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Abstract

Automatic speech recognition (ASR) is widely adopted for smartphones and many

embedded devices in recent years, and neural network based algorithms show the best

performance for ASR. While most of ASR systems are based on server-based process-

ing, there is an increasing demand for on-device speech recognition because of privacy

concern and low latency processing. Reducing the power consumption is especially

important for on-device speech recognition to lengthen the battery life.

Among several neural network models, recurrent neural network (RNN) based al-

gorithms are mostly used for speech recognition, and long short-term memory(LSTM)

RNN is most popular because of its superior performance over the other ones. How-

ever, executing LSTM RNN demands many DRAM accesses because the cache size of

embedded devices is usually much smaller than the parameter size of RNN. Multi-time

step parallelization technique computes multiple output samples at a time by fetching

one set of parameters, and thus it can reduce the number of DRAM accesses in pro-

portional to the number of time steps computed at a time. However, LSTM RNN does

not permit the multi-time step parallelization because of complex feedback structure

of the model.

This thesis presents neural network models that support efficient on-device speech

recognition. First, a few models that permit multi-time step parallel processing are

evaluated. The models evaluated include Gated ConvNet, Diagonal LSTM, and QRNN

(quasi RNN). Since the performance of these models are not as good as the LSTM,

one-dimensional depthwise convolution is added to improve the performance. The

one-dimensional convolution helps finding the temporal patterns of speech signal. Sec-

ond, Simple Gated Convolution Network (Simple Gated ConvNet) is proposed for im-

proved performance when the parameter count is very small. The Simple Gated Con-

vNet employs the simplest form of Gated ConvNet. Instead it relies on one-dimensional
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convolution for temporal observation. Simple Gated ConvNet supports low-power on-

device speech recognition because it can be executed employing multi-time step paral-

lelization. The Simple Gated ConvNet under 3 million even shows better performance

than the LSTM with 10 million parameters. In addition, the execution speed in ARM

CPU can be increased more than ten-times compared with the LSTM RNN through

multi-time step parallelization.

keywords: Speech Recognition, Sequence Modeling, Recurrent Neural Net-

works(RNN), Embedded Devices

student number: 2017-27205
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Chapter 1

Introduction

1.1 On-device speech recognition: advantages and challenges

Today, most of automatic speech recognition (ASR) is based on neural network based

algorithms. Especially, end-to-end speech recognition through neural networks is widely

used as a effective method for speech recognition [1, 2, 3, 4]. The end-to-end approach

does not need any previous one-to-one mapping between labels and features before

training neural networks.

Meanwhile, the demand for on-device speech recognition is increasing. On-device

speech recognition here refers to automatic speech recognition (ASR) in which speech

recognition is solely performed in users’ devices and the user information is not trans-

mitted to the server. While speech recognition is popularly used in embedded devices

and smartphones, most of speech recognition is carried out in the servers of service

providers after user’s speech is delivered. However, this server-based speech recogni-

tion causes a concern for security and privacy. This is because user’s speech is trans-

mitted to the server. It can be vulnerable to external attack and personal information

can leak to the outside.

On-device speech recognition can be a solution in a significant part in security

and privacy issues. Privacy invasion can be avoided with on-device speech recognition
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because user’s speech is not needed to be stored in servers. Moreover, as most of

the speech recognition is achieved on local devices, propagation latency due to the

network is mostly eliminated. Furthermore, service provider can reduce the need to run

numerous servers at great expense and power consumption can be greatly decreased.

However, there exist challenges to implement on-device speech recognition. First,

Speech recognition on-device is heavily dependent on the limitations of hardware

specification. As neural network models require parameters which claim millions of

megabytes (MB). Parameter size needs to be greatly reduced in order to implement

speech recognition which mainly utilizes resources of user’s local devices.

Second, the number of parameter fetch from main memory should be decreased.

As neural networks models require parameters of large sizes, most of the parameters

in the models can not be stored in cache memory, however, are stored in main memory.

Frequent accesses to the main memory and fetching data lead to the reduced speed of

inference in neural networks. Increased power consumption should be under consider-

ation as well.

In server-based ASR, the number of fetch from main memory can be reduced by

parallelization using the batch method. Each user corresponds to one batch in this

scheme. Neural network operations can be conducted in parallel so that speech recog-

nition is carried out for multiple people at once in a inference stage. In this process,

parameters needed are fetched from main memory at once. However, this approach

cannot be applied in on-device speech recognition. In on-device speech recognition,

there only exists one independent user, therefore, batch-approach does not work well

for the number of reduction of memory access.

This problem can be solved by multiple time-step parallelization. A neural network

model for sequence modeling essentially require computations over every time-step.

We can parallelize the operations at each time-step. Then, the parameters needed for

each time-step operation can then be fetched from main memory at once. If sequential

processing is not parallelized, main memory must be accessed every time a sample

2



Figure 1.1: The overall procedure of automatic speech recognition.

from each time-step is computed.

In this thesis, we propose a neural network model which consumes low parameters

while parallelization is employed in order to reduce the number of memory fetch. It

also leads to increased speed of speech recognition. Before we address the proposed

model, we explain the components of end-to-end speech recognition first.

1.2 The components of speech recognition

End-to-end speech recognition consists of acoustic model, language model and op-

tional dictionary. Acoustic model represent probability distribution of acoustic features

given the labels or transcriptions. Language models expresses the probability distribu-

tion between words or characters. Automatic speech recognition(ASR) is a process

which finds out correct mapping between acoustic feature vectors and defined tokens.

Acoustic model and Language model are ingredient for ASR. Especially, the acoustic

models claims the core part of speech recognition as it expresses the relations be-

tween acoustic features and human-readable characters or words. In neural network

approach, acoustic model is trained neural networks. Figure 1.1 illustrates the overall

procedure of ASR.

Suggesting a novel structure for acoustic modeling, we implement on-device ef-
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ficient speech recognition. To be specific, we propose the acoustic model which is

suitable for on-device speech recognition in terms of parameter size and speed. Per-

formance of the proposed model was better than previous models. Parameter size is

much reduced. The reduction of the number of main memory access is achieved by

algorithm-level parallelization. The proposed algorithm handles the computation of

multiple-time steps in parallel.

