

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M. Sc. Thesis

Memory Access Pattern Analysis of CNN
Type Application on CPU Model

CPU모델에대한 CNN기반애플리케이션의메모리
액세스패턴분석

by

Konstantin Bick

February 2019

Seoul National University
Graduate School of Engineering

Department of Electrical and Computer Engineering

M. Sc. Thesis

Memory Access Pattern Analysis of CNN
Type Application on CPU Model

CPU모델에대한 CNN기반애플리케이션의메모리
액세스패턴분석

by

Konstantin Bick

February 2019

Seoul National University
Graduate School of Engineering

Department of Electrical and Computer Engineering

Memory Access Pattern Analysis of CNN
Type Application on CPU Model

CPU모델에대한 CNN기반애플리케이션의메모리
액세스패턴분석

지도교수이혁재

이논문을공학석사학위논문으로제출함

2019년 2월

서울대학교대학원

전기 정보공학부

빅콘스탄틴

빅콘스탄틴의공학석사학위논문을인준함

2019년 2월

위 원 장 : 최 기 영 (인)

부위원장 : 이 혁 재 (인)

위 원 : 권 영 준 (인)

Abstract

Neural Networks and especially Convolutional Neural Networks (CNNs) gained

a lot of attraction recently as they excel in computer vision fields like object detec-

tion and image classification. CNNs generally contain different layer types that are

executed alternately. An analysis of such layer based CNN is necessary to draw con-

clusions on how to modify current computer architecture in order to optimize the per-

formance of CNNs. This thesis analyzes a typical CNN with a focus on the efficiency

of caching and prefetching. Based on the findings an adaptive L2 cache prefetching

scheme is proposed that combines two existing prefetchers and overcomes their layer

specific inefficiencies. Moreover, a cache hierarchy bypassing the L2 cache is proposed

that reduces power consumption while only slightly sacrificing overall performance.

keywords: CNN, memory system, prefetching, computer architecture

student number: 2017-23530

i

To my parents,

who unconditionally supported me

through this eventful phase of my life.

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 Introduction 1

2 Problem set 2

2.1 Target Application . 2

2.1.1 Layer Description . 3

3 Simulation Environment 8

3.1 Prefetcher . 9

3.1.1 Tagged Prefetcher . 10

3.1.2 Stride Prefetcher . 10

3.2 Model Matching . 12

4 Analysis 16

4.1 Memory Access Pattern . 16

4.2 Prefetching Efficiency . 21

ii

5 Proposal and Evaluation 25

5.1 Adaptive Prefetcher . 25

5.2 L2 cache bypassing . 28

6 Conclusion 33

A Appendix 34

A.1 Prefetching algorithm flow diagrams 34

A.2 Linaro disk image bug fix . 36

A.3 Model Matching . 38

Abstract (In Korean) 42

iii

List of Tables

2.1 Tiny YOLOv3 layer overview . 4

3.1 System specifications of the ARTIK710 hardware development board

and the matching gem5 system . 13

4.1 Layer type runtimes with different L2 prefetcher types 24

5.1 Layer type runtimes with different L2 prefetcher types 27

5.2 Layer type runtimes with different L2 prefetcher types 31

5.3 McPAT area and power estimates for a single core processor based on

Cortex-A53 parameters in 28nm . 32

iv

List of Figures

2.1 Pseudo code of the convolution operation 5

2.2 Pseudo code of the max-pooling operation 6

3.1 Tagged prefetcher block diagram . 10

3.2 Stride Prefetcher block diagram . 11

3.3 Stride Prefetcher flow chart . 12

3.4 Tiny YOLOv3 layer runtime comparison of the matched gem5 model

and ARTIK 710 development board 15

4.1 Cycles Per Instruction (CPI) and memory intensity of each layer in

Tiny YOLOv3 . 17

4.2 Measured CPI divided into three categories: ideal CPI, CPI caused by

pipeline stalls, and CPI caused by memory stalls 18

4.3 L1 data, L2 demand, and overall L2 cache misses 19

4.4 L2 cache MSHR occupancy per layer during the simulation of Tiny

YOLOv3 . 20

4.5 L2 cache data misses comparison for three different systems: no at-

tached L2 prefetcher, L2 Stride Prefetcher, and L2 Tagged Prefetcher . 22

4.6 Stride prefetch abort causes . 23

4.7 Runtime speedup normalized on runtimes of a system without L2

prefetcher . 24

v

5.1 The proposed Stagged Prefetcher . 26

5.2 L2 cache demand misses comparison for three systems: L2 Stride

Prefetcher, L2 Tagged Prefetcher, and L2 Stagged Prefetcher 27

5.3 Runtime speedup normalized on runtimes of a system without L2

prefetcher . 28

5.4 L1 data cache and prefetch parameter reevaluation 29

5.5 Tiny YOLO runtimes of ARTIK710 matched system and two systems

bypassing the L2 cache . 31

A.1 Tagged Prefetcher flow diagram . 34

A.2 Stride Prefetcher flow diagram . 35

A.3 The linux boot sequence . 36

A.4 The linux boot sequence . 37

A.5 auto-root-login bash script . 38

A.6 auto-console-login bash script . 38

A.7 PARSEC 3.0 runtime comparison of the matched gem5 model and AR-

TIK 710 development board . 39

vi

Chapter 1

Introduction

Current computer architecture is built around and optimized with regards to conven-

tional computer applications. Recently, Neural Networks and especially Convolutional

Neural Networks (CNNs) gained a lot of attraction as they excel in computer vision

fields like object detection and image classification. CNNs generally contain different

layer types that are executed alternately. While the depth of the network and the spe-

cific techniques in use may differ depending on the network, the layer based structure

is characteristic for all CNNs. The memory access pattern is expected to change along

with the alternating layer structure. The analysis of the memory access pattern, carried

out in this thesis, aims to fully characterize memory utilization and memory require-

ments of Tiny YOLO v3, a representative CNN. Findings of the analysis will then be

used in order to improve a system’s architecture with regards to CNN execution.

The remainder of this thesis is organized as follows: proceeding the introduction,

Chapter 2 describes the targeted CNN, Tiny YOLO v3, and various CNN layer types.

Chapter 3 introduces the simulation environment as well as the hardware matched

simulation model used throughout the analysis. Chapter 4 then thoroughly analyzes the

targeted CNN’s memory access pattern. Proposals and their evaluation are discussed

in Chapter 5 while Chapter 6 concludes this thesis.

1

Chapter 2

Problem set

This chapter discusses the characteristics of Convolutional Neural Networks (CNNs)

in the context of Tiny YOLOv3, the targeted application for the research conducted

in this thesis. Distinct layer features are emphasized on as they will be the key to

architectural changes in order to improve CNN execution.

2.1 Target Application

Convolutional Neural Networks (CNNs) generally contain different layer types that are

executed alternately. Every layer type has its purpose, be it to detect features, compress

feature maps, or else. Depending on a network’s aim, different layer depths or tech-

niques are used in order to optimize performance, accuracy, hardware requirements,

etc. However, the convolutional layer is the core layer in every CNN and networks

making use of it are categorized as CNNs. The purpose of the convolutional layer is

to detect certain patterns or features in the input image through the convolution of

different kernels and the input image.

YOLO (“You Only Look Once”) has gained a lot of attraction recently as it signif-

icantly sped up object detection and classification while maintaining a high accuracy

comparable to previous network designs [1]. After its release, the network has been

2

improved further and currently the third version, YOLOv3, is available [2]. Typical

for a CNN, several convolutional layers extract features of the input image into feature

maps in YOLOv3.

