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Abstract

Automatic speech recognition (ASR) is widely adopted for smartphones and many
embedded devices in recent years, and neural network based algorithms show the best
performance for ASR. While most of ASR systems are based on server-based process-
ing, there is an increasing demand for on-device speech recognition because of privacy
concern and low latency processing. Reducing the power consumption is especially
important for on-device speech recognition to lengthen the battery life.

Among several neural network models, recurrent neural network (RNN) based al-
gorithms are mostly used for speech recognition, and long short-term memory(LSTM)
RNN is most popular because of its superior performance over the other ones. How-
ever, executing LSTM RNN demands many DRAM accesses because the cache size of
embedded devices is usually much smaller than the parameter size of RNN. Multi-time
step parallelization technique computes multiple output samples at a time by fetching
one set of parameters, and thus it can reduce the number of DRAM accesses in pro-
portional to the number of time steps computed at a time. However, LSTM RNN does
not permit the multi-time step parallelization because of complex feedback structure
of the model.

This thesis presents neural network models that support efficient on-device speech
recognition. First, a few models that permit multi-time step parallel processing are
evaluated. The models evaluated include Gated ConvNet, Diagonal LSTM, and QRNN
(quasi RNN). Since the performance of these models are not as good as the LSTM,
one-dimensional depthwise convolution is added to improve the performance. The
one-dimensional convolution helps finding the temporal patterns of speech signal. Sec-
ond, Simple Gated Convolution Network (Simple Gated ConvNet) is proposed for im-
proved performance when the parameter count is very small. The Simple Gated Con-

vNet employs the simplest form of Gated ConvNet. Instead it relies on one-dimensional



convolution for temporal observation. Simple Gated ConvNet supports low-power on-
device speech recognition because it can be executed employing multi-time step paral-
lelization. The Simple Gated ConvNet under 3 million even shows better performance
than the LSTM with 10 million parameters. In addition, the execution speed in ARM
CPU can be increased more than ten-times compared with the LSTM RNN through

multi-time step parallelization.

keywords: Speech Recognition, Sequence Modeling, Recurrent Neural Net-
works(RNN), Embedded Devices
student number: 2017-27205
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Chapter 1

Introduction

1.1 On-device speech recognition: advantages and challenges

Today, most of automatic speech recognition (ASR) is based on neural network based
algorithms. Especially, end-to-end speech recognition through neural networks is widely
used as a effective method for speech recognition [1, 2, 3, 4]. The end-to-end approach
does not need any previous one-to-one mapping between labels and features before
training neural networks.

Meanwhile, the demand for on-device speech recognition is increasing. On-device
speech recognition here refers to automatic speech recognition (ASR) in which speech
recognition is solely performed in users’ devices and the user information is not trans-
mitted to the server. While speech recognition is popularly used in embedded devices
and smartphones, most of speech recognition is carried out in the servers of service
providers after user’s speech is delivered. However, this server-based speech recogni-
tion causes a concern for security and privacy. This is because user’s speech is trans-
mitted to the server. It can be vulnerable to external attack and personal information
can leak to the outside.

On-device speech recognition can be a solution in a significant part in security

and privacy issues. Privacy invasion can be avoided with on-device speech recognition



because user’s speech is not needed to be stored in servers. Moreover, as most of
the speech recognition is achieved on local devices, propagation latency due to the
network is mostly eliminated. Furthermore, service provider can reduce the need to run
numerous servers at great expense and power consumption can be greatly decreased.

However, there exist challenges to implement on-device speech recognition. First,
Speech recognition on-device is heavily dependent on the limitations of hardware
specification. As neural network models require parameters which claim millions of
megabytes (MB). Parameter size needs to be greatly reduced in order to implement
speech recognition which mainly utilizes resources of user’s local devices.

Second, the number of parameter fetch from main memory should be decreased.
As neural networks models require parameters of large sizes, most of the parameters
in the models can not be stored in cache memory, however, are stored in main memory.
Frequent accesses to the main memory and fetching data lead to the reduced speed of
inference in neural networks. Increased power consumption should be under consider-
ation as well.

In server-based ASR, the number of fetch from main memory can be reduced by
parallelization using the batch method. Each user corresponds to one batch in this
scheme. Neural network operations can be conducted in parallel so that speech recog-
nition is carried out for multiple people at once in a inference stage. In this process,
parameters needed are fetched from main memory at once. However, this approach
cannot be applied in on-device speech recognition. In on-device speech recognition,
there only exists one independent user, therefore, batch-approach does not work well
for the number of reduction of memory access.

This problem can be solved by multiple time-step parallelization. A neural network
model for sequence modeling essentially require computations over every time-step.
We can parallelize the operations at each time-step. Then, the parameters needed for
each time-step operation can then be fetched from main memory at once. If sequential

processing is not parallelized, main memory must be accessed every time a sample



Audio wave

l

Feature extraction

Acoustic Model  ~—__ l
Decoder
Language Model l
Speech Recognition

Figure 1.1: The overall procedure of automatic speech recognition.

from each time-step is computed.

In this thesis, we propose a neural network model which consumes low parameters
while parallelization is employed in order to reduce the number of memory fetch. It
also leads to increased speed of speech recognition. Before we address the proposed

model, we explain the components of end-to-end speech recognition first.

1.2 The components of speech recognition

End-to-end speech recognition consists of acoustic model, language model and op-
tional dictionary. Acoustic model represent probability distribution of acoustic features
given the labels or transcriptions. Language models expresses the probability distribu-
tion between words or characters. Automatic speech recognition(ASR) is a process
which finds out correct mapping between acoustic feature vectors and defined tokens.
Acoustic model and Language model are ingredient for ASR. Especially, the acoustic
models claims the core part of speech recognition as it expresses the relations be-
tween acoustic features and human-readable characters or words. In neural network
approach, acoustic model is trained neural networks. Figure 1.1 illustrates the overall
procedure of ASR.

