

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

낸드플래시저장장치의

성능및수명향상을위한

프로그램컨텍스트기반최적화기법

Program Context based Optimization Techniques

for Improving Performance and Lifetime

of NAND Flash-Based Storage Devices

2019년 2월

서울대학교대학원

전기·컴퓨터공학부

김태진

낸드플래시저장장치의

성능및수명향상을위한

프로그램컨텍스트기반최적화기법

Program Context based Optimization Techniques

for Improving Performance and Lifetime

of NAND Flash-Based Storage Devices

지도교수 김지홍

이논문을공학박사학위논문으로제출함

2018년 10월

서울대학교대학원

전기·컴퓨터공학부

김태진

김태진의공학박사학위논문을인준함

2019년 1월

위 원 장 문봉기 (인)

부위원장 김지홍 (인)

위 원 염헌영 (인)

위 원 김진수 (인)

위 원 이성진 (인)

Abstract

Replacing HDDs with NAND flash-based storage devices (SSDs) has been

one of the major challenges in modern computing systems especially in re-

gards to better performance and higher mobility. Although the continuous

semiconductor process scaling and multi-leveling techniques lower the price

of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND

flash memory, as a side effect of recent advanced device technologies, is

emerging as one of the major barriers to the wide adoption of SSDs in high-

performance computing systems.

In this dissertation, system-level lifetime improvement techniques for

recent high-density NAND flash memory are proposed. Unlike existing tech-

niques, the proposed techniques resolve the problems of decreasing perfor-

mance and lifetime of NAND flash memory by exploiting the I/O context

of an application to analyze data lifetime patterns or duplicate data contents

patterns.

We first present that I/O activities of an application have distinct data

lifetime and duplicate data patterns. In order to effectively utilize the con-

text information, we implemented the program context extraction method.

With the program context, we can overcome the limitations of existing tech-

niques for improving the garbage collection overhead and limited lifetime

of NAND flash memory.

Second, we propose a system-level approach to reduce WAF that ex-

ploits the I/O context of an application to increase the data lifetime predic-

i

tion for the multi-streamed SSDs. The key motivation behind the proposed

technique was that data lifetimes should be estimated at a higher abstraction

level than LBAs, so we employ a write program context as a stream man-

agement unit. Thus, it can effectively separate data with short lifetimes from

data with long lifetimes to improve the efficiency of garbage collection.

Lastly, we propose a selective deduplication that can avoid unneces-

sary deduplication work based on the duplicate data pattern analysis of write

program context. With the help of selective deduplication, we also propose

fine-grained deduplication which improves the likelihood of eliminating re-

dundant data by introducing sub-page chunk. It also resolves technical dif-

ficulties caused by its finer granularity, i.e., increased memory requirement

and read response time.

In order to evaluate the effectiveness of the proposed techniques, we

performed a series of evaluations using both a trace-driven simulator and

emulator with I/O traces which were collected from various real-world sys-

tems. To understand the feasibility of the proposed techniques, we also im-

plemented them in Linux kernel on top of our in-house flash storage proto-

type and then evaluated their effects on the lifetime while running real-world

applications. Our experimental results show that system-level optimization

techniques are more effective over existing optimization techniques.

Keywords: NAND Flash-Based Storage Devices, Storage Lifetime, Em-

bedded Software, Operating System

Student Number: 2012-30201

ii

Contents

I. Introduction . 1

1.1 Motivation . 1

1.1.1 Garbage Collection Problem 2

1.1.2 Limited Endurance Problem 4

1.2 Dissertation Goals . 5

1.3 Contributions . 6

1.4 Dissertation Structure . 7

II. Background . 9

2.1 NAND Flash Memory System Software 9

2.2 NAND Flash-Based Storage Devices 10

2.3 Multi-stream Interface . 11

2.4 Inline Data Deduplication Technique 12

2.5 Related Work . 13

2.5.1 Data Separation Techniques for Multi-streamed SSDs 13

2.5.2 Write Traffic Reduction Techniques 15

2.5.3 Program Context based Optimization Techniques for

Operating Systems 18

III. Program Context-based Analysis 21

3.1 Definition and Extraction of Program Context 21

3.2 Data Lifetime Patterns of I/O Activities 24

iii

3.3 Duplicate Data Patterns of I/O Activities 26

IV. Fully Automatic Stream Management For Multi-Streamed

SSDs Using Program Contexts 29

4.1 Overview . 29

4.2 Motivation . 33

4.2.1 No Automatic Stream Management for General I/O

Workloads . 33

4.2.2 Limited Number of Supported Streams 36

4.3 Automatic I/O Activity Management 38

4.3.1 PC as a Unit of Lifetime Classification for General

I/O Workloads . 39

4.4 Support for Large Number of Streams 41

4.4.1 PCs with Large Lifetime Variances 42

4.4.2 Implementation of Internal Streams 44

4.5 Design and Implementation of PCStream 46

4.5.1 PC Lifetime Management 46

4.5.2 Mapping PCs to SSD streams 49

4.5.3 Internal Stream Management 50

4.5.4 PC Extraction for Indirect Writes 51

4.6 Experimental Results . 53

4.6.1 Experimental Settings 53

4.6.2 Performance Evaluation 55

4.6.3 WAF Comparison 56

4.6.4 Per-stream Lifetime Distribution Analysis 57

iv

4.6.5 Impact of Internal Streams 58

4.6.6 Impact of the PC Attribute Table 60

V. Deduplication Technique using Program Contexts 62

5.1 Overview . 62

5.2 Selective Deduplication using Program Contexts 63

5.2.1 PCDedup: Improving SSD Deduplication Efficiency

using Selective Hash Cache Management 63

5.2.2 2-level LRU Eviction Policy 68

5.3 Exploiting Small Chunk Size 70

5.3.1 Fine-Grained Deduplication 70

5.3.2 Read Overhead Management 76

5.3.3 Memory Overhead Management 80

5.3.4 Experimental Results 82

VI. Conclusions . 88

6.1 Summary and Conclusions 88

6.2 Future Work . 89

6.2.1 Supporting applications that have unusal program

contexts . 89

6.2.2 Optimizing read request based on the I/O context . . 90

6.2.3 Exploiting context information to improve finger-

print lookups . 91

Bibliography . 92

v

List of Figures

Figure 1. Trends of read and write speeds under various NAND

flash chips. 1

Figure 2. A simplified diagram of typical SSD. 10

Figure 3. Block allocation with and without multi-stream. 12

Figure 4. An illustration of (simplified) execution paths of two

dominant I/O activities in RocksDB. 22

Figure 5. Examples of PC extraction methods. 24

Figure 6. Data lifetime distributions of different PCs. 25

Figure 7. Lifetime distributions of append-only workload over

addresses and times. 35

Figure 8. IOPS changes over the number of streams. 36

Figure 9. Data lifetime distributions of dominant I/O activities

in RocksDB, SQLite and GCC. 40

Figure 10. Lifetime distributions of the compaction activity at dif-

ferent levels. 43

Figure 11. An overall architecture of PCStream. 45

Figure 12. Extracting PCs for JVM. 52

Figure 13. A comparison of normalized IOPS. 55

Figure 14. A comparison of WAF under different schemes. 57

Figure 15. A Comparison of per-stream lifetime distributions. . . 58

Figure 16. The effect of internal streams on WAF. 59

Figure 17. The effect of the PC attribute table. 60

vi

Figure 18. Diagram of selective deduplication. 63

Figure 19. Dedup table management in page-based deduplication. 64

Figure 20. Dedup table management in PC-based deduplication. . 65

Figure 21. The selective deduplication based on PCs. 66

Figure 22. The comparison of the amount of removed data for

PC Dedup. 67

Figure 23. The comparison of the amount of removed data for

Mod.Log. 68

Figure 24. The 2-level LRU algorithm. 69

Figure 25. The comparison of the amount of removed data 2-level

LRU. 70

Figure 26. The percentage of pages according to their partial du-

plicate patterns. 71

Figure 27. The amount of written data under varying chunk sizes

in PC workload. 72

Figure 28. An overview of the proposed FineDedup technique. . . 75

Figure 29. Data fragmentation caused by FineDedup. 77

Figure 30. A packing scheme in the chunk buffer. 78

Figure 31. An overview of the demand-based hybrid mapping table. 81

Figure 32. The amount of written data under various schemes. . . 83

Figure 33. The number of page read operations. 85

Figure 34. The effectiveness of the demand-based hybrid map-

ping table in FineDedup with various cache sizes. . . . 87

vii

List of Tables

Table 1. Duplicate rates for I/O activities. 27

Table 2. A summary of traces used for experimental evaluations. . 83

viii

Chapter 1

Introduction

1.1 Motivation

NAND flash memory has recently been widely used as a storage device from

embedded systems to high end business servers. Flash memory has been

widely used for mobile embedded systems due to its many attractive features

for mobile storage devices, such as light weight, low power consumption,

durability and high performance.

As NAND flash memory technology, however, scales down to 10-nm

and below, NAND flash memory performance is also getting worse. Figure 1

shows a tendency to read and write NAND block speeds in different feature

sizes. In Figures 1(a) and (b), the x-axis denotes a feature size of NAND

chip, and the y-axis represents the latencies of read and write operations, re-

Figure 1: Trends of read and write speeds under various NAND flash chips.

1

spectively. As shown in Figures 1(a) and (b), both read and write operations

are slower as the NAND flash memory density is increased. In the future, as

the number of bits per cell is increased and NAND flash memory is scaled

down, the performance and data reliability degradation problems is going to

be more critical to NAND-based storage systems.

In addition, the limited endurance of NAND flash memory, which has

further declined as a side effect of recent advanced device technologies, is

becoming a major barrier to the widespread adoption of SSDs. For example,

while the NAND capacity per die doubles every two years, the actual life-

time of SSDs does not increase as much as projected because the maximum

number of program/erase cycles has decreased [2]. In order for SSDs to be

widely adopted, NAND endurance issues should be resolved properly.

1.1.1 Garbage Collection Problem

Due to thehigh-density NAND flash memory performance degradation, the

garbage collection (GC) overhead is increased. In NAND flash-based stor-

age systems, garbage collection is necessary when there are not enough free

blocks to write new data because NAND flash memory does not allow an in-

place update operation. If an update operation is requested, the flash trans-

lation layer (FTL) stores the new data in another page. Since the previously

written data remained invalid, the FTL triggers GC process in order to re-

claim the blocks with the invalidated data so that new data can be stored into

NAND flash memory. A GC procedure involves several read, write, and

erase operations. Since each operation of NAND flash memory is atomic,

the FTL cannot process the next request from the host during an operation

2

is processed due to the GC process. Because of the performance degrada-

tion of write and read operations in high-density NAND flash memory, the

response time of each I/O request can be increased when the request is con-

flicted with a GC process, thus decreasing the application performance. Be-

cause this problem can be exacerbated in the future high-density NAND

flash memory, an efficient garbage collection algorithm becomes more im-

portant.

Many techniques have been proposed to minimize the garbage collec-

tion overhead [1]. Regardless the algorithm used for GC, the movement of

valid data from selected victim blocks to new blocks takes a significant por-

tion in the total execution time of GC. Therefore, the reduction of the total

number of copied data from the victim blocks is a key factor in improving

the GC performance. In order to reduce the amount of copied data from the

victim blocks, separating data based on their characteristics is a common

approach. The number of dead blocks (which have no valid data) or near-

dead blocks (which have few valid data) can be increased. The more dead

or near-dead blocks are generated, the more likely that they can be selected

as victim blocks during GC, thus reducing the overhead of GC.

One of the most commonly used heuristics for data separation is to

classify data based on their update frequency. It classifies data based on their

write temporal locality, and it treats data with different temporal locality in a

different way [3]. This technique assumes that data with high write temporal

locality are likely to be updated soon by successive update requests, and

therefore the number of dead blocks increases if data with high locality are

clustered in the same block. The simplest version of this locality-based data

3

separator divides data into two groups, hot and cold data depending on the

number of updates over a given time period. Hot blocks are more likely to

be dead blocks by storing hot data in hot blocks.

1.1.2 Limited Endurance Problem

The limited endurance of NAND flash memory, which has further declined

as a side effect of the recent advanced device technologies, is emerging as

another major barrier to the wide adoption of SSDs. Since the reduction in

the MAXP/E seriously limits the overall lifetime of flash-based SSDs, the

lifetime issues of SSDs should be resolved appropriately for SSDs to be

commonly used in enterprise environments.

Since the Lifetime LC of an SSD with the total capacity C is propor-

tional to the maximum number MAXP/E of P/E cycles, and is inversely

proportional to the total written data Wday per day, LC (in days) can be

expressed as follows [4]:

LC =
MAXP/E × C

Wday ×WAF

, where WAF is a write amplification factor which represents the efficiency

of an FTL algorithm. Since MAXP/E and C is determined when the de-

vice is manufactured, we should reduce the WAF and Wday to improve the

lifetime of SSDs. Many existing lifetime-improving techniques have been

focused on reducing WAF by increasing an FTL algorithm’s effectiveness.

For example, by avoiding unnecessary data copies during garbage collec-

tion using the multi-stream feature, WAF can be reduced. A number of

4

system-level techniques have been proposed to reduce Wday. For example,

write traffic throttling, data compression and data deduplication are such

techniques.

However, most existing studies are based on the the single I/O layer

such as SSD firmware, device driver, and block I/O, so their effectiveness is

limited. In order for NAND flash-based storage devices to be widely used in

various computing environments, therefore, new approaches to the lifetime

problem of recent high-density NAND flash memory are highly required.

1.2 Dissertation Goals

In this dissertation, we propose system-level approaches that improve the

performance and lifetime of NAND flash-based storage devices, which over-

comes the limitations of the existing techniques. More specifically, our pri-

mary goal is to understand high-level information of applications, such as

the I/O context of dominant I/O activities, and then develop the lifetime im-

provement approaches that efficiently exploit such high-level information at

various system levels ranging from a system call layer to a flash controller.

First, we propose a system-level approach to reduce WAF that exploits

the I/O context of an application to estimate the data lifetime pattern for

the multi-streamed SSDs. Thus, it can effectively separate data with short

lifetimes from data with long lifetimes to improve the efficiency of garbage

collection. Moreover, when data mapped to the same stream show large dif-

ferences in their lifetimes, long-lived data of the current stream are moved

to its internal stream during garbage collection.

5

Second, we present a write traffic reduction technique to improve the

lifetime of SSD by exploiting data similarity of I/O context of an applica-

tion. We analyze the likelihood of duplicate data for each I/O context and

selectively apply deduplication technique to highly duplicated context. By

avoiding disturbance of unique context, we can increase the chance of find-

ing duplicate data and decrease the write latency. With the decreased finger-

printing overhead, we propose new deduplication technique to increase the

overall deduplication ratio1 by introducing sub-page chunk.

1.3 Contributions

In this dissertation, we present two system-level techniques to improve the

lifetime of NAND flash-based storage devices using program context char-

acteristics. The contributions of this dissertation can be summarized as fol-

lows:

• We showed that I/O activities of an application have distinct data life-

time and duplicate data patterns. In order to effectively utilize the

context information, we implemented the program context extraction

method. With the program context, we can overcome the limitations

of existing techniques for improving the garbage collection overhead

and limited lifetime of NAND flash memory.

• We propose a fully automatic stream management technique, PC-

Stream, which can work efficiently for general I/O workloads with
1The percentage of identified duplicate writes

6

heterogeneous write characteristics. PCStream is based on the key in-

sight that stream allocation decisions should be made on dominant I/O

activities. By identifying dominant I/O activities using program con-

texts, PCStream can effectively separate different lifetime data into

different streams.

• We propose a selective deduplication using program contexts called

PCDedup. We analyze the likelihood of finding duplicate data for

each PCs. For low dedup ratio PCs, we skips the deduplication step to

avoid unnecessary fingerprinting overhead. We also proposed a fine-

grained deduplication technique for flash-based SSDs. With the se-

lective deduplication, PCDedup can increase the likelihood of finding

duplicates by using a finer deduplication unit.

• We implement the proposed techniques in the Linux kernel and our

in-house flash storage prototype. Then, we evaluate their effects on

performance and lifetime using various real-world applications on the

real SSD device with firmware modification as well as the emulator.

1.4 Dissertation Structure

This dissertation is composed of five chapters. The first chapter is the intro-

duction of theh dissertation, while the last chapter serves as conclusions with

a summary and future work. The three intermediate chapters are organized

as follows:

Chapter 2 provides the background for multi-streamed SSDs and data

deduplication techniques as well as the overall architecture of NAND flash-

7

based storage devices. We also describe the existing performance and life-

time improvement techniques for flash-based devices, focusing on multi-

streamed SSDs and deduplication techniques which are highly related to

our proposed techniques.

Chapter 3 presents the definition of program contexts and how to ex-

tract them. Also, distinct lifetime patterns for PCs and duplicate data pat-

terns are shown.

In Chapter 4, we present a new data separation technique, called PC-

Stream, for multi-streamed SSDs. We explain the relationship of dominant

I/O activities with data lifetime patterns. By exploiting distinct lifetime pat-

terns of I/O activities, we can achieve high reduction in WAf.

Chapter 5 introduces a selective deduplication technique, called PCD-

edup, for NAND flash-based storage devices. We describe the patterns of

duplicate data with in a page. Finally, we show how effective the proposed

technique is in terms of write traffic reduction.