In total, YOLOv3 has 106 layers, of which 75 are convolutional layers. This makes

the network design of the third version of YOLO much deeper compared to previous

iterations. Tiny YOLOv3, proposed by the same authors of YOLO, follows the idea

behind YOLOv3 but reduces the network depth in order to improve performance on

embedded systems or systems with less computing power. Tiny YOLOv3 has just 24

layers in total, of which 13 are convolutional layers, mostly followed by max-pooling

layers. Compared to YOLOv3, the accuracy of Tiny YOLOv3 is decreased. However,

the smaller network uses the same input image size and contains convolutional layers

with identical dimensions. This makes Tiny YOLO ideal for the memory access pattern

analysis, as it reduces the required simulation time but overall contains characteristics

like dimension, network techniques etc, of its deeper counterpart, YOLO v3.

In this thesis, the memory access pattern of Tiny YOLOv3 is analyzed. Weights,

pretrained on the COCO dataset, are used which can be obtained from the author’s

website. The network with its pretrained weights is able to detect 80 different object

classes.

2.1.1 Layer Description

An overview of all 24 layers in Tiny YOLOv3 is given in Table 2.1. Besides convo-

lutional layers, max-pooling, upsampling and routing layers are used. Additionally,

layers labeled “yolo” are found towards the end of the network. Those layers evalu-

ate bounding boxes and class predictions based on their previous convolutional layers.

Most of the layers in Tiny YOLOv3 are convolutional and max-pooling layers, which

are executed alternately. F.e, in Table 2.1 it can be seen that from layer 0 to layer 12,

the convolutional layer is executed interchangeably with the max-pooling layer.

Further, a network technique called “skip connection” is used, where previously

3

Table 2.1: Tiny YOLOv3 layer overview

Layer No. Type Filters Size Input Output BFLOPs

0 conv 16 3x3 / 1 416x416x3 416x416x16 0.150
1 max 2x2 / 2 416x416x16 208x208x16
2 conv 32 3x3 / 1 208x208x16 208x208x32 0.399
3 max 2x2 / 2 208x208x32 104x104x32
4 conv 64 3x3 / 1 104x104x32 104x104x64 0.399
5 max 2x2 / 2 104x104x64 52x52x64
6 conv 128 3x3 / 1 52x52x64 52x52x128 0.399
7 max 2x2 / 2 52x52x128 26x26x128
8 conv 256 3x3 / 1 26x26x128 26x26x256 0.399
9 max 2x2 / 2 26x26x256 13x13x256
10 conv 512 3x3 / 1 13x13x256 13x13x512 0.399
11 max 2x2 / 1 13x13x512 13x13x512
12 conv 1024 3x3 / 1 13x13x512 13x13x1024 1.595
13 conv 256 1x1 / 1 13x13x1024 13x13x256 0.089
14 conv 512 3x3 / 1 13x13x256 13x13x512 0.399
15 conv 255 1x1 / 1 13x13x512 13x13x255 0.044
16 yolo
17 route 13
18 conv 128 1x1 / 1 13x13x256 13x13x128 0.011
19 upsample 2x
20 route 19 8
21 conv 256 3x3 / 1 26x26x384 26x26x256 1.196
22 conv 255 1x1 / 1 26x26x256 26x26x255 0.088
23 yolo

calculated feature maps are forwarded to later layers, skipping layers in between. This

skip connection technique is used at layers labeled “route”. By reusing previous fea-

ture maps, details, that otherwise would become too abstract, can be restored. A short

description the main layer types of Tiny YOLOv3 is found below.

4

Convolutional

The convolutional layer is the core layer of any CNN. Its purpose is to extract features

from input images through convolutions of different kernels and the input image. The

number of kernels (also referred to as filters), can be seen in the third column of Table

2.1. The parameter “Size” in the fourth column also refers to the filters, while “In-

put” and “Output” refer to the input image and resulting feature map sizes. For every

convolutional layer, Tiny YOLOv3 predicts the number of billion floating point oper-

ations, as can be seen in the seventh column of Table 2.1. Pseudo code for the image

convolution is shown in Fig. 2.1. The for-loops starting in line 1 and 2 iterate through

the input image’s height and width. The for-loops in line 4 and 5 iterate through the

kernel’s height and width. In line 6, the multiplication and addition of image pixel and

kernel pixel, required for the convolution, is shown. The result will normalized and

saved to the output feature map, as seen in line 9.

1 for (y=0; y < i_h; y++) {
2 for (x=0; x < i_w; x++) {
3 out = 0;
4 for (j=0; j < k_h; j++) {
5 for (i=0; i < k_w; i++) {
6 out += B[y+j][x+i] * A[j][i];
7 }
8 }
9 C[y][x] = out / (k_h * k_w);

10 }
11 }

Figure 2.1: Pseudo code of the convolution operation.

Max-pooling

The max-pooling layer reduces the dimension of feature maps. In the context of Tiny

YOLOv3, column four in Table 2.1, “Size”, refers to the size of the max-pooling oper-

5

ation. For example, a 2× 2 size compares four pixel values and stores just the largest.

The pseudo code of this operation can be seen in Fig. 2.2. The for-loops in line 1 and

2 are traversing the height and width of the input feature map. The for-loops in line 4

and 5 are iterating the size of the max-pool operation. The max value will written to

the output feature map, as seen in line 10.

1 for (y=0; y < i_h; y = y+pool_h) {
2 for (x=0; x < i_w; x = x+pool_w) {
3 max = 0;
4 for (j=0; j < pool_h; j++) {
5 for (i=0; i < pool_w; i++) {
6 val = B[y+j][x+i];
7 max = (val > max) ? val : max;
8 }
9 }

10 C[y][x] = max;
11 }
12 }

Figure 2.2: Pseudo code of the max-pooling operation.

Yolo, Route and Upsample

Besides convolutional and max-pooling, layers labeled “yolo”, “route” and “upsam-

ple” are used in Tiny YOLOv3. Because their runtime is very short, they won’t be

analyzed in detail in this thesis. However, a short explanation of their function is given

below.

Bounding boxes and classes are predicted inside the yolo layer. The evaluation is

based on the previous convolutional layer that applies 255 filters of the size 1 × 1.

All 255 channels (depth of the feature map) have their unique information, including

bounding box coordinates, objectness scores and class confidences.

The route layer forwards the feature map of a certain convolutional layer to a later

convolutional layer while skipping all layers in between. The third column in Table

6

2.1, referring to the number of kernels in other layers, indicates the layer of which the

output is forwarded from. F.e. layer no. 17, route, redirects the output of convolutional

layer no. 13 to be the input of convolutional layer no. 18. In the case of two indices,

as seen in the route layer no. 20, the output of both layers are concatenated and then

forwarded to the input of convolutional layer no. 21.

A bilinear upsampling is taking place in layers labeled upsample. As this layer

is very short compared to convolution and max-pooling layers, this layer will not be

analyzed in detail.

7

Chapter 3

Simulation Environment

A computer architecture simulator is required to not just analyze execution statistics,

but to perform a design exploration. During a design exploration, system components

and their parameters are modified to investigate the impact on the execution of the

targeted application. The simulator is required to be accurate, fast and versatile.

gem5 is a renowned computer architecture simulator [3]. It supports several ISAs

(Instruction Set Architectures), including ARM and x86. The simulators offers a SE

(System Emulation) and the FS (Full-System) simulation mode. The SE mode supports

applications to run directly on a system defined in gem5. In this mode, no operating

system (OS) is required and therefore most system calls are unsupported. While this

simulation mode grants freedom regarding system design, it lacks the support of most

libraries that are handled by the OS. The FS mode, on the other hand, simulates the OS

on top of the defined system. Thus, multithread APIs (Application Programming In-

terfaces) like the pthread library or OpenMP are supported. In this thesis, the FS mode

is used because Tiny YOLOv3 execution can be parallelized on multicores through the

OpenMP library. Simulation results of the FS mode are well comparable to hardware

development board executions, which is shown in the later Section 3.2.