Suggesting a novel structure for acoustic modeling, we implement on-device ef-



ficient speech recognition. To be specific, we propose the acoustic model which is
suitable for on-device speech recognition in terms of parameter size and speed. Per-
formance of the proposed model was better than previous models. Parameter size is
much reduced. The reduction of the number of main memory access is achieved by
algorithm-level parallelization. The proposed algorithm handles the computation of

multiple-time steps in parallel.

1.3 The downsides of RNN based acoustic models

Recurrent neural networks(RNN) has been often employed in training acoustic mod-
els and it has been considered as a clever tool for processing sequence information.
Among various RNNs, Long short-term memory (LSTM) has been usually employed
for sequence modeling [5]. This is because gradient exploding and vanish problem can

be avoided to some extent with the introduction of additional state and gates [6].

ft = U(fot + Ufht_1 + bf),
it = O'(WiXt + Uiht—l + bz),
O = U(Woxt + Uohtfl + bo)a
(1.1)
c; = ©®ci1 + iy © tanh (Wexy + Uchy_1 + be),

h; = o; ® tanh(cy).

However, LSTM RNN is not suitable for multi-time step parallelization, which
computes the information of multiple time steps in parallel. Note the equation 1.1. As
previous hidden states affect the current state in major computations, samples from
multiple time steps can not be computed at once. It should be calculated sequentially.
The dependency between current and past states hinders parallel computation. In this
case, the memory should be accessed in every time-step. It leads to the speed drop and

increased power consumption. Here, there is a need for a parallel-friendly algorithm



to replace LSTM RNN.

1.4 Exploration of efficient on-device acoustic modeling with

neural networks

We explore on-device friendly acoustic models which can replace LSTM RNN. This
is to solve the problem of LSTM which is difficult to perform multiple time step par-
allelization in embedded device. In addition, acoustic models for embedded devices
should be higher in performance than LSTM RNN in terms of recognition accuracy.
We utilize gated convolutional networks (Gated ConvNet), diagonal LSTM and quasi
RNN (QRNN) as candidates for the purpose of on-device efficient acoustic modeling
[7, 8, 9]. Unlike LSTM, the above models are advantageous for multiple time step
parallelization.

Adopting the suggested models, We carry out CTC-based end-to-end speech recog-
nition. when we solely make use of the models, the performance of the models is
lower than than of LSTM RNN. Therefore we added the 1-D depthwise convolution
to each model’s layer. As for QRNN, it was proved that 1-D depthwise convolution
with QRNN gives rise to performance jump[10]. The parameter size of 1-D depthwise
convolution doesn’t matter. The parameter increase from 1-D depthwise convolution
is small enough to be stored in cache memory.

Introducing 1-D deptwise convolution leads to the performance grow for all the
selected models. Among the models, Gated ConvNet with 1-D depthwise convolution
shows the best performance in greedy decoding. Employing deep structures and 1-D
depthwise convolution were keys to performance soaring. We further conducted frame-
wise phoneme recognition tasks and the performance result of the selected models
were verified again. Gated ConvNet with 1-D depthwise convolution shows the best
performance in the phoneme classification tasks as well.

We present a execution result of the acoustic models on ARM CPU. By employing



multi-time step parallelization, the execution time of the suggested models shows that
at least five times speed-up was achieved. We experimentally showed that it is worth

of using on-device efficient acoustic models that we propose.

1.5 Simple Gated ConvNet for small footprint acoustic mod-

eling

We further suggest convolutional neural network(CNN) based algorithms for sequence
modeling replacing LSTM. To be specific, we propose simple Gated Convolutional
Networks(Simple Gated ConvNet), which is the Simplest form of Gated Convolutional
Networks (Gated ConvNet). We utilize Simple Gated ConvNet in training acoustic
models. Our model can deal with the limitations for on-device speech recognition de-
scribed above.

Simple Gated ConvNet is based on Gated ConvNet. Gated ConvNet was originally
suggested for the purpose of training language models [7]. Gated ConvNet was also
employed in acoustic modeling [11, 12]. However previous usage on Gated ConvNet
consumed fairly large parameters for acoustic modeling, which is more than 50 M.
Time delay networks which is used in Gated ConvNet adopt the length T'. T" plays a
role of looking at sequential information of a certain length. Therefore it enables the
network to process the sequence information. However, the filter length 7' is also be
the main source of the increase in parameter sizes.

In Simple Gated ConvNet, this length T" was reduced to the maximum, which is
one. Therefore the parameter sizes can be greatly reduced. Of course, this can be a
good virtue for on-device speech recognition. After T' becomes 1, the model lacks the
ability to see the neighboring context. In order to compensate for the performance drop,
we additionally employed 1-D depthwise convolution which plays a role of looking at
neighboring context. 1-D depthwise convolution is much lighter than original convo-

lution operation in Gated ConvNet in terms of parameter sizes.



The proposed model take advantages over LSTM RNN and conventional Gated
ConvNet with several aspects. First, Simple Gated ConvNet outperforms LSTM RNN
with respect to word error rates(WER) and character error rate(CER). In other words,
Simple Gated ConvNet shows more accurate speech recognition results than LSTM
RNN. Second, the parameter size is much reduced. Simple Gated ConvNet with smaller
parameter sizes shows better performance than that of LSTM RNN and Gated Con-
vNet. Third, parallelization over multiple time steps is achieved in Simple Gated Con-
vNet. This is because there is no dependency between multiple time step computation.
Thanks to multiple time step parallelization, the decoding speed becomes much faster

experimentally.

