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Abstract 

 

Development of Catalytic Reactions of Imines 

via Isocyanide Activation and Methanol Dehydrogenation 

 

Seoksun Kim 

Department of Chemistry 

The Graduate School 

Seoul National University 

 

The imine, which contains a double bond between carbon and nitrogen, is a 

fundamental functional group in organic chemistry. Its innate electrophilic character 

has been extensively studied, especially in carbon–carbon bond formation. The 

development of transition metal catalysis has further enriched imine chemistry. This 

thesis describes catalytic reactions of imines via two different strategies. 

Part I introduces isocyanide chemistry and its applications to N-aryl/alkyl-β-

enaminonitrile synthesis. A brief overview of activation strategies for isocyanides 

and representative examples, along with their history, characteristics, and physical 

properties, is presented in Chapter 1. An adaption of the transition-metal-catalyzed 

migratory insertion of an isocyanide in the synthesis of N-aryl/alkyl-β-
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enaminonitrile is introduced in Chapter 2. The use of isocyanide as a nitrogen source 

enabled access to a broad substrate scope with good functional group tolerance. An 

imine-like species, the imidoyl copper intermediate, participates in the reaction. 

Part II describes the synthetic application of methanol as a C1 source and the 

(amino)methylation of phenol derivatives with methanol. In industry, carbon 

monoxide plays a crucial role in raw materials synthesis, despite its toxicity and 

flammability. In recent decades, methanol has attracted great attention as an 

alternative C1 feedstock due to its safety and potential renewability. In Chapter 3, 

transition-metal-catalyzed methods for the dehydrogenative activation of alcohols, 

along with the distinct features of methanol compared to higher alcohols, are 

reviewed. Then, state-of-art examples of the dehydrogenative activation of methanol 

are summarized. Chapter 4 describes the aminomethylation and methylation of 

phenol derivatives with methanol and amines. Methanol is dehydrogenated by a 

ruthenium pincer catalyst, and the resulting formaldehyde condenses with amines to 

form imines. The different reactivity of this transformation with different substrates 

was thoroughly investigated. 
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Chapter 1. Characteristics and Activation Strategies of 

Isocyanides for Synthetic Application 

 

1.1 Introduction 

Isocyanides, which are also called isonitriles, are organic compounds with the 

functional group –N≡C, and are isomers of nitriles. They remained unexplored for a 

long time due to their unpleasant odor, but have become indispensable materials due 

to their unique characteristics and reactivity. Isocyanides serve as strong σ-donating 

ligands with excellent π*-accepting properties,1 and are thus used to remove ligands.2 

They can be used as an alternative to thiols for nanoparticle stabilization,3 and can 

also be efficiently polymerized in the presence of transition metal catalysts if their 

steric hindrance is sufficiently low.4 The utilization of isocyanides is most prominent 

in multi-component reactions (MCRs) and heterocycle synthesis.5 Various types of 

activation methods have been adapted for the use of isocyanides in synthetic 

applications, ranging from simple nucleophilic attack to transition metal catalysis 

and radical addition. Asymmetric reactions have also been developed.1,6 

This chapter describes the history, synthetic routes, general reactivity, and 

physical properties of isocyanides. An overview of non-catalyzed reactions of 

isocyanides is provided, and the activation methods for isocyanides for synthetic 

applications are classified into four main categories and discussed with 

representative examples. 
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1.2 Preparation, general reactivity, and physical properties of isocyanides 

The first discovery of a natural product containing an isocyanide group was reported 

in 1957.7 The compound was isolated from Penicillium notatum and named 

xanthocillin. To date, several classes of isocyanide-containing natural products have 

been discovered, including marine isocyanides, terrestrial isocyanides, cyclopentyl 

isocyanides, diterpenes, sesquiterpenes, and indolalkaloids.8 

Interestingly, the first synthesis of isocyanide in the laboratory had taken place 

nearly a century earlier. In 1859, W. Lieke reported that mixing allyl iodide with 

silver cyanide afforded a vile-smelling liquid different from the expected allyl 

cyanide (Scheme 1.1A).9 Several years later, A. Gautier10 and A. W. Hofmann11 

independently described these malodorous compounds as isomers of cyanides. The 

study of isocyanides began in earnest after the synthesis of isocyanides via the 

dehydration of formamides was discovered (Scheme 1.1B);12 this is still the most 

commonly used method. The development of several other methods followed, such 

as the carbylamine reaction (Scheme 1.1C),13 the alkylation of cyanides with 

alcohols14 or strained oxacycles15 (Scheme 1.1D), the deoxygenation of 

isocyanates,16 and the desulfuration of isothiocyanates.17 

The electronic properties of isocyanides can be described by their resonance 

structures, which consist of a zwitterionic form and a carbenic form (Scheme 1.2A). 

Thus, the carbon atoms of isocyanides have both anion and carbene character. As 

isocyanides are isoelectronic with carbon monoxide, the general reactivity and 

physical properties of isocyanides naturally resemble those of carbon monoxide. 
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Scheme 1.1 Synthesis of isocyanides 

 

 

Similarly to carbon monoxide, the carbon atoms of isocyanides act as 

nucleophiles, electrophiles, and radical acceptors (Scheme 1.2B). The 

nucleophilicity of isocyanides, which originates from their zwitterionic resonance 

form, was measured by the H. Mayr group and found to be comparable with that of 

α,β-unsaturated amides and silyl enol ethers.18,19 Thus, attack by an isocyanide can 

activate electrophiles such as iminium ions. The carbenic resonance form containing 

an empty p-orbital enables isocyanides to react with strong nucleophiles. When 

isocyanides are activated by a Lewis acid, proton, or transition metal, the range of 

applicable nucleophiles becomes broader. In addition to the closed-shell reaction 
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pathways depicted above, open-shell intermediates can participate in the radical 

attack of an empty p-orbital. The resulting carbon-centered radicals undergo radical 

cascade reactions. 