As for the ISA, the ARM architecture is used because of two reasons: firstly, the

simulator used in this research, gem5, shows a wide-range support of the ARM ISA,

8

while linux kernels as well as OS images for the ARM architecture are freely available.

Secondly, with the help of ARM’s Development Studio 5, ARM processors’ PMUs

(Performance Monitoring Units) can be monitored. Data collected through the PMUs

are crucial for a comparison of the simulator and real hardware. Thus, a hardware

matched simulation model can be defined, as discussed in Section 3.2.

ARM supports the development of gem5 and they provide a Research Starter Kit

(RSK) with a core model, a gem5 simulation setup script and a compatible kernel

and linux disk image1. The core model, a gem5 SimObject modeling a 64-bit in-order

core called High-Performance In-order (HPI) core, is implemented on top of the gem5

in-order core model [4]. The attached simulation script defines a gem5 system setup

that resembles ARM’s development board environment. Moreover, a linaro disk image

is distributed as well as a compatible kernel. Files distributed in the ARM RSK are

used as a starting point for the simulated system used in this research. Section 3.2

discusses necessary parameter modifications in order to match the simulation model

to a hardware development board.

In order to calculate power of the processor more accurately, the simulator McPAT

(Multicore Power, Area, and Timing) [5] is integrated into the simulation environment.

3.1 Prefetcher

Cache prefetching may significantly hide long memory access times. Hardware cache

prefetchers generally predict future miss addresses based on a cache’s miss history.

Their predictions are fetched whenever the according cache completed handling all

outstanding demand misses and before entering an idle stage.

This section introduces the Stride Prefetcher and Tagged Prefetcher, which are

implemented into gem5 by default.
1The linaro image linaro-minimal-aarch64.img distributed within the aarch-system-

20180409.tar.xz reads attached .rcS scripts twice during a gem5 simulation. The fix to prevent

this from happening is described in Appendix A.2

9

3.1.1 Tagged Prefetcher

The Tagged Prefetcher identifies prefetch candidates on two conditions [8]: either, a

demand fetched cache block is accessed for the first time, or, a prefetched cache block

is accessed for the first time. The original proposal discusses an additional tag bit for

every block in the cache (hence the name Tagged) that is set to 1 upon reference. For

every demand fetched or prefetched block, the tag bit is initially set to 0. On every 0

to 1 transition, a new prefetch is generated. Thus, the Tagged Prefetcher considers not

only cache misses but also accesses to prefetched blocks when generating prefetches.

The simple block diagram of the Tagged Prefetcher is shown in Fig. 3.1. In gem5

the cache object is notifying the prefetcher component whenever above mentioned

conditions are met and the prefetcher generates as many next block addresses as its

degree specifies. Those generated addresses will be queued in the so called “prefetcher

queue” and prefetched when all outstanding cache demand misses are handled.

addr data addr .. addr .. addr ..1 0 0 0

Figure 3.1: Tagged prefetcher block diagram. Bit transitions from 0 to 1 trigger the

prefetcher to generate next block addresses according to the degree.

3.1.2 Stride Prefetcher

Compared to the Tagged Prefetcher, the Stride Prefetcher [9] is a more sophisticated

prefetch algorithm. Cache misses will be registered in a Program Counter (PC) Ta-

ble that keeps track of the PCs of instructions that reference a missing cache block.

Additionally, a stride between the previous missed memory address and the current

missed memory address is calculated. Moreover, every PC Table entry holds a confi-

dence value that is increased whenever the current stride equals the stride recorded in

10

the PC Table.

Fig. 3.3 shows the simplified flowchart of the prefetch algorithm. On a PC Table

miss, an entry in the PC Table is created with the following information: the instruc-

tion PC, the memory address that was missing, the stride between the previous and the

current missing memory addresses (initially set to 0), and the starting confidence for

the given stride. If the instruction with the same PC tries to fetch another cache block

that is missing (PC Table hit), a new stride will be calculated based on the PC Table

entry’s address and the current referenced address. Now, the PC Table entry’s confi-

dence is either increased (old and new stride match), or decreased (old and new stride

don’t match). If the confidence is above a certain threshold, a number of prefetches is

generated, again, according to the prefetcher’s degree. If the confidence is below the

threshold, however, the new calculated stride will replace the stride recorded in the

PC Table entry. In gem5, the cache object notifies the prefetcher component through

a notify() function. Fig 3.2 shows the block diagram of the Stride Prefetcher. Exem-

plary, two different degrees and strides are shown. The complete flowchart of the Stride

Prefetcher is found in Appendix A.1.

addr data addr addr addr

Figure 3.2: Stride Prefetcher block diagram. Prefetches are generated based on the

missing cache block address. The number of prefetches generated depends on the de-

gree (blue shows a degree of 1 while pink shows a degree of 2). The stride determines

the address offset (blue shows a stride of 3 blocks, while pink shows a stride of 2

blocks).

11

hit in PC Table?

/* create Table entry */

entry.confidence >= threshold?return

return

no yes

yesno

/* confidence ++ / */

/* update stride */ stride prefetch

Figure 3.3: Stride Prefetcher flow chart.

3.2 Model Matching

In order to create a realistic simulation model, the system defined in gem5 and its per-

formance are closely matched and compared to the ARTIK710 hardware development

board [citation]. As discussed above, the files included in the ARM Research Starter

Kit (ARM RSK) are used as a starting point for the simulation model matching. The

ARTIK710 hardware development board implements a ARM Cortex-A53 octa-core

processor and runs Ubuntu as default operating system. Publicly disclosed specifica-

tions of the board are shown in Table 3.1. Next to the ARTIK710 specifications are

the gem5 system specifications that are used for the memory access pattern analysis in

Chapter 4. “n/a” in Table 3.1 indicates that information was not openly available. In

those cases, default parameters of the HPI CPU are assumed, which are given in the

ARM RSK. Rows highlighted in gray in Table 3.1 show modifications to the generic

HPI system that are made in order to match the ARTIK710 board.

12

Table 3.1: System specifications of the ARTIK710 hardware development board and

the matching gem5 system. Rows highlighted in gray show modifications to the

generic HPI system.

ARTIK710 gem5 sys.

CPU core type Cortex A-53 HPI
no. of cores up to 8 up to 4

core frequency 1400MHz 1400MHz

L1I size 32 kB 32 kB

latency n/a 1 cycle
associativity 2 1 2

mshrs n/a 2

write buffers n/a 8

L1D size 32 kB 32 kB

latency n/a 1 cycle
associativity 2 1 2

mshrs n/a 4

write buffers n/a 4

Prefetcher type n/a Stride
queue size n/a 4

degree n/a 4

L2 size 2× 512 kB 512 kB 2

latency 13 1 13 cycle
associativity 16 1 16

mshrs n/a 4

write buffers n/a 16

Prefetcher type n/a Stride
queue size n/a 4

degree n/a 4

DRAM type DDR3 DDR3
size 2× 512MB 2× 512MB

bus width 32 bit 32 bit
1 source: J. L. Hennessy, and D. A. Patterson, Computer Architecture: A

Quantitative Approach [10]
2 512 kB are allocated per cluster in ARTIK710. The matched gem5

model is setting up just a single cluster, thus just 512 kB are specified.