1.6 Outline of the thesis

The rest of the thesis is organized as follows. In Chapter 2, the result of diffrent acoustic
models are explored. Especially, comparison between acoustic models are performed
which can be suitable for on-device devices in terms of multi-time step parallelization.
Chapter 3 addresses the details of Simple Gated ConvNet. The structure of Simple
Gated ConvNet is illustrated. The performance of Simple Gated ConvNet is compared

with LSTM RNN and conventional Gated ConvNet. Chapter 4 concludes the thesis.



Chapter 2

Exploration of Efficient On-device Acoustic Modeling

with Neural Networks

There are various acoustic models that can be suitable for on-device speech recogni-
tion in terms of reducing the main memory accesses through parallelization. In chapter
2, we explore various acoustic models with neural networks which can be used for
on-device speech recognition. The quasi RNNs (QRNNs), Gated ConvNets, and diag-
onalized LSTMs are considered here. Multiple time-step parallelziation can be carried
out in all the listed models. 1-D depthwise convolution is also combined to all the
acoustic models in order to achieve performance rise. The performance of these mod-
els are compared in Section 2.2. Speed-up of the execution is achieved experimentally

as well.

2.1 Acoustic Modeling Algorithms

2.1.1 Diagonal LSTM RNN

In diagonal LSTM RNN, all the recurrent matrix become much lighter than conven-
tional LSTM RNN. To be specific, all the components in U, U;, U, and U, becomes

zero except for diagonal terms [8, 13]. Therefore, matrix multiplication between re-



current weight matrix and input matrix converts to the element-wise multiplication
between them. Equation 2.1 shows the operation of diagonal LSTM. © denotes the

element-wise multiplication.

fi =0c(Wsx; + Uy ©@hy_y +by),
i = O’(Wixt + U, 0hi_1 + bi),
Oy = U(Woxt +U,0h;_1 + bo)a
2.1
c; = ®ci—1 +1; © tanh (WCXt +U.0h; 1 + bc),

h; = o; ® tanh(cy).

We can take advantage of multiple time step parallelization using diagonal LSTM
in embedded implementations. As diagonal terms are extracted from reccurent weight
matrix, recurrent weights become much smaller. In LSTM RNN, heavy weight matrix
for the recurrent function was the major obstacle for the multi-time step paralleliza-
tion. However, as for diagonal RNN, lighter diagonal terms can be stored in cache
memory. There is no need to access the main memory when considering recurrent

terms. Therefore, samples of multiple time steps can be fetched in parallel.

%; = tanh (W.x; + b,),
[ft7 it7 Ot] - G([Wf7 Wi7 WO]Xt + [bf7 bi7 bo])a (22)
¢t =f Oci1 +i O Xy,

ht:Ot@Ct—i—(l—Ot)@Xt.



2.1.2 QRNN

QRNN does not adopt the feedback computation. In other words, weight matrix for re-
current layer is not used in QRNN [9, 14]. Instead, k input samples, Xy, X¢—1, - - . , X¢—k+1
are computed in order to consider sequence information. Note that LSTM RNN only
utilize one imput sample x;. As no recurrent weight matrix is used, multiple time-step
parallelization can be achieved.

Equation 2.2 shows the simplest form of QRNN. We employ one as a size of k.
This is because the parameter size increases linearly proportional to the size k. We try

to reduce the parameter size to the maximum.

2.1.3 Gated ConvNet

Gated ConvNet makes use of convolutional neural networks(CNN) for sequence mod-
eling. One layer of Gated ConvNet adopts two separate convolution filters and these
filters play a role of observing a certain length of context [7]. As Gated ConvNet em-
ploys no recurrent path, multiple time step parallelization can be easily applied. Equa-

tion 2.3 illustrates the operation of Gated ConvNet.

h(X)=(X*W+b)oo(X*xV+c) (2.3)

where * denotes convolution operation and ® represents element-wise multiplication.
W,V € RT*PXD and b, ¢ € R are trainable variables where D is the channel of
the network. X € RV*P is the input vector where N is the sequence length.

2.2 Experiments

The performance of various models were experimented on two acoustic modeling

tasks. One is Connectionist Temporal Classification(CTC) algorithm based speech

10
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Figure 2.1: Acoustic modeling architecture for end to end speech recognition.

recognition, in which the unit of the labels is the character [1, 2, 15]. The other is
frame-wise phoneme classification task, in which the unit of the labels is the phoneme.
The main difference of these two task is whether pre-alignment between labels and
acoustic features is needed. In CTC based algorithm tasks, pre-alignment between
characters and acoustic features is not required. This is because the alignment is done
automatically during the training stage. In frame-wise phoneme classification, align-
ment between labels and acoustic features should be conducted before the training
stage. The Wall Street Journal (WSJ) corpus [16] was employed for CTC-based speech

recognition tasks. As for the phoneme recognition task, TIMIT dataset was used.

2.2.1 End-to-end speech recognition

For CTC-based end-to-end speech recognition, a 40-dimensional log Mel-frequency

filter-bank feature was extracted from raw wav files of WSJ corpus. 25 ms-sized Ham-

11



Table 2.1: WER and CER (%) evaluated on WSJ eval92. The models are trained on
SI-284.

Models Params. CER WER
4x600 LSTM 11.5M 7.29  24.88
6x800 QRNN (k =1) 11.5M 12.70 45.22
6x700 Diagnoal LSTM 11.5M 8.97 30.40

6x300 Gated ConvNet (I = 15) 16.2M 8.02  28.65
6x300 Gated ConvNet (I'=7) 7.7M 852  30.56

ming window is used to sample the feature vectors every 10 ms. Then, the extracted
filter-bank features were employed for the inputs of two-layered 2-D CNN layer. The
two layered 2-D Convolutional Neural Networks (CNN) is used for down-sampling
the input frames by two. The down-sampling of feature frames contributes to reduc-
ing the arithmetic complexity. Batch normalization and variational dropout are also
adopted for the two layered CNN for regularization [17, 18].