As would be anticipated from its resonance structures, the C–N bond stretching 

frequencies are found within the range 2110-2160 cm-1 (Scheme 1.2C), 20 i.e., they 

are stronger than double bonds (1600-1700 cm-1) but weaker than triple bonds (2200-

2300 cm-1).21 Generally, alkyl isocyanides have stronger C–N bonds owing to the 

stabilization of the cationic charge on the nitrogen atoms of the zwitterionic 

resonance form, which contains a triple bond. 

 

 

Scheme 1.2 Physical properties of isocyanides 
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1.3 Activation strategies for isocyanides in synthetic applications 

1.3.1 Non-catalyzed reactions of isocyanides 

Isocyanides have innate, albeit moderate, nucleophilicity and electrophilicity. Hence, 

many non-catalyzed reactions of isocyanides with activated substrates have been 

reported. In 1921, the group of M. Passerini made a breakthough;22 they discovered 

that carboxylic acids, ketones, and isocyanides undergo three component reactions 

(Scheme 1.3A). Initially, the carboxylic acid protonates the ketone, followed by 

nucleophilic attack of this activated substrate by the isocyanide. The resulting 

nitrilium intermediate is subsequently captured by the carboxylate. α-Hydroxy 

carboxamides are finally furnished via a rearrangement accompanied by C–O bond 

formation and cleavage. However, the above-described ionic mechanism cannot 

adequately explain the fast reaction rates observed in non-polar solvents. Hence, a 

concerted reaction pathway and ketone-carboxylic acid pair were also suggested.22c 

Approximately 40 years later, I. Ugi and co-workers accomplished four component 

reactions by replacing the ketones with in situ generated imines from aldehydes and 

amines to produce α-aminoacyl amide derivatives instead (Scheme 1.3B).23 

The discovery of the Ugi reaction greatly enriched organic chemistry through 

many subsequent studies (Scheme 1.4).5j The key aspect in variations of the Ugi 

reaction is the manner in which the nitrilium intermediates are captured (Scheme 

1.4A). If in situ generated carbonic acids24 or thiocarboxylic acids25 take the place of 

the carboxylates, the corresponding analogous proudcts are furnished (Scheme 1.4B). 

Relying on nucleophiles, the final rearrangement step can be totally different 

(Scheme 1.4C). Isocyanic acid derivatives undergo cyclization via intramolecular 
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capture instead of the original rearrangement,26 while hydrazoic acid participates in 

electrocyclization to form tetraazacycles.27 Substrates with internal nucleophiles can 

be used to produce dozens of heterocycles:5j aminopyridines,28 aminothiazoles,28 

dihydrothiazoles,29 2-aminooxazoles,30 etc. When electronically poor phenol 

derivatives such as nitro-group-substituted arenes or heterocycles are used, a 

dearomatization-aromatization sequence known as the Smiles rearrangement31 

occurs.32 This reaction has been named the Ugi-Smiles coupling. 

Isocyanide-based multicomponent reactions (IMCRs) have attracted great 

attention in various fields of applied chemistry, including drug discovery, natural 

product synthesis, peptide synthesis, polymers, and bioconjugation, owing to their 

diversity, functional group tolerance, and chemo-, regio-, and stereoselectivity.33 

 

Scheme 1.3 Early examples of isocyanides: the Passerini reaction and Ugi reaction 
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Scheme 1.4 Variations of the Ugi reaction 

 

Isocyanides act as nucleophiles not only for carbonyl compounds and imines 

(the Passerini reaction and Ugi reaction), but also for activated enone,34 dialkyl 

acetylenedicarboxylate,35 and Knoevenagel intermediate.36 

Reactions in which isocyanides act as electrophiles are mainly achieved using 

strong nucleophiles. When an isocyanide group and an activated olefin are located 

ortho to one another on a benzene ring, a Grignard reagent or alkyl lithium reagent 
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can be used to attack the isocyanide group, followed by cyclization with the olefin 

to form a quinoline (Scheme 1.5A).37 Intramolecular nucleophilic attacks on 

isocyanides have also been developed. When the benzyl C–H bond of an ortho-

alkylphenyl isocyanide is lithiated, it directly undergoes cyclization to produce an 

indole.38 ortho-Lithiophenyl isocyanides react with iso(thio)cyanates,39 carbon 

dioxide,40 and ketones40 to afford the corresponding heterocycles. 

 

 

Scheme 1.5 Reactions of isocyanides with nucleophiles 
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The reactivity of isocyanides with weak nucleophiles such as methanol and 

diethylamine was first reported for ortho-alkynylisocyanobenzene and ortho-

isocyanobenzonitrile, which produced quinoline and quinazoline, respectively 

(Scheme 1.5B).41 F. M. Moghaddam and co-workers reported that when a cyclohexyl 

isocyanide is attacked by a deprotonated β-ketodithoester, a polythiophene is 

produced (Scheme 1.5B).42 

The carbenic character of isocyanides can be observed in the presence of acyl 

halide.43 After insertion of the isocyanide into the C–Cl bond of an acyl cyanide, an 

acylnitrilium intermediate can be generated with the aid of a silver salt. T. 

Livinghouse and co-workers employed 2-ethylphenyl isocyanide to furnish 1-acyl-

3,4-dihydroisoquinolines (Scheme 1.6).43a,43b 

 

 

 

Scheme 1.6 Carbenic reactivity of isocyanides: synthesis of 1-acyl-3,4-

dihydroisoquinoline from 2-ethylphenyl isocyanide 
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1.3.2 Lewis-acid-catalyzed reactions of isocyanides 

Activation with a Lewis acid is a well-known strategy to lower the energy of the 

lowest unoccupied molecular orbital (LUMO) of an electrophile. The use of Lewis 

acids in reactions involving isocyanides has taken various forms. 