1.3 The downsides of RNN based acoustic models

Recurrent neural networks(RNN) has been often employed in training acoustic mod-

els and it has been considered as a clever tool for processing sequence information.

Among various RNNs, Long short-term memory (LSTM) has been usually employed

for sequence modeling [5]. This is because gradient exploding and vanish problem can

be avoided to some extent with the introduction of additional state and gates [6].

ft = σ(Wfxt +Ufht−1 + bf ),

it = σ(Wixt +Uiht−1 + bi),

ot = σ(Woxt +Uoht−1 + bo),

ct = ft � ct−1 + it � tanh (Wcxt +Ucht−1 + bc),

ht = ot � tanh(ct).

(1.1)

However, LSTM RNN is not suitable for multi-time step parallelization, which

computes the information of multiple time steps in parallel. Note the equation 1.1. As

previous hidden states affect the current state in major computations, samples from

multiple time steps can not be computed at once. It should be calculated sequentially.

The dependency between current and past states hinders parallel computation. In this

case, the memory should be accessed in every time-step. It leads to the speed drop and

increased power consumption. Here, there is a need for a parallel-friendly algorithm
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to replace LSTM RNN.

1.4 Exploration of efficient on-device acoustic modeling with

neural networks

We explore on-device friendly acoustic models which can replace LSTM RNN. This

is to solve the problem of LSTM which is difficult to perform multiple time step par-

allelization in embedded device. In addition, acoustic models for embedded devices

should be higher in performance than LSTM RNN in terms of recognition accuracy.

We utilize gated convolutional networks (Gated ConvNet), diagonal LSTM and quasi

RNN (QRNN) as candidates for the purpose of on-device efficient acoustic modeling

[7, 8, 9]. Unlike LSTM, the above models are advantageous for multiple time step

parallelization.

Adopting the suggested models, We carry out CTC-based end-to-end speech recog-

nition. when we solely make use of the models, the performance of the models is

lower than than of LSTM RNN. Therefore we added the 1-D depthwise convolution

to each model’s layer. As for QRNN, it was proved that 1-D depthwise convolution

with QRNN gives rise to performance jump[10]. The parameter size of 1-D depthwise

convolution doesn’t matter. The parameter increase from 1-D depthwise convolution

is small enough to be stored in cache memory.

Introducing 1-D deptwise convolution leads to the performance grow for all the

selected models. Among the models, Gated ConvNet with 1-D depthwise convolution

shows the best performance in greedy decoding. Employing deep structures and 1-D

depthwise convolution were keys to performance soaring. We further conducted frame-

wise phoneme recognition tasks and the performance result of the selected models

were verified again. Gated ConvNet with 1-D depthwise convolution shows the best

performance in the phoneme classification tasks as well.

We present a execution result of the acoustic models on ARM CPU. By employing
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multi-time step parallelization, the execution time of the suggested models shows that

at least five times speed-up was achieved. We experimentally showed that it is worth

of using on-device efficient acoustic models that we propose.

1.5 Simple Gated ConvNet for small footprint acoustic mod-

eling

We further suggest convolutional neural network(CNN) based algorithms for sequence

modeling replacing LSTM. To be specific, we propose simple Gated Convolutional

Networks(Simple Gated ConvNet), which is the Simplest form of Gated Convolutional

Networks (Gated ConvNet). We utilize Simple Gated ConvNet in training acoustic

models. Our model can deal with the limitations for on-device speech recognition de-

scribed above.

Simple Gated ConvNet is based on Gated ConvNet. Gated ConvNet was originally

suggested for the purpose of training language models [7]. Gated ConvNet was also

employed in acoustic modeling [11, 12]. However previous usage on Gated ConvNet

consumed fairly large parameters for acoustic modeling, which is more than 50 M.

Time delay networks which is used in Gated ConvNet adopt the length T . T plays a

role of looking at sequential information of a certain length. Therefore it enables the

network to process the sequence information. However, the filter length T is also be

the main source of the increase in parameter sizes.

In Simple Gated ConvNet, this length T was reduced to the maximum, which is

one. Therefore the parameter sizes can be greatly reduced. Of course, this can be a

good virtue for on-device speech recognition. After T becomes 1, the model lacks the

ability to see the neighboring context. In order to compensate for the performance drop,

we additionally employed 1-D depthwise convolution which plays a role of looking at

neighboring context. 1-D depthwise convolution is much lighter than original convo-

lution operation in Gated ConvNet in terms of parameter sizes.
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The proposed model take advantages over LSTM RNN and conventional Gated

ConvNet with several aspects. First, Simple Gated ConvNet outperforms LSTM RNN

with respect to word error rates(WER) and character error rate(CER). In other words,

Simple Gated ConvNet shows more accurate speech recognition results than LSTM

RNN. Second, the parameter size is much reduced. Simple Gated ConvNet with smaller

parameter sizes shows better performance than that of LSTM RNN and Gated Con-

vNet. Third, parallelization over multiple time steps is achieved in Simple Gated Con-

vNet. This is because there is no dependency between multiple time step computation.

Thanks to multiple time step parallelization, the decoding speed becomes much faster

experimentally.

1.6 Outline of the thesis

The rest of the thesis is organized as follows. In Chapter 2, the result of diffrent acoustic

models are explored. Especially, comparison between acoustic models are performed

which can be suitable for on-device devices in terms of multi-time step parallelization.

Chapter 3 addresses the details of Simple Gated ConvNet. The structure of Simple

Gated ConvNet is illustrated. The performance of Simple Gated ConvNet is compared

with LSTM RNN and conventional Gated ConvNet. Chapter 4 concludes the thesis.
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Chapter 2

Exploration of Efficient On-device Acoustic Modeling

with Neural Networks

There are various acoustic models that can be suitable for on-device speech recogni-

tion in terms of reducing the main memory accesses through parallelization. In chapter

2, we explore various acoustic models with neural networks which can be used for

on-device speech recognition. The quasi RNNs (QRNNs), Gated ConvNets, and diag-

onalized LSTMs are considered here. Multiple time-step parallelziation can be carried

out in all the listed models. 1-D depthwise convolution is also combined to all the

acoustic models in order to achieve performance rise. The performance of these mod-

els are compared in Section 2.2. Speed-up of the execution is achieved experimentally

as well.