13

Modifications to the ARM RSK system setup are mainly concerning the main

memory model and the L2 cache prefetcher. While the ARM RSK system sets up

the main memory in a Dual Inline Memory Module (DIMM) fashion, consisting of

8 DRAM devices with a 8 bit data bus each, the ARTIK710 board specifies just two

DRAM devices with a total bus width of 32. As for the prefetcher, the exact algorithm

in use inside the ARM Cortex A-53 is not publicly disclosed. However, the technical

reference manual of the ARM Cortex A-53 processor is stating that the prefetcher is

able to recognize misses in a “fixed stride pattern” [6]. Thus, the Stride Prefetcher,

that is also defined in the ARM RSK setup, is attached to the L1D cache for the gem5

model. Further, the ARM RSK is not attaching any prefetcher to the L2 cache. Tiny

YOLOv3 runtime and main memory access counter differences of the hardware board

and the gem5 system, however, suggest that L2 cache prefetching is at work inside the

ARM Cortex A-53 processor. Thus, another Stride Prefetcher with a queue size and

degree of 4 is attached to the L2 cache, as seen in Table 3.1.

Fig. 3.4 shows a comparison of Tiny YOLOv3 layer runtimes of the ARTIK710

development board and the matching model defined in gem5. Accumulated absolute

mean error for the total runtime with single core execution is 4.95%, while dual and

quad core mean absolute errors are at 2.61% and 3.82%, respectively. For single core

execution, the matched gem5 system model runtimes are slightly shorter on average,

with the exception of layer 0 (conv) and layer 23 (yolo). The model is further validated

running the PARSEC (Princeton Application Repository for Shared-Memory Comput-

ers) 3.0 benchmark suite [7]. Runtime comparisons of the matched gem5 model and

the ARTIK710 board are found in Appendix A.3.

14

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.5

1

1.5

2

2.5

ru
nt

im
e

[s
]

ARTIK710
gem5 (matched)

(a) Single core; mean absolute error = 4.95%

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.5

1

1.5

2

2.5

ru
nt

im
e

[s
]

ARTIK710
gem5 (matched)

(b) Dual core; mean absolute error = 2.61%

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.5

1

1.5

2

2.5

ru
nt

im
e

[s
]

ARTIK710
gem5 (matched)

(c) Quad core; mean absolute error = 3.82%

Figure 3.4: (a) Single core, (b) dual core, and (c) quad core Tiny YOLOv3 layer run-

time comparison of the matched gem5 model and ARTIK 710 development board. For

(a) the absolute mean error in total runtime is 4.95%, while for (b) and (c) it is 2.61%

and 3.82%, respectively.

15

Chapter 4

Analysis

This chapter discusses the layer based memory access pattern analysis. While the first

section analyzes the general utilization of the memory system during the execution

of the Convolutional Neural Network (CNN), the second section emphasizes on data

prefetching and its performance gains.

4.1 Memory Access Pattern

Different layer types in a CNN result in alternating system performances. This be-

comes evident in Fig. 4.1, where Cycles Per Instructions (CPI) and the memory in-

tensity of each layer in Tiny YOLOv3 are shown. The memory intensity refers to the

ratio of memory read and write operations (including micro operations) to the total

number of operations. As for the performance, measured in CPI, an alternating pattern

can be recognized for layers 1 to 12. While all the max-pooling layers show a CPI

of 1.4 or less, the convolutional layers in between show a relatively constant CPI of

1.5. This pattern, clearly distinguishing max-pooling and convolutional layers, is also

evident for the memory intensity: while convolutional layers show a memory intensity

of between 40% and 50%, max-pooling layers remain at around 10%. Thus, Fig. 4.1

indicates that higher layer based memory intensity results in worsened performance.

16

In layer 16, the first set of predictions is made by the network, and thereafter no max-

pooling layer is used. Thus a similar pattern as observed above is missing.

Stall Cycles in CPI

n.
 lo

ad
.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.5

1

1.5

2

2.5

C
P

I

0

0.5

1

1.5

m
em

. i
n

te
n

si
ty

CPI
measured Mem. intensity

Figure 4.1: Cycles Per Instruction (CPI) and memory intensity of each layer in Tiny

YOLOv3. The memory intensity shows the ratio of memory operations per total op-

erations. The solid line marks the memory intensity trend of the convolutional layers,

while the dotted line marks the memory intensity for max-pooling layers.

To analyze the CPI based performance of Tiny YOLOv3 further, Fig. 4.2 divides

the measured CPI (based on micro operations) into three categories: the ideal CPI of

the CPU, here ARM Cortex-53, CPI caused by pipelines stalls, and CPI caused by

memory stalls. The CPI categorized as pipeline stalls includes stalls due to incorrect

branch predictions, insufficient resources etc. Memory stalls, on the other hand, in-

clude stalls caused by memory latency affecting all types of L1 caches: L1 data, L1

instruction, but also the walker caches for the data pages translation buffer (DTB) and

instruction page translation buffer (ITB). Equation 4.1 shows how the gem5 measured

CPI is divided into the three categories. While the measured CPI is given and the ideal

CPI is constant, both the memory stalls related CPI and pipeline stalls related CPI have

to be determined:

CPImeasured = CPIideal + CPImem. + CPIpipe. (4.1)

17

The memory related CPI is then derived as follows:

CPImem.stall = (AMLL1 ·MRL1 +AHLL1 ·HRL1) ·memory intensity, (4.2)

where AML refers to average miss latency, MR to miss rate, AHL to average hit la-

tency, and HR to hit rate. Fig. 4.2 shows that in general convolutional layers show

a larger proportion of memory stalls compared to max-pooling layers and thus sup-

ports the above made observation that increased memory intensity is directly related

to worsened performance of the targeted CNN.

n.
 lo

ad
.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.5

1

1.5

2

C
P
I

CPI
stal l ,mem

CPI
stal l ,pipel ine

CPI
ideal

Figure 4.2: Measured CPI divided into three categories: ideal CPI, CPI caused by

pipeline stalls, and CPI caused by memory stalls.

In Fig. 4.3, the L1 data cache miss rate, L2 demand miss rate, and L2 overall miss

rate is shown. It can be seen that similar to CPI and memory intensity, also miss rates

of L1 data and L2 cache show a layer based regularity. At 5%, max-pooling layers

show larger L1 data cache miss rates compared to convolutional layers, that show

miss rates below 1%. The high data reuse in convolutional layers, where kernel and

feature map data is loaded once and used multiple times, is resulting in lower miss

rates. Max-pooling layers, on the other hand, require new data to be loaded for every

pooling operation. On average, the L1 data cache miss rate is lower than 5% and peaks

for max-pooling layers. In Fig. 4.3 (b), the L2 cache demand miss rate is shown. The

18

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.02

0.04

0.06
L
1D

m
is
s
ra
te

(a)

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.2

0.4

0.6

0.8

1

L
2

d
em

an
d

 m
is

s
ra

te

(b)

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.2

0.4

0.6

0.8

L
2

m
is

s
ra

te

(c)

Figure 4.3: (a) L1 data, (b) L2 demand, and (c) overall L2 cache misses.

demand miss rate excludes misses caused by L1 cache prefetching accesses. The L2

demand miss rate is often tenfold higher than the L1 data cache miss rate for the same

layer. It peaks for convolutional layers 10, 12, 13, and 14, where it is higher than 80%.