M.–X. Wang and co-workers reported the synthesis of dihydropyridin-4(1H)-

ones from N-formylmethyl-substituted enamides and isocyanides (Scheme 1.7A).44 

In this reaction, an aldehyde activated by zinc(II) triflate is attacked by an isocyanide 

to produce a nitrilium ion. Subsequent intramolecular attack by an enamine moiety 

and reduction render the desired heterocycle. The activation of electrophiles can also 

be utilized in the three-component synthesis of isothioureas from isocyanides, 

thiosulfonates, and amines developed by B. U. W. Maes and co-workers (Scheme 

1.7B).45 A thiosulfonate activated by copper(I) iodide is attacked by an isocyanide. 

The resulting isothiocyanate intermediate is then captured by aniline to form an 

isothiourea. Non-metallic Lewis acids such as boron trifluoride or 

tris(pentafluorophenyl)boron also afforded the desired product, proving that the 

copper catalyst acts as a Lewis acid. 
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Scheme 1.7 Activation of electrophile by Lewis acids 

 

 

When isocyanides are activated by Lewis acids, their enhanced electrophilicity 

allows them to react with nucleophiles. T. Saegusa and co-workers observed the 

cyclization of phenylisocyanide with an internal hydroxy group (–N≡C + HO– → –

N=C–O–) in the presence of copper(I) oxide.46 Similar reactivity was also observed 

with boron trifluoride, zinc(II) chloride, and tin(IV) chloride.47 

Several Lewis-acid-catalyzed reactions for the insertion of isocyanides into C–

heteroatom bonds including epoxides,48 cyclic ketals,49 acyclic ketals,50 and acyclic 

dithioketals51 have also been reported (Scheme 1.8A).5f Rather than direct insertion, 

these reactions proceed via carbocation generation by the Lewis acid, isocyanide 

attack to form the nitrilium intermediate, and re-incorporation of the leaving group 

(Scheme 1.8B).51 
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Scheme 1.8 Lewis-acid-catalyzed insertion of isocyanides into C–heteroatom bonds 

 

 

1.3.3 Transition-metal-catalyzed reactions of isocyanides 

In the presence of a transition metal catalyst, isocyanides easily bind to form 

nitrilium-like complexes. Hence, the general pathway of reactions involving 

transition metals resembles that of the reaction of isocyanides with electrophiles, 

involving the formation of a nitrilium intermediate and subsequent attack by the 

nucleophile. Nevertheless, the peculiar reactivity of transition metals enriches the 

practical usage of isocyanides (Scheme 1.9). At the beginning of the catalytic cycle, 

the coupling partner can be activated in various ways, including oxidative addition 

or C–H activation, as well as direct binding. After the migratory insertion, the 
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generated imidoyl metal species can undergo not only protonation, but also reductive 

elimination or carbometalation of multiple bonds. 

 

 

Scheme 1.9 General reaction pathway of transition-metal-catalyzed reactions of 

isocyanides 

 

The simplest reactivity, the binding-protonation sequence, is well documented 

for nucleophiles including amines,52 alcohols,53 thiols,54 silanes,55 and phosphines56 

(Scheme 1.10A). Those reactions result in the overall insertion of an isocyanide into 

the X–H bond. In contrast, the C–C bond formation of isocyanides via this sequence 

is relatively less explored. P. R. Krishna and co-worker reported that p-tosylmethyl 

isocyanides couple with 1,3-dicarbonyl compounds in the presence of indium(III) 

chloride (Scheme 1.10B).57 Palladium catalyzed reactions with indole were also 

reported.58 Recently, S. H. Hong and co-worker discovered that an N-heterocyclic 

carbene (NHC), 1,3-bis(2,4,6-trimethylphenyl)imidazole (IMes), catalyzes the 

coupling reaction between isocyanides and enolates (Scheme 1.10C).59 Unlike in 

transition metal catalysis, IMes attacks the isocyanide to form a reactive intermediate. 

Reaction between this intermediate and the enolate gives an enaminone. 
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Scheme 1.10 Reactions involving simple binding of coupling partners 

 

 

Aryl halides or alkenyl halides can be incorporated with isocyanides through 

oxidative addition mediated by palladium catalysts. In 1986, M. Kosugi and co-

workers developed the coupling reaction of bromobenzene, isocyanides, and 

organotin compounds.60 The imidoyl palladium species derived from bromobenzene 

and the isocyanide undergoes reductive elimination with the organotin compound. 

However, this reaction suffers from low yields and requires the use of toxic reagents. 

Subsequently, more practical reaction conditions began to be developed using more 

general nucleophiles, such as amines,61 alkoxides,62 and thiolates,62 rather than 

organotin reagents (Scheme 1.11A). Alkenyl bromide participates in the reaction 
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with amines to afford α,β-unsaturated aldimines.63 The use of water as the 

nucleophile gave an amide;64 meanwhile, internal nucleophiles enabled the 

constuction of heterocycles such as cyclic aldimines,65 4-aminoquinazolines,66 

quinazolin-4(3H)-imines,67 and 4-aminophthalazin-1(2H)-ones.68 

Instead of reductive elimination, the attached palladium can undergo either 

carbometalation or C–H activation. S. Takahashi and co-workers reported that o-

alkenylphenyl isocyanides undergo palladium-catalyzed carbometalation and 

reductive elimination after migratory insertion (Scheme 1.11B).69 A similar reaction 

pathway occurs with o-alkynylphenyl isocyanides.70 If a C–H bond is located in the 

proper position with respect to the imidoyl-palladium species, further C–H activation 

will furnish the cyclized product (Scheme 1.11C).70 

C–H activation can be an initial step in reactions involving isocyanides.5h Q. 