2.1 Acoustic Modeling Algorithms

2.1.1 Diagonal LSTM RNN

In diagonal LSTM RNN, all the recurrent matrix become much lighter than conven-

tional LSTM RNN. To be specific, all the components in Uf , Ui, Uo and Uc becomes

zero except for diagonal terms [8, 13]. Therefore, matrix multiplication between re-
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current weight matrix and input matrix converts to the element-wise multiplication

between them. Equation 2.1 shows the operation of diagonal LSTM. � denotes the

element-wise multiplication.

ft = σ(Wfxt +Uf � ht−1 + bf ),

it = σ(Wixt +Ui � ht−1 + bi),

ot = σ(Woxt +Uo � ht−1 + bo),

ct = ft � ct−1 + it � tanh (Wcxt +Uc � ht−1 + bc),

ht = ot � tanh(ct).

(2.1)

We can take advantage of multiple time step parallelization using diagonal LSTM

in embedded implementations. As diagonal terms are extracted from reccurent weight

matrix, recurrent weights become much smaller. In LSTM RNN, heavy weight matrix

for the recurrent function was the major obstacle for the multi-time step paralleliza-

tion. However, as for diagonal RNN, lighter diagonal terms can be stored in cache

memory. There is no need to access the main memory when considering recurrent

terms. Therefore, samples of multiple time steps can be fetched in parallel.

x̂t = tanh (Wzxt + bz),

[ft, it,ot] = σ([Wf ,Wi,Wo]xt + [bf ,bi,bo]),

ct = ft � ct−1 + it � x̂t,

ht = ot � ct + (1− ot)� xt.

(2.2)
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2.1.2 QRNN

QRNN does not adopt the feedback computation. In other words, weight matrix for re-

current layer is not used in QRNN [9, 14]. Instead, k input samples, xt,xt−1, . . . ,xt−k+1

are computed in order to consider sequence information. Note that LSTM RNN only

utilize one imput sample xt. As no recurrent weight matrix is used, multiple time-step

parallelization can be achieved.

Equation 2.2 shows the simplest form of QRNN. We employ one as a size of k.

This is because the parameter size increases linearly proportional to the size k. We try

to reduce the parameter size to the maximum.

2.1.3 Gated ConvNet

Gated ConvNet makes use of convolutional neural networks(CNN) for sequence mod-

eling. One layer of Gated ConvNet adopts two separate convolution filters and these

filters play a role of observing a certain length of context [7]. As Gated ConvNet em-

ploys no recurrent path, multiple time step parallelization can be easily applied. Equa-

tion 2.3 illustrates the operation of Gated ConvNet.

h(X) = (X ∗W + b)� σ(X ∗V + c) (2.3)

where ∗ denotes convolution operation and � represents element-wise multiplication.

W,V ∈ RT×D×D and b, c ∈ RD are trainable variables where D is the channel of

the network. X ∈ RN×D is the input vector where N is the sequence length.

2.2 Experiments

The performance of various models were experimented on two acoustic modeling

tasks. One is Connectionist Temporal Classification(CTC) algorithm based speech
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Figure 2.1: Acoustic modeling architecture for end to end speech recognition.

recognition, in which the unit of the labels is the character [1, 2, 15]. The other is

frame-wise phoneme classification task, in which the unit of the labels is the phoneme.

The main difference of these two task is whether pre-alignment between labels and

acoustic features is needed. In CTC based algorithm tasks, pre-alignment between

characters and acoustic features is not required. This is because the alignment is done

automatically during the training stage. In frame-wise phoneme classification, align-

ment between labels and acoustic features should be conducted before the training

stage. The Wall Street Journal (WSJ) corpus [16] was employed for CTC-based speech

recognition tasks. As for the phoneme recognition task, TIMIT dataset was used.

2.2.1 End-to-end speech recognition

For CTC-based end-to-end speech recognition, a 40-dimensional log Mel-frequency

filter-bank feature was extracted from raw wav files of WSJ corpus. 25 ms-sized Ham-

11



Table 2.1: WER and CER (%) evaluated on WSJ eval92. The models are trained on

SI-284.

Models Params. CER WER

4x600 LSTM 11.5M 7.29 24.88

6x800 QRNN (k = 1) 11.5M 12.70 45.22

6x700 Diagnoal LSTM 11.5M 8.97 30.40

6x300 Gated ConvNet (T = 15) 16.2M 8.02 28.65

6x300 Gated ConvNet (T = 7) 7.7M 8.52 30.56

ming window is used to sample the feature vectors every 10 ms. Then, the extracted

filter-bank features were employed for the inputs of two-layered 2-D CNN layer. The

two layered 2-D Convolutional Neural Networks (CNN) is used for down-sampling

the input frames by two. The down-sampling of feature frames contributes to reduc-

ing the arithmetic complexity. Batch normalization and variational dropout are also

adopted for the two layered CNN for regularization [17, 18].

The output of two-layered CNN becomes the input of the various acoustic models

such as Gated ConvNet, QRNN and LSTM. 1-D depthwise convolution is optionally

added to the one layer of the after selected models. The one layer of the models with

optional 1-D depthwise convolution becomes the one component of the multi-layered

network. The fully connected is added at the end of the network. The overall network

is used to train CTC loss function. Figure 2.1 illustrates the whole network.

Experimental results are shown in the following tables. Most of the experiments

were conducted with WSJ SI-284, which has 81 hours of speech. WSJ-ALL, which

contains 150 hours of speech was also used if needed. The number of layers and the

width of each layer are also shown. For example, 4x400 LSTM denotes the four-

layered LSTM which has the hidden dimension of 400. As for Gated ConvNet, T
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Table 2.2: WER and CER (%) evaluated on WSJ eval92 with 1-D convolution.

Models Params. CER(%) WER(%)

4x600 LSTM, 1-D conv 11.5M 6.95 23.57

6x700 QRNN (k = 1), 1-D conv 11.5M 5.26 19.07

6x700 Diagonal LSTM, 1-D conv 11.5M 7.57 23.90

6x300 Gated ConvNet (T = 15), 1-D conv 16.2M 7.58 27.00

6x300 Gated ConvNet (T = 7), 1-D conv 7.7M 6.57 24.20

20x300 Gated ConvNet (T = 2), 1-D conv 7.5M 5.55 19.70

30x300 Gated ConvNet (T = 2), 1-D conv 11M 4.73 17.00

denotes the number of context length that each Gated ConvNet layer observes. QRNN

with k represents that k input samples, xt,xt−1, . . . ,xt−k+1, which were used in com-

putation in QRNN. Performance was evaluated using character error rate(CER) and

word error rate(WER).