19

While early convolutional layers show L2 demand miss rates of between 40% and

50%, they increase to about 80% from layer 10. Max-pooling layers show a reversed

pattern when it comes to L2 demand miss rates, as early layers are at 60% while

deeper layers show demand miss rates of just around 15%. Lastly, Fig. 4.3 (c) shows

the overall L2 cache miss rate. High miss rates in Fig. 4.3 (b) and (c) suggest a high

inefficiency of the second cache level.

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.2

0.4

0.6

0.8

1

oc
cu

pa
nc

y
[%

]

0 1 2 3 all

mshr entries occupied

(a)

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.2

0.4

0.6

0.8

1

oc
cu

pa
nc

y
[%

]

0 1 2 3 all

mshr entries occupied

(b)

Figure 4.4: L2 cache MSHR occupancy per layer during the simulation of Tiny

YOLOv3 for (a) single core and (b) octa core. Fully occupied MSHR entries result

in the cache entering a blocking state.

20

Fig. 4.4 (a) and (b) show the layer based L2 cache Miss Status Holding Register

(MSHR) occupancy for single and octa core, respectively. In gem5, any cache compo-

nent enters a blocking state when all MSHR entries are fully occupied. In that case,

increasing memory latencies are expected because incoming requests are blocked. Be-

cause the gem5 system has only one L2 cache object (opposed to two L2 cache in-

stances on the ARTIK710 hardware development board), the MSHR occupancy repre-

sented in Fig. 4.4 (b) might be higher than on the hardware counter part. However, it

is assumed that the figure shows the correct trend of MSHR occupancy. For the single

core simulation of Tiny YOLOv3 shown in Fig. 4.4 (a), fully occupied MSHR entries

are not evident. For octa core execution, however,fully occupied MSHR entries are

evident for layer 0, 2, 10, 12, 13, 14, and 15. This is expected because during the octa

core simulation eight L1 data caches send requests to a single L2 cache. Especially

during the execution of layer 2 (conv), the MSHR show a high occupancy. As a result,

the L2 cache is being blocked for more than 50% of the layer runtime.

4.2 Prefetching Efficiency

The previous section discussed that the targeted CNN, Tiny YOLOv3, shows overall

low L1 data cache miss rates but at the same time high L2 cache miss rates. Thus,

when analyzing prefetching efficiency, the focus is on the second cache level.

As pointed out in [11], one important metric for prefetching efficiency is the pro-

portion of misses that have been prevented by the cache prefetcher. Fig. 4.5 shows

L2 data cache misses that occured as a consequence of accesses made by the L1 data

cache. The figure shows accumulated misses for three different systems: one having no

L2 cache prefetcher, the other two having either Stride or Tagged Prefetcher attached

to the second level cache. All systems include a L1 data cache Stride Prefetcher with

a queue size and degree of 4. While layer 0 (conv) is an exception, systems with a

L2 cache prefetcher show greatly reduced overall L2 misses for all deeper convolu-

21

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
102

104

106

108
L
2
d
at
a
m
is
se
s

no pf stride tagged

Figure 4.5: L2 cache data misses comparison for three different systems: no attached

L2 prefetcher, L2 Stride Prefetcher, and L2 Tagged Prefetcher. All systems have a

Stride Prefetcher attached to the L1 data cache.

tional layers. Other layer types like yolo, route, and upsample show overall reduced

L2 misses even though the magnitude of reduced misses differs. The most crucial ob-

servation is that for max-pooling layers 1, 3, 5, and 7, the Stride Prefetcher fails to

reduces any L2 cache misses. At the same time, the Tagged Prefetcher reduces misses

efficiently. As shown in section 3.1.2, Fig. 3.3, the Stride Prefetcher aborts prefetch

address generation on two conditions: either when no Program Counter (PC) Table hit

occurs, or when the confidence for a given stride is too low. These abort conditions

make the Stride Prefetcher fail to reduce misses during above mentioned max-pooling

layers. Thus, the Tagged Prefetcher shows a clear advantage over the Stride Prefetcher

for max-pooling layers. For other layers, however, the Stride Prefetcher shows a simi-

lar efficiency to the Tagged Prefetcher (e.g. layer 6, 8, 20, 21, 22) or even outperforms

it like in the case of layer 0 (conv).

In order to further analyze why the Stride Prefetcher fails to reduce any misses

during max-pooling layers, the cause of prefetch aborts has to be counted. Addi-

tional counters have been implemented into gem5, counting whether aborts occured

due to PC Table misses or low confidence in the recorded strides. Fig. 4.6 shows the

22

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
0

0.2

0.4

0.6

0.8

1
ca

u
se

 P
F

 a
b

o
rt

Table Miss Low Conf.

Figure 4.6: Stride prefetch abort causes.

causes of aborted prefetch generations for the L2 Stride Prefetcher when simulating

Tiny YOLOv3. While for most layers a missing PC Table entry is the major cause of

prefetch generations being aborted, low confidence in the recorded stride leads to the

abort of almost all prefetches during max-pooling layers (1, 3, 5, 7, and 9).

Having discussed reduced L2 cache misses, the expectation is to see reduced layer

runtimes proportional to the reduced misses. The layer specific speedup normalized

to the system without L2 prefetcher is shown in Fig. 4.7. For most layers Stride and

Tagged Prefetcher speed up the performance to an equal magnitude. For max-pooling

layers 1, 3, 5, and 7, however, the Tagged Prefetcher shows higher improvements com-

pared to the Stride Prefetcher. During network loading, on the other hand, the Tagged

Prefetcher is causing a slow down. Thus, all performance gains the Tagged Prefetcher

shows during the inference are canceled out due to longer network and weight loading

times, as is shown Table 4.1.

Although L2 misses are reduced during network and weight loading, the run-

time is increased when the Tagged Prefetcher is attached to the second level cache.

This may be caused by the prefetcher generating more prefetches compared to the

Stride Prefetcher. Whenever the main memory responds to requests from the L2 cache

prefetcher, weight loading into the main memory is stalled.

23

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
-0.2

0

0.2

0.4

0.6
ru

n
ti

m
e

sp
ee

d
u

p

stride tagged

Figure 4.7: Runtime speedup normalized on runtimes of a system without L2

prefetcher.

Table 4.1: Layer type runtimes with different L2 prefetcher types

L2 prefetcher net. load. convolution max-pooling others total

none 4.98 s 12.28 s 0.14 s 0.68 s 18.08 s

stride 4.88 s 7.95 s 0.14 s 0.67 s 13.64 s

tagged 5.55 s 7.84 s 0.11 s 0.65 s 14.15 s

Key observations in this section are that the Stride Prefetcher failed to predict a

stride for max-pooling layers. Due to changing strides during max-pooling the thresh-

old confidence is not reached and the Stride Prefetcher proves inefficient for this layer

type. Another observation is that the Tagged Prefetcher showed overall better perfor-

mance improvements for inference layers than the Stride Prefetcher. However, network

and weight loading is slowed down compared to a system having no L2 prefetcher. This

shows that the aggressive prefetching scheme of the Tagged Prefetcher is unsuitable

for network and weight loading.

24

Chapter 5

Proposal and Evaluation

Chapter 4 discussed the targeted CNN’s layer based regularities in its memory access

pattern. F.e., layer type dependent memory access statistics like L1 miss rates and

L2 miss rates are show a recurring pattern and are thus predictable. Moreover, it was

shown that the Tagged Prefetcher may prove efficient for inference layers but the Stride

Prefetcher proves more efficient for network and weight loading.