Zhu and co-workers reported that 4-aminoquianozlines can be synthesized from N-

arylamidines via sequential sp2 C–H activation, isocyanide insertion, and reductive 

elimination (Scheme 1.12A). 71 Many other substrates with different directing groups 

were successfully explored by Q. Zhu,72 Y. Qian,73 H. Jiang,74 and others.75 

Isocyanide insertions into sp C–H bonds using rare-earth metals such as uranium, 

thorium, yttrium, lanthanum, samarium, and ytterbium have been studied (Scheme 

1.12B).76 The basic ligand bound to the metal center deprotonates the sp C–H bond 

so that the alkynyl group is ligated to the metal. After isocyanide insertion, the 

imidoyl metal complex deprotonates the next substrate and regenerates the original 

complex, producing enynes. 
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Additionally, the insertion of isocyanides into palladium carbene species 

(Scheme 1.13A)77 or palladacycles derived from the oxidative cyclization of a diyne 

(Scheme 1.13B)78 has also been reported. 

 

 

 

Scheme 1.11 Reactions beginning with the oxidative addition of an aryl halide: 

classification via the later isocyanide insertion step 
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Scheme 1.12 Reactions beginning with the C–H activation of the substrate: 

classification by the hybridization of the C–H bond 

 

 

Scheme 1.13 Miscellaneous examples of isocyanide insertions 
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1.3.4 Reactivity of α-metalated isocyanides 

As demonstrated by their resonance structures (Scheme 1.2A), the nitrogen atoms of 

isocyanides are electron-poor, and thus act as strong electron withdrawing groups. 

Hence, the α-C–H bonds of isocyanides can easily be deprotonated to form a 1,3-

dipole-like structure (Scheme 1.14A). Naturally, α-metalated isocyanides participate 

in the syntheses of various heterocycles.5a,79 Initially, the α-carbanion of the 

isocyanide attacks an unsaturated compound (atom X is attacked in the scheme; 

Scheme 1.14B). The resulting anion (atom Y) then attacks the carbon atom of the 

isocyanide. Subsequent steps, which vary depending on the substrate, finally render 

the cyclic compound. A. de Meijere and co-worker summarized representative 

examples in their review paper (Scheme 1.15).5a 

 

 

 

Scheme 1.14 General reactivity of α-metalated isocyanides 
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Scheme 1.15 Representative reactions of α-metalated isocyanides5a 

 

 

Syntheses of heterocycles with exotic coupling partners via the pathway 

described above are depicted in Scheme 1.16. J. Alvarez-Builla and co-workers 

reported the construction of a ring-annulated pyrimidine derivative from pyrrole-2-

carboxaldehyde (Scheme 1.16A).80 After the addition of an α-metalated isocyanide, 

proton transfer, intramolecular nucleophilic attack, and dehydration gave a fused 

ring system. Similar reactivity was reported by J. J. Vaquero and co-workers for N-

protected bromomethylazoles.81 Y. Yamamoto and co-workers discovered that 

activated alkynes are coupled with α-metalated isocyanides to form pyrrole in the 
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presence of copper(I) oxide and 1,10-phenanthroline (Scheme 1.16B).82 Surprisingly, 

the use of a catalytic amount of 1,3-bis(diphenylphosphino)propane (dppp) gave 

inverse regioselectivity due to the generation of a cationic intermediate from the 

activated alkyne and phosphine. Under copper-catalyzed reaction conditions, a 1,4-

disubstituted imidazole was synthesized when another isocyanide molecule was 

employed as a coupling partner (Scheme 1.16C).83 

 

 

 

Scheme 1.16 Examples of α-metalated isocyanides with exotic coupling partners 
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1.3.5 Radical reactions of isocyanides 

Compared to other strategies for the activation of isocyanides, the development of 

radical pathways has been relatively slow. In 1968, the first observation of radical 

addition to isocyanides was made by T. Saegusa and co-workers with a tin radical.84 

In 1991, D. P. Curran and co-worker reported the first example of heterocycle 

synthesis via a radical pathway (Scheme 1.17).85 In this pathway, a primary alkyl 

radical generated by hexamethylditin attacks the carbon atom of the isocyanide 

group, and a carbon-centered radical is formed at the same atom. A radical cascade 

reaction through alkyne and arene rings produces cyclopenta-fused quinolones. 

 

Scheme 1.17 First synthesis of heterocycle from isocyanides via a radical pathway 

Radical reactions of isocyanides have mainly focused on the synthesis of 

phenanthridine derivatives from 2-isocyanobiphenyls following the general reaction 

pathway illustrated in Scheme 1.18A. The imidoyl radical generated from radical 

addition to the isocyanide undergoes addition to the neighboring arene ring. 

Successive one-electron oxidation and deprotonation afford the phenanthridine. 

Versatile derivatives can be produced by changing the radical added; examples 

include the perfluoroalkyl radical, trifluoromethyl radical, ethyl fluoroacetyl radical, 

aryl radical, phosphoryl radical, acyl radical, α-oxyalkyl radical, and silyl radical 
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(Scheme 1.18B).5g One-electron oxidants or peroxides for hydrogen atom transfer 

(HAT) have been used for radical generation, but recently, photocatalytic methods 

have become widely used to avoid the use of a stoichiometric amount of the radical 

initiator. 

 

 

Scheme 1.18 Synthesis of phenanthridines from isocyanides via a radical pathway 

 

When the starting material is changed from a 2-isocyanobiphenyl to a 2-

alkenyl/alkynyl aryl isocyanide, β-isocyanostyrenes and arylisocyanides with γ-

bromonitrile, indoles,86 isoquinolines,87 and quinoxalines88 can be furnished, 

respectively. 
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1.4 Conclusion 

Despite their unpleasant odor, isocyanides have become irreplaceable organic 

building blocks due to their unique reactivity as electrophiles, nucleophiles, and 

carbenes. By combining activated substrates with isocyanides, highly efficient and 

robust IMCRs have been developed without further activating reagents. Owing to 

their ability to construct diverse and complex structures, they have attracted great 

attention in applied chemistry. Other activation strategies, such as Lewis acid 

catalysts, transition metal catalysts, α-metalation of isocyanides, and radical 

pathways, have further widened the applicability of isocyanides. In particular, the 

synthesis of heterocycles from isocyanides has been extensively studied. 