In table 2.1, the results of greedy decoding are shown. Greedy decoding means

that no language model is augmented for evaluation. The performance of acoustic

models can be solely compared by greedy decoding. The results of LSTM, QRNN,

Diagonal LSTM and Gatd convNet are shown in the table. 1-D depthwise convolution

is not applied in this table. Among the selectd models, LSTM RNN yields the best

performance. QRNN shows the worst performance. Note that QRNN never adopts any

local feedback from previous the hidden state. It can be seen that the recurrent path

plays an important role in performance.

In table 2.2, we add 1-D depthwise convolution to each selected model. We try

to increase the performance of each model by adding 1-d depthwise convolution. The

parameter increase is not significant when 1-d depthwise convolution is combined.

The time-length of 1-D convolution filter is 15, from -7 to +7, which means that the
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Table 2.3: WER and CER (%) on WSJ eval92. The models are trained on WSJ SI-ALL.

Greedy HCLM

Models Params. CER WER CER WER

4x600 LSTM, 1-D conv 11.5M 5.91 20.14 2.71 6.56

6x700 QRNN (k = 1), 1-D conv 11.5M 4.13 18.02 1.51 3.73

30x300 Gated ConvNet (T = 2), 1-D conv 11M 3.30 11.60 1.53 3.86

Deep Speech 2 [4] 100M WER 3.60 with 5-gram LM

filter consider seven time steps in the past, seven time steps in the future. When 1-

D depthwise convolution is combined, the performance of LSTM RNN jumped from

24.88% to 23.57%. Compared to LSTM, Gated ConvNet, QRNN and diagonal LSTM

shows remarkable performance rise.

As for diagonal LSTM, the result is similar to that of LSTM RNN with 1-D

depthwise convolution. As multi-time step parallelization can be achieved in diagonal

LSTM, diagonal LSTM with 1-D depthwise convolution is much more beneficial than

conventional LSTM. The performance of QRNN goes through drastic change when

it is augmented with 1-D deptwise convolution. The word error rate improved from

45.22 % to 19.70 % when 1-D depthwise is combined. Gated ConvNet also shows

increase in performance.

Introduction of deep structure contributes to the performance skyrocketing. The

WER in Gated ConvNet drops to 17.00 %. It marks the best performance. Although,

layers get deeper, total parameter size is not that large. This is because the filter length

of T of Gated ConvNet is reduced. Instead, 1-D convolution filter, whose length is 15,

contributes to processing sequence information more.

The performance of the suggested models are also trained in larger dataset, WSJ-

ALL. The result of trained end-to-end acoustic models are listed in table 2.3. All the
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Table 2.4: Frame-wise phoneme classification accuracy (%) on TIMIT.

Models Params. Accruacy

2x256 LSTM 0.92M 72.00

4x256 QRNN (k = 1) 0.92M 52.74

4x256 Diagonal LSTM 0.92M 68.45

4x256 Gated ConvNet (T = 2) 0.91M 62.00

2x256 LSTM, 1-D conv 0.93M 75.30

4x256 Diagonal LSTM, 1-D conv 0.93M 74.60

4x256 QRNN (k = 1), 1-D conv 0.93M 76.48

4x256 Gated ConvNet (T = 2), 1-D conv 0.92M 76.30

10x128 Gated ConvNet (T = 2), 1-D conv 0.67M 77.04

models were evaluated on WSJ eval92 testset. Furthermore, the beam decoding was

conducted with with the support of language model. Beam width was set as 128. As

a language model, hierarchical character language model (HCLM) is chosen [19, 20].

The HCLM was trained using the training text of WSJ corpus. In the result of both

QRNN and Gated ConvNet augmented with 1-D depthwise convolution, WER below

4% was aquired. Although we spent about 10 times less number of parameters, the

result is close to the result of Deep speech 2 [4].

2.2.2 Phoneme classification

Frame-wise phoneme classification on TIMIT dataset was performed in order to verify

whether the proposed models with 1-D convolution work well in the non-CTC speech

recognition tasks. Training TIMIT dataset for phoneme classification takes much less

time than CTC based end-to-end speech recognition.
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Table 2.5: Frame-wise phoneme classification accuracy (%) of different Gated Con-

vNets on TIMIT.

Models Params Accuracy

4x256 Gated ConvNet (T = 2), 1D conv (-3,+3) 0.92M 76.44

4x256 Gated ConvNet (T = 2), 1D conv (-5,+5) 0.92M 76.30

4x256 Gated ConvNet (T = 2), 1D conv (-7,-7) 0.92M 73.90

10x128 Gated ConvNet (T = 2), 1D conv (-3,+3) 0.67M 78.04

10x128 Gated ConvNet (T = 2), 1D conv (-5,+5) 0.67M 77.04

We made use of a 40-dimensional log Mel-frequency filter-bank feature as we did

in the end-to-end speech recognition task. Note that previous research on phoneme

recognition utilized the Mel-Frequency Cepstral Coefficients (MFCCs) [21]. Total 61

classes of phonemes were employed for the training, and they were folded into 39

classes for evaluation. This way of evaluation was done in the same way as conducted

in previous studies [22]. The parameter sizes were limited to 1 M to be compared with

the previous results [21].

In table 2.4, the accuracy of frame classification is shown. 11 of the context length

of 1-D depthwise convolution was chosen. The result of LSTM RNN is better than

other models without 1-D depthwise convolution. However, after 1-D depthwise con-

volution is augmented, the performance of Gated ConvNet ourperforms LSTM RNN

which is combined with 1-D depthwise convolution. QRNN with 1-D depthwise con-

volution shows similar performance as Gated ConvNet with 1-D depthwise convolu-

tion. The accuracy of LSTM doesn’t improve much when combined with 1-D depth-

wise convolution. We can find out that 1-D depthwise convolution contributes to per-

formance improvement. Moreover, gated ConvNet and QRNN With 1-D depthwise
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Table 2.6: Execution time (sec) for models for 1 sec speech, function of TP

Models TP = 1 TP = 4 TP = 8 TP = 16

4x600 LSTM 1.46

6x700 QRNN (k = 1), 1-D conv 1.21 0.39 0.20 0.15

6x700 Diagonal LSTM 1.55 0.47 0.25 0.18

30x300 Gated ConvNet, 1-D conv 1.85 0.47 0.29 0.20

convolution outperformed LSTM RNN. The performance trend of acoustic modeling

on CTC-based acoustic modeling was maintained in frame-wise classification tasks

as well. Table 2.5 shows the result of Gated convNet with various configurations on

phoneme classification task. “1D conv(-3,3)” means that it shows the context of the

past three time-steps and the future three time-steps.