Based on these findings, this chapter discusses two proposals: an adaptive prefetch-

ing scheme that combines two existing prefetchers and a new cache organization that

minimizes power consumptions.

5.1 Adaptive Prefetcher

Section 4.2 discussed performance improvements related to L2 cache prefetching. As

shown in Fig. 4.5, the network and weight loading and all inference layers of Tiny

YOLOv3 show reduced L2 cache misses when a prefetcher is attached to the L2 cache.

However, resulting runtime improvements still depend on the type of prefetcher and

the specific layer.

The proposed Stagged Prefetcher combines two prefetchers, Stride Prefetcher and

Tagged Prefetcher, in order to optimally reduce L2 misses and increase performance

25

of Tiny YOLOv3. In Section 3.1.2 it was discussed that the Stride Prefetcher had two

conditions on which the generation of a prefetch is aborted: either, on a PC Table

miss, or, when a PC Table entry’s stride is below the confidence threshold. The idea

of the Stagged Prefetcher, shown in Fig. 5.1, is to prefetch in two different fashions:

1© if a stride is found and the confidence for it is above the threshold, the Stagged

Prefetcher generates prefetches in the same way like the Stride Prefetcher. 2© However,

on occasions where the Stride Prefetcher would abort prefetch generations, the Stagged

Prefetcher prefetches data according to the Stagged Prefetcher, with a fixed address

offset and degree.

addr data addr addr addr

1

2

Figure 5.1: The proposed Stagged Prefetcher. 1© Prefetch generation is equal to the

Stride Prefetcher if a stride is found. 2© If no stride is found or confidence is too low,

prefetches generation is equal to the Tagged Prefetcher.

In Fig. 5.2 L2 cache demand misses, excluding accesses by the L1 data cache

prefetcher are shown. Demand misses are a stronger indicator for the overall system

performance than overall L2 cache misses. The proposed prefetcher works as intended:

in the worst case, the proposed prefetcher reduces L2 demand misses equal to the

Stride or Tagged Prefetcher, whatever prefetcher shows less cache miss reduction (see

layer 22 (conv)). However, in the best case, the proposed prefetcher outperforms both,

Stride and Tagged Prefetcher (see layer 17 (route)). For max-pooling layers, where

the Stride Prefetcher fails to reduce misses compared to having no L2 prefetcher, the

proposed Stagged Prefetcher reduces misses at the same magnitude of the Tagged

Prefetcher (see layers 1, 3, 5, 7, 9, and 11).

26

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
102

104

106

108
L
2
d
at
a
m
is
se
s

stagged stride tagged

Figure 5.2: L2 cache demand misses comparison for three systems: L2 Stride

Prefetcher, L2 Tagged Prefetcher, and L2 Stagged Prefetcher. All systems have a Stride

Prefetcher attached to the L1 data cache.

To conclude the discussion of the proposed Stagged Prefetcher, Fig. 5.3 shows

the speedup of all three different prefetching algorithms normalized on the system

having no L2 prefetcher. The first observation that a slowdown is only evident for

network and weight loading when the Tagged Prefetcher is used. Max-pooling layers

1, 3, 5, 7, 9, and 11 are sped up to the same degree by Stagged and Tagged prefetcher,

while Stride Prefetcher lacks behind. For layer 17 (route), the Stagged Prefetcher even

outperforms Stride and Tagged Prefetcher. Thus, as intended, shortcomings of both

existing prefetching algortihms, Stride and Tagged Prefetcher, are eliminated in the

combined prefetcher proposal. Exact layer runtimes are shown in Table 5.1.

Table 5.1: Layer type runtimes with different L2 prefetcher types

L2 prefetcher net. load. convolution max-pooling others total

stride 4.88 s 7.95 s 0.14 s 0.67 s 13.64 s

tagged 5.55 s 7.84 s 0.11 s 0.65 s 14.15 s

stagged 4.88 s 7.93 s 0.11 s 0.65 s 13.57 s

27

ne
tw

. lo
ad

.

0
co

nv

1
m

ax

2
co

nv

3
m

ax

4
co

nv

5
m

ax

6
co

nv

7
m

ax

8
co

nv

9
m

ax

10
 co

nv

11
 m

ax

12
 co

nv

13
 co

nv

14
 co

nv

15
 co

nv

16
 yo

lo

17
 ro

ut
e

18
 co

nv

19
 u

ps
am

ple

20
 ro

ut
e

21
 co

nv

22
 co

nv

23
 yo

lo
-0.2

0

0.2

0.4

0.6
ru

n
ti

m
e

sp
ee

d
u

p

stride tagged stagged

Figure 5.3: Runtime speedup normalized on runtimes of a system without L2

prefetcher.

5.2 L2 cache bypassing

Two observations are crucial for the proposal of a system bypassing the L2 cache

during the execution of a CNN. Firstly, Section 4.1 shows the overall inefficiency of

the L2 cache during the execution of Tiny YOLOv3 on the gem5 system matching

the ARTIK710 board. Miss rates of more than 70% for certain layers reveal the small

proportion of L1 misses mitigated by the second level cache. Secondly, Section 4.2

shows the improved performance of Tiny YOLOv3 when a hardware prefetcher is

attached to the L2 cache.

The idea of bypassing the L2 cache is to save L2 cache lookup latency. The higher

the cache miss rate, the more lookup latency is spent needlessly to the point where

the benefits of a L2 cache are eliminated completely. With miss rates as high as 70%

or 80%, the majority of L2 accesses needlessly adds cache lookup latency. Moreover,

when bypassing the L2 cache dynamic and leakage power consumption can be re-

duced. In this case, prefetching at the first level caches becomes crucial: because the

L1 data cache is smaller in size compared to the L2 cache, the data of large feature

maps and kernels cannot be stored in its entirety. Thus, L1 prefetching is not only vital

but has to solve the problem of long access latencies to the main memory.

Fig. 5.4 compares different L1 prefetching algorithms and cache parameters, in-

28

0 4 8 16 32 64

pf size

15

20

25

30

ru
nt

im
e

[s
]

stride
tagged
stagged

(a)

0 4 8 16 32 64

pf size

10

15

20

ru
nt

im
e

[s
]

stride
tagged
stagged

(b)

0 4 8 16 32 64

pf size

15

20

25

30

ru
nt

im
e

[s
]

2 way
4 way
8 way

(c)

0 4 8 16 32 64

pf size

10

15

20
ru

nt
im

e
[s

]

2 way
4 way
8 way

(d)

0 4 8 16 32 64

pf size

15

20

25

30

ru
nt

im
e

[s
]

32kB
64kB
128kB

(e)

0 4 8 16 32 64

pf size

10

15

20

ru
nt

im
e

[s
]

32kB
64kB
128kB

(f)

Figure 5.4: L1 data cache and prefetch parameter reevaluation. Figures on the left show

runtimes including network and weight loading as well as inference layers. Figures on

the right show only runtimes inference layers. The x-axis, labeled “pf size”, shows

the queue size and the degree of a given prefetching scheme. (a) and (b) compare

prefetching algorithms, (c) and (d) compare cache associativity, (e) and (f) compare

cache sizes.

29

cluding size and associativity, by evaluating Tiny YOLOv3 runtimes on different sys-

tems. Runtimes shown on the left of Figure 5.4 include the network and weight loading

stage as well as the inference layers, while plots on the right side show only the infer-

ence runtimes. The x-axis, labeled “pf size”, shows the queue size and the degree of a

given prefetching scheme. In Figure 5.4 (a) and (b), three prefetching schemes intro-

duced in this thesis are compared: Stride, Tagged and Stagged Prefetcher. In (a), the

Stagged Prefetcher shows the shortest runtimes for smaller prefetcher sizes of 4 and

8 while at larger prefetcher sizes the Tagged Prefetcher shows the best performance.