The output of two-layered CNN becomes the input of the various acoustic models
such as Gated ConvNet, QRNN and LSTM. 1-D depthwise convolution is optionally
added to the one layer of the after selected models. The one layer of the models with
optional 1-D depthwise convolution becomes the one component of the multi-layered
network. The fully connected is added at the end of the network. The overall network
is used to train CTC loss function. Figure 2.1 illustrates the whole network.

Experimental results are shown in the following tables. Most of the experiments
were conducted with WSJ SI-284, which has 81 hours of speech. WSJ-ALL, which
contains 150 hours of speech was also used if needed. The number of layers and the
width of each layer are also shown. For example, 4x400 LSTM denotes the four-
layered LSTM which has the hidden dimension of 400. As for Gated ConvNet, T’

12



Table 2.2: WER and CER (%) evaluated on WSJ eval92 with 1-D convolution.

Models Params. CER(%) WER(%)
4x600 LSTM, 1-D conv 11.5M 6.95 23.57
6x700 QRNN (k£ = 1), 1-D conv 11.5M 5.26 19.07
6x700 Diagonal LSTM, 1-D conv 11.5M 7.57 23.90
6x300 Gated ConvNet (1" = 15), I-D conv 16.2M 7.58 27.00
6x300 Gated ConvNet (I' =7), 1-Dconv  7.7M 6.57 24.20
20x300 Gated ConvNet (T' = 2), 1-D conv  7.5M 5.55 19.70
30x300 Gated ConvNet (I" = 2), 1-Dconv 11M 4.73 17.00

denotes the number of context length that each Gated ConvNet layer observes. QRNN
with k represents that k input samples, x;, X1, . . . , X¢_x+1, Which were used in com-
putation in QRNN. Performance was evaluated using character error rate(CER) and
word error rate(WER).

In table 2.1, the results of greedy decoding are shown. Greedy decoding means
that no language model is augmented for evaluation. The performance of acoustic
models can be solely compared by greedy decoding. The results of LSTM, QRNN,
Diagonal LSTM and Gatd convNet are shown in the table. 1-D depthwise convolution
is not applied in this table. Among the selectd models, LSTM RNN vyields the best
performance. QRNN shows the worst performance. Note that QRNN never adopts any
local feedback from previous the hidden state. It can be seen that the recurrent path
plays an important role in performance.

In table 2.2, we add 1-D depthwise convolution to each selected model. We try
to increase the performance of each model by adding 1-d depthwise convolution. The
parameter increase is not significant when 1-d depthwise convolution is combined.

The time-length of 1-D convolution filter is 15, from -7 to +7, which means that the

13



Table 2.3: WER and CER (%) on WSJ eval92. The models are trained on WSJ SI-ALL.

Greedy HCLM
Models Params. | CER WER | CER WER
4x600 LSTM, 1-D conv 11.5M 591 20.14 271 6.56
6x700 QRNN (k£ = 1), 1-D conv 11.5M 413 18.02 151 3.73
30x300 Gated ConvNet (I' = 2), 1-Dconv 11M 330 11.60 1.53 3.86
Deep Speech 2 [4] 100M WER 3.60 with 5-gram LM

filter consider seven time steps in the past, seven time steps in the future. When 1-
D depthwise convolution is combined, the performance of LSTM RNN jumped from
24.88% to 23.57%. Compared to LSTM, Gated ConvNet, QRNN and diagonal LSTM
shows remarkable performance rise.

As for diagonal LSTM, the result is similar to that of LSTM RNN with 1-D
depthwise convolution. As multi-time step parallelization can be achieved in diagonal
LSTM, diagonal LSTM with 1-D depthwise convolution is much more beneficial than
conventional LSTM. The performance of QRNN goes through drastic change when
it is augmented with 1-D deptwise convolution. The word error rate improved from
45.22 % to 19.70 % when 1-D depthwise is combined. Gated ConvNet also shows
increase in performance.

Introduction of deep structure contributes to the performance skyrocketing. The
WER in Gated ConvNet drops to 17.00 %. It marks the best performance. Although,
layers get deeper, total parameter size is not that large. This is because the filter length
of T" of Gated ConvNet is reduced. Instead, 1-D convolution filter, whose length is 15,
contributes to processing sequence information more.

The performance of the suggested models are also trained in larger dataset, WSJ-

ALL. The result of trained end-to-end acoustic models are listed in table 2.3. All the

14



Table 2.4: Frame-wise phoneme classification accuracy (%) on TIMIT.

Models Params. Accruacy
2x256 LSTM 0.92M 72.00
4x256 QRNN (k = 1) 0.92M 52.74
4x256 Diagonal LSTM 0.92M 68.45
4x256 Gated ConvNet (1" = 2) 0.91M 62.00
2x256 LSTM, 1-D conv 0.93M 75.30
4x256 Diagonal LSTM, 1-D conv 0.93M 74.60
4x256 QRNN (k = 1), 1-D conv 0.93M 76.48

4x256 Gated ConvNet (T' = 2), 1-D conv ~ 0.92M 76.30
10x128 Gated ConvNet (1" = 2), 1-D conv  0.67TM 77.04

models were evaluated on WSJ eval92 testset. Furthermore, the beam decoding was
conducted with with the support of language model. Beam width was set as 128. As
a language model, hierarchical character language model (HCLM) is chosen [19, 20].
The HCLM was trained using the training text of WSJ corpus. In the result of both
QRNN and Gated ConvNet augmented with 1-D depthwise convolution, WER below
4% was aquired. Although we spent about 10 times less number of parameters, the

result is close to the result of Deep speech 2 [4].