2.2.3 Implementation Results on Embedded Systems

Multi-time step parallelization is difficult with LSTM RNN. Parameters for feedback

to the previous state in LSTM is too large to be stored in cache-memory. It means that

main memory should be accessed in every time-step. However, the proposed models

such as QRNN, Gated ConvNet with 1-D depthwise convolution are suitable for the

multi-time step parllelization.

Table 2.6 shows the result of multi-time step parallelzation on the proposed mod-

els. ARM Cortex-A57 based embedded system was used to measure the execution

time. The result shown is the execution time of CTC-based end-to-end acoustic mod-

els. Multi-time parallel steps of 1, 4, 8, 16 were chosen. As LSTM is not suitable for

multi-time step parallelization, execution time of sequential processing is represented.

17



The execution time of QRNN and Gated ConvNet was 7.30 times and 5.03 times faster

than LSTM RNN each when the parallel steps of 8 is adopted.

The result shows that fast inference of acoustic model can be achieved in embed-

ded devices using the multiple time step parallelization. In this respect, parallelization

friendly algorithms such as diagonal RNN, Gated ConvNet and QRNN has advantages

over LSTM RNN.

2.3 Concluding Remarks

LSTM RNN based acoustic modeling is in-efficient for speech recognition on embed-

ded devices. DRAM should be accessed every time-step when using LSTM RNN so

that model parameter is fetched from DRAM at every inference. Multiple time step

parallelization can not be applied because each state in LSTM RNN has dependency

on previous time steps in major computation. It is the main bottleneck for fast and

energy-efficient on-device acoustic modeling.

In order to overcome the setbacks of LSTM-RNN, we explore various acoustic

models which are suitable for multiple-time step parallelization. And it leads to more

efficient acoustic modeling than LSTM-RNN. Diagonal LSTM, the quasi RNN(QRNN)

and Gated ConvNet were employed as candidates for on-device friendly acoustic mod-

els. These models allows recurrent paths to be enough small so that cache-memory can

afford them. In addition, introduction of 1-D depthwise convolution makes some of the

suggest models outperforms conventional LSTM-RNN.

Experiments were conducted in end-to-end speech recognition and frame-wise

phoneme classification tasks. In most of the cases, Gated ConvNet with 1-D deptwise

convolution was better than any other models in terms of word error rate. The execu-

tion time of the presented models were measured in embedded devices. The suggested

models present the speed-up of over 500 % when parallel step of 8 is adopted.

In this chapter, we explored the neural networks models which are more advanta-
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geous than conventional LSTM RNN for sequence modeling with respect to on-device

efficient speech recognition.
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Chapter 3

Simple Gated Convolutional Networks for small foot-

print acoustic modeling

We propose Simple Gated ConvNet which outperforms LSTM RNN and which is suit-

able for multi-time step parallelization. The parameter size needed in acoustic models

is also greatly reduced, which can be a benefit for efficient on-device speech recogni-

tion.

3.1 Simple Gated ConvNet

3.1.1 Gated ConvNet

Gated ConvNet combines stacked convolution with gating mechanism for sequence

modeling [7]. The main structure of Gated ConvNet is represented as follows.

hl(Xl) = (Xl ∗Wl + bl)� σ(Xl ∗Vl + cl), (3.1)

where� is element-wise multiplication, σ represents sigmoid function and ∗ indicates

convolution operation. The network is composed of L layers, and l = 0, 1, 2, 3, ..., L−

20



1. Wl,Vl ∈ RT×1×D×D and bl, cl ∈ RD are learned parameter where T is the filter

length, and D denotes the feature dimension.

Note that the shape of Wl and Vl is [T, 1, D,D].The size of the model increases

in proportional to the length T , given that D is fixed. T can be interpreted as the

context length at each layer. Note that sequence learning with a finite range of context

was also investigated in time-delay neural networks(TDNN) [23, 24]. Processing a

certain length of sequences in Gated ConvNet can be thought like observing a temporal

context in TDNN. Both view finite range of sequences through temporal convolution

operations.

It is inevitable to employ a certain length of T in order to observe adjacent se-

quence information. For acoustic modeling, conventional Gated ConvNet also adopted

a certain length of T . In [12], the length of T range from 13 to 28 was chosen. As we

go to deeper layers, T increases gradually. However, employing a certain length of T

is one of the major source for the number of parameters skyrocketing. It serves as a

obstacle for on-device usage.

3.1.2 Simple Gated ConvNet

Simple Gated ConvNet set the length T to one. It reduces the number of parameters

needed in each convolution filter Wl and Vl from TDD to DD. In other words,

convolution filters Wl, Vl in Gated ConvNet does not cover neighboring context at

once anymore. As separate two convolution filter Wl, and Vl are employed in Gated

ConvNet, 2T times decrease in parameter size is achieved. The reduction of T gives

rise to huge performance drop obviously, which is described in Section 3 experimen-

tally. Since we do not count consecutive context at a time when T is one, we need an

additional means so that networks consider neighboring context.

Therefore, 1-D depthwise convolution is adopted. The 1-D depthwise convolution

plays the role of looking at a certain length of sequences while using the lighter pa-

rameters. Depth-wise convolution has been employed in the area of vision, machine
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translation and speech recognition recently[25, 26, 27, 10]. The operation of 1D depth-

wise convolution is represented as follows.

hl
t,1,d =

bT/2c∑
i=b−T/2c

Fl
i,1,dX

l
t+i−1,1,d (3.2)

Eq. (3.2) shows the convolution operation at the t-th time step. Fl ∈ RT×1×D is the

filter matrix of 1-D depthwise convolution. The number of parameters is now TD

which is needed for the convolution filter Fl. We put the 1D depthwise convolution

before and after each original convolution layer whose parameter size is reduced from

2TDD to 2DD. Therefore, Now the number of parameters needed in Simple gated

ConvNet can be modeled as approximately as 2DD + TD. Note that the proposed

model reduced parameter size magnificently compared to the 2TDD of original Gated

ConvNet.

