diagonalized  

triangular grid (magnified) 

(e) mixed grid around a circular cylinder 

(f) Unstructured NACA0012 grid  

Figure 3.1 Five types of grid structure for numerical test 
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3.1.2 Test Function 

Evaluating the gradient accuracy necessitates the test function which can easily provide 

exact gradient value at the point where gradient estimation is performed. Two kinds of test 

functions are introduced: a quadratic function 

  𝜙 = 𝑟2 = 𝑥2 + 𝑦2 (3.1) 

and a linear function 

  𝜙 = 𝑥 + 2𝑦 + 0.5. (3.2) 

Accordingly, exact gradient value in x, y and z directions can be obtained conveniently for 

the quadratic function 

   𝜕𝜙

𝜕𝑥
= 2𝑥, 

𝜕𝜙

𝜕𝑦
= 2𝑦, 

𝜕𝜙

𝜕𝑧
= 2𝑧. 

(3.3) 

and for the linear function  

  𝜕𝜙

𝜕𝑥
= 1, 

𝜕𝜙

𝜕𝑦
= 2, 

𝜕𝜙

𝜕𝑧
= 3. 

(3.4) 
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When the numerical test is conducted in three-dimensional case with more complex grid 

configuration, following test functions are considered 

  𝜙 = 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 (3.5) 

  𝜙 = 𝑥 + 2𝑦 + 3𝑧 + 0.5. (3.6) 

with exact gradient values calculated in the same manner as the two-dimensional situation. 

Herewith, aforementioned grid and test function types are denoted in a combined manner 

for simplicity, referring to the Table 3.1. For example, if the CWLSQ is examined on 

randomly diagonalized triangular grid with quadratic test function, this test case will be 

called R-Q.  

Figure 3.1 Notation of grid and test function types 

 Type Notation 

Grid 

Quadrilateral grid Q 

Uniformly diagonalized triangular grid U 

Randomly diagonalized triangular grid  R 

Mixed grid M 

Unstructured NACA0012 grid N 

Test Function 
Quadratic function Q 

Linear function L 

 

Meanwhile, gradient errors are evaluated at each grid cell 

Gradient error at the cell i = 𝑒𝑖 = |
∇𝜙𝑖,𝑒𝑥𝑎𝑐𝑡−∇𝜙𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

∇𝜙𝑖,𝑒𝑥𝑎𝑐𝑡
× 100|. (3.7) 
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3.2 Observation 

 

3.2.1 Quadrilateral grid with test functions 

 As for both Q-Q and Q-L test cases, all gradient estimation methods present good 

gradient accuracy, having less than 1% of error as depicted in Fig. 3.2. In fact, good 

gradient accuracy from GGSA and GGNA was pointed out by existing studies [2,6,15] that 

GG type methods show its strength in viscous boundary layer grid. Surprisingly enough, 

however, one should note that LSQ types methods with inverse distance weighting function 

give even more accurate gradient compared to GG type methods.   

 

Figure 3.2 Comparison of results from quadrilateral grid 

 

Moreover, as for Q-L test case, CWLSQ and EWLSQ are superior in terms of gradient 

accuracy, showing almost 𝑂(10−10) magnitude of error, while GGSA and GGNA cannot 

reduce the gradient error under certain level due to their deficiency of linear-exactness. In 
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other words, two GG type methods are not able to reproduce the gradient value of the test 

function even if the function is linear. One-dimensional grid with non-uniform spacing is 

just enough to demonstrate this property [6], as shown in Fig. 3.3.  

 

Figure 3.3 One-dimensional stencil configuration with non-uniform spacing 

 

First, consider GGSA to estimate the gradient at the cell i 

  

∇𝜙𝑖,𝐺𝐺𝑆𝐴 =
1

𝑉
∑ �̅�𝑘�⃗� 𝑘𝐴𝑘

𝑁

𝑘=1

. (3.8) 

  
=

𝜙𝑖+1/2 − 𝜙𝑖−1/2

∆𝑥𝑖
. (3.9) 

Cell-interface face values with simple averaging are 

  
𝜙𝑖+1/2 =

𝜙𝑖+1 + 𝜙𝑖

2
, 

𝜙𝑖−1/2 =
𝜙𝑖 + 𝜙𝑖−1

2
. 

(3.10) 

Inserting the Eq. (3.10) to Eq. (3.9), it leads to 

  
∇𝜙𝑖,𝐺𝐺𝑆𝐴  =

𝜙𝑖+1 − 𝜙𝑖−1

2∆𝑥𝑖
 (3.11) 

where 𝜙𝑖+1, 𝜙𝑖−1 are obtained from Taylor series expansion with respect to 𝜙𝑖, i.e,  
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𝜙𝑖+1  = 𝜙𝑖 + ∇𝜙𝑖 (
∆𝑥𝑖+1 + ∆𝑥𝑖

2
) +

∇2𝜙𝑖

2!
(
∆𝑥𝑖+1 + ∆𝑥𝑖

2
)
2

+ 𝑂(ℎ3) 