2.2.2 Phoneme classification

Frame-wise phoneme classification on TIMIT dataset was performed in order to verify
whether the proposed models with 1-D convolution work well in the non-CTC speech
recognition tasks. Training TIMIT dataset for phoneme classification takes much less

time than CTC based end-to-end speech recognition.
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Table 2.5: Frame-wise phoneme classification accuracy (%) of different Gated Con-

vNets on TIMIT.

Models Params Accuracy

4x256 Gated ConvNet (T' = 2), 1D conv (-3,+3)  0.92M 76.44
4x256 Gated ConvNet (T' = 2), 1D conv (-5,+45)  0.92M 76.30
4x256 Gated ConvNet (T' = 2), 1D conv (-7,-7) 0.92M 73.90
10x128 Gated ConvNet (1" = 2), 1D conv (-3,+3) 0.67M 78.04
10x128 Gated ConvNet (T' = 2), 1D conv (-5,+5) 0.67M 77.04

We made use of a 40-dimensional log Mel-frequency filter-bank feature as we did
in the end-to-end speech recognition task. Note that previous research on phoneme
recognition utilized the Mel-Frequency Cepstral Coefficients (MFCCs) [21]. Total 61
classes of phonemes were employed for the training, and they were folded into 39
classes for evaluation. This way of evaluation was done in the same way as conducted
in previous studies [22]. The parameter sizes were limited to 1 M to be compared with
the previous results [21].

In table 2.4, the accuracy of frame classification is shown. 11 of the context length
of 1-D depthwise convolution was chosen. The result of LSTM RNN is better than
other models without 1-D depthwise convolution. However, after 1-D depthwise con-
volution is augmented, the performance of Gated ConvNet ourperforms LSTM RNN
which is combined with 1-D depthwise convolution. QRNN with 1-D depthwise con-
volution shows similar performance as Gated ConvNet with 1-D depthwise convolu-
tion. The accuracy of LSTM doesn’t improve much when combined with 1-D depth-
wise convolution. We can find out that 1-D depthwise convolution contributes to per-

formance improvement. Moreover, gated ConvNet and QRNN With 1-D depthwise
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Table 2.6: Execution time (sec) for models for 1 sec speech, function of Tp

Models Tp =1 Tp =4 Tp =38 Tp =16
4x600 LSTM 1.46

6x700 QRNN (k = 1), 1-D conv 1.21 0.39 0.20 0.15
6x700 Diagonal LSTM 1.55 0.47 0.25 0.18

30x300 Gated ConvNet, 1-D conv  1.85 0.47 0.29 0.20

convolution outperformed LSTM RNN. The performance trend of acoustic modeling
on CTC-based acoustic modeling was maintained in frame-wise classification tasks
as well. Table 2.5 shows the result of Gated convNet with various configurations on
phoneme classification task. “1D conv(-3,3)” means that it shows the context of the

past three time-steps and the future three time-steps.

2.2.3 Implementation Results on Embedded Systems

Multi-time step parallelization is difficult with LSTM RNN. Parameters for feedback
to the previous state in LSTM is too large to be stored in cache-memory. It means that
main memory should be accessed in every time-step. However, the proposed models
such as QRNN, Gated ConvNet with 1-D depthwise convolution are suitable for the
multi-time step parllelization.

Table 2.6 shows the result of multi-time step parallelzation on the proposed mod-
els. ARM Cortex-A57 based embedded system was used to measure the execution
time. The result shown is the execution time of CTC-based end-to-end acoustic mod-
els. Multi-time parallel steps of 1, 4, 8, 16 were chosen. As LSTM is not suitable for

multi-time step parallelization, execution time of sequential processing is represented.
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The execution time of QRNN and Gated ConvNet was 7.30 times and 5.03 times faster
than LSTM RNN each when the parallel steps of 8 is adopted.

The result shows that fast inference of acoustic model can be achieved in embed-
ded devices using the multiple time step parallelization. In this respect, parallelization
friendly algorithms such as diagonal RNN, Gated ConvNet and QRNN has advantages
over LSTM RNN.

2.3 Concluding Remarks

LSTM RNN based acoustic modeling is in-efficient for speech recognition on embed-
ded devices. DRAM should be accessed every time-step when using LSTM RNN so
that model parameter is fetched from DRAM at every inference. Multiple time step
parallelization can not be applied because each state in LSTM RNN has dependency
on previous time steps in major computation. It is the main bottleneck for fast and
energy-efficient on-device acoustic modeling.

In order to overcome the setbacks of LSTM-RNN, we explore various acoustic
models which are suitable for multiple-time step parallelization. And it leads to more
efficient acoustic modeling than LSTM-RNN. Diagonal LSTM, the quasi RNN(QRNN)
and Gated ConvNet were employed as candidates for on-device friendly acoustic mod-
els. These models allows recurrent paths to be enough small so that cache-memory can
afford them. In addition, introduction of 1-D depthwise convolution makes some of the
suggest models outperforms conventional LSTM-RNN.

Experiments were conducted in end-to-end speech recognition and frame-wise
phoneme classification tasks. In most of the cases, Gated ConvNet with 1-D deptwise
convolution was better than any other models in terms of word error rate. The execu-
tion time of the presented models were measured in embedded devices. The suggested
models present the speed-up of over 500 % when parallel step of 8 is adopted.

In this chapter, we explored the neural networks models which are more advanta-
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geous than conventional LSTM RNN for sequence modeling with respect to on-device

efficient speech recognition.
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Chapter 3

Simple Gated Convolutional Networks for small foot-

print acoustic modeling

We propose Simple Gated ConvNet which outperforms LSTM RNN and which is suit-
able for multi-time step parallelization. The parameter size needed in acoustic models
is also greatly reduced, which can be a benefit for efficient on-device speech recogni-

tion.