Furthermore, we carry out convolution operation in a way to cover neighboring

features at a time. We introduce additional operation in the direction of feature di-

mensions while performing 1-D depth-wise convolution. We keep the input and output

sizes by putting zero pad in both ends of Feature dimension. The operation of 1-D

depth-wise convolution with width K is represented as follows.

hl
t,1,d =

bK/2c∑
w=b−K/2c

bT/2c∑
i=b−T/2c

F′
l
i,1,d,wX

l
t+i−1,1,d+w (3.3)

The proposed method processes the input channels using filters with the width of K.

By doing so, our model can consult the correlation between the neighboring features

which are expressed as adjacent channels.
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Figure 3.1: The operation of 1-D depthwise convolution with the width of K.

The parameter size of F′l increases K times compared to the Fl of 1D depthwise

convolution, which is from TD to TDK. We assign a number from 1 to 21 to K. At

the moment, the the number of parameters required can be modeled as 2DD+TDK.

As the size of D is about several hundreds, parameter size growth is still slighter than

TDD of original Gated ConvNet. Figure 3.1 shows the operation of 1-D depthwise

convolution with the width of K.

Introduction of batch normalization [17] layers is another characteristic of our

research. Previous research on Gated ConvNet rarely utilized batch normalization

[7, 12, 11]. It turns out that batch normalization also contributes to the performance

improvement in Gated ConvNet under our configurations. We arrange batch normal-

ization right after convolution operations and before activation. This arrangement was

mainly influenced by the concept of ResNet[28]. Xl ∗Wl+bl of Gated ConvNet does

not have an activation function. We added ReLU to Xl ∗Wl + bl. On the other hand,

Xl ∗Vl + cl already has activation function for gating mechanism.

We combine the above all elements into one layer. We also stack several layers
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(a) Simple Gated ConvNet (b) A Simple Gated ConvNet layer

Figure 3.2: The structure of Simple Gated ConvNet.

to complete the entire network structure. Residuals connection prevents gradient from

becoming zero. Figure 3.2 addresses whole structure of Simple Gated ConvNet.

3.2 Experiments

3.2.1 Experiment Setups

Simple Gated ConvNet is adopted for training acoustic models with connectionist tem-

poral classification (CTC) algorithm [2, 15]. We compared performance of Simple

Gated ConNet with that of LSTM RNN and Gated ConvNet under various config-

urations. The Wall Street Journal (WSJ) Corpus was employed to train the acoustic
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models [16].

Feature extraction for training was processed as follows. The initial inputs were

raw wav files in WSJ corpus. In order to extract features, Discrete Fourier Trans-

form (DFT) was performed every 10 ms with a 25 ms Hamming window. The sam-

ples extracted through DFT are passed through filter-banks. Then, we acquired a 40-

dimensional log Mel-frequency filter-bank feature.

After features were extracted, we scaled down the sequence lengths by Convolu-

tional Neural Networks (CNN). According to [4], down sampling on acoustic features

by CNN contribute to performance rise with respect to training speed and error rates.

We put this technique into practice. 40-dimensional log Mel-frequency filter-bank fea-

tures becomes the inputs of the two-layered CNN. Dropout was adopted and batch

Normalization layers are applied in each layer [29]. Sequence lengths were pooled

down after passing two-layered CNN.

The output of this two-layered CNN was connected to Simple Gated ConvNet. On

the same condition, LSTM RNN and Gated convNet were linked to the CNN layers for

performance comparison. WSJ Si-284, the dataset of 81 hours of speech was mainly

used for training. WSJ Si ALL, the dataset of 150 hours of speech was also adopted

for the comparison of selected models. All the training results were evaluated on WSJ

eval92 dataset. Because the CTC algorithm was used, pre-alignment between labels

and features were not needed.

3.2.2 Experimental Results

The performance comparison between Simple Gated ConvNet and other models are

shown in the following tables. CER(character error rate) and WER(Word Error Rate)

was chosen for performance measurement. The model size is represented in the form

of (nlayer × ndim). nlayer is the number of layers. ndim denotes the size of a hidden

dimension in LSTM and the width of a feature map in the case of Gated ConvNet and

Simple Gated ConvNet. Two-layered CNN before the proposed models is not counted
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in this notation. For example, 4x300 LSTM represents four-layered LSTM which has

300 hidden dimensions in each layer. 6x300 Simple Gated ConvNet represents six-

layered Simple Gated ConvNet whose channel size is 300.

Table 3.1: WER and CER in percentage trained in WSJ Si-284 and evaluated on WSJ

eval92 test set. SGCN is Simple Gated ConvNet. GCN is short of Gated ConvNet.

Greedy

Model Params. CER WER

4x300 LSTM 2.95M 8.18 27.6
4x300 LSTM, 1-D depthwise 2.95M 7.13 24.7
4x575 LSTM, 1-D depthwise 10.01M 6.31 21.9
4x180 LSTM, Bidirectional 3.08M 5.61 19.3

6x300 GCN (T = 15) 16.38M 8.01 28.6
6x300 GCN (T = 4), 1-D depthwise 4.43M 6.37 23.1
6x300 GCN (T = 2), 1-D depthwise 2.25M 6.69 24.1
12x220 GCN (T = 2), 1-D depthwise 2.47M 5.67 20.1
6x300 SGCN 1.16M 7.03 25.5
12x300 SGCN 2.24M 5.32 18.8

In Table 3.1, The CER and WER performance of LSTM RNN, Gated ConvNet

and Simple Gated ConvNet are shown. All the model were trained in WSJ Si-284 and

evaluated in WSJ eval 92. Greedy decoding, without any support of language model,

was performed. Simple gated ConvNet outperforms LSTM under the parameter 3M.