𝜙𝑖−1  = 𝜙𝑖 − ∇𝜙𝑖 (
∆𝑥𝑖 + ∆𝑥𝑖−1

2
) +

∇2𝜙𝑖

2!
(
∆𝑥𝑖 + ∆𝑥𝑖−1

2
)
2

+ 𝑂(ℎ3) 

(3.12) 

Substituting the Eq. (3.12) to Eq. (3.11) and rearranging the equation, we obtain 

∇𝜙𝑖,𝐺𝐺𝑆𝐴  = ∇𝜙𝑖 (
1

2
+

∆𝑥𝑖+1 + ∆𝑥𝑖−1

4∆𝑥𝑖
) + ∇2𝜙𝑖 (

∆𝑥𝑖+1 − ∆𝑥𝑖−1

8
+

∆𝑥𝑖+1
2 − ∆𝑥𝑖−1

2

16∆𝑥𝑖
) + 𝑂(ℎ2) 

                   = ∇𝜙𝑖 + ∇𝜙𝑖 (−
1

2
+

∆𝑥𝑖+1 + ∆𝑥𝑖−1

4∆𝑥𝑖
) + 𝑂(ℎ) (3.13) 

Obviously, the leading error term in Eq. (3.13) is zeroth order, implying that gradient by 

GGSA is inherently inconsistent method. Provided that ∆𝑥𝑖−1 = ∆𝑥𝑖 = ∆𝑥𝑖+1 , which 

means a regular and uniform grid, GGSA can yield a second-order accurate gradient  

  ∇𝜙𝑖,𝐺𝐺𝑆𝐴  = ∇𝜙𝑖 + 𝑂(ℎ2). (3.14) 

However, this condition is far from the practical grid configuration encountered in actual 

CFD problem.  

  Likewise, applying the same procedure above to GGNA, it leads to         

∇𝜙𝑖,𝐺𝐺𝑁𝐴  =
∇𝜙𝑖

2
[
∆𝑥𝑖(∆𝑥𝑖+1 + ∆𝑥𝑖)

∆𝑥𝑖+1
2 + ∆𝑥𝑖

2 +
∆𝑥𝑖(∆𝑥𝑖 + ∆𝑥𝑖−1)

∆𝑥𝑖
2 + ∆𝑥𝑖−1

2 ] 

                        +
∇2𝜙𝑖

8
[
∆𝑥𝑖(∆𝑥𝑖+1 + ∆𝑥𝑖)

2

∆𝑥𝑖+1
2 + ∆𝑥𝑖

2 −
∆𝑥𝑖(∆𝑥𝑖 + ∆𝑥𝑖−1)

2

∆𝑥𝑖
2 + ∆𝑥𝑖−1

2 ] + 𝑂(ℎ2) 

= ∇𝜙𝑖 +
∇𝜙𝑖

2
[
∆𝑥𝑖(∆𝑥𝑖+1 + ∆𝑥𝑖)

∆𝑥𝑖+1
2 + ∆𝑥𝑖

2 +
∆𝑥𝑖(∆𝑥𝑖 + ∆𝑥𝑖−1)

∆𝑥𝑖
2 + ∆𝑥𝑖−1

2 − 2] + 𝑂(ℎ). (3.15) 

Even for this case, unless ∆𝑥𝑖−1 = ∆𝑥𝑖 = ∆𝑥𝑖+1 is satisfied, same conclusion as GGSA 

is attained. Therefore, these two GG type methods should not be preferred in actual flow 
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problem where irregular and mixed grids are dominant, especially when accurate gradient 

value itself is important, such as turbulence modeling. 
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3.2.2 Results by Green-Gauss type methods  

 As for all other grid and test function combination, such as U-Q, U-L, R-Q, etc., GG type 

methods exhibit large gradient error due to the fact demonstrated in earlier chapter. Even 

though GGNA show better accuracy than GGSA on mixed and unstructured NACA0012 

grid, still the level of gradient accuracy is not satisfactory.  

 

Figure 3.4 Contours of gradient error on triangular and mixed grid by GGSA and GGNA 
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3.2.3 Results by Least-Square type methods  

Regarding the U-Q and R-Q test cases estimated by CWLSQ, cells with high gradient 

error exist, though accounting for less than 10% of entire cells. On the other hands, 

EWLSQ can successfully estimate the gradient, showing less than 1% of error for these 

cases. Comparison of gradient error by CWLSQ and EWLSQ for R-Q test case can be 

found in Fig. (3.5). Result of U-Q test case is line with that of R-Q and is omitted here. 

Except for the U-Q and R-Q case, both CWLSQ and EWLSQ show similar level of 

gradient accuracy. 

EWLSQ, whose gradient accuracy is better than other methods investigated, usually 

require more than two to dozens of times more stencil than CWLSQ, and thus inevitably 

consumes more computational cost than the counterpart. However, as pointed out in M-Q 

and N-Q test cases, CWLSQ can yield comparable level of gradient accuracy in certain 

instances.  