8

Chapter 2

Background

2.1 NAND Flash Memory System Software

In order to overcome the physical limitations of NAND flash memory, such

as the limited P/E cycles and the erase-before-write restriction, a special

software layer, called a flash translation layer (FTL), is usually used in

NAND flash memory-based storage systems [1]. The FTL emulates a block

device on top of NAND flash memory, thus allowing users to use NAND

flash memory as if they were using block device such as hard disk drives

(HDD). The FTL is responsible for the address mapping, garbage collec-

tion, and wear-leveling. The address mapping function maps a logical block

address (LBA) from a host system to a physical block address (PBA) in the

NAND flash memory. When an update request occurs, the FTL newly allo-

cates a new free page to the request in NAND flash memory. This update

process is called out-place update. The location information of the newly

assigned page is maintained in the page mapping table, which keeps track

of mapping between LBA and PBA. The old versions of newly written data

remain invalid in the original location. The wear-leveling procedure induces

all blocks in NAND flash memory to be evenly erased, thus preventing fre-

quently erased blocks from being rapidly worn out than other blocks. Fi-

nally, in order to maintain free space in NAND flash memory, the FTL

9

must perform a GC process which reclaims the invalid pages in NAND flash

memory.

2.2 NAND Flash-Based Storage Devices

In theory, a NAND flash chip with an 8-bit serial bus provides only 40 MB/s

for reads and 13 MB/s for writes. This means that the bandwidth of a sin-

gle flash chip is severely limited. In addition, this performance is further

reduced with MLC NAND flash memory. In order to solve the limited per-

formance of a single flash chip, flash-based storages utilize the parallelism

of multiple NAND flash chips.

Figure 2 shows a simplified diagram of typical NAND flash-based stor-

age devices, consisting of a host interface logic, several flash memory pack-

ages, flash controller, and processor. The FTL running on the processor re-

ceives host commands (e.g., reads and writes) via the host interface module

from the host system, and then issues several flash I/O commands to the flash

controller. The flash controller handles multiple I/O commands at the same

Figure 2: A simplified diagram of typical SSD.

10

time. Thus, much higher performance can be achieved than using a single

NAND flash chip, which provides the aggregate bandwidth of multiple flash

chips with the host system.

2.3 Multi-stream Interface

At the heart of the GC problems of SSD are how to predict the lifetime of

data written to the SSD and how to ensure that data with similar lifetime are

placed in the same erase unit. Kang et al. [20], proposed multi-streaming, an

interface that directly manages data placement within the SSD, separating

those two issues. Authors argue that the host system should provide appro-

priate data lifetime to the SSD. It is the responsibility of the SSD, then, to

place data with similar lifetime into the same erase unit.

The design introduces the concept of stream. A stream is an abstrac-

tion of the allocation of SSD capacity that stores a multiple data with the

same lifetime expectancy. An SSD with multi-stream interface allows the

host system to open or close streams and write to one of them. Before writ-

ing data, the host system opens streams (using special SSD commands) as

needed. Both the host system and the SSD share a unique stream ID for each

open stream, and the host system adds a proper stream ID to each write. A

multi-streamed SSD carefully allocates physical capacity, to place data in a

stream together and not to mix data from different streams.

Figure 3 shows the example of the block allocation with and with-

out the multi-stream. Without multi-stream, data are written in the order in

which they are received. Consequently, different lifetimes of data are mixed

11

Figure 3: Block allocation with and without multi-stream.

into the same block. Due to the different invalidation time, it incurs high

valid page copy overhead for GC. However, with multi-stream, data with

same lifetime are separated into a different block so that they are likely to

be invalidated together, resulting low GC overhead. In order to maximize

the multi-streamed SSD effect, identifying similar lifetime data is the most

important and difficult.

Several companies, including Samsung PM953 / PM963, WD Blue

1TB, Toshiba PM5-M SAS SSD and Huawei ES3000 V5, support multi-

stream capability for enterprise SSDs. It seems that Multi-stream is being

accepted as part of a general-purpose interface rather than a function pro-

vided only by a specific company (T10 SCSI Storage Interface).

2.4 Inline Data Deduplication Technique

Inline deduplication improves the lifetime of SSDs more than offline dedu-

plication [5]. The lifetime of flash cells is limited to a specified small num-

ber of P/E cycles (e.g., around 5,000 times in MLC SSD). By writing only

unique data blocks, inline deduplication minimizes the number of writes to

12

the SSDs.

Inline data deduplication generally consists of four steps. First, the

deduplication module receives a write request with data (Dataa) and logical

block address (LBAa). Second, Dataa are divided into fixed-sized chunks

or variable-sized chunks. In this dissertation, we use fixed-sized chunking

which has a lower CPU utilization requirement and has been commercially

used in primary storage [5]. Third, the deduplication module calculates a

signature (Siga) for the data (Dataa). Fourth, the module searches Siga in

the deduplication tables. If the signature matches another signature (Sigb)

which was already stored, the received write request is considered dupli-

cate (Dataa = Datab). Then Dataa will not be written to the storage and

the deduplication module only updates the deduplication tables. The up-

date includes updating a mapping from LBAa to the physical block address

(PBAb) of the matched signature. In cases where step four cannot find Siga

in the table, the write request is considered unique. Therefore, in addition to

updating the deduplication tables, Dataa are written to the storage devices.

2.5 Related Work

2.5.1 Data Separation Techniques for Multi-streamed
SSDs

There are several research for detecting data temperature. Park, et al. [6] uses

multiple bloom filters to identify hot data in the device layer. Stoica, et al. [7]

propose new data placement algorithms to improves flash write performance

by estimating data update frequencies. Luo, et al. [8] observe high temporal

13

write locality in different workloads and design a write-hotness aware reten-

tion management policy to improve flash memory life time. Most research

is based on a simulation or mathematical modeling and lacks the analysis

of real world system and performance. It is difficult to guarantee the bene-

fit of these algorithms in a complex I/O intensive datacenter workloads. In

adition, as multi-stream SSDs become available, data temperature must be

identified and separated to multiple levels (usually more than three levels -

hot, cold and warm) to make full use of such devices.

There have been many studies for multi-streamed SSDs [20, 21, 22,

23, 24, 46]. Kang et al. first proposed a multi-streamed SSD that supported

manual stream allocation for separating different types of data [20]. Yang

et al. showed that a multi-streamed SSD was effective for separating data

of append-only applications like RocksDB [21]. Yong et al. presented a vir-

tual stream management technique that allows logical streams, not physical

streams, to be allocated by applications. Unlike these studies that involve

modifying the source code of target programs, PCStream automates the

stream allocation with no manual code modification.

Rho et al. proposed a stream management technique, called FStream, at

the file system layer [23]. In FStream, metadata, journal data, and user data

that may have different lifetime characteristics were allocated to separate

streams. Since FStream was implemented as a part of a file system, it was

not able to directly detect application’s I/O behaviors. Also, it may be hard to

be deployed in practice due to a strong dependence on file system-specific

implementation details. PCStream, on the other hand, efficiently exploits

programs’ I/O behaviors using PCs with no file system-specific modifica-

14

tions.

Yang et al. presented an automatic stream management technique at the

block device layer [24]. Similar to hot-cold data separation technique used

in FTLs, it approximates the data lifetime of data based on update frequen-

cies of LBAs. The applicability of this technique is, however, quite limited

to in-place update workloads only. PCStream has no such limitation on the

workload characteristics, thus effectively working for general I/O workloads

including append-only, write-once as well as in-place update workloads.

Ha et al. proposed an idea of using PCs to separate hot data from

cold one in an FTL layer [29]. Kim et al. extended it for multi-streamed

SSDs [46]. Unlike these work, our study treats the PC-based stream man-

agement problem in a more complete fashion by (1) pinpointing the key

weaknesses of existing multi-streamed SSD solutions, (2) extending the ef-

fectiveness of PCs for more general I/O workloads including write-once

patterns, and (3) introducing internal streams as an effective solution for

outlier PCs. Furthermore, PCStream exploits the globally unique nature of

a PC signature for supporting short-lived applications that runs frequently.

2.5.2 Write Traffic Reduction Techniques

In order to extend the lifetime of flash-based SSDs, data deduplication tech-

niques have been used in recent SSDs because they are effective in reducing

the amount of data written to flash memory by preventing duplicate data

from being written again [54, 55]. As a result, only non-duplicate data, i.e.,

unique data, are stored in SSDs effectively decreasing the total amount of

data written to SSDs.

15

Data deduplication techniques, which are originally developed for backup

systems, are regarded as one of the promising approaches for extending the

storage lifetime because of their ability that reduces the amount of write

traffic sent to a storage device. In deduplication techniques, a chunk is used

as an unit of identification and elimination of duplicate data. Depending on

their chunking strategies, deduplication techniques can be categorized into

two types, fixed-size deduplication and variable-size deduplication. Fixed-

size deduplication divides an input data stream into fixed-size chunks (e.g.,

pages) [54, 55]. Then, it decides if each chunk data is duplicate and prevents

duplicate chunks from being rewritten to flash memory. Unlike fixed-size

deduplication, the chunk size of variable-size deduplication is not fixed. In-

stead, it decides a cut point between chunks using a content-defined chunk-

ing (CDC) algorithm which divides the data stream according to the con-

tents [58, 59].

In general, variable-size deduplication techniques can identify more

data as duplicate data than the fixed-size deduplication technique. Since

variable-size deduplication adaptively changes the size of chunks by analyz-

ing the contents of input stream, duplicate data are more effectively found

regardless of their locations. In spite of its advantages, variable-size dedu-

plication is not commonly used in SSDs because of the following practical

limitations.

First, the CDC algorithm often requires relatively high computational

power and a large amount of memory space. Thus, variable-size deduplica-

tion is not appropriate to be employed at the level of storage devices where

computing and memory resources are constrained. Second, the size of re-

16

maining unique data after deduplication may vary in variable-size dedupli-

cation. When writing those data, a complicated scheme for data size man-

agement is required to form sub-page data chunks to fit in a flash page

size, preventing an internal fragmentation. For those reasons, most existing

deduplication techniques for SSDs employ fixed-size deduplication, which

is relatively simple and does not require a significant amount of hardware

resources.

There are several existing studies for fixed-size deduplication for SSDs.

F. Chen [54] proposed CAFTL to enhance the endurance of SSDs with a

set of acceleration techniques to reduce runtime overhead. A. Gupta [55]

also proposed CA-SSD to improve the reliability of SSDs by exploiting the

value locality, which implies that certain data items are likely to be accessed

preferentially. In these studies, authors focused on the feasibility of dedu-

plication at SSD level and proved its effectiveness rather than improving

deduplication itself.

Recently, several deduplication techniques for flash-based storage are

proposed. Z. Chen [56] proposed OrderMergeDedup which orders and merges

the deduplication metadata with data writes to realize failure-consistent stor-

age with deduplication. W. Li [57] proposed CacheDedup which integrates

deduplication with caching architecture to address limited endurance of flash

caching by managing data writes and deduplication metadata together, and

proposing duplication-aware cache replacement algorithms. These studies

focus on systematic approach such as block layer or flash caching. How-

ever, this study improves the effect of deduplication in the device-specific

domain, so the approach of this study is quite different.

17

All of these existing deduplication schemes maintain a limited size

dedupt table in memory. Since there is an assumption that existing work-

loads have very frequent patterns of data, they can achieve high performance

if they can be kept in memory. Therefore, we used frequency-based table

maintenance policy. However, in the latest workload such as RocksDB, it is

confirmed through analysis that the pattern in which the data recorded once

is rewritten by the compaction process is more important than the same data

repeatedly. Therefore, a new type of table management technique is needed

in this workload.

2.5.3 Program Context based Optimization Techniques
for Operating Systems

Prediction techniques based on history exploit the principle that most pro-

grams show certain degrees of repetitive behavior. For instance, subroutines

in an application are called multiple times, and loops process a large amount

of data. The challenge in making an precise prediction is to link the past

event (behavior) to its future reoccurrence. In particular, predictors need the

program context of past events so that future events in the same context can

be identified. The more accurate context information the predictor has about

the past and future events, the more accurate prediction it can make about

future program behavior [28].

A key observation in computer architecture is that a particular instruc-

tion usually performs a very unique task and rarely changes behavior, so

program instructions provide a highly effective way to record the context

18

of program behavior. Since the instructions are described uniquely by their

program counters (PCs) that specify the location of the instructions in mem-

ory, PCs offer a way to record the program context.

One of the earliest predictors to benefit from the information provided

by PCs is branch prediction. The PC of the branch instruction identifies the

branch in the program uniquely and is associated with a particular behavior,

for instance, to take or not to take the branch. Branch prediction techniques

correlate the past behavior of a branch instruction and predict its future be-

havior when it meets the same instructions.

The success in using the program counter in branch prediction was

noted and the PC information was widely used in other predictor designs in

computer architecture. Number of PC-based predictors have been proposed

to optimize energy [9], cache management [10] , and memory prefetch-

ing [11]. For instance, PCs were used to accurately predict the instruction

behavior in the pipeline of processors which allows the hardware to apply

power reduction techniques at the right time to minimize the impact on per-

formance [9]. In Last Touch Predictor [10], PCs are used to predict which

data will not be used again by the processor and free the cache to store or

prefetch more relevant data. In PC-based prefetch predictors [11], a set of

memory addresses or patterns are linked to a particular PC and the next set

of data is prefetched when that PC is found again.

In addition, PCC [27] takes into account the opportunity and viability

of PC-based prediction techniques in the design of operating systems. In

particular, they consider the problem of buffer cache management, which

shares common features with hardware cache management, since they deal

19

essentially with different levels of the memory hierarchy. The basic idea is to

separate access streams from the program context (identified by the function

call stack) when the I/O access is made, assuming that in the future a single

program context will likely to access disk files with the same pattern.

However, none of the existing PC-based approach focus of the storage

devices. They use iterative access characteristics according to the PC at the

operating system level, e.g., cache management. Based on our analysis on

PCs, program context can be a good candidate for optimizing performance

and lifetime of SSDs.

20

Chapter 3

Program Context-based Analysis

3.1 Definition and Extraction of Program Con-
text

In developing an efficient optimization technique for general I/O workloads,

our key insight was that in most applications, the overall I/O behavior of

applications is decided by a few dominant I/O activities (e.g., logging and

flushing in RocksDB). Moreover, data written by dominant I/O activities

tend to have distinct I/O patterns. Therefore, if such dominant I/O activities

of applications can be automatically detected and distinguished each other

in an LBA-oblivious fashion, an optimization technique can be developed

for varying I/O workloads including append-only workloads.

In this dissertation, we argue that a program context can be used to

build an efficient general-purpose classifier of dominant I/O activities.Here,

a PC represents an execution path of an application which invokes write-

related system call functions such as write() and writev(). There

could be various ways of extracting PCs, but the most common approach [27,

28] is to represent each PC with its PC signature which is computed by sum-

ming program counter values of all the functions along the execution path

which leads to a write system call.

In RocksDB, dominant I/O activities include logging, flushing and com-

21

RocksDB

PrcssKVCmpctn()

FnshCmpctnFile()Write()

Run()

WriteToWAL()

AddRecord()

WriteImpl() logging compaction

Log File DB File

Figure 4: An illustration of (simplified) execution paths of two dominant I/O
activities in RocksDB.

paction. Since these I/O activities are invoked through different function-

call paths, we can easily identify dominant I/O activities of RocksDB using

PCs. For example, Fig. 4 shows (simplified) execution paths for logging and

compaction in RocksDB. The sum of program counter values of the execu-

tion path WriteImpl()→WriteToWAL()→ AddRecord() is used

to represent a PC for the logging activity while that of the execution path

Run()→ ProcessKeyValueCompaction()→ FinishCompactionFile()

is used for the compaction activity. In SQLite, there exist two dominant I/O

activities which are logging and managing database tables. Similar to the

RocksDB, SQLite writes log files and database files using different execu-

tion paths. In GCC, there exist many dominant I/O activities of creating

various types of temporal files and object files.

As mentioned earlier, a PC signature, which is used as a unique ID

of each program context, is defined to be the sum of program counters

along the execution path of function calls that finally reaches a write-related

system function. In theory, program counter values in the execution path

22

can be extracted in a relatively straightforward manner. Except for inline

functions, every function call involves pushing the address of the next in-

struction of a caller as a return address to the stack, followed by pushing

a frame pointer value. By referring to frame pointers, we can back-track

stack frames of a process and selectively get return addresses for generat-

ing a PC signature. Fig. 5(a) illustrates a stack of RocksDB correspond-

ing to Fig. 4, where return addresses are pushed before calling write(),

AddRecord() and WriteToWAL(). Since frame pointer values in the

stack hold the addresses of previous frame pointers, we can easily obtain

return addresses and accumulate them to compute a PC signature.

The frame pointer-based approach for computing a PC signature, how-

ever, is not always possible because modern C/C++ compilers often do not

use a frame pointer for improving the efficiency of register allocation. One

example is a -fomit-frame-pointer option of GCC [36]. This op-

tion enables to use a frame pointer as a general-purpose register for perfor-

mance, but makes it difficult for us to back-track return addresses along the

call chains.