However, at sizes larger than 8, the Tagged Prefetcher shows saturation in (a) while

runtime even increases for Stride and Stagged prefetcher. Performance saturation is

also evident in 5.4 (b) where runtimes are almost constant for prefetcher sizes between

4 and 16. Based on Fig. 5.4 (a), remaining L1 cache parameters are reevaluated with

the use of the Stagged Prefetcher. Fig. 5.4 (c) and (d) compare different cache associa-

tivities. The 4-way associativity, again, shows shortest runtimes for a prefetcher size

of 8 while other associativities show spikes in runtimes when the prefetcher size is

increased from 8 to 16. These spikes occur due to the network and weight loading as

they are not found in Fig. 5.4 (d). Selecting the 4-way associativity, Fig. 5.4 (e) and

(f) compares different L1 cache sizes. The smallest cache size of 32 kB has a clear

optimum at a prefetcher size of 8. Increasing the cache size further does not reduce

runtimes significantly. Overall it is evident that if only inference layers are regarded,

runtime improvement seems saturated at a prefetcher size of 4. However, if both, net-

work loading and inference runtimes are regarded, most optimums can be found at a

prefetcher size of 8.

Fig. 5.5 compares the gem5 system matching the ARTIK710 board with two sys-

tems bypassing the L2 cache: one without any prefetcher attached and the other with

a Stagged Prefetcher of size 8 attached to the L1 data cache. The selection of the

cache and prefetcher parameters is based on the findings of Fig. 5.4. At over 30 sec-

onds, the system bypassing L2 without any L1 prefetcher shows a runtime that is more

30

than twice as long as the ARTIK710 matched system. However, when the Stagged

Prefetcher is attached to the first level cache, only a mere increased runtime of 10% is

observed.

L2 bypass w/ L1 pf

L2 bypass w/o L1 pf

ARTIK710 matched system

0 5 10 15 20 25 30 35

runtime [s]

inference netw. load.

+114.5%

+9.8%

Figure 5.5: Tiny YOLO runtimes of ARTIK710 matched system and two systems by-

passing the L2 cache.

When the runtimes of Fig. 5.5 are further divided into network loading and specific

layer types, as shown in Table 5.2, it becomes evident that prefetching is able to reduce

the runtime significantly during convolutional layers. Max-pooling layers, on the other

hand, are even faster on the system bypassing the L2 cache without any prefetcher than

on the ARTIK710 matched system.

Table 5.2: Layer type runtimes with different L2 prefetcher types

system netw. load. convolution max-pooling others total

ARTIK710 matched 5.19 s 8.06 s 0.1416 s 0.68 s 14.07 s

L2 bypass w/o L1 pf 7.54 s 21.59 s 0.1373 s 0.92 s 30.19 s

L2 bypass w/ L1 pf 5.40 s 9.04 s 0.1241 s 0.90 s 15.46 s

In a system bypassing the L2 cache, power consumption can be reduced signif-

icantly. In order to estimate power consumption more accurately, the McPAT (Mul-

ticore Power, Area, and Timing) simulator has been integrated into the simulation

environment. McPAT subdivides the total power consumption of a processor in sub-

31

components like core and caches. Thus, savings related to L2 cache bypassing can be

estimated. Table 5.3 shows power consumption estimates for a single core processor

closely resembling a ARM Cortex-A53 processor fabricated in a 28 nm process. Run-

time dynamic power take component utilization, based on gem5 simulation statistics,

into account. When bypassing the L2 cache, all runtime dynamic power can be saved.

However, when additional techniques like power gating is used, not only runtime dy-

namic but also close to all leakage power can be saved when information stored at the

L2 cache can be sacrificed. In that case the total power saving bypassing the L2 cache

accounts of up to 27%, as seen in Table 5.3.

Table 5.3: McPAT area and power estimates for a single core processor based on

Cortex-A53 parameters in 28nm

component area runtime dynamic

power

leakage power total power

processor 3.78mm2 84.4mW 115.2mW 199.6mW

— core 1.52mm2 61.8mW 50.3mW 112.1mW

— L2 cache 1.78mm2 2.76mW 51.7mW 54.46mW

32

Chapter 6

Conclusion

In this thesis, the memory access pattern of a characteristic CNN, Tiny YOLOv3, is

analyzed and proposals are made based on the findings. Memory and system related

statistics show reoccurring patterns according to the layer structure of the network.

Thus, the adaptive prefetching scheme of the proposed Stagged Prefetcher can im-

prove overall performance by combining two existing prefetching schemes. While

cache prefetching during the execution of the CNN is improving overall system perfor-

mance, it currently cannot remedy high L2 cache miss rates. Thus, a system proposal

is made where the L2 cache is bypassed to save unnecessary L2 cache lookup latency.

In conclusion, current memory optimization techniques like certain prefetching al-

gorithms may prove efficient for one layer type while not affecting or worsening other

layer types. Thus, finding adaptive techniques for the execution of CNNs may improve

overall system performance. Moreover, even the current memory organization needs

to be reevaluated with regards to CNNs as it is shown that traditional cache compo-

nents like the L2 cache prove inefficient compared to the execution of conventional

applications.

33

Chapter A

Appendix

A.1 Prefetching algorithm flow diagrams

for i := 1 to degree do

prefetch (current addr+(block size* degree))

notify()

Figure A.1: Tagged Prefetcher flow diagram.

34

hit in PC Table?

find victim in PC Table
new stride = new addr

entry.addr

replace:

victim.PC
victim.addr
victim.stride = 0
victim.confidence

new stride == entry.stride?

entry.confidence entry.confidence++

entry.confidence < threshold?

entry.stride = new stride

for i := 1 to degree do

prefetch (new addr+(entry.stride * degree))

return

return

notify()

no yes

no yes

noyes

Figure A.2: Stride Prefetcher flow diagram.

35

A.2 Linaro disk image bug fix

In Full-System (FS) simulation, gem5 has the option to automatically read an attached

run command script (.rcS) and execute the commands specified in it. The rcS script

will be read during the simulation after linux has been booted and saves the user from

supervising the simulation and manually inputing commands. The reading of the script

is done through a gem5 pseudo instruction, m5 readfile, where the simulator reads the

script and saves its contents to a file inside the system. The m5 readfile command and

its call has to be implemented into the disk image used for the FS simulation. In case of

the linaro image linaro-minimal-aarch64.img distributed within the aarch-system-

20180409.tar.xz file by ARM, the script reading is erroneously executed twice which

distorts the execution and simulation statistics measured by gem5.

To fix this duplicated script reading, the code responsible for the second rcS script

reading has to be uncommented inside the linaro-minimal-aarch64.img disk image.

The procedure of script reading and where it takes place is briefly explained hereafter.

Fig. A.3 shows the typical linux boot sequence. After the Kernel is fully loaded it

BIOS

MBR

GRUB

Kernel

Init

Runlevel

Basic Input/Output System
executes MBR

Master Boot Record
executes GRUB

Grand Unified Boot Loader
executes Kernel

Kernel
executes /sbin/init

Init
executes runlevel programs

Runlevel programs are executed
from /etc/rc.d/rc*.d/

Figure A.3: The linux boot sequence. gem5 script reading takes place when Init exe-

cutes the runlevel bash scripts before console login.

36

will execute the init process, that in turn executes runlevel programs before the login

prompt.