To sum up, at the viscous boundary layer, LSQ type methods can give even more 

accurate result than GG type methods, which turn out to be inherently inconsistent.  Other 

grid, test function combination also showed that GG type methods are not suitable for 

general grid type, so one should refrain from applying them to actual flow simulation, 

especially where correct gradient value is crucial. Meanwhile, EWLSQ can provide 

accurate gradient for all test cases, and CWLSQ is comparable to EWLSQ except for U-Q 

and R-Q test cases. Therefore, by taking advantage of the merits of two LSQ approaches, 

which are relatively good gradient accuracy of EWLSQ and relatively low computational 

cost of CWLSQ with fair accuracy, and by switching between them depending on certain 

criterion, we can come up with an accurate and efficient gradient estimation method that 
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can be implemented on general unstructured grid. 

   

 

Figure 3.5 Contours of gradient error on triangular and mixed grid by GGSA and GGNA 
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Chapter 4 

Least-Square Method Switching Function 

 

 

4.1 Motivation 

From the observation made in earlier chapter, we can think of an accurate and efficient 

gradient estimation method by switching between two LSQ methods. In other words, if the 

gradient error of a cell goes over the threshold, this cell adopts the EWLSQ for estimating 

the gradient, whose gradient accuracy was shown to be best among the candidates. 

Otherwise, the cell chooses CWLSQ as the gradient estimation method, who yields fair 

gradient accuracy and claims less computational cost compared to EWLSQ. However, to 

implement this idea on universal unstructured grid, we need to determine a consistent 

switching criterion which is solely dependent on grid information. In next sub-chapters, a 

consistent criterion for switching procedure will be discussed, resulting in the Switching 

Weighted Least-Square method (SWLSQ), followed by demonstration of SWLSQ around 

simple geometry.  
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4.2 Switching Criterion 

 

4.2.1 Conventional Grid Quality Criterion  

Conventionally, quality of the grid has been judged by parameters such as the aspect 

ratio, skewness and area (or volume) ratio. The aspect ratio of a grid cell is defined by the 

ratio of maximum to minimum length, and the skewness (or equiangle skewness) is defined 

by  

  
max [

(𝑄𝑚𝑎𝑥 − 𝑄𝑒)

(180 − 𝑄𝑒)
,
(𝑄𝑒 − 𝑄𝑚𝑖𝑛)

𝑄𝑒
 ] (4.1) 

with Q𝑚𝑎𝑥 the largest, Q𝑚𝑖𝑛 the smallest angle of a cell in degrees and Q𝑚𝑖𝑛 angle for 

equilateral element in degrees. Meanwhile, the area ratio is calculated as follows  

  max[Size(i)/minSize(j),maxSize(j)/Size(i) ] (4.2) 

where Size(i) denotes the area or volume of the cell, and minSize(j) stands for minimum 

area or volume of the adjacent cell j. MaxSize(j) denotes the maximum in the same range 

as minSize(j). 

Firstly, as a basic approach, these grid quality criteria are considered to find the 

correlation between the gradient error and them. Facts that these criteria are just function 

of geometric information of given grid and requires little effort are advantages of trying 

them as a switching criterion. Fig. 4.1 exhibits graphs of the gradient error versus 

conventional grid quality criteria estimated by CWLSQ on randomly diagonalized 

triangular grid. Clearly, however, none of the criteria shows direct proportionality 
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regarding the gradient error. For example, when it comes to the grid skewness, the gradient 

error stays low even if the skewness increases, before it reaches about 0.9. However, the 

error suddenly soars around 0.9.  

Another radical disadvantage of taking conventional grid quality criteria as the 

switching threshold is that these criteria are basically confined to inspection of the target 

cell itself. For instance, think about a situation where a good quality cell encompassed by 

bad quality cells, and take the skewness of the cell as the switching criterion. Although the 

grid quality of the surrounding cells is bad, requiring extended stencil, since quality of the 

target cells is good, the target cell definitely adopts compact stencil, resulting in poor 

gradient accuracy. This is because gradient by Least-Square methods are affected stencil 

topology around the cell rather than the grid quality of the cell itself. Therefore, we need 

to set a criterion that can include the stencil information around the cell.  

 

Figure 4.1 Gradient error with respect to conventional grid quality criteria 
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4.2.2 Condition Number of Least-Square Matrix  

In linear algebra, condition number of the system measures how sensitive the output 

value is to the small change in the input. With respect to the Least-Square problem as in 

chapter 2 

[
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 (4.3) 

, or shortly 

 �̅�x⃗ ∗ = �⃗� , (4.4) 

the condition number of Least-Square matrix �̅� can be interpreted as how sensitive the 

gradient x⃗ ∗ is to the perturbation in the right-hand side of the Eq. (4.4) �⃗� . In other words, 

the greater the perturbation, the larger the error becomes. 