We employ a simple but effective workaround for back-tracking a call

stack when a frame pointer is not available. When a write system call is

made, we scan every word in the stack and checks if it belongs to process’s

code segment. If the scanned stack word holds a value within the address

range of the code segment, it assumes that it is a return address. Fig. 5(b)

shows the scanning process. Since scanning the entire stack may takes too

long, we stop the scanning step once a sufficient number of return address

candidates are found. In the current implementation, the scanning process

23

…

…

User Process Stack

Frame of

AddRecord()

Frame of

WriteToWAL()

Frame of

WriteImpl()

(a) with the frame pointer.

…

Ret.WriteImpl()

…

…

…

Ret.WriteToWAL()

…

Ret. AddRecord()

User Process Stack

Stack

Heap

Data Segment

Code Segment

User Process

Virtual Addr. Space

(b) without the frame pointer.

Figure 5: Examples of PC extraction methods.

stops early once five return address candidates are identified. Even though

it is quite ad-hoc, this restricted scan is quite effective in distinguishing dif-

ferent PCs because it is very unlikely that two different PCs reach the same

write() system call through the same execution subpath that covers five

proceeding function calls. In our evaluation on a PC with 3.4 GHz Intel

CPU, the overhead of the restricted scan was almost negligible, taking only

300∼400 nsec per write() system call.

3.2 Data Lifetime Patterns of I/O Activities

In developing automatic stream management technique, our key insight was

that in most applications, (regardless of their I/O workload characteristics) a

few dominant I/O activities exist and each dominant I/O activity represents

the application’s important I/O context (e.g., for logging or for flushing).

Furthermore, most dominant I/O activities tend to have distinct data life-

time patterns. In order to distinguish data by their lifetimes, therefore, it is

important to effectively distinguish dominant I/O activities from each other.

24

(a) Logging (PC) (b) Logging (manual)

(c) Flushing (PC) (d) Flushing (manual)

Figure 6: Data lifetime distributions of different PCs.

For example, in update workloads, LBAs alone were effective in separating

dominant I/O activities. In this dissertation, we argue that a program context

is an efficient general-purpose indicator for separating dominant I/O activi-

ties regardless of the type of I/O workloads.

In order to validate our hypothesis that PCs can be useful for esti-

mating lifetimes by distinguishing dominant I/O activities, we conducted

experiments using RocksDB, comparing the accuracy of identifying domi-

nant I/O activities using two different methods. First, we manually identified

dominant I/O activities by inspecting the source code. Second, we automat-

ically decided dominant I/O activities by extracting PCs for write-related

system functions. Fig. 6 illustrates two dominant I/O activities matched be-

tween two methods. As shown in Fig. 6(a) and 6(b), the logging activity

of RocksDB is correctly identified by two methods. Furthermore, from the

25

logging-activity PC, we can clearly observe that data written from the PC

are short-lived. Similarly, from Fig. 6(c) and 6(d), we observe that data writ-

ten from the flushing-activity PC behave in a different fashion. For example,

data from the flushing-activity PC remain valid a lot longer than those from

the logging-activity PC.

3.3 Duplicate Data Patterns of I/O Activities

We analyzed the relationship between I/O activities and the duplicate data

patterns of several applications such as RocksDB and GCC. Although it

was difficult to find an I/O activity which is likely to have duplicate data,

we can find the relative difference in duplication rates (i.e., the percentage

of duplicate requests in total requests) for I/O activities for two reasons.

First, some activity reads and manipulates data stored in the device

and write them, e.g., compaction activity of RocksDB. Compaction activity

merges multiple files which incurs reading multiple files from the device and

writing them to the device after sorting. If the key range is skewed, we may

find untouched data sequence (same sequence as in read file) after sorting.

The untouched data are regarded as duplicate data in the device. Unlike

compaction activity, the probability of finding duplicate data for logging

and flushing activites is not very high because data contents of logging and

flushing activities are decided by users. In summary, it is better to focus on

compaction rather than logging and flushing to find duplicate data.

Second, activities with short-lived data are hard to be referenced, e.g.,

temporary files during compiling. Most deduplication techniques work in

26

the same way when duplicate data is not found. As a regular write, an up-

dated or trimmed page is invalidated. However, the existing deduplication

techniques for SSDs does not consider handling a fingerprint of an invali-

dated page. The fingerprint value in the dedup table should be removed when

the invalid page is erased. We assume the fingerprint is removed right after

the page invalidation because removing all the fingerprints of invalid pages

before erasing a block make GC overhead more severe. Then, fingerprint of

short-lived data can not stay long enough to be deduplicated. In summary,

we can avoid deduplication for PCs with short-lived data.

In order to validate our analysis, we measured duplicate rate of afore-

mentioned applications. Table 1 shows the duplicate rates of I/O activities

for RocksDB and GCC. For RocksDB, Yahoo! Cloud Serving Benchmark

(YCSB) [44] with 12-million keys was used to generate update-heavy work-

loads. For GCC, a Linux kernel was built 30 times. For each build, 1/3 of

source files, which were selected randomly, were modified and recompiled.

As explained, logging and flushing activities of RocksDB showed very low

duplicate rates while compaction activity shows higher duplicate rates. Du-

plicate rate of outputting temporary file activity is also very low. We can

Application I/O activity
Duplicate Total Duplicate
requests requests rate

RocksDB
logging 0 39181 0%
flushing 1092 102831 1%

compaction 32201 398107 8%

GCC
outputting

0 193834 0%
temp files

Table 1: Duplicate rates for I/O activities.

27

exploit this duplicate data patterns of I/O activities in designing an efficient

deduplication technique.

28

Chapter 4

Fully Automatic Stream Management
For Multi-Streamed SSDs Using
Program Contexts

4.1 Overview

In flash-based SSDs, garbage collection (GC) is inevitable because NAND

flash memory does not support in-place updates. Since the efficiency of

garbage collection significantly affects both the performance and lifetime

of SSDs, garbage collection has been extensively investigated so that the

garbage collection overhead can be reduced [12, 13, 14, 15, 16, 3]. For ex-

ample, hot-cold separation techniques are commonly used inside an SSD so

that quickly invalidated pages are not mixed with long-lived data in the same

block. For more efficient garbage collection, many techniques also exploit

host-level I/O access characteristics which can be used as useful hints on the

efficient data separation inside the SSD [17, 18].

Multi-streamed SSDs provide a special interface mechanism for a host

system, called streams1, which data separation decisions on the host level

can be delivered to SSDs [19, 20]. When the host system assigns two data

D1 and D2 to different streams S1 and S2, respectively, a multi-streamed
1In this dissertation, we use “streams” and “external streams” interchangeably.

29

SSD places D1 and D2 in different blocks, which belong to S1 and S2, re-

spectively. When D1 and D2 have distinct update patterns, say, D1 with a

short lifetime and D2 with a long lifetime, allocating D1 and D2 to differ-

ent streams can be helpful in minimizing the copy cost of garbage collection

by separating hot data from cold data. Since data separation decisions can

be made more intelligently on the host level over on the SSD level, when

streams are properly managed, they can significantly improve both the per-

formance and lifetime of flash-based SSDs [20, 21, 22, 23, 24]. We assume

that a multi-streamed SSD supports m+1 streams, S0, ..., Sm.

In order to maximize the potential benefit of multi-streamed SSDs in

practice, several requirements need to be satisfied both for stream manage-

ment and for SSD stream implementation. First, stream management should

be supported in a fully automatic fashion over general I/O workloads with-

out any manual work. For example, if an application developer should man-

age stream allocations manually for a given SSD, multi-streamed SSDs are

difficult to be widely employed in practice. Second, stream management

techniques should have no dependency on the number of available streams.

If stream allocation decisions have some dependence on the number of avail-

able streams, stream allocation should be modified whenever the number of

streams in an SSD changes. Third, the number of streams supported in an

SSD should be sufficient to work well with multiple concurrent I/O work-

loads. For example, with 4 streams, it would be difficult to support a large

number of I/O-intensive concurrent tasks.

Unfortunately, to the best of our knowledge, no existing solutions for

multi-streamed SSDs meet all these requirements. Most existing techniques [20,

30

21, 22, 23] require programmers to assign streams at the application level

with manual code modifications. AutoStream [24] is the only known auto-

matic technique that supports stream management in the kernel level with-

out manual stream allocation. However, since AutoStream predicts data life-

times using the update frequency of the logical block address (LBA), it does

not work well with append-only workloads (such as RocksDB [25] or Cas-

sandra [26]) and write-once workloads (such as a Linux kernel build). Un-

like conventional in-place update workloads where data written to the same

LBAs often show strong update locality, append-only or write-once work-

loads make it impossible to predict data lifetimes from LBA characteristics

such as the access frequency.

In this dissertation, we propose a fully-automatic stream management

technique, called PCStream, which works efficiently over general I/O work-

loads including append-only, write-once as well as in-place update work-

loads. The key insight behind PCStream is that stream allocation decisions

should be made at a higher abstraction level where I/O activities, not LBAs,

can be meaningfully distinguished. For example, in RocksDB, if we can tell

whether the current I/O is a part of a logging activity or a compaction activ-

ity, stream allocation decisions can be made a lot more efficiently over when

only LBAs of the current I/O is available.

In PCStream, we employ a write program context2 as such a higher-

level classification unit for representing I/O activity regardless of the type of

I/O workloads. A program context (PC) [27, 28], which uniquely represents
2Since we are interested in write-related system calls such as write() in Linux, we use

write program contexts and program contexts interchangeable where no confusion arises.

31

an execution path of a program up to a write system call, is known to be

effective in representing dominant I/O activities [29]. Furthermore, most

dominant I/O activities tend to show distinct data lifetime characteristics. By

identifying dominant I/O activities using program contexts during run time,

PCStream can automate the whole process of stream allocation within the

kernel with no manual work. In order to seamlessly support various SSDs

with different numbers of streams, PCStream groups program contexts with

similar data lifetimes depending on the number of supported streams using

the k-means clustering algorithm [30]. Since program contexts focus on the

semantic aspect of I/O execution as a lifetime classifier, not on the low-

level details such as LBAs and access patterns, PCStream easily supports

different I/O workloads regardless of whether it is update-only or append-

only.

Although many program contexts show that their data lifetimes are nar-

rowly distributed, we observed that this is not necessarily true because of

several reasons. For example, when a single program context handles multi-

ple types of data with different lifetimes, data lifetime distributions of such

program contexts have rather large variances. In PCStream, when such a

program context PCj is observed (which was mapped to a stream Sk), the

long-lived data of PCj are moved to a different stream Sk′ during GC. The

stream Sk′ prevents the long-lived data of the stream Sk from being mixed

with future short-lived data of the stream Sk.

When several program contexts have a large variance in their data life-

times, the required number of total streams can quickly increase to distin-

guish data with different lifetimes. In order to effectively increase the num-

32

ber of streams, we propose a new stream type, called an internal stream,

which can be used only for garbage collection. Unlike external streams, in-

ternal streams can be efficiently implemented at low cost without increasing

the SSD resource budget. In the current version of PCStream, we create the

same number of internal streams as the external streams, effectively dou-

bling the number of available streams.

In order to evaluate the effectiveness of PCStream, we have imple-

mented PCStream in the Linux kernel (ver. 4.5) and extended a Samsung

PM963 SSD to support internal streams. Our experimental results show that

PCStream can reduce the GC overhead as much as a manual stream man-

agement technique while requiring no code modification. Over AutoStream,

PCStream improves the average IOPS by 28% while reducing the average

WAF by 49%.

4.2 Motivation

4.2.1 No Automatic Stream Management for General
I/O Workloads

Most existing stream management techniques [20, 21, 22] require program-

mers to manually allocate streams for their applications. For example, in

both ManualStream3 [20] and [21], there is no systematic guildeline on

how to allocate streams for a given application. The efficiency of stream al-

locations largely depends on the programmer’s understanding and expertise
3For brevity, we denote the manual stream allocation method used in [20] by Manual-

Stream.

33

on data temperature (i.e., frequency of updates) and internals of database

systems. Furthermore, many techniques also assume that the number of

streams is known a priori. Therefore, when an SSD with a different number

of streams is used, these techniques need to re-allocate streams manually.

vStream [22] is an exception to this restriction by allocating streams to vir-

tual streams, not external streams. However, even in vStream, virtual stream

allocations are left to programmer’s decisions.

Although FStream [23] and AutoStream [24] may be considered as au-

tomatic stream management techniques, their applicability is quite limited.

FStream [23] can be useful for separating file system metadata but it does

not work for the user data separation. AutoStream [24] is the only known

technique that works in a fully automatic fashion by making stream alloca-

tion decisions within the kernel. However, since AutoStream predicts data

lifetimes using the access frequency of the same LBA, AutoStream does not

work well when no apparent locality on LBA accesses exists in applications.

For example, in recent data-intensive applications such as RocksDB [25]

and Cassandra [26], majority of data are written in an append-only manner,

thus no LBA-level locality can be detected inside an SSD.

In order to illustrate a mismatch between an LBA-based data separa-

tion technique and append-only workloads, we analyzed the write pattern of

RocksDB [25], which is a popular key-value store based on the LSM-tree

algorithm [31]. Fig. 7(a) shows how LBAs may be related to data lifetimes

in RocksDB. We define the lifetime of data as the interval length (in terms

of the logical time based on the number of writes) between when the data

is first written and when the data is invalidated by an overwrite or a TRIM

34

Figure 7: Lifetime distributions of append-only workload over addresses
and times.

command [32]. As shown in Fig. 7(a), there is no strong correlation between

LBAs and their lifetimes in RocksDB.

We also analyzed if the lifetimes of LBAs change under some pre-

dictable patterns over time although the overall lifetime distribution shows

large variances. Figs. 7(b) and 7(c) show scatter plots of data lifetimes over

the logical time for two specific 1-MB chunks with 256 pages. As shown in

Figs. 7(b) and 7(c), for the given chunk, the lifetime of data written to the

chunk varies in an unpredictable fashion. For example, at the logical time

10 in Fig. 7(b), the lifetime was 1 but it increases about 2 million around

the logical time 450 followed by a rapid drop around the logical time 500.

Our workload analysis using RocksDB strongly suggests that under append-

only workloads, LBAs are not useful in predicting data lifetimes reliably. In

practice, the applicability of LBA-based data separation techniques is quite

limited to a few cases only when the LBA access locality is obvious in I/O

activities such as updating metadata files or log files. In order to support

general I/O workloads in an automatic fashion, stream management deci-

sions should be based on higher-level information which do not depend on

35

0.8

1

1.2

1.4

1.6

1 2 4 6 8

N
o
rm

a
li

z
e
d

 I
O

P
S

Number of Streams

Figure 8: IOPS changes over the number of streams.

lower-level details such as write patterns based on LBAs.

4.2.2 Limited Number of Supported Streams

One of the key performance parameters in multi-streamed SSDs is the num-

ber of available streams in SSDs. Since the main function of streams is to

separate data with different lifetimes so that they are not mixed in the same

block, it is clear that the higher the number of streams, the more efficient the

performance of multi-streamed SSDs. For example, Fig. 8 shows how IOPS

in RocksDB changes as the number of streams increases on a Samsung

PM963 multi-streamed SSD with 9 streams. The db bench benchmark

was used for measuring IOPS values with streams manually allocated. As

shown in Fig. 8, the IOPS is continuously improving until 6 streams are used

when dominant I/O activities with different data lifetimes are sufficiently

separated. In order to support a large number of streams, both the SBC-4

and NVMe revision 1.3, which define the multi-stream related specifica-

tions, allow up to 65,536 streams [19, 33]. However, the number of streams

36

supported in commercial SSDs is quite limited, say, 4 to 16 [20, 21, 24], be-

cause of several implementation constraints on the backup power capacity

and fast memory size.

These constraints are directly related to a write buffering mechanism

that is commonly used in modern SSDs. In order to improve the write

throughput while effectively hiding the size difference between the FTL

mapping unit and the flash program unit, host writes are first buffered before

they are written to flash pages in a highly parallel fashion for high perfor-

mance. Buffering host writes temporarily inside SSDs, however, presents a

serious data integrity risk for storage systems when a sudden power failure

occurs. In order to avoid such critical failures, in data centers or storage

servers where multi-streamed SSDs are used, SSDs use tantalum or elec-

trolytic capacitors as a backup power source. When a main power is sud-

denly failed, the backup power is used to write back the buffered data reli-

ably. Since the capacity of backup power is limited because of the limited

PCB size and its cost, the maximum amount of buffered data is also limited.

In multi-streamed SSDs where each stream needs its own buffered area, the

amount of buffered data increases as the number of streams increases. The

practical limit in the capacity of backup power, therefore, dictates the max-

imum number of streams as well.

The limited size of fast memory, such as TCM [34] or SRAM, is an-

other main hurdle in increasing the number of streams in multi-streamed

SSDs. Since multi-stream related metadata which includes data structures

for write buffering should be accessed quickly as well as frequently, most

SSD controllers implement data structures for supporting streams on fast

37

memory over more common DRAM. Since the buffered data is the most

recent one for a given LBA, each read request needs to check if the read

request should be served from the buffered data or not. In order to support a

quick checkup of buffered data, probabilistic data structures such as a bloom

filter can be used along with other efficient data structures, for accessing

LBA addresses of buffered data and for locating buffer starting addresses.