3.1 Simple Gated ConvNet

3.1.1 Gated ConvNet

Gated ConvNet combines stacked convolution with gating mechanism for sequence

modeling [7]. The main structure of Gated ConvNet is represented as follows.

h'(X) = (X'« W +bl) o o(X'+ V! + ), 3.D

where © is element-wise multiplication, o represents sigmoid function and * indicates

convolution operation. The network is composed of L layers,and = 0,1,2,3, ..., L —
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1. WH Vi e RTXIXDXD apd bl ¢! € RP are learned parameter where 7T is the filter
length, and D denotes the feature dimension.

Note that the shape of W' and V' is [T, 1, D, D].The size of the model increases
in proportional to the length 7', given that D is fixed. T' can be interpreted as the
context length at each layer. Note that sequence learning with a finite range of context
was also investigated in time-delay neural networks(TDNN) [23, 24]. Processing a
certain length of sequences in Gated ConvNet can be thought like observing a temporal
context in TDNN. Both view finite range of sequences through temporal convolution
operations.

It is inevitable to employ a certain length of 7" in order to observe adjacent se-
quence information. For acoustic modeling, conventional Gated ConvNet also adopted
a certain length of 7T'. In [12], the length of 7" range from 13 to 28 was chosen. As we
go to deeper layers, T increases gradually. However, employing a certain length of T'
is one of the major source for the number of parameters skyrocketing. It serves as a

obstacle for on-device usage.

3.1.2 Simple Gated ConvNet

Simple Gated ConvNet set the length 7' to one. It reduces the number of parameters
needed in each convolution filter W' and V! from T'DD to DD. In other words,
convolution filters W, V! in Gated ConvNet does not cover neighboring context at
once anymore. As separate two convolution filter W', and V! are employed in Gated
ConvNet, 2T times decrease in parameter size is achieved. The reduction of T gives
rise to huge performance drop obviously, which is described in Section 3 experimen-
tally. Since we do not count consecutive context at a time when 7' is one, we need an
additional means so that networks consider neighboring context.

Therefore, 1-D depthwise convolution is adopted. The 1-D depthwise convolution
plays the role of looking at a certain length of sequences while using the lighter pa-

rameters. Depth-wise convolution has been employed in the area of vision, machine
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translation and speech recognition recently[25, 26, 27, 10]. The operation of 1D depth-

wise convolution is represented as follows.

L7/2]

hi,l,d: Z Fé,l,dxllf—i-i—l,l,d (3.2)
i=|-T/2)

Eq. (3.2) shows the convolution operation at the ¢-th time step. F* € RT*1xD is the
filter matrix of 1-D depthwise convolution. The number of parameters is now 1T'D
which is needed for the convolution filter F!. We put the 1D depthwise convolution
before and after each original convolution layer whose parameter size is reduced from
2T DD to 2DD. Therefore, Now the number of parameters needed in Simple gated
ConvNet can be modeled as approximately as 2D D + T D. Note that the proposed
model reduced parameter size magnificently compared to the 27D D of original Gated
ConvNet.

Furthermore, we carry out convolution operation in a way to cover neighboring
features at a time. We introduce additional operation in the direction of feature di-
mensions while performing 1-D depth-wise convolution. We keep the input and output
sizes by putting zero pad in both ends of Feature dimension. The operation of 1-D

depth-wise convolution with width K is represented as follows.

LK/2] L7/2

]
!
hé,l,d = E E F/i,l,d,waf—&-i—l,l,d—o—w (3.3)
w=|—K/2| i=|-T/2]

The proposed method processes the input channels using filters with the width of K.
By doing so, our model can consult the correlation between the neighboring features

which are expressed as adjacent channels.
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Figure 3.1: The operation of 1-D depthwise convolution with the width of K.

The parameter size of F’ Uincreases K times compared to the F! of 1D depthwise
convolution, which is from 7'D to T'D K. We assign a number from 1 to 21 to K. At
the moment, the the number of parameters required can be modeled as 2D D +TDK.
As the size of D is about several hundreds, parameter size growth is still slighter than
TDD of original Gated ConvNet. Figure 3.1 shows the operation of 1-D depthwise
convolution with the width of K.

Introduction of batch normalization [17] layers is another characteristic of our
research. Previous research on Gated ConvNet rarely utilized batch normalization
[7, 12, 11]. It turns out that batch normalization also contributes to the performance
improvement in Gated ConvNet under our configurations. We arrange batch normal-
ization right after convolution operations and before activation. This arrangement was
mainly influenced by the concept of ResNet[28]. X!« W +b' of Gated ConvNet does
not have an activation function. We added ReLU to X! * W' ++ b’. On the other hand,
X! s V! + c! already has activation function for gating mechanism.

We combine the above all elements into one layer. We also stack several layers
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Figure 3.2: The structure of Simple Gated ConvNet.

to complete the entire network structure. Residuals connection prevents gradient from

becoming zero. Figure 3.2 addresses whole structure of Simple Gated ConvNet.

3.2 Experiments

3.2.1 Experiment Setups

Simple Gated ConvNet is adopted for training acoustic models with connectionist tem-
poral classification (CTC) algorithm [2, 15]. We compared performance of Simple
Gated ConNet with that of LSTM RNN and Gated ConvNet under various config-

urations. The Wall Street Journal (WSJ) Corpus was employed to train the acoustic
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models [16].

Feature extraction for training was processed as follows. The initial inputs were
raw wav files in WSJ corpus. In order to extract features, Discrete Fourier Trans-
form (DFT) was performed every 10 ms with a 25 ms Hamming window. The sam-
ples extracted through DFT are passed through filter-banks. Then, we acquired a 40-
dimensional log Mel-frequency filter-bank feature.

After features were extracted, we scaled down the sequence lengths by Convolu-
tional Neural Networks (CNN). According to [4], down sampling on acoustic features
by CNN contribute to performance rise with respect to training speed and error rates.
We put this technique into practice. 40-dimensional log Mel-frequency filter-bank fea-
tures becomes the inputs of the two-layered CNN. Dropout was adopted and batch
Normalization layers are applied in each layer [29]. Sequence lengths were pooled
down after passing two-layered CNN.