To observe correlation of the condition number and gradient error more intuitively, 

CWLSQ and EWLSQ are compared on U-Q and R-Q test cases, where major gradient 

accuracy gap was observed. Fig. 4.2 shows that the gradient error of CWLSQ continuously 

rises as the condition number increases on both grid types, while data of EWLSQ, low 

condition number and low gradient error, are clustered around 0 on the graph. The rationale 

for low and high condition number of each LSQ methods will be covered in next sub-

chapter.  
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Figure 4.2 Comparison of two LSQ methods concerning the condition number and gradient error 

 

 �̅�x⃗ ∗ = ∑𝑤𝑗∆𝑋𝑗
⃗⃗  ⃗∆𝜙𝑖𝑗

𝑗=1

 (4.5) 

where 𝑋𝑗
⃗⃗  ⃗ = [∆𝑥𝑗, ∆𝑦𝑗, ∆𝑧𝑗] is the vector from the target cell to the stencil. One should be 

reminded that the right-hand side of the Eq. (4.5) originally includes the second-order 

truncation error term 𝛰(ℎ2) 

 �̅�x⃗ ∗ = ∑𝑤𝑗∆𝑋𝑗
⃗⃗  ⃗∆𝜙𝑖𝑗 + 𝛰(ℎ2)

𝑗=1

. (4.6) 

, but this term is ignored during the Least-Square formulation. As a result, Least-Square 

method approximation has potential of impairing the gradient accuracy by nature, 

especially on ill-conditioned system. In other words, high condition number of the Least-
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Square system indicates that the truncation error omitted will seriously damage the 

gradient accuracy. 

In the same context, despite the high condition number of the Least-Square matrix, if 

the 𝛰(ℎ2) is sufficiently low, then the gradient error will be not be amplified, having 

accurate gradient. U-L and R-L test cases illustrated in Fig. 4.3 supports this argument. 

Even though the condition number by CWLSQ can be extremely high in both grid types, 

very low truncation error, bounded below 4.5E−10 , hardly affects the gradient value, 

producing as low gradient error as EWLSQ. 

 

Figure 4.3 Comparison of CWLSQ and EWLSQ result from U-Q and R-Q test cases 
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Therefore, when Least-Square method with compact stencil shows unacceptable 

gradient accuracy, we should expand the stencil scope by adopting EWLSQ, and the 

condition number can be used as a criterion. 

Another merit of usage of condition number is that the �̅� is only comprised of distance 

information from the target cell to neighboring cells which are purely geometric property, 

just as conventional grid quality parameters. Accordingly, one can pre-compute the 

condition number of the grid once and decide the range of the Least-Square method before 

the actual computation. 
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4.2.3 Condition Number Calculation Method  

4.2.3.1 Quadratic Formula 

As stated in previous sub-chapter, basic concept of the condition number is how much 

the output value changes with respect to the perturbation in the input. More precisely, 

following the notation in Eq. (4.4), the condition number k(�̅�) can be defined as maximum 

ratio of the relative error in x⃗ ∗ to the relative error in �⃗�  

 
𝑘(�̅�) =

‖�̅�−1𝑒‖/‖�̅�−1�⃗� ‖

‖𝑒‖/‖�⃗� ‖
 (4.7) 

with e and ‖�̅�−1𝑒‖ standing for relative error in �⃗�  and error in the solution ‖�̅�−1�⃗� ‖ 

respectively. The Eq. (4.7) is also same as 

 
𝑘(�̅�) = (

‖�̅�−1𝑒‖

‖𝑒‖
)(

‖�⃗� ‖

‖�̅�−1�⃗� ‖
) (4.8) 

for nonzero �⃗�  and e. The maximum value of Eq. (4.8) is obtained by product of two terms 

as follows 

 
𝑘(�̅�) = max

𝑒≠0
(
‖�̅�−1𝑒‖

‖𝑒‖
) ∙ max

𝑏≠0
(

‖�⃗� ‖

‖�̅�−1�⃗� ‖
) (4.9) 

 
= max

𝑒≠0
(
‖�̅�−1𝑒‖

‖𝑒‖
) ∙ max

𝑏≠0
(
‖�̅�x⃗ ∗‖

‖x⃗ ∗‖
) (4.10) 

 = ‖�̅�−1‖ ∙ ‖�̅�‖ (4.11) 

where ‖∙‖ denotes the L-2 norm of a vector or matrix.   

Least-Square matrix �̅� is a normal matrix, satisfying the condition below 
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                                 �̅� �̅�𝑇 = �̅�𝑇�̅�, (4.11) 

with superscript T denoting the transpose of a real matrix, or conjugate transpose for a 

complex matrix. Therefore, the condition number can be also acquired from the maximum 

to minimum eigenvalue λ ratio as 

 
𝑘(�̅�) =

|λmax(�̅�)|

|λmin(�̅�)|
 (4.12) 

As for a two-dimensional case, two eigenvalues of the �̅� can be readily obtained from 

the quadratic formula applied to the characteristic polynomial, i.e, det (�̅� −  λI), because 

the eigenvalues are roots of the characteristic polynomial.   

 

 

4.2.3.2 Power Method 

As for a three-dimensional case, where �̅� is a 3 × 3 matrix, calculating the condition 

number from the roots of the characteristic polynomial is limited since, general solution 

for the cubic equation is more complex and contains imaginary values. Fortunately, 

however, we can get the maximum and minimum eigenvalues of the system in an iterative 

manner by applying so called Power Method.  