Since the latency of a read request depends on how fast these data struc-

tures can be accessed, most SSDs place the buffering-related data structure

on fast memory. Similarly, in order to quickly store buffered data in flash

chips, these data structure should be placed on fast memory as well. How-

ever, most SSD manufacturers are quite sensitive in increasing the size of

fast memory because it may increase the overall SSD cost. A limited size of

fast memory, unfortunately, restricts the number of supported streams quite

severely.

4.3 Automatic I/O Activity Management

In developing an efficient data lifetime separator for general I/O workloads,

our key insight was that in most applications, the overall I/O behavior of

applications is decided by a few dominant I/O activities (e.g., logging and

flushing in RocksDB). Moreover, data written by dominant I/O activities

tend to have distinct lifetime patterns. Therefore, if such dominant I/O ac-

tivities of applications can be automatically detected and distinguished each

other in an LBA-oblivious fashion, an automatic stream management tech-

nique can be developed for widely varying I/O workloads including append-

38

only workloads.

In this dissertation, we argue that a program context can be used to

build an efficient general-purpose classifier of dominant I/O activities with

different data lifetimes. Here, a PC represents an execution path of an appli-

cation which invokes write-related system call functions such as write()

and writev(). There could be various ways of extracting PCs, but the

most common approach [27, 28] is to represent each PC with its PC sig-

nature which is computed by summing program counter values of all the

functions along the execution path which leads to a write system call.

4.3.1 PC as a Unit of Lifetime Classification for Gen-
eral I/O Workloads

In order to illustrate that using PCs is an effective way to distinguish I/O

activities of an application and their data lifetime patterns, we measured

data lifetime distributions of PCs from various applications with different

I/O workloads. In this section, we report our evaluation results for three

applications with distinct I/O activities: RocksDB [25], SQLite [35], and

GCC [36]. RocksDB shows the append-only workload while SQLite shows

a workload that updates in place. Both database workloads are expected to

have distinct I/O activities for writing log files and data files. GCC repre-

sents an extensive compiler workload (e.g., compiling a Linux kernel) that

generates many short-lived temporary files (e.g., .s, .d, and .rc files) as

well as some long-lived files (e.g., object files and kernel image files).

To confirm our hypothesis that data lifetimes can be distinguished by

39

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(a) RocksDB: Logging

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(b) RocksDB: Flushing

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(c) RocksDB: Compaction

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(d) SQLite: Logging

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(e) SQLite: Updating

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(f) GCC: Outputting Temp

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.

o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(g) GCC: Outputting Exe-
cutable

Figure 9: Data lifetime distributions of dominant I/O activities in RocksDB,
SQLite and GCC.

tracking dominant I/O activities and a PC is a useful unit of classifica-

tion for different I/O activities, we have analyzed how well PCs work for

RocksDB, SQLite and GCC. Fig. 9 shows data lifetime distributions of

dominant I/O activities which were distinguished by computed PC values.

As expected, Fig. 9 validates that dominant I/O activities show distinct data

lifetime distributions over the logical address space. For example, as shown

in Figs. 9(a)∼9(c), the logging activity, the flushing activity and the com-

paction activity in RocksDB clearly exhibit quite different data lifetime dis-

tributions. While the logged data written by the logging activity have short

40

lifetimes, the flushed data by the flushing activity have little bit longer life-

times. Similarly, for SQLite and GCC, dominant I/O activities show quite

distinct data lifetime characteristics as shown in Figs. 9(d)∼9(g). As shown

in Fig. 9(d), the logging activity of SQLite generates short-lived data. This

is because SQLite overwrites logging data in a small and fixed storage space

and then removes them soon. Lifetimes of temporary files generated by GCC

are also relatively short as shown in Fig. 9(f), because of the write-once pat-

tern of temporary files. But, unlike the other graphs in Fig. 9, data lifetime

distributions of Figs. 9(c) and 9(e), which correspond to the compaction ac-

tivity of RocksDB and the updating activity of SQLite, respectively, show

large variances. These outlier I/O activities need a special treatment, which

will be described in Section 4.4.

Note that if we used an LBA-based data separator instead of the pro-

posed PC-based scheme, most of data lifetime characteristics shown in Fig. 9

could not have been known. Only the data lifetime distribution of the log-

ging activity of SQLite, as shown in Fig. 9(d), can be accurately captured

by the LBA-based data separator. For example, the LBA-based data separ-

tor cannot decide that the data lifetime of data produced from the outputting

temp activity of GCC is short because temporary files are not overwritten

each time they are generated during the compiling step.

4.4 Support for Large Number of Streams

The number of streams is restricted to a small number because of the prac-

tical limits on the backup power capacity and the size of fast memory. Since

41

the number of supported streams critically impacts the overall performance

of multi-streamed SSDs, in this section, we propose a new type of streams,

called internal streams, which can be supported without affecting the capac-

ity of a backup power as well as the size of fast memory in SSDs. Internal

streams, which are restricted to be used only for garbage collection, sig-

nificantly improve the efficiency of PC-based stream allocation, especially

when PCs show large lifetime variances in their data lifetime distributions.

4.4.1 PCs with Large Lifetime Variances

For most PCs, their lifetime distributions tend to have small variances (e.g.,

Figs. 9(a), 9(d), and 9(f)). However, we observed that it is inevitable to

have a few PCs with large lifetime variances because of several practical

reasons. For example, when multiple I/O contexts are covered by the same

execution path, the corresponding PC may represent several I/O contexts

whose data lifetimes are quite different. Such a case occurs, for example, in

the compaction job of RocksDB. RocksDB maintains several levels, L1, ...,

Ln, in the persistent storage, except for L0 (or a memtable) stored in DRAM.

Once one level, say L2, becomes full, all the data in L2 is compacted to a

lower level (i.e., L3). It involves moving data from L2 to L3, along with

the deletion of the old data in L2. In the LSM tree [31], a higher level is

smaller than a lower level (i.e., the size of (L2) < the size of (L3)). Thus,

data stored in a higher level is invalidated more frequently than those kept

in lower levels, thereby having shorter lifetimes.

Unfortunately, in the current RocksDB implementation, the compaction

step is supported by the same execution path (i.e., the same PC) regardless

42

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(a) RocksDB: L2 Compaction

0

1

2

3

4

5

6

7

8

L
if

et
im

e
(n

o
.
o
f

w
ri

te
s

x
 1

0
6
)

Logical Block Address

(b) RocksDB: L4 Compaction

Figure 10: Lifetime distributions of the compaction activity at different lev-
els.

of the level. Therefore, the PC for the compaction activity cannot effectively

separate data with short lifetimes from one with long lifetimes. Fig. 10(a)

and 10(b) show distinctly different lifetime distributions based on the level

of compaction: data written from the level 4 have a large lifetime variance

while data written from the level 2 have a small lifetime variance.

Similarly, in SQLite and GCC, program contexts with large lifetime

variations are also observed. Fig. 9(e) shows large lifetime variances of data

files in SQLite. Since client request patterns will decide how SQLite up-

dates its tables, the lifetime of data from the updating activity of SQLite is

distributed with a large variance. Similarly, the lifetime of data from the out-

putting temporary files of GCC can significantly fluctuate as well depending

on when the next compile step starts. Fig. 9(g) shows long lifetimes of ob-

ject files/executable files after a Linux build was completed (with no more

re-compiling jobs). However, the lifetime of the same object files/executable

files may become short when if we have to restart the same compile step

right after the previous one is finished (e.g., because of code changes).

For these outlier PCs with large lifetime variations, it is a challenge to

43

allocate streams in an efficient fashion unless there are more application-

specific hints (e.g., the compaction level in RocksDB) are available. As an

ad-hoc (but effective) solution, when a PC shows a large variance in its data

lifetime, we allocate an additional stream, called an internal stream, to the

PC so that the data written from the PC can be better separated between the

original stream and its internal stream. In order to support internal streams,

the total number of streams may need to be doubled so that each stream can

be associated with its internal stream.

4.4.2 Implementation of Internal Streams

As described in Section 4.2.2, it is difficult to increase the number of (nor-

mal) streams. However, if we restrict that internal streams are used only for

data movements during GC, they can be quite efficiently implemented with-

out the constraints on the backup power capacity and fast memory size. The

key difference in the implementation overhead between normal streams and

internal streams comes from a simple observation that data copied during

GC do not need the same reliability and performance support as for host

writes. Unlike buffered data from host write requests, valid pages in the

source block during garbage collection have no risk of losing their data from

the sudden power-off conditions because the original valid pages are always

available. Therefore, even if the number of internal streams increases, un-

like normal streams, no higher-capacity backup capacitor is necessary for

managing buffered data for internal streams.

The fast memory requirement is also not directly increased as the num-

ber of internal streams increases. Since internal streams are used only for GC

44

Write

PC Extractor

Write Req (LBA, size, sID, …)

Kernel

Device

Lifetime Manager

PC2Stream Mapper
PC Attribute Table

Stream 0

Stream M

……

Delete

PC Lifetime Stream ID

Internal Stream M

LBA wtime PC valid

Live LBA Table

Internal Stream 0Internal
Stream

Manager

…

Figure 11: An overall architecture of PCStream.

and most GC can be handled as background tasks, internal streams has a less

stringent performance requirement. Therefore, data structures for support-

ing internal streams can be placed on DRAM without much performance

issues. Furthermore, for a read request, there is no need to check if a read

request can be served by buffered data as in normal streams because the

source block always has the most up-to-date data. This, in turn, allows data

structures for internal streams to be located in slow memory. Once an SSD

reaches the fully saturated condition where host writes and GC are concur-

rently performed, the performance of GC may degrade a little because of

the slow DRAM used for internal streams. However, in our evaluation, such

cases were rarely observed under a reasonable overprovisioning storage ca-

pacity.

45

4.5 Design and Implementation of PCStream

In this section, we explain the detailed implementation of PCStream. Fig. 11

shows an overall architecture of PCStream. The PC extractor is imple-

mented as part of a kernel’s system call handler as already described in Sec-

tion 4.3, and is responsible for computing a PC signature from applications.

The PC signature is used for deciding the corresponding stream ID4 from the

PC attribute table. PCStream maintains various per-PC attributes in the PC

attribute table including PC signatures, expected data lifetimes, and stream

IDs. In order to keep the PC attribute table updated over changing work-

loads, the computed PC signature with its LBA information is also sent to

the lifetime manager, which estimates expected lifetimes of data belonging

to given PCs. Since commercial multi-streamed SSDs only expose a limited

number of streams to a host, the PC2Stream mapper groups PCs with simi-

lar lifetimes using a clustering policy, assigning PCs in the same group to the

same stream. Whenever the lifetime manager or the PC2Stream mapper are

invoked, the PC attribute table is updated with new outputs from these mod-

ules. Finally, the internal stream manager, which was implemented inside

an SSD as a firmware, is responsible for handling internal streams associ-

ated with external streams.

4.5.1 PC Lifetime Management

The responsibility of the lifetime manager is for estimating the lifetime of

data associated with a PC. Except for outlier PCs, most data from the same
4We call i the stream ID of Si.

46

PC tend to show similar data lifetimes with small variances.

Lifetime estimation: Whenever a new write request R arrives, the life-

time manager stores the write request time, the PC signature, PCi, and the

LBA list of R into the live LBA table. The live LBA table, indexed by

an LBA, is used in computing the lifetime of data stored at a given LBA

which belongs to PCi. Upon receiving TRIM commands (that delete pre-

viously written LBAs) or overwrite requests (that update previously written

LBAs), the lifetime manager searches the live LBA table for a PC signature

PCfound with the LBA list which includes the deleted/updated LBAs. The

new lifetime lnew of PCfound is estimated using the lifetime of the matched

LBA from the live LBA table. The weighted average of the existing life-

time lold for PCfound and lnew is used to update the PCfound entry in the

PC attribute table. Note that the written time entry of the live LBA table is

updated differently depending on TRIM commands or overwrite requests.

The written time entry becomes invalid for TRIM while it is updated by the

current time for an overwrite request.

Maintaining the live LBA table, which is indexed by an LBA unit, in

DRAM could be a serious burden owing to its huge size. In order to mitigate

the DRAM memory requirement, the lifetime manager slightly sacrifices the

accuracy of computing LBA lifetime by increasing the granularity of LBA

lifetime prediction to 1 MB, instead of 4 KB. The live LBA table is indexed

by 1 MB LBA, and each table entry holds PC signatures and written times

over a 1 MB LBA range. Because of the coarse-grained indexing, each entry

could have multiple signatures and written times, and the same PC could

span across multiple entries. If the same PC has different lifetimes, we take

47

the arithmetic mean as the PC lifetime. To limit the table size, if the table

reaches a threshold size, the least recently referenced entry is evicted from

the LBA table. Currently, the threshold is set to 64 MB.

PC attribute table: The PC attribute table keeps PC signatures and its

expected lifetimes. To quickly retrieve the expected lifetime of a requested

PC signature, the PC attribute table is managed through a hash data struc-

ture. Each hash entry requires only 12 bytes: 64-bit for a PC signature and

32-bit for a predicted lifetime. The table size is thus small so that it can be

entirely loaded in DRAM. From our evaluations, the DRAM size of the PC

attribute table was sufficient with several tens or hundreds of KB.

In addition to the main function of the PC attribute table that main-

tains the data lifetime for a PC, the memory − resident PC attribute table

has another interesting benefit for the efficient stream management. Since a

PC signature of an I/O activity is virtually guaranteed to be globally unique

across all applications (the uniqueness property), and a PC signature does

not change over different executions of the same application (the consis-

tency property), the PC attribute table can capture a long-term history of

programs’ I/O behaviors. Because of the uniqueness and consistency of a

PC signature, PCStream can exploit the I/O behavior of even short-lived

processes (e.g., cpp and cc1 for GCC) that are launched and terminated

frequently. When short-lived processes are frequently executed, the PC at-

tribute table can hold their PC attributes from their previous executions, thus

enabling quick but accurate stream allocation for short-lived processes.

The consistency property is rather straightforward because each PC

signature is determined by the sum of return addresses inside a process’s

48

virtual address space. Unless a program’s binary is changed after recom-

pilation, those return addresses remain the same, regardless of program’s

execution. The uniqueness property is also somewhat obvious from the ob-

servation that the probability that distinct I/O activities that take different

function-call paths have the same PC signature is extremely low. This is

even true for multiple programs. Even though they are executed in the same

virtual address space, it is very unlikely that I/O activities of diverged pro-

grams taking different function-call paths have the same PC. Consequently,

this immutable property of the PC signature for a given I/O activity makes

it possible for us to characterize the given I/O activity in a long-term basis

without a risk of PC collisions.

4.5.2 Mapping PCs to SSD streams

After estimating expected lifetimes of PC signatures, the PC2Stream map-

per attempts to group PCs with similar lifetimes into an SSD stream. This

grouping process is necessary because while commercial SSDs only sup-

port a limited number of streams (e.g., 9), the number of unique PCs can

be larger (e.g., 30). For grouping PCs with similar lifetimes, the PC2Stream

mapper module uses the k-means algorithm [30] which is widely used for

similar purposes. In PCStream, we use the difference in the data lifetime

between two PCs as a clustering distance and generates m clusters of PCs

for m streams. This algorithm is particularly well suited for our purpose be-

cause it is lightweight in terms of the CPU cycle and memory requirement.

To quickly assign a proper stream to incoming data, we add an extra field to

the PC attribute table which keeps a stream ID for each PC signature. More

49

specifically, when a new write request comes, a designated SSD stream ID

is obtained by referring to the PC attribute table using request’s PC value

as an index. If there is no such a PC in the table, or a PC does not have a

designated stream ID, the request gets default stream ID, which is set to 0.

For adapting to changing workloads, re-clustering operations should be

performed regularly. This re-clustering process is done in a straightforward

manner. The PC2Stream mapper scans up-to-date lifetimes for all PCs in

the PC attribute table. Note that PC’s lifetimes are updated whenever the

lifetime manager gets new lifetimes while handling overwrites or TRIM

requests, as explained in Section 4.5.1. With the scanned information, the

PC2Stream mapper recomputes stream IDs and updates stream fields of the

PC attribute table. In order to minimize unnecessary overhead of frequent re-

clustering operations, re-clustering is triggered when 10% of the PC lifetime

entries in the PC attribute table is changed.

4.5.3 Internal Stream Management

As explained in Section 4.4.1, there are a few outlier PCs with large life-

time variances. In order to treat these PCs in an efficient fashion, we de-

vise a two-phase method that decides SSD streams in two levels: the main

stream in the host level and its internal stream in the SSD level. Concep-

tually, long-lived data in the main stream are moved to its internal stream

so that (future) short-lived data will not be mixed with long-lived data in

the main stream. Although moving data to the internal stream may increase

WAF, the overhead can be hidden if we restrict data copies to the internal

stream during GC only. Since long-lived data (i.e., valid pages) in a victim

50

block are moved to a free block during GC, blocks belong to an internal

stream tend to contain long-lived data. For instance, PCStream assigns the

compaction-activity PC1 to a main stream S1 in the first phase. To separate

the long-lived data of PC1 (e.g., L4 data) from future short-lived data of the

same PC1 (e.g., L1 data), valid pages of the S1 are assigned to its internal

stream for the second phase during GC.