WER differences is over 6%. Simple gated ConvNet surpasses LSTM when even 1-D

depthwise convolution is combined with LSTM. Simple Gated ConvNet showed good

performance even when the parameter size is relatively smaller than LSTM. Simple

Gated ConvNet with 3M parameters defeats LSTM with 1-D depth-wise convolution

whose parameter size is 10M. The performance of Simple gated convNet was better

than other Gated ConvNet which has longer T, given similar number of parameters.
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Note that the performance of Simple Gated ConvNet with 2.24M surpasses that of the

Bidirectional LSTM with 3.08M. Considering bidirectional LSTM has latency which

results from observing a whole sequence in advance, Simple Gated ConvNet can be a

better option for real-time speech recognition.

Table 3.2: WER and CER in percentage with various width of 1-D depthwise convo-

lution, trained in WSJ Si-284 and evaluated on WSJ eval92 test set.

Greedy

Model Params. CER WER

12x300 SGCN (K = 1) 2.24M 5.32 18.8
12x300 SGCN (K = 3) 2.33M 5.09 17.8
12x300 SGCN (K = 5) 2.42M 5.14 18.3
12x300 SGCN (K = 7) 2.50M 5.10 17.8
12x300 SGCN (K = 11) 2.68M 4.93 17.5
12x300 SGCN (K = 15) 2.85M 4.96 17.7
12x300 SGCN (K = 21) 3.10M 4.75 16.8

In Table 3.2, improved performance in Simple Gated ConvNet is obtained by in-

creasing the width K. Although performance does not increase linearly, higher K

tends to contribute to performance improvement to some extent. It shows that we can

take advantage of better acoustic modeling by viewing adjacent features at a time.

When K is 21, the best WER is obtained. Considering the increase in the number of

parameters, we adopt K of 5 or 11 in the following experiments.

In Table 3.3, models were trained in WSJ Si-ALL, which is larger dataset than WSJ

Si-284. The 1-D filter width, K of 1 is adopted for LSTM with 1-D depthwise con-
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Table 3.3: WER and CER in percentage trained in larger dataset (WSJ Si-ALL) and

evaluated on WSJ eval92 testset.

Greedy HCLM

Model CER WER CER WER

12x300 SGCN (K = 11) 3.74 13.7 1.62 4.04
4x300 LSTM, 1-D depthwise 5.07 17.7 2.40 5.76

Table 3.4: WER and CER in models with 1 M parameters, evalutated on WSJ eval92.

(a) Trained in WSJ Si-284.

Greedy

Model Params. CER WER

4x160 LSTM 0.96M 10.78 37.1
4x160 LSTM, 1-D depthwise 0.97M 9.64 33.6
12x190 SGCN (K = 5) 0.99M 6.11 22.0

(b) Trained in larger dataset(WSJ Si-ALL).

Greedy

Model Params. CER WER

4x160 LSTM 0.96M 8.64 31.2
4x160 LSTM, 1-D depthwise 0.97M 6.72 24.1
12x190 SGCN (K = 5) 0.99M 5.11 18.8
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volution. Trained with larger data, Simple Gated ConvNet shows much better perfor-

mance than LSTM with 1-D depthwise convolution. The decoding was also performed

using language model. As a language model, Hierarchical Character Level Language

Model(HCLM) was employed [19, 20]. The HCLM combines the advantages of word-

level language model(WLM) and character-level language model(CLM). Even after

language model is integrated, Simple Gated ConvNet is superior to 1-D depthwise

convolution-augmented LSTM.

In Table 3.4, the model sizes are under 1M. The 1-D filter width, K of 1 is chosen

for LSTM with 1-D depthwise convolution. The performance of Simple Gated Con-

vNet exceeds that of LSTM with 1-D convolution when the parmeter size is limited

under 1 M. This trend is maintained in the larger dataset. Note that the performance

drop in Simple Gated ConvNet is much smaller than that of LSTM when the parame-

ter size is reduced to extremely low. Simple Gated ConvNet shows robust performance

compared to LSTM RNN when the parameter size plunges.

Table 3.5: WER and CER in percentage with models for low latency tasks, trained in

WSJ Si-284 and evalutated on WSJ eval92.

Greedy

Model Params. CER WER

12x300 SGCN (100 ms latency) 2.68M 6.20 22.4
12x300 SGCN (200 ms latency) 2.68M 5.01 18.1
12x300 SGCN (1200 ms latency) 2.68M 4.93 17.5

Table 3.5 shows the performance of Simple Gated ConvNet on low latency tasks.

Low latency model is achieved by using causal convolution, which only views past
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Table 3.6: Execution time in second for processing 1 sec speech, function of Tp.

Tp

Model 1 4 8 16

4x275 LSTM 0.459 - - -
12x300 SGCN 0.363 0.095 0.061 0.043

time-steps [30, 31]. Employing causal convolution prevents latency as future time-

steps are never seen by the operation of convolution. As for the proposed model, the

filter size T of 1-D depthwise convolution is 11. the filter covers the input from t-5

to t+5, where t-5 denotes five-step past and t+5 represents five-step future. Therefore,

one non-causal layer of Simple Gated ConvNet give rise to the latency of five steps.

As one time-step is about 20ms, the latency of 100 ms occurs from one Simple Gated

ConvNet layer. As we stack non-causal layers, the amount of latency escalates. The

increased latency disturbs real-time speech recognition.

We reduce the amount of latency by replacing some non-causal layers with causal

layers. The result of 1000 ms, 100ms and 200ms are shown in table 3.5. Note that one

non-causal layer is the source of 100 ms delay. As we adopt 12-layered Simple Gated

ConvNet, total 1200 ms delay occurs when all the layers are non-causal. The latency of

total 100 ms is obtained by employing one non-causal layer and remaining layers are

all causal. In the same way, we get the latency of 200 ms by choosing two non-causal

layers and remaining all-causal layers. We can notice that the model of 200 ms delay

shows small performance degradation compared to model of 1200 ms delay with all

non-causal layers. The result of low latency tasks shows that Simple Gated ConvNet

works well under low-latency configuration. And it can also be suitable for real-time

recognition in terms of low latency.

The result of multi-time step parallelization is shown in table 3.6. As Simple Gated

ConvNet adopts no recurrent path, the computation of samples from multiple time step
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can be easily computed. Simple Gated ConvNet shows was 10 times faster than LSTM

RNN When the parallel step of 16 was chosen.