Given a diagonalizable �̅�, and 𝑧 , which approximates the dominant eigenvector or 

simply a random vector, Power Method is performed as 

 𝑧 1 = �̅�𝑧 0 (4.13) 
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𝑧 1 =
𝑧 1

|𝑧 1|
 

𝑧 2 = �̅�𝑧 1 

⋯ 

𝑧 𝑛+1 = �̅�𝑧 𝑛 

where the superscript over the 𝑧  denotes the iteration step. One should be careful that 

equal sign in Eq. (4.13) stands for the insertion of the right-hand side value to the left-hand 

side value, commonly used concept in computer science. After enough iterations, 𝑧 𝑛 

becomes the greatest eigenvalue of �̅�. Applying the same procedures as in Eq. (4.13) to 

�̅�−1 instead of �̅�, one gets the reciprocal of the minimum eigenvalue of �̅�. Another point 

to keep in mind is that the calculated maximum and minimum eigenvalues are the greatest 

and the smallest eigenvalues in absolute value. 
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4.3 Switching Least-Square Method 

 

4.3.1 Behavior of Condition Number of CWLSQ and EWLSQ  

From the earlier sub-chapters, we can understand why the condition number of the Least-

Square matrix is an appropriate candidate for the switching criterion and how to calculate 

the condition number in two and three-dimensional situations. Remaining questions is then, 

for a given grid, why EWLSQ presents low condition number, thus leading to low gradient 

error, and CWLSQ causes ill-conditioned system. This phenomenon can be explained by 

expressing stencil configuration between the target cell and neighboring cells with 

trigonometric functions. 

Consider a two-dimensional case where �̅� is a 2 × 2 matrix 

 

                                �̅�  =  

[
 
 
 
 ∑𝑤𝑗∆𝑥𝑗

2

𝑗=1

∑𝑤𝑗∆𝑥𝑗∆𝑦𝑗

𝑗=1

∑𝑤𝑗∆𝑥𝑗∆𝑦𝑗

𝑗=1

∑𝑤𝑗∆𝑦𝑗
2

𝑗=1 ]
 
 
 
 

= [
𝑎 𝑏
𝑐 𝑑

]. (4.14) 

Then the characteristic polynomial can be written as 

                                 (a − λ)(d − λ) − 𝑏𝑐 = 0 (4.15) 

, and from the quadratic formula, k(�̅�) is obtained as follows 

 
                                𝑘(�̅�) =

|λ𝑚𝑎𝑥|

|λ𝑚𝑖𝑛|
=

(𝑎 + 𝑑) + √(𝑎 − 𝑑)2 + 4𝑏𝑐

(𝑎 + 𝑑) − √(𝑎 − 𝑑)2 + 4𝑏𝑐
. (4.16) 

Introducing trigonometric functions and identities, alternative expression for components 

of �̅� can be obtained as described in Fig. 4.4 
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Figure 4.4 Alternative expression of components using trigonometric functions and identities 

 

Applying the same process to terms 𝑎 + 𝑑 and 4𝑏𝑐 in Eq. (4.16) 

                    𝑎 + 𝑑 = ∑𝑤𝑗(∆𝑥𝑗
2 + ∆𝑦𝑗
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𝑗=1
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(4.17) 

                                4𝑏𝑐 = 4∑𝑤𝑗∆𝑥𝑗∆𝑦𝑗
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(4.18) 



43 

 

             = (∑𝑠𝑖𝑛2𝜃𝑗

𝑗=1

)

2

. 

Collecting all alternative expressions, the condition number is derived as  

 
𝑘(�̅�) =

(𝑎 + 𝑑) + √(𝑎 − 𝑑)2 + 4𝑏𝑐

(𝑎 + 𝑑) − √(𝑎 − 𝑑)2 + 4𝑏𝑐
=

𝑁 + √𝑁 + 𝑝

𝑁 − √𝑁 + 𝑝
 (4.19) 

where N is the number of stencils, and p is function of angles of stencil vectors. Stencil 

vector is a vector originating from the centroid of the target cell to that of neighboring cell. 

For example, p for four stencil vectors are expressed as 

𝑝 = 2[cos 2(𝜃1 − 𝜃2) + cos2(𝜃1 − 𝜃3) + 𝑐𝑜𝑠2(𝜃1 − 𝜃4) 

+𝑐𝑜𝑠2(𝜃2 − 𝜃3) + 𝑐𝑜𝑠2(𝜃2 − 𝜃4) + 𝑐𝑜𝑠2(𝜃3 − 𝜃4)] 
(4.20) 

According to the new definition of the condition number, since EWLSQ takes about two 

to dozens of times more stencils encompassing the target cell, having greater N, 𝑘(�̅�) 

easily is mitigated, keeping low condition number. In contrast, CWLSQ is prone to cause 

high 𝑘(�̅�), leading to greater gradient error. This can be confirmed by an example of 

condition number calculation in Fig. 4.5. For the R-Q test case, EWLSQ takes about four 

times more stencils than CWLSQ. Although stencil configuration suggests that EWLSQ 

has greater p, larger N of EWLSQ successfully prevents 𝑘(�̅�) from being amplified. 
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Figure 4.5 Condition number calculation example of CWLSQ and EWLSQ 

 

 

4.3.2 Switching Procedure  

From the observation made in chapter 4.3.1, we can expect that EWLSQ consistently 

outperforms the CWLSQ by having overall lower condition number and gradient error 

regardless of types of the grid. Therefore, the maximum or average condition number of 

EWLSQ can be a good candidate for switching criterion value. However, choosing the 

maximum condition number of EWLSQ may have little merit in grids around simple 

geometry, but this criterion is vulnerable to a condition number overshoot witnessed 

around a practical and complex geometry, which will be discussed in later chapter. For 

simples demonstrations, however, both max and average condition number of EWSLQ are 

examined as the switching criterion. On the other hand, setting fixed value as switching 
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criterion cannot properly handle the condition number gap between different dimensions 

or geometry complexity. Thus, average condition number of EWLSQ is utilized as 

switching criterion, defining a Switching Weighted Least-Square method (SWLSQ). 