We have implemented the internal stream manager with the two-phase

method in Samsung’s PM963 SSD [38]. To make it support the two-phase

method, we have modified its internal FTL so that it manages internal streams

while performing GC internally. Since the internal stream manager assigns

blocks for an internal stream and reclaims them inside the SSD, no host

interface changed is required.

4.5.4 PC Extraction for Indirect Writes

One limitation of using PCs to extract I/O characteristics is that it only works

with C/C++ programs that directly call write-related system calls. Many pro-

grams, however, often invoke write system calls indirectly through interme-

diate layers, which makes it difficult to track program contexts.

The most representative example may be Java programs, such as Cas-

sandra, that run inside a Java Virtual Machine (JVM). Java programs in-

voke write system calls via the Java Native Interface (JNI) [39] that enables

Java programs to call a native I/O library written in C/C++. For Java pro-

grams, therefore, the PC extractor shown in Fig. 11 fails to capture Java-

level I/O activities as it is unable to inspect the JVM stack from the native

write system call which is indirectly called through the JNI. Another exam-

51

Java application

PC Extractor
(converting)

Kernel

JVM

write

Modified
native library

Modified method

Java PC

Java PC Extractor

Runtime Data Area

JVM
StackHeap

Method
Area

Passing Java PC

…
JNI

Run() Do_log()

PC

Figure 12: Extracting PCs for JVM.

ple is a program that maintains a write buffer that is dedicated to dealing

with all the writes from an application. For example, in MySQL [40] and

PostgreSQL [41], every write is first sent to a write buffer. Separate flush

threads later materialize buffered data to persistent storage. In that case, the

PC extractor only captures PCs of flush threads, not PCs of I/O activities

that originally generate I/Os, because the I/O activities were executed in

different threads using different execution stacks.

The problem of indirect writes can be addressed by collecting PC sig-

natures at the front-end interface of an intermediate layer that accepts write

requests from other parts of the program. In case of Java programs, a native

I/O library can be modified to capture write requests and computes their PC

signatures. Once a native library is modified, PCStream can automatically

gather PC signatures without modifying application programs. Fig. 12 il-

lustrates how PCStream collects PC signatures from Java programs. We

have modified the OpenJDK [42] source to extract PC signatures for most

of write methods in write related classes, such as OutputStream. The

stack area in the Runtime Data Areas of JVM is used to calculate PC

52

signatures. The calculated PC is then passed to the write system call of the

kernel via the modified native I/O libraries.

Unlike Java, there is no a straightforward way to collect PCs from ap-

plications with write buffers. This is because the implementation of write

buffering is different depending on applications. Additional efforts to man-

ually modify code are unavoidable. However, the scope of this manual mod-

ification is limited only to the write buffering code, and application logics

themselves don’t need to be edited or annotated.

4.6 Experimental Results

4.6.1 Experimental Settings

In order to evaluate PCStream, we have implemented it in the Linux ker-

nel (version 4.5) on a PC host with Intel Core i7-2600 8-core processor

and 16 GB DRAM. As a multi-streamed SSD, we used Samsung’s PM963

480 GB SSDs. The PM963 SSD supports up to 9 streams; 8 user-configurable

streams and 1 default stream. When no stream is specified with a write re-

quest, the default stream is used. To support internal streams, we have modi-

fied the existing PM963 FTL firmware. For a detailed performance analysis,

we built a modified nvme-cli [43] tool that can retrieve the internal pro-

filing data from PCStream-enabled SSDs. Using the modified nvme-cli

tool, we can monitor WAF values and per-block data lifetimes from the ex-

tended PM963 SSD during run time.

We compared PCStream with three existing schemes: Baseline, Man-

ualStream [20], and AutoStream [24]. Baseline indicates a legacy SSD that

53

does not support multiple streams. ManualStream represents a multi-streamed

SSD with manual stream allocation. AutoStream represents the LBA-baed

stream management technique proposed in [24].

We have carried out experiments with various benchmark programs

which represent distinct write characteristics. RocksDB [25] and Cassan-

dra [26] have append-only write patterns. SQLite [35] has in-place update

write patterns and GCC [36] has write-once patterns. For more realistic eval-

uations, we also used mixed workloads running two different benchmark

programs simultaneously.

In both RocksDB and Cassandra experiments, Yahoo! Cloud Serv-

ing Benchmark (YCSB) [44] with 12-million keys was used to generate

update-heavy workloads (workload type A) which consists of 50/50 reads

and writes. Since both RocksDB and Cassandra are based on the append-

only LSM-tree algorithm [31], they have three dominant I/O activities (such

as logging, flushing, and compaction). Cassandra is written in Java, so its PC

is extracted by the modified procedure described in Section 4.4. In SQLite

evaluations, TPC-C [45] was used with 20 warehouses. SQLite has two

dominant I/O activities such as logging and updating tables. In GCC ex-

periments, a Linux kernel was built 30 times. For each build, 1/3 of source

files, which were selected randomly, were modified and recompiled. Since

GCC creates many temporary files (e.g., .s, .d, and .rc) as well as long-

lived files (e.g., .o) from different compiler tools, there are more than 20

dominant PCs. To generate mixed workloads, we run RocksDB and GCC

scenarios together (denoted by Mixed 1), and run SQLite and GCC scenar-

ios at the same time (denoted by Mixed 2). In order to emulate an aged SSD

54

0.8

1

1.2

1.4

1.6

1.8

RocksDB Cassandra SQLite GCC Mixed 1

(R+G)

Mixed 2

(S+G)

Geo.

Mean

N
o

rm
al

iz
ed

 I
O

P
S

Baseline AutoStream PCStream ManualStream

Figure 13: A comparison of normalized IOPS.

in our experiments, 90% of the total SSD capacity was initially filled up

with user files before benchmarks run.

4.6.2 Performance Evaluation

We compared IOPS values of three existing techniques with PCStream.

Fig. 13 shows normalized IOPS for six benchmarks with four different tech-

niques. For all the measured IOPS values5, PCStream improved the average

IOPS by 45% and 28% over Baseline and AutoStream, respectively. PC-

Stream outperformed AutoStream by up to 56% for complex workloads

(i.e., GCC, Mixed1 and Mixed 2) where the number of extracted PCs far

exceeds the number of supported streams in PM963. The high efficiency of

PCStream under complex workloads comes from two novel features of PC-

Stream: (1) LBA-oblivious PC-centric data separation and (2) a large num-
5For RocksDB, Cassandra, and SQLite, the YCSB benchmark and TPC-C benchmark

compute IOPS values as a part of the benchmark report. For GCC, where an IOPS value
is not measured during run time, we computed the IOPS value as a ratio between the total
number of write requests (measured at the block device layer) and the total elapsed time of
running GCC.

55

ber of streams supported using internal streams. AutoStream, on the other

hands, works poorly except for SQLite where the LBA-based separation can

be effective. Even in SQLite, PCStream outperformed AutoStream by 10%.

4.6.3 WAF Comparison

Fig. 14 shows WAF values of four techniques for six benchmarks. Overall,

PCStream was as efficient as ManualStream; Across all the benchmarks,

PCStream showed similar WAF values as ManualStream. PCStream re-

duced the average WAF by 63% and 49% over Baseline and AutoStream,

respectively.

As expected, Baseline showed the worst performance among all the

techniques. Owing to the intrinsic limitation of LBA-based data separation,

AutoStream performs poorly except for SQLite. Since PCStream (and Man-

ualStream) did not depend upon LBAs for stream separations, they per-

formed well consistently, regardless of write access patterns. As a result,

PCStream reduced WAF by up to 69% over AutoStream.

One interesting observations in Fig. 14 is that PCStream achieved a

lower WAF value than even ManualStream for GCC, Mixed 1, and Mixed

2 where more than the maximum number of streams in PM963 are needed.

In ManualStream, DB applications and GCC were manually annotated at

offline, so that write system calls were statically bound to specific streams

during compile time. When multiple programs run together as in three com-

plex workloads (i.e., GCC, Mixed 1 and Mixed 2), static stream alloca-

tions are difficult to work efficiently because they cannot adjust to dynam-

ically changing execution environments. However, unlike ManualStream,

56

0

1

2

3

4

5

RocksDB Cassandra SQLite GCC Mixed 1

(R+G)

Mixed 2

(S+G)

Geo.

Mean

W
A

F
Baseline AutoStream PCStream ManualStream

Figure 14: A comparison of WAF under different schemes.

PCStream continuously adapts its stream allocations during run time, thus

quickly responding to varying execution environments.

4.6.4 Per-stream Lifetime Distribution Analysis

To better understand the benefit of PCStream on the WAF reduction, we

measured per-stream lifetime distributions for the Mixed 1 scenario. Fig. 15

shows a box plot of data lifetimes from the 25th to the 75th percentile.

As shown in Fig. 15, streams in both PCStream and ManualStream are

roughly categorized as two groups, G1 = {S1, S2, S3, S4, S5} and G2 =

{S6, S7, S8}, where G1 includes streams with short lifetimes and small

variances (i.e., S1, S2, S3, S4, and S5) and G2 includes streams with large

lifetimes and large variances (i.e., S6, S7, and S8). The S0 does not belong

to any groups as it is assigned to requests whose lifetimes are unknown.

Even though the variance in the S0 is wider than that in ManualStream, PC-

Stream showed similar per-stream distributions as ManualStream. In par-

57

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

AutoStream PCStream ManualStream

L
if

et
im

e
(#

 o
f

w
ri

te
s

1
0

6
)

40th percentile
50th percentile
60th percentile

25th percentile

75th percentile

Figure 15: A Comparison of per-stream lifetime distributions.

ticular, for the streams in G2, PCStream exhibited smaller variance than

ManualStream, which means that PCStream separates cold data from hot

data more efficiently. Since PCStream moves long-lived data of a stream to

its internal stream, the variance of streams with large lifetimes tend to be

smaller over ManualStream.

AutoStream was not able to achieve small per-stream variances as shown

in Fig. 15 over PCStream and ManualStream. As shown in Fig. 15, all

the streams have large variances in AutoStream because hot data are often

mixed with cold data in the same stream. Since the LBA-based data separa-

tion technique of AutoStream does not work well with both RocksDB and

GCC, all the streams include hot data as well as cold data, thus resulting in

large lifetime variances.

4.6.5 Impact of Internal Streams

In order to understand the impact of internal streams on different stream

management techniques, we compared the two versions of each technique,

one with internal streams and the other without internal streams. Since in-

ternal streams are used only for GC, they can be combined with any existing

58

0

1

2

3

4

5

w/o IS w/ IS w/o IS w/ IS w/o IS w/ IS w/o IS w/ IS

Baseline AutoStream PCStream ManualStream

W
A
F

RocksDB SQLite GCC Mixed 1 Mixed 2

Figure 16: The effect of internal streams on WAF.

stream management techniques. Fig. 16 shows WAF values for five bench-

marks with four techniques. Overall, internal streams worked efficiently

across the four techniques evaluated. When combined with internal streams,

Baseline, AutoStream, PCStream and ManualStream reduced the average

WAF by 25%, 22%, 17%, and 12%, respectively. Since the quality of ini-

tial stream allocations in Baseline and AutoStream was relatively poor, their

WAF improvement ratios with internal streams were higher over PCStream

and ManualStream. Although internal streams were effective in separating

short-lived data from long-lived data in both Baseline and AutoStream, the

improvement from internal streams in these techniques are not sufficient to

outperform PCStream and ManualStream. Poor initial stream allocations,

which keep putting both hot and cold data to the same stream, unfortunately,

offset a large portion of benefits from internal streams.

59

0

5

10

15

20

RocksDB Cassandra SQLite GCC

R
eq

u
es

t
P

o
rt

io
n

 (
%

)
No table 4-KB table 12-KB table 64-KB table

Figure 17: The effect of the PC attribute table.

4.6.6 Impact of the PC Attribute Table

As explained in Section 4.5.1, the PC attribute table is useful to maintain

a long-term history of applications’ I/O behavior by exploiting the unique-

ness of a PC signature across different applications. To evaluate the effect

of the PC attribute table on the efficiency of PCStream, we modified the

implementation of the PC attribute table so that the PC attribute table can

be selectively disabled on demands when a process terminates its execution.

For example, in the kernel compilation scenario with GCC, the PC attribute

table becomes empty after each kernel build is completed. That is, the next

kernel build will start with no existing PC to stream mappings.

Fig. 17 show how many requests are assigned to the default S0 stream

over varying sizes of the PC attribute table. Since S0 is used when no stream

is assigned for an incoming write request, the higher the ratio of requests as-

signed to S0, the less effective the PC attribute table. As shown in Fig. 17,

60

in RocksDB, Cassandra, and SQLite, the PC attribute table did not affect

much the ratio of writes on S0. This is because these programs run continu-

ously for a long time while performing the same dominant activities repeat-

edly. Therefore, although the PC attribute table is not maintained, they can

quickly reconstruct it. On the other hand, the PC attribute table was effective

for GCC, which frequently creates and terminates multiple processes (e.g.,

cc1). When no PC attribute table was used, about 16% of write requests

were assigned to S0. With the 4-KB PC attribute table, this ratio was re-

duced to 12%. With the 12-KB PC attribute table, only 9% of write requests

were assigned to S0. This reduction in the S0 allocation ratio reduced the

WAF value from 1.96 to 1.54.

61

Chapter 5

Deduplication Technique using
Program Contexts

5.1 Overview

As analyzed in Section 3.3, data duplicate patterns and I/O activities seems

to have relationship. Particularly, some writes are known a priori to be likely

to be unique. Applications might generate data that should not or cannot be

deduplicated. For example, some applications write random, compressed,

or encrypted data; others write complex formats (e.g., virtual disk images)

with internal metadata that tends to be unique.

Attempting to deduplicate unique writes wastes CPU time on hash

computation and I/O bandwidth on maintaining the hash index. Unique

hashes also increase the index size, requiring more RAM space and band-

width for look up, insertion, and garbage collection.

In summary, if program context can help to know when it is unwise

to deduplicate a write, we can optimize its performance and reliability. We

implemented a selective deduplication based on the program context.

Since deduplication uses computational resources and may increase la-

tency, it should only be performed when there is a potential benefit. The pro-

gram context hint instructs the device not to deduplicate a particular writes.

62

Figure 18: Diagram of selective deduplication.

It has two use cases: (1) unique data: there is no point in wasting resources

on deduplicating data that is unlikely to have duplicates, such as short-lived

data; (2) reliability: maintaining multiple copies of certain writes may be

necessary, e.g., super block replicas in many file systems.

Figure 18 shows a diagram of the proposed selective deduplication

technique. When a write request comes, it first query its PC value to the

PC table which holds duplicate rate per PCs. If the PC has high duplicate

ratio or a new one, we apply deduplication on the request. After fingerprint-

ing and searching, the result is updated to the PC table. If the PC has low

duplicate ratio or there is no written data for a new PC, we handle data as a

normal request.

5.2 Selective Deduplication using Program Con-
texts

5.2.1 PCDedup: Improving SSD Deduplication Efficiency
using Selective Hash Cache Management

To see what data has been written, the hash value of the data has to be kept

in a memory called dedup table. However, due to the limitation of device

internal memory size, some hash values can be retained. So if you fill a

63

Fingerprint count

0xA 1

0xB 0

0xC 0

0xD 0

(0xA)

Fingerprint count

0xA 1

0xB 0

0xC 0

0xD 0

(0xE)

(eviction)

Figure 19: Dedup table management in page-based deduplication.

table of limited size with data that will not be duplicated, the deduplication

rate will be lower.

In general, data redundancy is determined by the user, but certain PCs

are characterized by high or low probability of duplicate data. For exam-

ple, RocksDB log data can not overlap with other sst file data because the

data structure of the data structure is different, and PCs such as the cp com-

mand or gcc executable generation are more likely to generate redundant

data. Therefore, if dedup table is managed in consideration of this, efficient

deduplication can be achieved.

As shown in Fig. 19, the existing page-based dedup maintains the dedup

table in the unit of page. Only the contents of the page (e.g., 0xA in the fig-

ure) is compared if they are already written before. If there are duplicate

page in the device, the dedup technique just increase its count number and

update corresponding mapping table instead of writing them.

Existing frequency based dedup table management increases count when

any duplicate fingerprint is found. If all the tables are filled, the entry with

the lowest count value is evicted. In Fig. 19, The disadvantage of this ap-

proach is that if there is a significant number of data with a low deduplica-

64

(PC: 1, 0xA)

Fingerprint count PC

0xA 1 1

0xB 0 2

0xC 0 3

0xD 0 1

PC PC_DR

1 1

2 0

3 0

(PC: 4, 0xE)

Fingerprint count PC

0xA 1 1

0xB 0 2

0xC 0 3

0xD 0 1

(eviction)

Figure 20: Dedup table management in PC-based deduplication.

tion rate, then a relatively high number of redundant data can be exported.

In this study, by managing the PC information and the number of duplicate

data occurrences in the dedup table, it is possible to increase the possibility

of finding duplicate data by leaving the data of the PC with high possibility

of duplicate data in the table.

Fig. 20 shows the difference between the existing page-based dedupli-

cation technique and the PC-based deduplication technique. When a new

fingerprint occurs, PC deduplication has a policy of preferentially evicting

entries that are likely to not duplicate data by selecting the PC with the low-

est count as the victim and exporting the entry of that PC.