/etc/inittab

/etc/init.d/rc

/etc/rc5.d/

/etc/init.d/autoconsolelogin /etc/init.d/autoserialconsole

/usr/bin/autogetty

/etc/default/autogetty

/usr/bin/autorootlogin

Figure A.4: The linux boot sequence. gem5 script reading takes place when Init exe-

cutes the runlevel programs before console login.

Fig. A.4 shows the rather complex sequence of scripts that are called sequen-

tially by the Init process. First, the runlevel is determined in /etc/inittab. According

to the runlevel, /etc/init.d/rc is calling /etc/rc5.d, as here the specified runlevel is 5.

There are a couple of services started in /etc/rc5.d. Among them are /etc/init.d/auto-

console-login and /etc/init.d/auto-serial-console. Both end up calling /usr/bin/auto-

root-login that is responsible for the script reading, as shown in Fig. A.5. The call to

37

/usr/bin/auto-root-login has to be uncommented at one of the two source scripts.

1 [...]
2 /sbin/m5 readfile > /tmp/script
3 chmod 755 /tmp/script
4 if [-s /tmp/script]; then
5 exec /tmp/script
6 fi
7
8 exec /bin/login -f root
9 ˜

Figure A.5: auto-root-login bash script.

What makes this duplicated script reading hard to detect is the fact that in /etc/init.d/auto-

console-login a virtual terminal is opened and the second reading of the rcS script does

not show in the terminal output of the gem5 simulation, and neither do the following

executions inside the virtual terminal. Thus, uncommenting line 6 in /etc/init.d/auto-

console-login, as shown in Fig. A.6, prevents a new virtual terminal from being created

and a duplicated reading and execution of the rcS script from happening.

1 #!/bin/sh
2
3 PATH=/sbin:/bin:/usr/sbin:/usr/bin
4
5 # Start auto-login for root at consoles
6 # exec openvt -c 1 -- /usr/bin/auto-root-login
7 # exec /usr/bin/auto-root-login

Figure A.6: auto-console-login bash script.

A.3 Model Matching

38

bla
ck

sc
ho

les

ca
nn

ea
l

de
du

p
fe

rre
t

flu
ida

nim
at

e

fre
qm

ine

sw
ap

tio
ns

0

0.5

1

1.5

2

2.5
ru

nt
im

e
[s

]

ARTIK710
gem5 (matched)

(a) Single core; mean absolute error = 13.81%

bla
ck

sc
ho

les

ca
nn

ea
l

de
du

p
fe

rre
t

flu
ida

nim
at

e

fre
qm

ine

sw
ap

tio
ns

0

0.5

1

1.5

2

2.5

ru
nt

im
e

[s
]

ARTIK710
gem5 (matched)

(b) Dual core; mean absolute error = 6.95%

bla
ck

sc
ho

les

ca
nn

ea
l

de
du

p
fe

rre
t

flu
ida

nim
at

e

fre
qm

ine

sw
ap

tio
ns

0

0.5

1

1.5

2

2.5

ru
nt

im
e

[s
]

ARTIK710
gem5 (matched)

(c) Quad core; mean absolute error = 4.24%

Figure A.7: (a) Single core, (b) dual core, and (c) quad core PARSEC 3.0 runtime

comparison of the matched gem5 model and ARTIK 710 development board. For (a)

the geometric mean ratio is 4.63%, while for (b) and (c) it is 3.74% and −0.27%,

respectively.

39

Bibliography

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection,” in Computer Vision and Pattern Recognition

(CVPR), 2016.

[2] J. Redmon, A. Farhadi, ”Yolov3: An incremental improvement,” Technical Re-

port, 2018.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N.

Vaish, M. D. Hill, and D. A. Wood. “The gem5 simulator,” May 2011, ACM

SIGARCH Computer Architecture News.

[4] A. Tousi and C. Zhu, ”Arm Research Starter Kit: System Modeling us-

ing gem5,” 2017. Available online: https://github.com/arm-university/arm-gem5-

rsk/blob/master/gem5 rsk.pdf (accessed on 24 November 2018).

[5] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N. P. Jouppi,

”McPAT: An integrated power, area, and timing modeling framework for multi-

core and manycore architectures,” 2009 42nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), New York, NY, 2009, pp. 469-480.

[6] ARM Cortex-A53 MPCore Processor, Technical Reference Manual, revision

r0p3. Available online: http://infocenter.arm.com/help/topic/

40

com.arm.doc.ddi0500e/DDI0500E_cortex_a53_r0p3_trm.pdf

(accessed on 29 November 2018).

[7] C. Bienia, ”Benchmarking Modern Multiprocessors,” doctoral dissertation, Dept.

Computer Science, Princeton Univ., 2011.

[8] J.D. Gindele, “Buffer block prefetching method.” July 1977, IBM Tech Disclo-

sure Bull. 20, 2, 696-697

[9] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to reduce

data access penalty,” Proc. Supercomputing ’91, pp. 176-186, 1991.

[10] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 6th edition. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2017, pp. 130

[11] S. Mittal. “A Survey of Recent Prefetching Techniques for Processor Caches.”

ACM Computing Surveys, 49(2):35–69, 2016.

41

초록

신경망 및 특히 CNN (Convolutional Neural Networks)은 최근 객체 감지 및 이

미지 분류와 같은 컴퓨터 비전 분야에서 탁월한 성과를 나타낸다. CNN은 일반적

으로번갈아실행되는서로다른레이어유형을포함한다. CNN의성능에최적화된

컴퓨터 아키텍처를 만들기 위해서는 위와 같은 레이어 기반 CNN에 대한 분석이

필요하다. 이 논문은 캐싱 및 프리페치의 효율성에 중점을 두고 전형적인 CNN을

분석한다.분석결과를토대로기존의두프리페처를결합하여계층별비효율을극

복하는 적응형 L2 캐시 프리페치 방안을 제안한다. 또한 L2 캐시를 우회하는 캐시

계층구조를사용하여전반적인성능의큰손해없이전력소모를줄일수있다.

주요어: CNN, memory system, prefetching, computer architecture

학번: 2017-23530

42

	1 Introduction
	2 Problem set
	2.1 Target Application .
	2.1.1 Layer Description .

	3 Simulation Environment
	3.1 Prefetcher .
	3.1.1 Tagged Prefetcher .
	3.1.2 Stride Prefetcher .

	3.2 Model Matching .

	4 Analysis
	4.1 Memory Access Pattern .
	4.2 Prefetching Efficiency .

	5 Proposal and Evaluation
	5.1 Adaptive Prefetcher .
	5.2 L2 cache bypassing .

	6 Conclusion
	A Appendix
	A.1 Prefetching algorithm flow diagrams
	A.2 Linaro disk image bug fix .
	A.3 Model Matching .

	Abstract (In Korean)

<startpage>12
1 Introduction 1
2 Problem set 2
 2.1 Target Application . 2
 2.1.1 Layer Description . 3
3 Simulation Environment 8
 3.1 Prefetcher . 9
 3.1.1 Tagged Prefetcher . 10
 3.1.2 Stride Prefetcher . 10
 3.2 Model Matching . 12
4 Analysis 16
 4.1 Memory Access Pattern . 16
 4.2 Prefetching Efficiency . 21
5 Proposal and Evaluation 25
 5.1 Adaptive Prefetcher . 25
 5.2 L2 cache bypassing . 28
6 Conclusion 33
A Appendix 34
 A.1 Prefetching algorithm flow diagrams 34
 A.2 Linaro disk image bug fix . 36
 A.3 Model Matching . 38
Abstract (In Korean) 42
</body>