Fig. 4.6 describes the overall process of SWLSQ. Firstly, compute the condition number 

of CWLSQ (C k(A)) and EWLSQ (E k(A)) for a given grid. Next, calculate the average 

condition of number of EWLSQ (Avg E k(A)) to set the criterion. Basically, CWLSQ is 

adopted as an initial gradient estimation method. With respect to a particular grid cell, if 

the C k(A) is greater than switching criterion, then, this cell will be switched to EWLSQ. 

Otherwise, the cell remains using the compact stencil.  

 

Figure 4.6 Overall procedure of SWLSQ 
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4.4 Simple Demonstration 

 

4.4.1 Two-Dimensional Randomly Diagonalized Triangular Grid  

Consistent switching criterion defined in earlier chapter is applied to R-Q test case to 

demonstrate its usefulness. The results from three LSQ methods are summarized in Fig. 

4.7 where Max E k(A), maximum condition number of EWLSQ, is applied as switching 

criterion. The maximum condition number and average condition number of EWLSQ are 

7 and 3.6 respectively. When average condition number is applied as the switching 

criterion, about 5% of more cells are converted compared to the case where the maximum 

condition number is used. Seeing from the Fig. 4.7, where Max E k(A) sufficiently works 

well, it may give an impression that using average Avg E k(A) unnecessarily change more 

cells required. However, drawback of using Max E k(A) as the switching criterion will be 

revealed in next chapter. 

When CWLSQ is applied on R-Q test case, maximum gradient error obviously goes 

beyond the acceptable accuracy level, but this can be successfully controlled by using 

SWLSQ, showing about 1.28% of maximum error. 
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Figure 4.7 Comparison of three LSQ methods on R-Q test case 
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4.4.2 Three-Dimensional Random tetrahedral Grid  

For three-dimensional simple demonstration case, random tetrahedral grid around a 

sphere together with quadratic test function are employed. As the two-dimensional test 

case, Max E k(A) is applied as the switching criterion for this simple case. Although Avg 

E k(A) condition number changes about 5% more cells from CWLSQ to EWLSQ, just like 

the R-Q test case, but this figure is not important compared to the stability issue of Max E 

k(A). When CWLSQ alone is applied, the gradient accuracy is totally collapsed, showing 

over 400% of error. However, SWLSQ can cure this phenomenon giving about 4% of 

maximum error, which is similar to that of EWLSQ.  

 

Figure 4.8 Comparison of three LSQ methods on three-dimensional test case 
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Chapter 5 

Application 

 

 

5.1 Two-Dimensional NACA0012 Airfoil 

In this chapter, the switching criterion established is applied to more practical and/or 

complex geometry. For the first test case, SWLSQ is applied to two-dimensional 

NACA0012 Airfoil, which is usually considered as a typical demonstration case. A 

summary of numerical schemes and information of the flow simulation are listed in Table 

5.1. Since the overall grid quality around NACA0012 is good, about less than 1% of cells 

were switched from compact stencil to extended stencil, meaning that most cell virtually 

employ CWLSQ for gradient estimation.   

Table 5.1 Summary of information of the flow simulation over NACA0012 

Simulation Information Value 

Mach Number 0.5 

Angle of Attack 1.25 

Reynolds Number 1.1 × 107 

Flow Type Turbulent Flow 

Turbulence model Menter’s k-w SST 

Convective flux RoeM [16] 

Time Integration Method Implicit Euler 

Linear Algebra Method LU-SGS 

 

As can be seen from the pressure coefficient over the NACA0012 in Fig. 5.1, all three LSQ 

methods produces almost same result, and only one pressure contour around the airfoil is 

posted in Fig. 5.1 for brevity. Nevertheless, one should note that SWLSQ costs about 18% 
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less computation time compared to EWLSQ, showing SWLSQ is working well in simple 

demonstration problem. 

 

Figure 5.1 Comparison of three LSQ methods on two-dimensional NACA0012 
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5.2 Three-Dimensional Wing-Body Configuration 

 

5.2.1 Test Function 

Three-Dimensional wing-body configuration, or common research model (CRM), is 

used to verify the usefulness of the SWLSQ. As like the airfoil test case, SWLSQ is 

compared with other two LSQ methods, CWLSQ and EWLSQ. However, different from 

the earlier application, firstly, three LSQ methods are compared using quadratic test 

function to check the gradient accuracy.  