The output of this two-layered CNN was connected to Simple Gated ConvNet. On
the same condition, LSTM RNN and Gated convNet were linked to the CNN layers for
performance comparison. WSJ Si-284, the dataset of 81 hours of speech was mainly
used for training. WSJ Si ALL, the dataset of 150 hours of speech was also adopted
for the comparison of selected models. All the training results were evaluated on WSJ
eval92 dataset. Because the CTC algorithm was used, pre-alignment between labels

and features were not needed.

3.2.2 Experimental Results

The performance comparison between Simple Gated ConvNet and other models are
shown in the following tables. CER(character error rate) and WER(Word Error Rate)
was chosen for performance measurement. The model size is represented in the form
of (Nyayer X Ndim)- Nayer 18 the number of layers. n4;,, denotes the size of a hidden
dimension in LSTM and the width of a feature map in the case of Gated ConvNet and

Simple Gated ConvNet. Two-layered CNN before the proposed models is not counted
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in this notation. For example, 4x300 LSTM represents four-layered LSTM which has
300 hidden dimensions in each layer. 6x300 Simple Gated ConvNet represents six-

layered Simple Gated ConvNet whose channel size is 300.

Table 3.1: WER and CER in percentage trained in WSJ Si-284 and evaluated on WSJ
eval92 test set. SGCN is Simple Gated ConvNet. GCN is short of Gated ConvNet.

‘ Greedy
Model Params. | CER WER
4x300 LSTM 2.95M 8.18 27.6
4x300 LSTM, 1-D depthwise 2.95M 7.13 24.7
4x575 LSTM, 1-D depthwise 10.01M 6.31 21.9
4x180 LSTM, Bidirectional 3.08M 5.61 19.3
6x300 GCN (T = 15) 16.38M  8.01 28.6

6x300 GCN (1" = 4), 1-D depthwise 4.43M 637 231
6x300 GCN (1" = 2), 1-D depthwise 2.25M 6.69 24.1
12x220 GCN (T" = 2), 1-D depthwise =~ 2.47M 567 20.1
6x300 SGCN 1.16M 7.03 255
12x300 SGCN 2.24M 532 18.8

In Table 3.1, The CER and WER performance of LSTM RNN, Gated ConvNet
and Simple Gated ConvNet are shown. All the model were trained in WSJ Si-284 and
evaluated in WSJ eval 92. Greedy decoding, without any support of language model,
was performed. Simple gated ConvNet outperforms LSTM under the parameter 3M.
WER differences is over 6%. Simple gated ConvINet surpasses LSTM when even 1-D
depthwise convolution is combined with LSTM. Simple Gated ConvNet showed good
performance even when the parameter size is relatively smaller than LSTM. Simple
Gated ConvNet with 3M parameters defeats LSTM with 1-D depth-wise convolution
whose parameter size is 10M. The performance of Simple gated convNet was better

than other Gated ConvNet which has longer T, given similar number of parameters.
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Note that the performance of Simple Gated ConvNet with 2.24M surpasses that of the
Bidirectional LSTM with 3.08M. Considering bidirectional LSTM has latency which
results from observing a whole sequence in advance, Simple Gated ConvNet can be a

better option for real-time speech recognition.

Table 3.2: WER and CER in percentage with various width of 1-D depthwise convo-

lution, trained in WSJ Si-284 and evaluated on WSJ eval92 test set.

‘ Greedy

Model Params. \ CER WER

12x300 SGCN (K = 1) 2.24M 532 188
12x300 SGCN (K = 3) 2.33M 5.09 17.8
12x300 SGCN (K = 5) 2.42M 514 183
12x300 SGCN (K =T7) 2.50M 5.10 17.8
12x300 SGCN (K =11) 2.68M 4.93 17.5
12x300 SGCN (K =15) 2.85M 4.96 17.7
12x300 SGCN (K =21) 3.10M 475 16.8

In Table 3.2, improved performance in Simple Gated ConvNet is obtained by in-
creasing the width K. Although performance does not increase linearly, higher K
tends to contribute to performance improvement to some extent. It shows that we can
take advantage of better acoustic modeling by viewing adjacent features at a time.
When K is 21, the best WER is obtained. Considering the increase in the number of

parameters, we adopt K of 5 or 11 in the following experiments.

In Table 3.3, models were trained in WSJ Si-ALL, which is larger dataset than WSJ
Si-284. The 1-D filter width, K of 1 is adopted for LSTM with 1-D depthwise con-
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Table 3.3: WER and CER in percentage trained in larger dataset (WSJ Si-ALL) and

evaluated on WSJ eval92 testset.

Greedy HCLM
Model \ CER WER \ CER WER
12x300 SGCN (K = 11) 374 137 162 404

4x300 LSTM, 1-D depthwise  5.07 177 240 576

Table 3.4: WER and CER in models with 1 M parameters, evalutated on WSJ eval92.

(a) Trained in WSJ Si-284.

Greedy
Model Params. | CER WER
4x160 LSTM 0.96M 10.78  37.1
4x160 LSTM, 1-D depthwise 0.97M 9.64 33.6
12x190 SGCN (K = 5) 0.99M 6.11 22.0
(b) Trained in larger dataset(WSJ Si-ALL).
Greedy
Model Params. | CER WER
4x160 LSTM 0.96M 8.64 31.2
4x160 LSTM, 1-D depthwise ~ 0.97M 6.72 24.1
12x190 SGCN (K = 5) 0.99M 5.11 18.8
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volution. Trained with larger data, Simple Gated ConvNet shows much better perfor-
mance than LSTM with 1-D depthwise convolution. The decoding was also performed
using language model. As a language model, Hierarchical Character Level Language
Model(HCLM) was employed [19, 20]. The HCLM combines the advantages of word-
level language model(WLM) and character-level language model(CLM). Even after
language model is integrated, Simple Gated ConvNet is superior to 1-D depthwise
convolution-augmented LSTM.