We propose a PC-based selective deduplication technique to prevent

PCs with badly duplicated data from occupying the space of the dedup table.

In the previous example, PCs that do not have any more entries in the table,

such as PC 3, are not likely to create duplicate data in the future, so add the

PC to the blacklist to avoid future deduplication.

The dedup table can be degraded due to unnecessary data. For a PC

with a pattern that does not generate redundant data, it does not achieve

a significant data reduction even if it takes up space in the dedup table.

Rather, they occupy limited memory space and take the opportunity to keep

65

Dedup Table

with PC

PC Blacklist

(PC)

Hash Func.

(PC, fingerprint)

PC-based Eviction

Skipped for unique PCs

Figure 21: The selective deduplication based on PCs.

redundant data in the table. Therefore, in order to efficiently use the table

space, PCDedup determines the degree of data redundancy according to the

PC for a certain period of time. PCs that do not have data in the dedup table

are added to the PC Blacklist. PCs included in blacklist do not waste dedup

table space because they do not perform dedup operation. Fig. 21 shows the

overall procedure of PCDedup which selectively conduct the deduplication

technique.

We implemented it in the emulator described in the previous exam-

ple and experimented through various workloads. The baseline is a state in

which deduplication is not applied. Sampling is a technique for determin-

ing whether to pre-liminarily check any data and deduplcating the remaining

data, dedup is a method for deduplication of all data, and PC Dedup is a PC-

based selective deduplication technique. As shown in the figure, the effects

of PC Dedup on development and PC usage are well known. Development

66

Figure 22: The comparison of the amount of removed data for PC Dedup.

is a workload where several users perform kernel compile and source code

copy. PC usage performs various document modification and internet use

operations. At this time, there are many PCs that produce redundant data

and a lot of writing. PCs that can not be clearly distinguished, the PC-based

selective technique was effective. On the other hand, in RocksDB, it was

hard to see a significant effect because only the case where the same key-

value pair is written down to the lower level is through the compaction. The

maximum number of expected deduplications in one entry of the dedup table

does not exceed the height of the LSM-tree (usually set to 5 to 6). Therefore,

to increase the number of possible deduplications, we conducted to remove

redundant data in the log file.

RocksDB’s log data contains key / value values so we can theoretically

expect data redundancy in an SST file. However, the implementation can

not recognize the same data because the data layout of the log file differs

from that of the SST file. So we modified RocksDB to make the format of

67

Figure 23: The comparison of the amount of removed data for Mod.Log.

handling key / value in log file the same as SST file. (Mod.Log in the graph

below)

Log data can also be deduplicated, reducing log to flush to L1 com-

paction total 3 writes by one, thus reducing the total write amount by 28%.

However, the width to be removed is not so large. As a result of the analy-

sis, we found that the management method of the dedup table based on the

frequency creates the inefficiency.

5.2.2 2-level LRU Eviction Policy

Due to the nature of the LSM-tree workload in which one key / value is

repeatedly written many times (unless it is updated), entries that occupy the

table in the early stages are rapidly increased in frequency. Since the existing

eviction policy only outputs entries with low frequency, entries with increas-

ing frequency will continue to occupy the table. However, the maximum

number of deduplications that can be expected for this entry is 5 to 6 times,

68

Hot List

Cold List

(for Duplicated entry)

(for New entry)

Figure 24: The 2-level LRU algorithm.

and the lower the level, the less likely it is to participate in compaction. Even

if the key is updated, duplicate data can no longer be removed. That is, key

/ value already deduplicated has a low expected removal amount, so if you

evict them, you can deduplicate a new key / value with a high probability.

Therefore, we used 2-level LRU technique which can eviction by consider-

ing both frequency and recency.

Fig. 24 shows the 2-level LRU algorithm with each purpose. The data

of unique PCs are allocated to the 1st level LRU queue. If duplicate data oc-

curs before they are evicted from the table, the data is moved to the 2nd LRU

queue. Unlike the existing technique where duplicate data is not evicted

from the table, the 2 level LRU reflects the characteristics of the workload

where additional duplication opportunities are limited by giving duplicate

data the chance to be kicked out. Since it is important to find additional

deduplication opportunities while data is still in the table, instead of simply

moving duplicate data to the head of the queue, we move duplicate data to

the second level to give an opportunity to remain in the table longer.

Mod.Log 2L shows the result of applying 2-level LRU. Both PC Dedup

and Mod.Log have increased the utilization of the table, thus reducing the

amount of writing. The reason why Mod.Log 2L does not write more is be-

69

Figure 25: The comparison of the amount of removed data 2-level LRU.

cause the limited memory size did not remove the data going down to the

lower level through compaction.

5.3 Exploiting Small Chunk Size

5.3.1 Fine-Grained Deduplication

The write-requested page is identified whether the contents of the page have

already been written and is written to flash memory only if there is no ex-

isting duplicate page. When a write-requested page is the exact duplicate of

a previously written page, the requested page is not written to flash mem-

ory; only the corresponding entry for a mapping table (between the logical

address and physical address) is updated. On the other hand, if there is no

existing page duplicate in flash memory whose contents are the same as

those of requested one, the requested page has to be written to flash mem-

ory. However, even for these unique pages, if their redundancy is checked

70

Figure 26: The percentage of pages according to their partial duplicate pat-
terns.

at a sub-page level, say at a quarter of the page size, many sub-pages of

these unique pages can be identified as redundant data. In existing tech-

niques based on page-level deduplication, therefore, many duplicate data

are written to flash memory even though the same data chunks have already

been written.

In order to better understand the effect of fine-grained deduplication on

the amount of identified duplicate data, we analyzed how many more chunks

can be identified as redundant when the chunk size gets smaller than a single

page. For our evaluation, we used four I/O traces, RocksDB, GCC+cp, PC

usage, and Package Tool which are explained in Section 5.3.4. In our

evaluation, the page size was 4 KB and the chunk size was set to 1 KB.

Fig. 26 shows the percentage of the page writes from host, classified by

their partial duplicate patterns. We denote that a page is a n/4-duplicate page

when n chunks of the page are duplicate chunks. A 4/4-duplicate page is a

duplicate page at the page level. In the existing page-based deduplication,

only 4/4-duplicate pages can be identified as a duplicate page. As shown in

71

 0

 0.2

 0.4

 0.6

 0.8

 1

256B 512B 1KB 2KB 4KB 8KB ReqN
o

rm
a
liz

e
d

 A
m

o
u
n
t

o
f
W

ri
tt

e
n

 D
a
ta

Chunk Size

Figure 27: The amount of written data under varying chunk sizes in PC
workload.

Fig. 26, 4/4-duplicate pages account for only 8% - 28% of total requested

pages. For partially duplicate pages, i.e., 1/4-, 2/4- and 3/4-duplicate pages,

the page-based deduplication technique is useless. As shown in Fig. 26,

pages with 1-3 duplicate chunks account for 14% - 34%. This means that

many duplicate data are unnecessarily written to flash memory due to the

large chunk size.

We also investigated the amount of data that can be eliminated by data

deduplication while varying the chunk size from 256 B to 8 KB. As shown

in Fig. 27, when the chunk size is 1 KB, the amount of data written to flash

memory is reduced by 33% over when the chunk size is 4 KB. In partic-

ular, when the size of a chunk is 8 KB (i.e., when the physical page size

is assumed to be 8 KB), only 10% of requested data are eliminated by data

deduplication. This effectively shows that, as the size of a page increases, the

overall deduplication ratio, i.e., the percentage of identified duplicate writes,

decreases significantly. Since the physical page size of NAND flash memory

is expected to increase as the semiconductor process is scaled down [49, 50],

72

it is expected that the deduplication ratio of the existing deduplication tech-

nique will be significantly decreased in near future. In order to resolve this

problem, the deduplication chunk size of deduplication techniques needs to

be smaller than a page size. As depicted in Fig. 27, the deduplication ratio

is saturated when the chunk size is 1 KB. Thus, we use it as a default chunk

size in the rest of this dissertation.

In order to effectively incorporate fine-grained deduplication into flash-

based SSDs, two key technical issues must be addressed properly. First,

fine-grained deduplication requires a larger memory space than a coarse-

grained one because it needs to keep more metadata in memory to find

small-size duplicate data. Second, in fine-grained deduplication, unique data

segments from partially duplicated pages can be scattered across several

physical pages, which may seriously degrade the overall read performance.

The proposed FineDedup technique is designed to take full advantage of

fine-grained deduplication with small memory overhead as well as a low

read performance penalty.

In this section, we describe our proposed FineDedup technique in de-

tail. We first explain the overall architecture of FineDedup and describe

how FineDedup handles read and write requests. Then we introduce a read

performance penalty and memory overheads caused by FineDedup, respec-

tively, and explain how these problems can be resolved in FineDedup.

Fig. 28 shows an overall architecture of FineDedup with its main com-

ponents. Upon the arrival of a write request, FineDedup stores requested

data temporarily in an on-device buffer, which is managed by an LRU al-

gorithm. When the requested data are evicted from the buffer, FineDedup

73

divides the data into several chunks. (Note that the chunk size is 1 KB in

this work, but a different size of chunks can be used as well in FineDedup.)

For each chunk, FineDedup computes a fingerprint, using a collision-

resistant hash function. In this work, we use an MD6 hash function [52],

which is one of the well-known cryptographic hash functions. A fingerprint

is used as a unique ID that represents the contents of a chunk. FineDedup

has to compute more fingerprints than the existing deduplication schemes

because of its small chunk size. To reduce the hash calculation time, FineD-

edup uses multiple hardware-assisted hash engines for parallel hash calcu-

lations. In our FPGA (ML605) implementation of the MD6 hash function,

it took about 10 µs to compute a fingerprint using a hardware accelerator.

Considering a long write latency (e.g., 1.2 ms) of NAND flash memory, the

time overhead of computing fingerprints can be considered negligible.

After fingerprinting, each fingerprint is looked up in the dedup table

which maintains the fingerprints of the unique chunks previously written to

flash memory. Each entry of the dedup table is composed of a key-value

pair, {fingerprint, location}, where the location indicates a physical address

in which the unique chunk is stored. If the same fingerprint is found, it is

not necessary to write the chunk data because the same chunk is already

stored in flash memory. Instead, FineDedup updates the mapping table so

that the corresponding mapping entry points to the unique chunk previously

written. Unlike existing page-based deduplication techniques, FineDedup

handles all the data in the unit of a chunk. For this reason, FineDedup must

maintain a chunk-level mapping table that maps a logical chunk address to

a physical chunk in flash memory. Because of its finer mapping granularity,

74

Figure 28: An overview of the proposed FineDedup technique.

the chunk-level mapping table is much larger than the existing page-level

mapping table. To reduce the memory space for maintaining the chunk-

level mapping table, FineDedup uses a hybrid mapping strategy, which is

described in Section 5.3.3 in detail.

If there is no matched fingerprint in the dedup table, FineDedup stores

the chunk data in a chunk buffer temporarily. This temporary buffering is

necessary because the unit of I/O operations of flash memory is a single

page. The chunk buffer stores the incoming chunk data until there are four

chunks, and evicts them to flash memory at once. FineDedup then updates

the mapping table so that the corresponding mapping entries indicate newly

written chunks. The new fingerprints of the evicted chunks are finally in-

serted into the dedup table with their physical location.

When a read request arrives, FineDedup reads all the chunks that be-

long to the requested page from flash memory, and then transfers the read

data to the host system. The physical addresses of the chunks can be ob-

tained by consulting to the mapping table. In FineDedup, four chunks in the

same logical page can be scattered across different physical pages. In that

case, multiple read operations are required to form the original page data,

75

which in turn significantly increases the overall read response time. We ex-

plain how FineDedup resolves this problem in the following subsection.

5.3.2 Read Overhead Management

FineDedup effectively reduces the number of pages written to flash memory

by using a small-size chunk for deduplication, but it incurs two types of ad-

ditional overheads, i.e., a read performance overhead and a memory space

overhead, which are not observed in the existing deduplication techniques.

In this subsection, we first introduce why the read performance overhead

occurs in FineDedup, and then explain how FineDedup resolves this prob-

lem. In the following subsection, we describe our memory space overhead

reduction technique in detail.

The main cause of the read performance degradation is data fragmenta-

tion which occurs when data chunks belonging to the same logical page are

broken up into several physical pages. Fig. 29 illustrates why data fragmen-

tation occurs in FineDedup. There are two page write requests, Req 1 and

Req 2, in Fig. 29. Req 1 consists of four chunks, ‘A’, ‘B’, ‘C’, and ‘D’, and

Req 2 is also composed of four chunks, ‘E’, ‘F’, ‘G’, and ‘H’. Since ‘A’ and

‘B’ of Req 1 are duplicate chunks, only ‘C’ and ‘D’ need to be written to

flash memory. Suppose that there is a read request for the page data written

by Req 1. In that case, FineDedup has to read three pages, i.e., page 1, page

2, and page 3, from flash memory to form the requested data. The read per-

formance penalty can also occur even when there are no duplicate chunks in

the requested page. For example, in Fig. 29, Req 2 has no duplicate chunks

in flash memory, thus all the chunks belonging to Req 2 being written to

76

Figure 29: Data fragmentation caused by FineDedup.

flash memory. Because a single page write requires four data chunks, ‘E’

and ‘F’ of Req 2 are written to page 3 together with ‘C’ and ‘D’, and ‘G’

and ‘H’ will be written to page 4 with other data chunks, as shown in Fig. 29.

Thus, when the data written by Req 2 are read later, both page 3 and page 4

must be read from flash memory.

One of the feasible approaches that mitigate the read performance over-

head is to employ a chunk read buffer. In our observation, the access fre-

quencies of unique chunks are greatly skewed; that is, a small number of

popular chunks account for a large fraction of the total accesses to unique

chunks in flash memory. For example, according to our analysis under real-

world workloads, top 10% of the unique chunks serve more than 70% of the

total data read by a host system. By keeping frequently accessed chunks in a

chunk read buffer, therefore, FineDedup can reduce a large number of page

read operations sent to flash memory.

On the other hands, we have observed that about 39% of read requests

to unique pages actually requires two page read operations. In order to fur-

ther reduce this read performance penalty, FineDedup uses a chunk packing

scheme. The key idea of this scheme is to group chunks belonging to the

77

Figure 30: A packing scheme in the chunk buffer.

same logical page in a chunk buffer and then write them to the same phys-

ical page together. Fig. 30 shows an example of our chunk packing scheme

when three page write requests, Req 1, Req 2, and Req 3, are consecutively

issued from a host system. Req 1 contains two duplicate chunks ‘A’ and ‘B’

and two unique chunks ‘C’ and ‘D’. As expected, only ‘C’ and ‘D’ out of

four chunks are sent to the chunk buffer. The next request Req 2 does not

have any duplicate chunks, so all of them are moved to the chunk buffer. As

depicted in Fig. 30, the chunks ‘E’, ‘F’, ‘G’, and ‘H’ belong to the same log-

ical page and form single page data. Thus, FineDedup writes them to flash

memory together, leaving the chunks ‘C’ and ‘D’ in the chunk buffer. When

Req 3 is issued with two more unique chunks ‘I’ and ‘J’, ‘C’ and ‘D’ along

with ‘I’ and ‘J’ are written to flash memory. All those chunks can be written

to the same physical page together because every chunk of each request is

not broken up into two pages.

Note that the main objective of this scheme is to prevent chunks of a

unique request to be scattered across multiple pages avoiding unnecessary

data fragmentation. In order to directly insert a incoming unique request to

78

chunk buffer, page-sized free space is managed to be always available in

the buffer. When there is no free space for the next request and no suitable

chunks of requests to form a single page, the chunks of a partially dupli-

cate request is broken up into two pages. Most partially duplicated requests,

however, are 3/4-Duplicate pages as shown in Fig. 26, which means there

are many requests of one unique chunk in the chunk buffer. Therefore, we

can expect that most requests will be written to the same page even when the

size of the chunk buffer is not large since it is not quite difficult to find an

appropriate chunk to fit a flash page. In the above example, if we assume the

chunk buffer can contain 8 chunks and Req 3 has three unique chunks, only

two chunks of Req 3 will be written along with existing chunks, ‘C’ and

‘D’, leaving the other chunk in chunk buffer. A large chunk buffer provides

more chance to avoid the request scattering.

Remaining data in the chunk buffer could be lost when a power fail-

ure occurs. Recent enterprise SSDs, such as SM825 model manufactured

by Samsung, have a large SDRAM cache (e.g., 256 - 512 MB) and use it

as a device buffer. Moreover, they support internal cache power protection

through the use of capacitors to flush out information in DRAM to flash

memory at the event of power failure [53]. In order to keep the reliability

in FineDedup, the remaining data in the chunk buffer can be stored to flash

memory during power protection procedure as well as the mapping infor-

mation of the written page. In conclusion for chunk buffer design, there is

a trade-off between potential read performance and reliability depending on

the chunk buffer size. The size of the chunk buffer, hence, should be deter-

mined according to the characteristics of workloads.