Activation strategies other than non-catalyzed IMCRs have mainly been used 

for the construction of heterocycles. The insertion of isocyanides into C–heteroatom 

bonds to afford acyclic compounds has been widely studied, but synthetically useful 

reactions of this type have been less explored. In particular, reactions with soft 

carbon nucleophiles (stabilized carbanions) are quite limited57-59 compared to other 

nucleophiles. Thus, the development of synthetic methods for acyclic compounds 

from isocyanides still requires further exploration. Most known radical reactions 

with isocyanides utilize two reaction components. Hence, the development of 

IMCRs via a radical pathway with three or more components is also a remaining 

challenge.5g 
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Chapter 2. Copper-Catalyzed N-Aryl-β-Enaminonitrile 

Synthesis Utilizing Isocyanides as the Nitrogen Source* 

 

 

 

  

                                           
* The majority of this work has been published: Seoksun Kim and Soon Hyeok Hong*, 

Adv. Synth. Catal. 2015, 357, 1004-1012. 
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2.1 Introduction 

For several decades, the β-enaminonitrile group has been highlighted as a useful 

building block for the synthesis of heterocycles1 such as pyrimidine,2 pyridine,3 

pyrazole,4 pyrrole,5 isothiazole,6 and pyrrolinone7 (Scheme 2.1). This building block 

has also been applied to the synthesis of polymers such as thermally stable 

poly(enaminonitrile)s8 and pharmaceutical chemistry.9 Because of its importance, 

diverse aspects of β-enaminonitrile have been studied, such as tautomerization,10 

isomerization,11 and photochemical reactions.12  

 

 

 

Scheme 2.1 Synthesis of diverse heterocycles from β-enaminonitrile 
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Despite the importance of the β-enaminonitriles, limited methods have been 

reported for their synthesis. Traditionally, β-enaminonitriles have been synthesized 

by the condensation of formamide with arylformylacetonitriles [Scheme 2.2, eq 1],13 

or ammonia with cyanoacetophenone.14 Moreover, amines and activated 

acetonitriles can serve as starting materials for the synthesis of β-enaminonitriles in 

the presence of triethyl orthoformate [Scheme 2.2, eq 2].1b However, the 

abovementhioned methods usually require harsh conditions. Thorpe–Ziegler 

condensation [Scheme 2.2, eq 4]15 and Gewald condensation [Scheme 2.2, eq 5],16 

which use nitriles as the nitrogen source, require mild conditions; however, the 

substrate scope is limited to N-unsubstituted-β-enaminonitriles and thiophene 

derivatives. To broaden the substrate scope of β-enaminonitriles, Pd-catalyzed 

tandem reactions [Scheme 2.2, eq 3]17 and domino ring-opening cyclization reactions 

[Scheme 2.2, eq 6]18 have been recently reported. Although various synthetic 

methods are available, the substrate scope of β-enaminonitriles is still poor, and 

nitrogen sources were limited to formamides, amines, and nitriles. In particular, 

examples of aryl-substituted enaminonitrile synthesis are quite rare with a narrow 

substrate scope and harsh reaction conditions.10b,19 
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Scheme 2.2 Synthetic methods for β-enaminonitriles classified according to nitrogen 

sources 
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To develop an efficient synthetic method for N-aryl-β-enaminonitriles, we 

turned our attention to isocyanides. Since the Ugi reaction was reported,20 extensive 

studies have been carried out to utilize isocyanides in organic synthesis, such as 

heterocycle synthesis.21 Recently we developed a method for 1,4-diarylimidazole 

synthesis22 based on Cu-catalyzed formimidate formation from isocyanides.23 Thus, 

we envisioned a novel strategy for the synthesis of β-enaminonitriles from 

isocyanides as the nitrogen source [Scheme 2.2, eq 7]. To the best of our knowledge, 

this is the first example of N-aryl-β-enaminonitrile synthesis using isocyanides as 

the nitrogen source. 

 

 

 

2.2 Results and discussion 

2.2.1 Optimization for the synthesis of β-enaminonitrile from isocyanides and 

benzylcyanides 

We started our investigation by adapting the reaction conditions involving the N-

heterocyclic carbene (NHC)-based Cu(I) species developed for 1,4-diarylimidazole 

synthesis.22 To our delight, the target compound was obtained in 49% yield (Table 

2.1, entry 1). The absolute configuration of the alkene was determined by X-ray 

crystallography (Figure 2.1).24 Among the solvents investigated, dimethoxyethane 

(DME) resulted in the best yield (Table 2.1, entries 1–4). The reaction worked well 

in the absence of the NHC ligand and was optimized further without any additional 
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ligand (Table 2.1, entry 5). A strong base such as t-BuOK was essential for the 

reaction (Table 2.1, entries 6 and 7). When Cu(I) halides were screened with 1.2 

equiv of t-BuOK, CuI resulted in quantitative yield (Table 2.1, entries 7–9). The 

reaction without Cu catalyst also gave the desired product, but it exhibited the much 

decreased yield (Table 2.1, entry 10). In this case, a dimer of benzylcyanide, (Z)-3-

amino-2,4-diphenylbut-2-enenitrile, from Thorpe-Ziegler condensation was 

observed as the major by-product in 31% yield.25 

 

 

 

Figure 2.1 Crystal structure of 3aa. ORTEP diagram showing 50% probability 

thermal ellipsoids. 
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Table 2.1 Optimization of the reaction conditions[a]  

 

Entry Catalyst Ligand Base (equiv) Solvent Yield (%)[b] 

1 CuCl IPr∙HCl 0.5 THF 44 

2 CuCl IPr∙HCl 0.5 DCM 0 

3 CuCl IPr∙HCl 0.5 Benzene 29 

4 CuCl IPr∙HCl 0.5 DME 55 

5 CuCl - 0.5 DME 40 

6 CuCl - 0 DME 0 

7 CuCl - 1.2 DME 93 

8 CuBr - 1.2 DME 98 

9[c] CuI - 1.2 DME >99 

10 - - 1.2 DME 60 

[a] Reaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (0.28 mmol, 1.4 equiv), catalyst (0.01 

mmol), ligand (0.01 mmol), t-BuOK (x equiv) in solvent (0.4 mL). IPr∙HCl = 1,3-bis(2,6-

diisopropylphenyl)imidazolium chloride. 
[b] Yields were determined by HPLC using 2,6-diisopropylaniline as the internal standard. 
[c] Reaction time: 8 h. 
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2.2.2 Substrate scope of isocyanides 