In Table 3.4, the model sizes are under 1M. The 1-D filter width, K of 1 is chosen
for LSTM with 1-D depthwise convolution. The performance of Simple Gated Con-
vNet exceeds that of LSTM with 1-D convolution when the parmeter size is limited
under 1 M. This trend is maintained in the larger dataset. Note that the performance
drop in Simple Gated ConvNet is much smaller than that of LSTM when the parame-
ter size is reduced to extremely low. Simple Gated ConvNet shows robust performance

compared to LSTM RNN when the parameter size plunges.

Table 3.5: WER and CER in percentage with models for low latency tasks, trained in
WSJ Si-284 and evalutated on WSJ eval92.

‘ Greedy

Model Params. \ CER WER

12x300 SGCN (100 ms latency) 2.68M 6.20 224
12x300 SGCN (200 ms latency) 2.68M 5.01 18.1
12x300 SGCN (1200 ms latency)  2.68M 4.93 17.5

Table 3.5 shows the performance of Simple Gated ConvNet on low latency tasks.

Low latency model is achieved by using causal convolution, which only views past
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Table 3.6: Execution time in second for processing 1 sec speech, function of 7,.

| ,

Model \ 1 4 8 16

4x275 LSTM  0.459 - - -
12x300 SGCN  0.363 0.095 0.061 0.043

time-steps [30, 31]. Employing causal convolution prevents latency as future time-
steps are never seen by the operation of convolution. As for the proposed model, the
filter size T' of 1-D depthwise convolution is 11. the filter covers the input from ¢-5
to t+5, where ¢-5 denotes five-step past and ¢+5 represents five-step future. Therefore,
one non-causal layer of Simple Gated ConvNet give rise to the latency of five steps.
As one time-step is about 20ms, the latency of 100 ms occurs from one Simple Gated
ConvNet layer. As we stack non-causal layers, the amount of latency escalates. The
increased latency disturbs real-time speech recognition.

We reduce the amount of latency by replacing some non-causal layers with causal
layers. The result of 1000 ms, 100ms and 200ms are shown in table 3.5. Note that one
non-causal layer is the source of 100 ms delay. As we adopt 12-layered Simple Gated
ConvNet, total 1200 ms delay occurs when all the layers are non-causal. The latency of
total 100 ms is obtained by employing one non-causal layer and remaining layers are
all causal. In the same way, we get the latency of 200 ms by choosing two non-causal
layers and remaining all-causal layers. We can notice that the model of 200 ms delay
shows small performance degradation compared to model of 1200 ms delay with all
non-causal layers. The result of low latency tasks shows that Simple Gated ConvNet
works well under low-latency configuration. And it can also be suitable for real-time

recognition in terms of low latency.

The result of multi-time step parallelization is shown in table 3.6. As Simple Gated

ConvNet adopts no recurrent path, the computation of samples from multiple time step
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can be easily computed. Simple Gated ConvNet shows was 10 times faster than LSTM

RNN When the parallel step of 16 was chosen.

3.3 Concluding Remarks

We propose Simple Gated ConvNet for end-to-end speech recognition. Simple Gated
Net is on-device friendly compared to LSTM RNN. Simple Gated ConvNet outper-
forms LSTM based RNN in acoustic modeling. The proposed model significantly re-
duces the number of parameters needed compared to Gated ConvNet. Our model is
also suitable for multi-time step parallelization as no recurrent path exists. These char-
acteristics make the simple gated convNet advantageous for speech recognition over
LSTM based RNN in embedded devices.

We show experimentally that Simple Gated ConvNet has much better performance
than LSTM RNN and Gated ConvNet under 3 M parameters. Furthermore, Simple
Gated ConvNet of 3 M shows superior performance than LSTM of 10 M. Simple
Gated ConvNet shows robust performance in various tasks. When the parameter size
was reduced to even 1M, simple Gated ConvNet shows affordable performance. Per-
formance degradation of Simple Gated ConvNet was small even in the low latency
tasks. Above all, 10 times speed-up over LSTM RNN is achieved through multi-time

step parallelization.
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Chapter 4

Conclusions

We tried to build an on-device automatic speech recognition (ASR) which can be per-
formed in embedded devices independently. Major approach was finding neural net-
work based acoustic models which is suitable for multiple time step parallelization.
Conventional LSTM RNN is not suitable for multiple time step parallelization as it
has large recurrent paths.

In chapter 2, we explored various acoustic models which can be on-device friendly.
Gated Convolutional Networks(Gated ConvNet), the quasi RNN(QRNN) and diagonal
LSTM are adopted. They have more advantages than LSTM RNN in execution time.
Multiple time step parallelization technique allows these models to make at least 5
times speed-up in embedded devices. Introduction of 1-D depthwise was main source
of performance rise and Gated ConvNet with 1-D depthwise convolution yields the
best result in greedy decoding.

In chapter 3, we proposed Simple Gated Convolutional Network(Simple Gated
ConvNet). We examined the structure and performance of Simple Gated ConvNet.
We showed how this structure is more advantageous than LSTM RNN for on-device
speech recognition. Parameter size was remarkably reduced compared to Gated Con-
vNet. The performance in Simple Gated ConvNet was much better than LSTM RNN

and Gated ConvNet in terms of error rate. 10-times speed-up was obtained compared
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to LSTM RNN.

The thesis was a journey to find out how to perform speech recognition efficiently
in embedded device in algorithm level. Out method and the proposed model can be
combined with other techniques like network compression in order to achieve more

efficient on-device speech recognition.
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