79

5.3.3 Memory Overhead Management

FineDedup handles requested data in the unit of a chunk. Therefore, FineD-

edup must maintain a chunk-level mapping table that maps a logical chunk

address to a physical chunk address in flash memory. Since the size of a

chunk is smaller than that of a page, a chunk-level mapping table is much

larger than the page-level mapping table. For example, suppose that the page

size is 4 KB and the chunk size is 1 KB. In that case, the size of a chunk-

level mapping table is four times larger than that of a page-level mapping

table.

In order to reduce the amount of memory space required for a mapping

table, FineDedup employs a hybrid mapping table which is composed of

two types of mapping tables: a page-level mapping table and a chunk-level

mapping table. As depicted in Fig. 26, duplicate pages and unique pages still

account for a considerable proportion of the total written pages. For these

pages, the page-level mapping table is more appropriate because they can be

directly mapped to corresponding pages in flash memory. The chunk-level

mapping table is required only for partially duplicate pages.

Fig. 31 shows the overall architecture of the hybrid mapping table used

in FineDedup. The primary mapping table (PMT) is maintained in the page

level while the secondary mapping table (SMT) is maintained in the chunk

level. The entry of the PMT is either a physical page address (PPA in Fig. 31)

in flash memory or an index of the SMT (chunk address (CA) in Fig. 31).

If the chunk-level mapping is not necessary for a requested page, for

example, unique page or duplicate page, the corresponding entry of the PMT

80

Figure 31: An overview of the demand-based hybrid mapping table.

directly points to the physical address of the newly written page or existing

unique page in flash memory, respectively. On the other hand, if a partially

duplicate page is requested for writing, FineDedup allocates a new entry in

the SMT. As depicted in Fig. 31, each entry of SMT is composed of four

fields, each of which points to the physical chunk address in flash memory.

FineDedup then updates the new entry so that each field points to the physi-

cal chunk address. The corresponding entry of the PMT indicates the newly

allocated entry of the SMT.

Using the hybrid mapping table, FineDedup can reduce the amount of

memory space for keeping a mapping table. However, the problem of this

hybrid mapping approach is that the size of a mapping table can greatly

vary according to the characteristics of workloads. For example, if some

workloads have many partially duplicate pages, the size of the SMT gets

too big. On the other hand, if workloads mostly have unique pages or du-

plicate pages, the it can be very small. Thus, the hybrid mapping table can-

not be directly adopted in real SSD devices whose DRAM size is usually

81

fixed. To overcome such a limitation, FineDedup adopts a demand-based

mapping strategy in which the entire chunk-level mapping table is stored

in flash memory while caching only a fixed number of popular entries in

DRAM memory. The Cached PMT and Cached SMT in Fig. 31 represents

the cached versions of the PMT and SMT, respectively.

It has been known that the demand-based mapping requires extra page

read and write operations [60]. For instance, if a mapping entry for a chunk

to be read is not found in the in-memory mapping table, that entry must

be read from flash memory while evicting a victim entry to flash memory.

The temporal locality present in workload, however, helps keep the number

of extra operations small. The mapping information of requests issued in

similar times will be stored in the same flash page. Once a mapping page is

loaded in memory, hence, most requests issued in similar times are serviced

from the mappings in memory.

5.3.4 Experimental Results

In order to evaluate the effectiveness of FineDedup, we performed our ex-

periments using a trace-driven simulator with the I/O traces collected under

various applications. The trace-driven simulator modeled the basic opera-

tions of NAND flash memory, such as page read, page write and block erase

operations, and included several flash firmware algorithms, such as garbage

collection and wear-leveling. The proposed FineDedup technique and the

existing deduplication techniques were also implemented in our simulator.

For trace collection, we modified the Linux kernel 2.6.32 and collected

I/O traces at the level of a block device driver. All the I/O traces include

82

Trace Description
Amount of Amount of

Writes Reads

RocksDB
Benchmarking on the

3.1 GB 810 MB
Key-value store

GCC+cp
Developing

2.6 GB 66 MB
Kernel modules

PC usage
Web surfing, emailing and

2.5 GB 70 MB
editing document, etc.

Package Tool
Installing & upgrading

4.9 GB 119 MB
software packages

Table 2: A summary of traces used for experimental evaluations.

Figure 32: The amount of written data under various schemes.

detailed information about the I/O commands sent to a storage device (e.g.,

the type of requests, logical block addresses (LBA), the size of requests,

etc.) as well as the contents of the data sent to or read from a storage device.

We recorded I/O traces while running various real-world applications. The

detailed descriptions of these I/O traces are summarized in Table 2.

83

Effectiveness of FineDedup

Fig. 32 shows the amount of data written to flash memory by FineDedup

over the existing scheme. The results shown in Fig. 32 are normalized to

RAW req, which represents the total amount of data written to flash memory

without data deduplication. We assume the page-based deduplication tech-

nique as a baseline case. The baseline is denoted by BL 4KB for a 4 KB

flash page and BL 8KB for a 8 KB flash page. Our FineDedup technique is

denoted by FD 4KB and FD 8KB for a 4 KB flash page and a 8 KB flash

page, respectively. The chunk size in FineDedup is set to 1 KB for a 4 KB

flash page and 2 KB for a 8 KB flash page.

As we can see in Fig. 32, the effectiveness of deduplication techniques

is highly workload-dependent. The amount of data eliminated by the dedu-

plication technique notably increases when FineDedup is applied in most

of the traces except M-media. When we set the chunk size to one fourth

of the flash page size, FineDedup removes on average 16% more duplicate

data over BL 4KB for a 4 KB flash page. For a 8 KB flash page, it removes

more duplicate data, on average by 23% over the existing technique. For

RocksDB, FineDedup saves 37% flash writes over BL 8K. As expected,

the benefit of FineDedup mainly derives from the decreased chunk size be-

cause it increases the probability of finding and eliminating duplicate data.

Especially, RocksDB trace shows a large number of write requests with lit-

tle different data during compaction, so FineDedup can effectively identify

unchanged data as duplicate while existing deduplication technique regards

as unique data.

84

Figure 33: The number of page read operations.

Read Overhead Evaluation

As explained in Section 5.3.2, fine-grained chunking in FineDedup increases

the number of page read operations. Fig. 33 shows the normalized number

of page read operations compared with the number of read requests in the

workloads. RAW Req indicates the number of original page read requests

and BL refers to the number of page read operations of the baseline FineD-

edup without employing proposed optimization schemes. BL+PS, BL+RB

and BL+PS+RB indicate the number of page reads of FineDedup with the

proposed packing scheme, the chunk read buffer, and both, respectively. The

size of the chunk read buffer was set to 8 MB and the chunk buffer size was

set to 200 KB.

As shown in Fig. 33, employing the chunk read buffer is more effec-

tive than the packing scheme for reducing additional page read operations

in most workloads. This is because the packing scheme is only effective for

the requests containing no duplicate chunks whereas the chunk read buffer

85

can absorb most of the read requests to frequently accessed chunks. FineD-

edup with both the packing scheme and chunk read buffer incurs on average

less than 5% of additional read operations over the existing deduplication

technique.

Memory Overhead Evaluation

As explained in Section 5.3.3, chunk level mapping table requires large

memory space to handle partially duplicate pages. In FineDedup, we have

proposed the demand-based hybrid mapping table to reduce the required

memory size for a mapping table without performance degradations. In

Fig. 34, the effectiveness of the proposed mapping table is evaluated in

terms of the hit ratio and the amount of additional written data with vari-

ous memory sizes for the cache. Since the PMT of the hybrid mapping table

in FineDeup is the same approach as the DFTL [60], which is a well-known

demand-based scheme to exploit the page-level mapping, the overhead of

PMT can be estimated from the overhead of DFTL. Thus, in order to fo-

cus on the overhead of the SMT, we assume that DFTL is employed as the

baseline mapping scheme in our evaluation.

Fig. 34(a) shows the hit ratio of the cached SMT. With a 120 KB

cache, more than 95% of the mapping table accesses are absorbed. In addi-

tion, Fig. 34(b) shows extra written data caused by the evicted page entries

from the SMT cache. Since mapping table accesses occur in the middle of

read/write operations, it is important to reduce the amount of written data

from evicted page entries in terms of read/write performance. Similar to the

hit ratio, the overhead by the eviction becomes almost negligible when the

86

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

4KB 12KB 20KB 40KB 80KB 120KB

S
M

T
 C

a
c
h
e
 H

it
 R

a
ti
o

SMT Cache Size

RocksDB
GCC+cp

PC usage
Package Tool

(a) Hit ratio of SMT cache

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

4KB 12KB 20KB 40KB 80KB 120KB

N
o
rm

a
liz

e
d
 E

x
tr

a
 W

ri
tt
e
n
 D

a
ta

 d
u
e
 t
o
 S

M
T

 C
a
c
h
e
 E

v
ic

ti
o
n

SMT Cache Size

RocksDB
GCC+cp

PC usage
Package Tool

(b) Extra data written due to SMT cache
evictions

Figure 34: The effectiveness of the demand-based hybrid mapping table in
FineDedup with various cache sizes.

cache size is set to 120 KB under most workloads. As a result, FineDedup

does not incur a significant memory overhead even when the fine-grained

chunking method is not effective.

87

Chapter 6

Conclusions

6.1 Summary and Conclusions

The cost-per-bit of NAND flash-based solid-state drives (i.e., SSDs) has

been steadily improved by uninterrupted semiconductor process scaling and

multi-leveling, so that they are how widely used in not only mobile em-

bedded systems but also personal computing systems. However, the limited

lifetime of NAND flash memory, as a side effect of recent advanced de-

vice technologies, is emerging as one of the main concerns for recent high-

performance SSDs, particularly for data center applications.

In this dissertation, we have presented a new stream management tech-

nique, PCStream, for multi-streamed SSDs. Unlike existing techniques, PC-

Stream fully automates the process of mapping data to a stream based on

PCs. Based on observations that most PCs are effective to distinguish life-

time characteristics of written data, PCStream allocates each PC to a dif-

ferent stream. When a PC has a large variance in their lifetimes, PCStream

refines its stream allocation during GC and moves the long-lived data of

the current stream to the corresponding internal stream. Our experimental

results show that PCStream can improve the IOPS by up to 56% over the

existing automatic technique while reducing WAF by up to 69%.

Next, we propose a selective deduplication technique based on the

88

program context, called PCDedup. By selectively adapt the deduplication,

PCDedup can improve the space efficiency of the dedup table as well as

the deduplication ratio. PCDedup achieves 23% higher deduplication ratio

on average over the baseline technique. Moreover, by reflecting the char-

acteristics of the workload where additional duplication opportunities are

limited, 2-level LRU technique also increases up to 38% deduplication ra-

tio over the baseline. Finally, by using a fine-grained deduplication unit, the

proposed FineDedup technique increases the amount of data eliminated by

data deduplication by up to 37% over the existing page-based deduplication

technique.

Since the proposed performance and lifetime improvement techniques

only require a small resource overhead and a low time overhead, they can be

easily implemented in the existing NAND flash-based storage systems with

minimal changes in flash software modules.

6.2 Future Work

6.2.1 Supporting applications that have unusal program
contexts

The current version of PCStream can be extended. PCStream does not sup-

port applications that rely on a write buffer (e.g., MySQL). Similarly, we can

make PCStream to support thread pools. In a thread pool, I/O is performed

by worker threads. so it obviously won’t work unless we somehow capture

PC when an I/O is queued to the thread pool.

To address this, we plan to extend PCStream interfaces so that devel-

89

opers can easily incorporate PCStream into their write buffering modules

with minimal efforts. The key insight on this extension is that we should

collect PC signatures at the front-end interface of an intermediate layer that

accepts write requests from other parts of the program.

6.2.2 Optimizing read request based on the I/O con-
text

Although PCStream focues on only writes, program contexts are originally

used to predict accesses to the cache at the operating system layer. For ex-

ample, PCs have been used to accurately predict the instruction behavior in

the processor’s pipeline which allows the hardware to apply power reduc-

tion techniques at the right time to minimize the impact on performance [9]

. In Last Touch Predictor [10], PCs are used to predict which data will not be

used by the processor again and free up the cache for storing or prefetching

more relevant data. In PC-based prefetch predictors [11] , a set of memory

addresses or patterns are linked to a particular PC and the next set of data is

prefetched when that PC is encountered again.

Based on the good performance on cache management, we can opti-

mize read request using the program context. For example, when there are

some read pattern for a PC (sequential read or repetitive read), we can copy

the target page to other chip or channel to maximize read bandwidth for the

future read. Moreover, when there is a program context that read specific

address many times, we can handle read disturbance problem in advance.

90

6.2.3 Exploiting context information to improve fin-
gerprint lookups

One of the most time-consuming operations in a deduplication system is

hash lookup, because it often requires extra I/O operations. Worse, hashes

are randomly distributed by their very nature. Hence, looking up a hash

often requires random I/O, which is the slowest operation in most storage

systems. Also, as previous studies have shown [61], it is impractical to keep

all the hashes in memory because the hash index is far too large.

When a deduplication system knows what data is about to be written,

it can prefetch the corresponding hashes from the index, accelerating future

data writes by reducing lookup delays. For example, a copying process first

reads source data and then writes it back. If a deduplication system can

identify that behavior at read time, it can prefetch the corresponding hash

entries from the index to speed up the write path. Another interesting use

case for this context is segment cleaning in log-structured file systems (e.g.,

Nilfs2) that migrate data between segments during garbage collection.

The I/O context is used to inform the deduplication system of I/O oper-

ations that are likely to generate further duplicates (e.g., during a file copy)

so that their hashes can be prefetched and cached to minimize random ac-

cesses. This hint can be set on the read path for applications that expect to

access the same data again.

91

Bibliography

[1] T. Chung, D. Park, S. Park, D. Lee, S. Lee and H. Song, “A Survey of

Flash Translation Layer,” Journal of Systems Architecture, vol. 55, no.

5, pp. 332-343, 2009.

[2] A. Chien and V. Karamcheti, “Moore’s Law: The First Ending and a

New Beginning,” IEEE Computer Magazine, vol. 46, no. 12, pp. 48-

53, 2013.

[3] J. Hsieh, T. Kuo, and L. Chang, “Efficient Identification of Hot Data

for Flash Memory Storage Systems,” ACM Transactions on Storage,

vol. 2, no. 1, pp. 22-40, 2006.

[4] J. Jeong, S. Hahn, S. Lee, and J. Kim, “Lifetime Improvement of

NAND Flash-based Storage Systems Using Dynamic Program and

Erase Scaling,” In Proceedings of the 16th USENIX Conference on

File and Storage Technologies (FAST), 2014.

[5] Deepstorage.net, “Storage Efficiency Imperative: An In-Depth

Review of Storage Efficiency Technologies and the Solidfire Ap-

proach,” http://www.deepstorage.net/NEW/reports/

SolidFireStorageEfficiency.pdf, 2012.

[6] D. Park, and D. Du, “Hot Data Identification for Flash-Based Storage

Systems Using Multiple Bloom Filters,” In Proceedings of the IEEE

Symposium on Mass Storage Systems and Technologies (MSST), 2011.

92

[7] R. Stoica, J. Levandoski, and P. Larson, “Identifying Hot and Cold

Data in Main-Memory Databases,” In Proceedings of the IEEE Inter-

national Conference on Data Engineering (ICDE), 2013.

[8] Y. Luo, Y. Cai, S. Ghose, J. Choi, and O. Mutlu, “Warm: Improving

Nand Flash Memory Lifetime with Write-Hotness Aware Retention

Management,” In Proceedings of the IEEE Symposium on Mass Stor-

age Systems and Technologies (MSST), 2015.

[9] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using Dynamic Cache

Management Techniques to Reduce Energy in a High-Performance

Processor,” In Proceedings of the ACM International Symposium on

Low Power Electronics and Design (ISLPED), 1999.

[10] A. Lai, and B.Falsafi, “Selective, Accurate, and Timely Selfinvalida-

tion Using Last-Touch Prediction,” In Proceedings of the International

Symposium on Computer Architecture (ISCA), 2000.

[11] T. Sherwood, S. Sair, and B. Calder, “Predictor-Directed Stream

Buffers,” In Proceedings of the International Symposium on Computer

Architecture (ISCA), 2000.

[12] M. Chiang, P. Lee, R. and Chang, “Using Data Clustering to Improve

Cleaning Performance for Flash Memory,” Software-Practice & Expe-

rience, vol. 29, no. 3, pp. 267-290, 1999.

[13] X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write Ampli-

fication Analysis in Flash-Based Solid State Drives,” In Proceedings

93

of the ACM International Systems and Storage Conference (SYSTOR),

2009

[14] W. Bux, and I. Iliadis, “Performance of Greedy Garbage Collection in

Flash-Based Solid-State Drives,” Performance Evaluation, vol. 67, no.

11, pp. 1172-1186, 2010.

[15] C. Tsao, Y. Chang, and M. Yang, “Performance Enhancement of

Garbage Collection for Flash Storage Devices: An Efficient Victim

Block Selection Design”, In Proceedings of the Annual Design Au-

tomation Conference (DAC), 2013.

[16] S. Yan, H. Li, M. Hao, M. Tong, S. Sundararaman, A. Chien, and H.

Gunawi, “Tiny-tail Flash: Near-perfect Elimination of Garbage Col-

lection Tail Latencies in NAND SSDs”, In Proceedings of the USENIX

Conference on File and Storage Technologies (FAST), 2017.