With the optimized reaction conditions in hand, we investigated the substrate scope 

of the reaction. First, the isocyanides used in the reaction were varied (Table 2.2). In 

most of the cases, N-aryl-β-enaminonitriles were obtained in good-to-excellent 

yields. The reaction worked well even with sterically hindered isocyanides (3ca–3fa 

and 3oa). Even stronger electron-withdrawing group substituted isocyanides worked 

smoothly (3ga–3ka). The reaction showed good functional group tolerance to aryl–

halogen bonds (3ga, 3ha, and 3ma), ester group (3ia), nitrile group (3ja), pyridine 

(3ka), and ether group (3la). 3-Pyridylisocyanide resulted in only a moderate yield, 

probably because of its coordinating ability. Gratifyingly, alkylisocyanides also 

participated in the reaction (3oa–3qa). 
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Table 2.2 Substrate scope of isocyanides[a] 
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[a] Reaction conditions: 1 (0.40 mmol), 2a (0.56 mmol), CuI (0.02 mmol), t-BuOK (0.48 

mmol) in DME (0.8 mL) at 55 °C. 

 

 

2.2.3 Substrate scope of arylacetonitriles 

Next, the scope of arylacetonitriles was investigated (Table 2.3). Similar to 

isocyanides, arylacetonitriles showed a broad substrate scope with good-to-excellent 

yields. 2-Naphthylacetonitrile afforded the corresponding product (3ab) in a very 

good yield. Electron-withdrawing substituents on the aryl group showed negligible 

effect on the yields (3ac–3ag), while electron-donating substituents on the aryl group 

resulted in reduced yields, probably because of the destabilization of the 

arylacetonitrile anion (3ah and 3ai). As shown in Table 2.3, functional groups such 

as aryl–halogen bonds (3ac–3ae), ester group (3ag), and boc-protected amine group 

(3ai) were well tolerated. Interestingly, 2-pyridylacetonitrile resulted in an excellent 

yield, while 3-pyridylisocyanide resulted in a moderate yield (3af and 3ka). 
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Table 2.3 Substrate scope of arylacetonitriles[a] 

 

[a] Reaction conditions: 1a (0.40 mmol), 2 (0.56 mmol), CuI (0.02 mmol), t-BuOK (0.48 

mmol) in DME (0.8 mL) at 55 °C. 
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2.2.4 Mechanistic studies 

Effect of the Cu catalyst and the base was further examined in order to obtain 

mechanistic insight for the reaction (Table 2.4). Several Lewis acids were tested, and 

none of them exhibited enhanced reactivity even compared to the base-only reaction 

conditions (Table 2.4, entries 2–5). The results suggest that CuI do not act as a simple 

Lewis acid in this reaction.26 Various kinds of bases were also screened. Cesium 

carbonate, which is not strong enough to deprotonate the benzylic proton of 

benzylcyanide, gave the product in a poor yield of 14% (Table 2.4, entry 7). Other 

strong bases exhibited only moderate yields, even with CuI (Table 2.4, entries 8–10). 

These results indicated that t-BuOK has another role aside from simple 

deprotonation of benzylcyanides. 
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Table 2.4 Effect of catalyst and base[a] 

 

Entry Variation from standard 

conditions 

Yield 

(%)[b],[c] 
1 None >99 

2 Without catalyst 60 

3 Sc(OTf)3 instead of CuI 45 

4 AgOTf instead of CuI 61 

5 BF3·OEt2 instead of CuI 53 

6 FeBr2 instead of CuI 56 

7 Cs2CO3 instead of t-BuOK 14 

8 NaH instead of t-BuOK 59 

9 KHMDS instead of t-BuOK 55 

10 NaOMe instead of t-BuOK 57 

[a] Reaction conditions: 1a (0.20 mmol, 1.0 equiv), 2a (0.28 mmol, 1.4 equiv), CuI (0.01 

mmol), t-BuOK (0.24 mmol, 1.2 equiv) in solvent (0.4 mL). [b] Yields of entries 1–6 were 

determined by HPLC using 2,6-diisopropylaniline as the internal standard. [c] Yields of 

entries 7–10 were determined by NMR using mesitylene as the internal standard. 
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Based on the experimental results and our previous study,22 a possible 

mechanism is suggested (Scheme 2.3). Because of the enhancement in yields when 

coordinating solvents, such as THF and DME, were used (Table 2.1) and the fact 

that the (DME)CuI complex has been reported as a long-lived stable complex,27 

(DME)CuI(Ot-Bu) (A) is proposed as the active catalytic species in this reaction. An 

isocyanide can coordinate to this species to form the 18-electron Cu(I) complex (B). 

Because of the innate electrophilic character of an isocyanide–metal complex,21b 

tert-butoxide ligand can attack the carbon atom of the isocyanide group of B to 

generate imidoyl-Cu complex, C. Deprotonated benzylcyanide (D), t-BuOH, and C 

react to afford intermediate E with the regeneration of (DME)CuI(Ot-Bu) (A), thus 

completing the catalytic cycle. Finally, successive tert-butoxide elimination and 

tautomerization afford the desired N-substituted β-enaminonitrile.  