3.3 Concluding Remarks

We propose Simple Gated ConvNet for end-to-end speech recognition. Simple Gated

Net is on-device friendly compared to LSTM RNN. Simple Gated ConvNet outper-

forms LSTM based RNN in acoustic modeling. The proposed model significantly re-

duces the number of parameters needed compared to Gated ConvNet. Our model is

also suitable for multi-time step parallelization as no recurrent path exists. These char-

acteristics make the simple gated convNet advantageous for speech recognition over

LSTM based RNN in embedded devices.

We show experimentally that Simple Gated ConvNet has much better performance

than LSTM RNN and Gated ConvNet under 3 M parameters. Furthermore, Simple

Gated ConvNet of 3 M shows superior performance than LSTM of 10 M. Simple

Gated ConvNet shows robust performance in various tasks. When the parameter size

was reduced to even 1M, simple Gated ConvNet shows affordable performance. Per-

formance degradation of Simple Gated ConvNet was small even in the low latency

tasks. Above all, 10 times speed-up over LSTM RNN is achieved through multi-time

step parallelization.
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Chapter 4

Conclusions

We tried to build an on-device automatic speech recognition (ASR) which can be per-

formed in embedded devices independently. Major approach was finding neural net-

work based acoustic models which is suitable for multiple time step parallelization.

Conventional LSTM RNN is not suitable for multiple time step parallelization as it

has large recurrent paths.

In chapter 2, we explored various acoustic models which can be on-device friendly.

Gated Convolutional Networks(Gated ConvNet), the quasi RNN(QRNN) and diagonal

LSTM are adopted. They have more advantages than LSTM RNN in execution time.

Multiple time step parallelization technique allows these models to make at least 5

times speed-up in embedded devices. Introduction of 1-D depthwise was main source

of performance rise and Gated ConvNet with 1-D depthwise convolution yields the

best result in greedy decoding.

In chapter 3, we proposed Simple Gated Convolutional Network(Simple Gated

ConvNet). We examined the structure and performance of Simple Gated ConvNet.

We showed how this structure is more advantageous than LSTM RNN for on-device

speech recognition. Parameter size was remarkably reduced compared to Gated Con-

vNet. The performance in Simple Gated ConvNet was much better than LSTM RNN

and Gated ConvNet in terms of error rate. 10-times speed-up was obtained compared
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to LSTM RNN.

The thesis was a journey to find out how to perform speech recognition efficiently

in embedded device in algorithm level. Out method and the proposed model can be

combined with other techniques like network compression in order to achieve more

efficient on-device speech recognition.
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초록

오늘날, 자동 음성 인식 시스템으로 인공신경망 기반의 알고리즘이 주요하게

활용되고있다.그런가운데,스마트폰이나임베디드장치에서서버를거치지않고

진행되는온-디바이스음성인식시스템에대한수요가증가하고있다.온-디바이스

음성 인식 시스템은 사용자의 음성이 서비스 제공자의 서버로 제공되지 않고, 음

성인식이 사용자의 장치에서 독립적으로 이루어진다. 따라서, 프라이버시 침해와

보안에대한우려를상당부분해소할수있다.

그러나,인공신경망기반의음성인식시스템에서주로사용되는 LSTM기반의

회귀신경망(RNN)은 온-디바이스 음성 인식에 효율적이지 않다. LSTM RNN은 시

퀀스(sequence) 정보의 병렬화가 어렵다. 이는 LSTM RNN에는 현재의 시간 스텝

(step)이 과거의 시간 스텝에 의존하는 되먹임(Feedback) 특성이 존재하기 때문이

다. 또, 이 되먹임 정보는 너무 커서 캐시 메모리에 들어갈 수 없다. 따라서, 시퀀스

정보의매시간스텝마다DRAM에접근하여샘플을불러와야한다.이경우매시간

스텝마다 DRAM에접근하여전력소모가증가할뿐만아니라,실행시간도증가하

게된다.

우리는 이 논문에서 온-디바이스에 친화적인 인공신경말 모델을 제시한다. 이

모델들을 음향 모델링에 활용하여 LSTM RNN을 대체한다. 게이티드 콘볼루션 네

크워크(Gated ConvNet),대각성분 LSTM(Diagonal LSTM), QRNN(the quasi RNN)

이활용되었다.이들모델은대부분의연산에서순서의존성이존재하지않아시간

스텝별병렬화가가능하다.
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이들모델들은자동음성인식에서 1차원깊이콘볼루션(1D depthwise Convolu-

tion)이추가된후에는 LSTM RNN의성능을훨씬능가하였다.특히게이티드콘볼

루션네트워크의경우깊은구조를채택하였을때,음향모델없이가장좋은성능을

보여주었다.무엇보다도온-디바이스에효율적인인공신경망모델들은시퀀스의시

간스텝별병렬화를통해실제임베디드장치에서 LSTM RNN대비최소 5배의실행

속도증가를보여주었다.

우리는여기서더나아가,심플게이티드콘볼루션네트워크(Simple Gated Con-

vNet)을제시한다.심플게이티드콘볼루션은게이티드콘볼루션의가장단순화된

형태에 기반을 둔 것으로, 파라미터의 수가 혁명적으로 감소한다. 이는 하드웨어

사양의제한을받는온-디바이스음성인식에유리한특성이다.또한심플게이티드

콘볼루션네트워크는시간스텝별순서의존성이존재하지않기때문에시간스텝

별병렬화도가능하다.우리는 1차원깊이병렬화(1D depthwise convolution)을여러

방향을적용하여성능향상을이끌어내었다.

구체적으로,우리는심플게이티드콘볼루션네크워크를활용해파라미터사용

량을 3 M이하로줄였다.동일한파라미터수가주어졌을때심플게이티드콘볼루

션네트워크는자동음성인식에서 LSTM RNN이나게이티드콘볼루션네트워크의

성능을 능가했다. 3 M 아래의 심플 게이티드 콘볼루션 네크워크는 10 M의 LSTM

보다더좋은성능을보여주기도하였다.또한,시간스텝별병렬화를통해서 ARM

CPU에서 LSTM RNN대비 10배의실행속도증가를얻어냈다.

주요어:음성인식,시퀀스모델링,회귀신경망(RNN),임베디드장치

학번: 2017-27205
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