We mention here that when Max E k(A) is applied as the switching criterion, it fails to 

compute flow quantities during the computation. This is because even if EWLSQ is used 

for gradient estimation, there are cells that presents abnormally high condition number, 

usually found near the boundary cells due to unusual stencil distribution. These cells make 

switching criterion too high that only few cells are switched to EWLSQ, about 2.5% in this 

case. As a result, cells with high condition number and gradient error still linger, spoiling 

the entire flow simulation. Therefore, Avg E k(A) is implemented as the switching criterion 

from now on for stability issue. 

As for CRM, when CWLSQ is used, cells with poor gradient accuracy and high 

condition number are found near the trailing edge of the wing as illustrated in Fig 5.2. 

Maximum gradient error soars over 260% which is unacceptable amount of figure in real 

application. When SWLSQ with Avg E k(A) as the switching criterion is applied, about 22% 

of cells are switched from CWLSQ to EWLSQ, reducing the maximum gradient error from 

about 270% to 9.6%. This can be confirmed in the error and condition number contour 
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near the trailing edge in Fig 5.2. High gradient error region observed in CWLSQ are 

effectively cured when SWLSQ is utilized. 

 

Figure 5.2 Comparison of three LSQ methods on the CRM 

 

 

5.2.2 Flow Simulation 

Three LSQ methods are employed to conduct the flow simulation over the CRM. 

Information about the numerical schemes and other inputs are listed in Table 5.2. As 

expected from the high gradient error of CWLSQ, observed in earlier chapter, CWLSQ 

fails to compute this test case. In contrast, SWLSQ successfully computes this case, saving 

about 10% computation time compared to EWLSQ. Even though lift and drag coefficients 

calculated from SWLSQ show little deviation from that of EWSLQ, the error is 0.12% for 

𝐶𝐿 and 0.35% for 𝐶𝐷. Pressure contour of both SWLSQ and EWLSQ over the CRM are 

almost same that only one of them is posted as in Fig 5.3. 
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Table 5.2 Summary of information of the flow simulation over the CRM 

Simulation Information Value 

Mach Number 0.85 

Angle of Attack 2.3 

Reynolds Number 5.1 × 106 

Flow Type Turbulent Flow 

Turbulence model Menter’s k-w SST 

Convective flux AUSMPW+ [17] 

Time Integration Method Implicit Euler 

Linear Algebra Method GMRES 
 

Table 5.3 Aerodynamic coefficients and computation time of two LSQ methods  

LSQ Method SWLSQ EWLSQ Error [%] 

𝐶𝐿 05042 0.5036 0.12 

𝐶𝐷 0.0288 0.0287 0.35 

Computation Time [sec] 37810 41613 - 
 

 

Figure 5.3 Pressure contour of the CRM 
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5.3 Modern Fighter 

 

5.3.1 Test Function 

To present the gradient accuracy and computational efficiency of the SWLSQ on more 

pragmatic and complex geometry, a modern fighter configuration is adopted. SWLSQ is 

compared with other two Least-Square methods, CWLSQ and EWLSQ.   

Test function examined on previous chapters, 𝜙 = 𝑥2 + 𝑦2 + 𝑧2, is utilized again for 

consistent application. At each cell, the estimated gradient by SWLSQ is compared with 

exact gradient value, which can be obtained from known test function. Fig 5.4 illustrates 

the first-gradient error and condition number of each Least-Square method at the region 

where poor gradient accuracy triggered the numerical oscillation, mentioned in 

introduction of this work. Unfortunately, however, no sensible difference between three 

Least-Square methods exist in Fig 5.4(a) regarding the first-gradient error, showing less 

than 1% error in all cases. Only minor condition number overestimation is observed in case 

of CWLSQ in Fig 5.4(b).  

 

(a) First-gradient error 
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(b) Condition number 

Figure 5.4 Comparison of three Least-Square methods 

However, in contrast with the first-gradient, contour of the second-gradient of Least-

Square methods in Fig 5.5 present distinct difference, characterized by cells with large 

error by CWLSQ. Although it is obvious that these cells with bad gradient accuracy are 

attributed to numerical oscillation, switching criterion proposed in previous chapter cannot 

help CWLSQ to be switched to EWLSQ effectively, supported by the fact that red cells 

are still left in the contour of SWLSQ. This suggests that further research is required to 

figure out the connection between the second-gradient and the condition number of the 

Least-Square matrix for appropriate switching mechanism.  

 

Figure 5.5 Comparison of second-gradient error of three Least-Square methods 
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5.3.2 Flow Simulation 

In order to analyze the effect of second-gradient accuracy on each Least-Square method, 

actual flow simulation over the fighter is conducted. The numerical schemes and basic 

information of the flow simulation are summarized in Table 5.4. 

Table 5.4 Summary of information of the flow simulation over the fighter 

Simulation Information Value 

Mach Number 0.95 

Angle of Attack 17.0 

Reynolds Number 3.5 × 106 

Flow Type Turbulent Flow 

Turbulence model Menter’s k-w SST 

Convective flux RoeM 

Time Integration Method Implicit Euler 

Linear Algebra Method GMRES 

 

As expected from the result of previous sub-chapter, CWLSQ, which exhibits large 

second-gradient error, fails to compute this case. Convergence history of calculated lift 

coefficient and drag coefficient of SLWSQ and EWLSQ are plotted in Fig 5.6, showing 

that SWLSQ gives almost same result as EWLSQ. Meanwhile, the number and ratio of 

switched cell among the total number of cells are listed in Table 5.5. In addition, the error 

of lift and drag coefficients of SWLSQ and computation time are shown in Table 5.6. 