To confirm the mechanism further, readily available ethyl formimidate and in 

situ generated tert-butyl formimidate were subjected to the reaction conditions. The 

desired products were afforded in good yields, supporting the proposed mechanism 

(Scheme 2.4). The slightly reduced yields than starting from isocyanides is 

presumably due to the reactivity difference between the in situ generated 

formimidate intermediates that stay coordinated to Cu and free formimidates. Direct 

reaction between an isocyanide and D could work, especially under base only 

conditions. However, in our Cu-catalyzed conditions, we believed that the proposed 

formimidate mechanism is more reasonable judging from the observation of special 

effect of t-BuOK in Table 2.4.  
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Scheme 2.3 Proposed reaction mechanism 

 

 

 

 

Scheme 2.4 Reactions of formimidates 
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2.2.5 Application of β-enaminonitrile 

The synthesized β-enaminonitrile 3aa could be transformed to other synthetically 

useful products under simple reaction conditions (Scheme 2.5).17 p-Toluidine group 

of 3aa could be hydrolysed to form a β-keto nitrile 4.28 In addition, 3-aminopyrazole 

(5) could be synthesized from 3aa through an acid-catalyzed reaction with 

hydrazine.19a 

 

 

 

 

 

 

 

 

Scheme 2.5 Transformation of β-enaminonitrile 3aa 
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2.3 Conclusion 

In conclusion, we report a novel Cu-catalyzed N-aryl-β-enaminonitrile synthesis 

from isocyanides and nitriles. A broad scope of N-aryl-β-enaminonitriles, which 

were not easily accessible with previously reported synthetic methods utilizing other 

nitrogen sources, were obtained in good-to-excellent yields under mild conditions. 

The optimized conditions were also applicable to the synthesis of N-alkyl-β-

enaminonitriles. This efficient, atom-economical, and operatically simple synthetic 

protocol for N-alkyl/aryl substituted β-enaminonitriles can be applied to the 

synthesis of diverse of heterocycles. 
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2.4 Experimental section 

2.4.1 General information 

Unless otherwise noted, all reactions were carried out using standard Schlenk 

techniques or in an argon-filled glove box. All anhydrous solvents were purchased 

from commercial suppliers and degassed with dry argon before usage. tert-Butyl 

isocyanide and cyclohexyl isocyanide were purchased from commercial suppliers 

and used as received without further purification, and other arylisocyanides were 

synthesized from the corresponding amines following the literature procedures.29 

Compounds 1q,22 2b,30 2g,30 and 2i31 were prepared by the methods reported in 

literatures, and all other arylacetonitriles were purchased from commercial suppliers. 

HRMS analyses were performed at the National Center for Inter-university Research 

Facilities (NCIRF) at Seoul National University and at the Daegu Center of the 

Korea Basic Science Institute (KBSI). Absolute configuration of the product 3aa 

was determined by X-ray crystallography performed at the Western Seoul Center of 

the KBSI. 

 

2.4.2 General procedure for N-aryl/alkyl-β-enaminonitrile synthesis 

To an oven-dried 4 mL-vial equipped with a stirring bar, CuI (3.8 mg, 0.02 mmol) 

and potassium tert-butoxide (53.9 mg, 0.48 mmol) were added inside a glove box. 

Then, the vial was sealed with a septum screw cap and taken out of the box. 

Anhydrous DME (0.8 mL), 2 (0.56 mmol), and 1 (0.40 mmol) were added 

successively to the vial. If solid 1 or 2 was used, solutions of each substrate in DME 

were prepared under inert condition, and then added to the vial. In those cases, 
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overall volume of solvent was maintained to the original procedure. Resulting 

reaction mixture was stirred for 8-16 h at 55 °C. Crude products were purified via 

silica gel column chromatography. 

 

2.4.3 General procedure for 3-oxo-2-phenylpropanenitrile (4) synthesis 

To a solution of 3aa (46.9 mg, 0.20 mmol) of THF (2 mL) was added 7% HCl 

aqueous solution (3 mL). After cooling to room temperature, the reaction mixture 

was stirred for 17 h at 40 °C. The reaction mixture was extracted with EtOAc. The 

organic layer was separated and dried over with anhydrous MgSO4 and concentrated 

under reduced pressure. Crude products were purified via silica gel column 

chromatography. 

 

2.4.4 General procedure for 4-phenyl-1H-pyrazol-3-amine (5) synthesis 

3aa (93.7 mg, 0.40 mmol) was treated with N2H4•H2O (38.8 μL, 0.80 mmol) and 

five drops of acetic acid in ethanol (0.5 mL) was heated under the microwave 

irradiation for 4 min at 250 °C. After cooling to room temperature, the resulting 

mixture was diluted by EtOAc and saturated solution of NaHCO3 was added. The 

reaction mixture was extracted with EtOAc. The organic layer was separated and 

dried over with anhydrous MgSO4 and concentrated under reduced pressure. Crude 

products were purified via silica gel column chromatography. 

 

 



51 

2.4.5 Characterization data 

Reactions for β-enaminoniriles were performed in 0.40 mmol scale. All compounds 

were identified by 1H, 13C NMR. All new compounds were further identified by HR-

MS. All reported compounds, 3ba,19b 3ha,19b 3la,19b 4,32 and 519a were also identified 

by spectral comparison with literature data.  

 

(Z)-2-Phenyl-3-(p-tolylamino)acrylonitrile (3aa): Light yellow solid (88 mg, 

94%); 1H NMR (300 MHz, DMSO-d6)  = 9.64 (d, J = 

12.8 Hz, 1 H), 8.05 (d, J = 13.0 Hz, 1 H), 7.51 (d, J = 

7.5 Hz, 2 H), 7.35 (t, J = 7.7 Hz, 2 H), 7.28 (d, J = 8.5 

Hz, 2 H), 7.20-7.16 (m, 1 H), 7.11 (d, J = 8.3 Hz, 2 H), 2.25 (s, 3 H); 13C NMR (75 

MHz, DMSO-d6)  = 142.4, 138.8, 134.4, 131.4, 129.7, 128.8, 125.4, 123.6, 118.5, 

116.4, 82.1, 20.3; HRMS-FAB (m/z) [M-H]- calcd for C16H13N2, 233.1084; found: 

233.1077. 