[17] S. Hahn, S. Lee, and J. Kim, “To Collect or Not to Collect: Just-in-

Time Garbage Collection for High-Performance SSDs with Long Life-

times”, In Proceedings of the Design Automation Conference (DAC),

2015.

[18] J. Cui, Y. Zhang, J. Huang, W. Wu, and J. Yang, “ShadowGC: Cooper-

ative Garbage Collection with Multi-Level Buffer for Performance Im-

provement in NAND flash-based SSDs”, In Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition (DATE),

2018.

94

[19] “SCSI Block Commnads-4 (SBC-4)”, http://www.t10.org/

cgi-bin/ac.pl?t=f&f=sbc4r15.pdf.

[20] J. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multi-streamed Solid-

State Drive”, In Proceedings of the Workshop on Hot Topics in Storage

and File Systems (HotStorage), 2014.

[21] F. Yang, D. Dou, S. Chen, M. Hou, J. Kang, and S. Cho, “Optimizing

NoSQL DB on Flash: A Case Study of RocksDB”, In Proceedings of

IEEE the International Conference on Scalable Computing and Com-

munications (ScalCom), 2015.

[22] H. Yong, K. Jeong, J. Lee, J. Kim, “vStream: Virtual Stream Manage-

ment for Multi-streamed SSDs”, In Proceedings of the USENIX Work-

shop on Hot Topics in Storage and File Systems (HotStorage), 2018.

[23] E. Rho, K. Joshi, S. Shin, N. Shetty, J. Hwang, S. Cho. and D. Lee,

“FStream: Managing Flash Streams in the File System”, In Proceed-

ings of the USENIX Conference on File and Storage Technologies

(FAST), 2018.

[24] J. Yang, R. Pandurangan, C. Chio, and V. Balakrishnan, “AutoStream:

Automatic Stream Management for Multi-streamed SSDs”, In Pro-

ceedings of the ACM International Systems and Storage Conference

(SYSTOR), 2017.

[25] Facebook, https://github.com/facebook/rocksdb.

[26] Apache Cassandra, http://cassandra.apache.org.

95

[27] C. Gniady, A. Butt, and Y. Hu, “Program-Counter-based Pattern Clas-

sification in Buffer Caching”, In Proceedings of the Symposium on

Operating Systems Design and Implementation (OSDI), 2004.

[28] F. Zhou, J. Behren, and E. Brewer, “Amp: Program Context Specific

Buffer Caching,” In Proceedings of USENIX Annual Technical Con-

ference (ATC), 2005.

[29] K. Ha, and J. Kim, “A Program Context-Aware Data Separation Tech-

nique for Reducing Garbage Collection Overhead in NAND Flash

Memory,” In Proceedings of International Workshop on Storage Net-

work Architecture and Parallel I/Os (SNAPI), 2011.

[30] J. Hartigan, and M. Wong, “Algorithm as 136: A k-means Clustering

Algorithm”, Journal of the Royal Statistical Society. Series C (Applied

Statistics), vol. 28, no. 1, pp. 100-108, 1979.

[31] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil, “The Log-Structured

Merge-Tree (LSM-Tree)”, Acta Informatica, vol. 33, no. 4, pp. 351-

385, 1996.

[32] J. Corbet, Block Layer Discard Requests, https://lwn.net/

Articles/293658/.

[33] NVM Express Revision 1.3, http://nvmexpress.org/

wp-content/uploads/NVM_Express_Revision_1.3.

pdf.

96

[34] S. Frank, “Tightly Coupled Multiprocessor System Speeds Memory-

Access Times”, Electronics, vol. 57, no. 1, 1984.

[35] SQLite, https://www.sqlite.org/index.html.

[36] R. Stallman, and GCC Developer Community, Using the GNU Com-

piler Collection for GCC version 7.3.0, https://gcc.gnu.org/

onlinedocs/gcc-7.3.0/gcc.pdf.

[37] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind. “Application-

Managed Flash”. In Proceedings of the USENIX Conference on File

and Storage Technologies (FAST), 2016.

[38] Samsung, Samsung SSD PM963, https://www.compuram.de/

documents/datasheet/Samsung_PM963-1.pdf

[39] S. Liang, Java Native Interface: Programmer’s Guide and Specifica-

tion, 1999.

[40] MySQL, https://www.mysql.com.

[41] PostgreSQL, https://www.postgresql.org.

[42] OpenJDK, http://openjdk.java.net/.

[43] NVM-Express User Space Tooling For Linux, https://github.

com/linux-nvme/nvme-cli.

[44] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking Cloud Serving Systems with YCSB”, In Proceedings

of the ACM Symposium on Cloud Computing (SoCC), 2010.

97

[45] The Transaction Processing Performance Council, Benchmark C,

http://www.tpc.org/tpcc/default.asp.

[46] T. Kim, S. Hahn, S. Lee, J. Hwang, J. Lee and J. Kim, “PCStream: Au-

tomatic Stream Allocation Using Program Contexts”, In Proceedings

of the USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage), 2018.

[47] MonetDB, https://www.monetdb.org.

[48] Linux Programmer’s Manual, mmap(2) - map files or devices

into memory, http://man7.org/linux/man-pages/man2/

mmap.2.html.

[49] M. Goldman et al., “25nm 64Gb 130mm2 3bpc NAND Flash Mem-

ory,” in Proceedings of 3rd International Memory Workshop, 2011.

[50] Y. Li et al., “128Gb 3b/Cell NAND Flash Memory in 19nm Technol-

ogy with 18MB/s Write Rate and 400Mb/s Toggle Mode,” in Interna-

tional Solid-State Circuits Conference, 2012.

[51] S.-W. Lee et al., “A Log Buffer Based Flash Translation Layer Using

Fully Associative Sector Translation,” in ACM Transactions on Em-

bedded Computing Systems, vol. 6, no. 3, 2007.

[52] R.L. Rivest et al., “The MD6 hash function - a proposal to NIST for

SHA-3,” http://groups.csail.mit.edu/cis/md6/, Sub-

mission to NIST, 2008.

98

[53] K. OBrien, “Samsung SSD SM825 Enterprise SSD Review,”

http://www.storagereview.com/samsung_ssd_

sm825_enterprise_ssd_review, 2012.

[54] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-Aware Flash

Translation Layer Enhancing the Lifespan of Flash Memory Based

Solid State Drives,” in Proceedings of USENIX Conference on File

and Storage Technologies (FAST), 2011.

[55] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,

“Leveraging Value Locality in Optimizing NAND Flash-Based SSDs,”

in Proceedings of USENIX Conference on File and Storage Technolo-

gies (FAST), 2011.

[56] Z. Chen and K. Shen, “OrderMergeDedup: Efficient, Failure-

Consistent Deduplication on Flash,” in Proceedings of USENIX Con-

ference on File and Storage Technologies (FAST), 2016.

[57] W. Li, G. Jean-Baptise, J. Riveros, and G. Narasimhan, “CacheDedup:

In-line Deduplication for Flash Caching,” in Proceedings of USENIX

Conference on File and Storage Technologies (FAST), 2016.

[58] D. Meister and A. Brinkmann, “dedupv1: Improving Deduplication

Throughput using Solid State Drives,” in Proceedings of IEEE Sympo-

sium on Mass Storage Systems and Technologies (MSST), 2010.

[59] W. Dong et al., “Tradeoffs in Scalable Data Routing for Deduplication

Clusters,” in Proceedings of USENIX Conference on File and Storage

Technologies (FAST), 2011

99

[60] A. Gupta, Y. Kim and B. Urgaaonkar, “DFTL: A Flash Translation

Layer Employing Demand-based Selective Caching of Page-level Ad-

dress Mappings,” in Proceedings of International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-

tems, 2009.

[61] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the

Data Domain deduplication file system,” in Proceedings of USENIX

Conference on File and Storage Technologies (FAST), 2008.

100

초록

컴퓨팅시스템의성능향상을위해,기존의느린하드디스크(HDD)를빠른낸드

플래시메모리기반저장장치(SSD)로대체하고자하는연구가최근활발히진행

되고 있다. 그러나 지속적인 반도체 공정 스케일링 및 멀티 레벨링 기술로 SSD

가격을동급 HDD수준으로낮아졌지만,최근의첨단디바이스기술의부작용으

로 NAND 플래시 메모리의 수명이 짧아지는 것은 고성능 컴퓨팅 시스템에서의

SSD의광범위한채택을막는주요장벽중하나이다.

본 논문에서는 최근의 고밀도 낸드 플래시 메모리의 수명 및 성능 문제를

해결하기 위한 시스템 레벨의 개선 기술을 제안한다. 제안 된 기법은 응용 프로

그램의쓰기문맥을활용하여기존에는얻을수없었던데이터수명패턴및중복

데이터패턴을분석하였다.이에기반하여,단일계층의단순한정보만을활용했

던 기존 기법의 한계를 극복함으로써 효과적으로 NAND 플래시 메모리의 성능

및수명을향상시키는최적화방법론을제시한다.

먼저,응용프로그램의 I/O작업에는문맥에따라고유한데이터수명과중

복데이터의패턴이존재한다는점을분석을통해확인하였다.문맥정보를효과

적으로활용하기위해프로그램컨텍스트 (쓰기문맥)추출방법을구현하였다.

프로그램컨텍스트정보를통해가비지컬렉션부하와제한된수명의 NAND플

래시메모리개선을위한기존기술의한계를효과적으로극복할수있다.

둘째, 멀티 스트림 SSD에서 WAF를 줄이기 위해 데이터 수명 예측의 정확

성을높이는기법을제안하였다.이를위해애플리케이션의 I/O컨텍스트를활용

하는시스템수준의접근방식을제안하였다.제안된기법의핵심동기는데이터

수명이 LBA보다 높은 추상화 수준에서 평가 되어야 한다는 것이다. 따라서 프

로그램 컨텍스트를 기반으로 데이터의 수명을 보다 정확히 예측함으로써, 기존

기법에서 LBA를 기반으로 데이터 수명을 관리하는 한계를 극복한다. 결론적으

로따라서가비지컬렉션의효율을높이기위해수명이짧은데이터를수명이긴

데이터와효과적으로분리할수있다.

마지막으로,쓰기프로그램컨텍스트의중복데이터패턴분석을기반으로

101

불필요한 중복 제거 작업을 피할 수있는 선택적 중복 제거를 제안한다. 중복 데

이터를생성하지않는프로그램컨텍스트가존재함을분석적으로보이고이들을

제외함으로써,중복제거동작의효율성을높일수있다.또한중복데이터가발생

하는 패턴에 기반하여 기록된 데이터를 관리하는 자료구조 유지 정책을 새롭게

제안하였다. 추가적으로, 서브 페이지 청크를 도입하여 중복 데이터를 제거 할

가능성을높이는세분화된중복제거를제안한다.

제안된기술의효과를평가하기위해다양한실제시스템에서수집된 I/O

트레이스에 기반한 시뮬레이션 평가 뿐만 아니라 에뮬레이터 구현을 통해 실제

응용을동작하면서일련의평가를수행했다.더나아가멀티스트림디바이스의

내부 펌웨어를 수정하여 실제와 가장 비슷하게 설정된 환경에서 실험을 수행하

였다. 실험 결과를 통해 제안된 시스템 수준 최적화 기법이 성능 및 수명 개선

측면에서기존최적화기법보다더효과적이었음을확인하였다.향후제안된기

법들이 보다 더 발전된다면, 낸드 플래시 메모리가 초고속 컴퓨팅 시스템의 주

저장장치로널리사용되는데에긍정적인기여를할수있을것으로기대된다.

키워드: 플래시기반저장장치,저장장치수명,임베디드소프트웨어,운영체제

학번: 2012-30201

102

	I. Introduction .
	1.1 Motivation .
	1.1.1 Garbage Collection Problem
	1.1.2 Limited Endurance Problem

	1.2 Dissertation Goals .
	1.3 Contributions .
	1.4 Dissertation Structure .

	II. Background .
	2.1 NAND Flash Memory System Software
	2.2 NAND Flash-Based Storage Devices
	2.3 Multi-stream Interface .
	2.4 Inline Data Deduplication Technique
	2.5 Related Work .
	2.5.1 Data Separation Techniques for Multi-streamed SSDs
	2.5.2 Write Traffic Reduction Techniques
	2.5.3 Program Context based Optimization Techniques for Operating Systems

	III. Program Context-based Analysis
	3.1 Definition and Extraction of Program Context
	3.2 Data Lifetime Patterns of I/O Activities
	3.3 Duplicate Data Patterns of I/O Activities

	IV. Fully Automatic Stream Management For Multi-Streamed SSDs Using Program Contexts . .
	4.1 Overview .
	4.2 Motivation .
	4.2.1 No Automatic Stream Management for General I/O Workloads
	4.2.2 Limited Number of Supported Streams

	4.3 Automatic I/O Activity Management
	4.3.1 PC as a Unit of Lifetime Classification for General I/O Workloads

	4.4 Support for Large Number of Streams
	4.4.1 PCs with Large Lifetime Variances
	4.4.2 Implementation of Internal Streams

	4.5 Design and Implementation of PCStream
	4.5.1 PC Lifetime Management
	4.5.2 Mapping PCs to SSD streams
	4.5.3 Internal Stream Management
	4.5.4 PC Extraction for Indirect Writes

	4.6 Experimental Results .
	4.6.1 Experimental Settings
	4.6.2 Performance Evaluation
	4.6.3 WAF Comparison
	4.6.4 Per-stream Lifetime Distribution Analysis
	4.6.5 Impact of Internal Streams
	4.6.6 Impact of the PC Attribute Table

	V. Deduplication Technique using Program Contexts
	5.1 Overview .
	5.2 Selective Deduplication using Program Contexts
	5.2.1 PCDedup: Improving SSD Deduplication Efficiency using Selective Hash Cache Management
	5.2.2 2-level LRU Eviction Policy

	5.3 Exploiting Small Chunk Size
	5.3.1 Fine-Grained Deduplication
	5.3.2 Read Overhead Management
	5.3.3 Memory Overhead Management
	5.3.4 Experimental Results

	VI. Conclusions .
	6.1 Summary and Conclusions
	6.2 Future Work .
	6.2.1 Supporting applications that have unusal program contexts
	6.2.2 Optimizing read request based on the I/O context . .
	6.2.3 Exploiting context information to improve fingerprint lookups

	Bibliography .

<startpage>12
I. Introduction . 1
 1.1 Motivation . 1
 1.1.1 Garbage Collection Problem 2
 1.1.2 Limited Endurance Problem 4
 1.2 Dissertation Goals . 5
 1.3 Contributions . 6
 1.4 Dissertation Structure . 7
II. Background . 9
 2.1 NAND Flash Memory System Software 9
 2.2 NAND Flash-Based Storage Devices 10
 2.3 Multi-stream Interface . 11
 2.4 Inline Data Deduplication Technique 12
 2.5 Related Work . 13
 2.5.1 Data Separation Techniques for Multi-streamed SSDs 13
 2.5.2 Write Traffic Reduction Techniques 15
 2.5.3 Program Context based Optimization Techniques for Operating Systems 18
III. Program Context-based Analysis 21
 3.1 Definition and Extraction of Program Context 21
 3.2 Data Lifetime Patterns of I/O Activities 24
 3.3 Duplicate Data Patterns of I/O Activities 26
IV. Fully Automatic Stream Management For Multi-Streamed SSDs Using Program Contexts . . 29
 4.1 Overview . 29
 4.2 Motivation . 33
 4.2.1 No Automatic Stream Management for General I/O Workloads 33
 4.2.2 Limited Number of Supported Streams 36
 4.3 Automatic I/O Activity Management 38
 4.3.1 PC as a Unit of Lifetime Classification for General I/O Workloads 39
 4.4 Support for Large Number of Streams 41
 4.4.1 PCs with Large Lifetime Variances 42
 4.4.2 Implementation of Internal Streams 44
 4.5 Design and Implementation of PCStream 46
 4.5.1 PC Lifetime Management 46
 4.5.2 Mapping PCs to SSD streams 49
 4.5.3 Internal Stream Management 50
 4.5.4 PC Extraction for Indirect Writes 51
 4.6 Experimental Results . 53
 4.6.1 Experimental Settings 53
 4.6.2 Performance Evaluation 55
 4.6.3 WAF Comparison 56
 4.6.4 Per-stream Lifetime Distribution Analysis 57
 4.6.5 Impact of Internal Streams 58
 4.6.6 Impact of the PC Attribute Table 60
V. Deduplication Technique using Program Contexts 62
 5.1 Overview . 62
 5.2 Selective Deduplication using Program Contexts 63
 5.2.1 PCDedup: Improving SSD Deduplication Efficiency using Selective Hash Cache Management 63
 5.2.2 2-level LRU Eviction Policy 68
 5.3 Exploiting Small Chunk Size 70
 5.3.1 Fine-Grained Deduplication 70
 5.3.2 Read Overhead Management 76
 5.3.3 Memory Overhead Management 80
 5.3.4 Experimental Results 82
VI. Conclusions . 88
 6.1 Summary and Conclusions 88
 6.2 Future Work . 89
 6.2.1 Supporting applications that have unusal program contexts 89
 6.2.2 Optimizing read request based on the I/O context . . 90
 6.2.3 Exploiting context information to improve fingerprint lookups 91
Bibliography . 92
</body>