Specific aerodynamic coefficient values, as well as the full configuration of the modern 

fighter, are omitted here for confidentiality policy. One should note that SWLSQ 

successfully computes this case and saves almost 32% of computation time compared to 

EWLSQ, compromising only less than 1% of accuracy of aerodynamic coefficients.  
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Table 5.5 The number and ratio of switched cells 

Criterion Value 4.62126 

Number of Switched / Total Cell 4619304 / 68687966 

Ratio of Switched / Total Cell [%] 6.7 

 

Table 5.6 Lift and drag coefficient error of SWLSQ and comparison of computation time  

LSQ Method SWLSQ EWLSQ 

𝐶𝐿 Error [%] 0.64 - 

𝐶𝐷 Error [%] 0.60 - 

Computation Time [hr] 68.18 99.59 

 

 

Figure 5.6 Comparison of second-gradient error of the two Least-Square methods 
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Chapter 6 

Conclusion 

 

 

A switching Least-Square method exploiting the merits of two LSQ methods is proposed 

for accurate and efficient gradient estimation on general unstructured grid.  

To begin with, two preceding gradient estimation categories are investigated, gradient 

by Green-Gauss theorem and gradient by Least-Square methods. It was found that Green-

Gauss methods using simple averaging and node averaging for cell-interface value are 

inherently inconsistent. Meanwhile, Least-Square methods using proper inverse distance 

weighting function yield even more accurate gradient at viscous boundary layer grid than 

GG type methods. Therefore, GG type methods are not applied in further research. As for 

comparison of CWLSQ and EWLSQ, considering the fair gradient accuracy of CWLSQ 

and computational cost of EWLSQ, switching between two LSQ methods can lead to 

accurate and efficient gradient estimation method.  

For consistent switching criterion that can be implemented on general unstructured grid, 

condition number of the Least-Square matrix is considered. This is because the condition 

number shows strong correlation with the gradient error, and it can be easily computed 

from the given grid in advance. By using the trigonometric functions, it is shown that LSQ 

method with extended stencil tends to have lower condition number, thus leading to lower 

gradient error because of greater number of stencils. Even though maximum condition 
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number of the EWLSQ seems to be a good candidate for switching criterion value, it 

exhibits a stability problem, caused by condition number overshoot at a region near the 

boundary of the grid. Therefore, eventually, average condition number of the EWLSQ is 

selected as the switching criterion.  

Lastly, SWLSQ is applied to simple and complex grid to verify its excellence. In terms 

of gradient accuracy, SWLSQ produces similar level of accuracy compared to EWLSQ, 

saving about 10 to 30% computation time depending on the flow problem.  

During the application of SWLSQ on complex grid around the modern fighter, it was 

found that the accuracy of the first-gradient is not a sufficient condition for the accurate 

estimation of the second-gradient. Therefore, future research is needed to understand the 

characteristics of second-gradient and to find proper methodologies that can estimate 

second-gradient. 
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국문초록 

 

 

 

본 연구는 최소제곱법 방법간의 스위칭 함수의 설계를 통해 비정렬 

격자에서 정확하고 효율적인 구배 계산 제안한다. 다양한 예제들을 분석한 

결과, 비정렬 격자에서 가장 널리 사용되는 구배 계산방법 중 하나인 그린-

가우스 정리를 이용한 구배 계산방법이 본질적으로 inconsistent하며, 또한 

최소 제곱법을 활용하는 구배 계산방법이 점성경계층 및 일반 격자에서 그린-

가우스 정리를 사용하는 방법보다 더 정확함을 보였다.  

앞선 분석을 바탕으로 상대적으로 효율적인 좁은 스텐실을 사용하는 

가중 최소제곱법 방법과 상대적으로 정확한 넓은 스텐실을 사용하는 가중 

최소제곱법 사이의 스위칭을 추구하였다. 한편 최소제곱법 행렬의 조건수가 

구배 오차와 상관관계를 보이며, 오직 격자의 정보만으로도 계산이 

가능하므로 이를 스위칭 기준으로 삼았다. 일반적인 격자에 적용하기 위해서 

조건수를 분석한 결과, 삼각함수를 이용하여 조건수를 스텐실 개수와 스텐실 

벡터간의 각도의 함수로 표현하였다. 그리고 넓은 스텐실을 사용하는 

최소제곱법 방법의 평균 조건수가 적합한 스위칭 기준 값임을 확인하였다.  

2차원 및 3차원 간단한 문제들에 대하여 스위칭 메커니즘을 보였다. 

마지막으로 SWLSQ의 우수함을 보이기 위해 2차원 익형, 3차원 윙바디 및 
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전투기 형상에 대해 3가지 최소제곱법 방법들의 구배 정확도와 계산 비용을 

비교하였다.  

 

주요어: 구배, 구배 계산방법, 최소제곱법, 스위칭 함수, 조건수, 그린-가우스 

정리, 비정렬 격자 
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