 

(Z)-2-Phenyl-3-(phenylamino)acrylonitrile (3ba):19b Light yellow solid (83 mg, 

94%); 1H NMR (300 MHz, DMSO-d6)  = 9.70 (d, J = 10.4 

Hz, 1 H), 8.10 (d, J = 11.3 Hz, 1 H), 7.52 (d, J = 7.3 Hz, 2 

H), 7.43-7.34 (m, 4 H), 7.32 (t, J = 8.5 Hz, 2 H), 7.19 (t, J 

= 7.2 Hz, 1 H), 7.01 (t, J = 7.2 Hz, 1 H); 13C NMR (75 MHz, DMSO-d6)  = 142.2, 

141.2, 134.2, 129.3, 128.8, 125.6, 123.7, 122.4, 118.4, 116.4, 82.8; HRMS-FAB 

(m/z) [M-H]- calcd for C15H11N2, 219.0928; found: 219.0919. 
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(Z)-3-(Mesitylamino)-2-phenylacrylonitrile (3ca): Light orange solid (93 mg, 

88%); 1H NMR (300 MHz, Acetone-d6)  = 7.77 (d, J = 

12.8 Hz, 1 H), 7.55 (d, J = 13.0 Hz, 1 H), 7.42 (d, J = 

7.3 Hz, 2 H), 7.30 (t, J = 7.8 Hz, 2 H), 7.11 (tt, J = 7.2, 

1.3 Hz, 1 H), 6.95 (s, 2 H), 2.31 (s, 6 H), 2.27 (s, 3 H); 13C NMR (75 MHz, Acetone-

d6)  = 149.5, 137.2, 136.9, 135.9, 135.5, 130.0, 129.7, 125.9, 124.0, 118.7, 81.4, 

21.0, 18.6; HRMS-FAB (m/z) [M-H]- calcd for C18H17N2, 261.1397; found: 

261.1393. 

 

(Z)-3-((2,6-Diisopropylphenyl)amino)-2-phenylacrylonitrile (3da): Light green 

solid (104 mg, 85%); 1H NMR (400 MHz, DMSO-d6)  = 

8.95 (d, J = 12.1 Hz, 1 H), 7.57 (br. s., 1 H), 7.36 (d, J = 

7.4 Hz, 2 H), 7.34-7.24 (m, 3 H), 7.19 (d, J = 7.4 Hz, 2 H), 

7.07 (t, J = 7.0 Hz, 1 H), 3.21 (spt, J = 5.9 Hz, 2 H), 1.19 (d, J = 6.7 Hz, 12 H); 13C 

NMR (75 MHz, DMSO-d6)  = 150.3 (br. s), 146.1, 136.5 (br. s), 134.7 (br. s), 128.8, 

128.0 (br. s), 124.5, 123.3, 122.7, 118.7 (br. s), 77.9 (br. s), 27.8, 23.4; HRMS-FAB 

(m/z) [M-H]- calcd for C21H23N2, 303.1867; found: 303.1859. 

 

(Z)-3-(Naphthalen-1-ylamino)-2-phenylacrylonitrile (3ea): Light yellow solid 

(92 mg, 85%); 1H NMR (300 MHz, DMSO-d6)  = 9.67 (d, 

J = 10.2 Hz, 1 H), 8.21 (d, J = 8.1 Hz, 1 H), 8.06 (d, J = 

10.0 Hz, 1 H), 7.95 (d, J = 7.5 Hz, 1 H), 7.73 (d, J = 7.7 Hz, 

1 H), 7.63-7.55 (m, 2 H), 7.54-7.43 (m, 4 H), 7.36 (t, J = 
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7.6 Hz, 2 H), 7.18 (t, J = 7.2 Hz, 1 H); 13C NMR (75 MHz, DMSO-d6)  = 145.5, 

137.5, 134.4, 133.9, 128.9, 128.1, 126.5, 126.3, 126.0, 125.9, 125.6, 124.4, 123.6, 

122.7, 118.4, 116.6, 83.6; HRMS-FAB (m/z) [M-H]- calcd for C19H13N2, 269.1084; 

found: 269.1076. 

 

(Z)-3-([1,1'-Biphenyl]-2-ylamino)-2-phenylacrylonitrile (3fa): Light green solid 

(83 mg, 70%); 1H NMR (300 MHz, DMSO-d6)  = 8.27 (d, 

J = 13.0 Hz, 1 H), 8.00 (d, J = 13.2 Hz, 1 H), 7.58 (t, J = 

7.5 Hz, 2 H), 7.55-7.38 (m, 6 H), 7.34-7.29 (m, 4 H), 7.22 

(d, J = 7.3 Hz, 1 H), 7.19-7.11 (m, 1 H); 13C NMR (75 MHz, 

DMSO-d6)  = 143.8, 137.9, 137.4, 133.6, 131.6, 130.8, 129.1, 129.0, 128.8, 128.7, 

127.7, 125.6, 123.8, 123.4, 118.7, 117.8, 82.8; HRMS-FAB (m/z) [M-H]- calcd for 

C21H15N2, 295.1241; found: 295.1235. 

 

(Z)-3-((4-Bromophenyl)amino)-2-phenylacrylonitrile (3ga): Light yellow solid 

(116 mg, 97%); 1H NMR (300 MHz, DMSO-d6)  = 

9.77 (d, J = 12.6 Hz, 1 H), 8.07 (d, J = 12.6 Hz, 1 H), 

7.53 (d, J = 8.5 Hz, 2 H), 7.46 (d, J = 9.0 Hz, 2 H), 

7.42-7.32 (m, 4 H), 7.19 (t, J = 7.5 Hz, 1 H); 13C NMR (75 MHz, DMSO-d6)  = 

141.8, 140.6, 134.0, 131.9, 128.8, 125.8, 123.8, 118.4, 118.1, 114.0, 83.8; HRMS-

FAB (m/z) [M-H]- calcd for C15H10BrN2, 297.0033; found: 297.0021. 
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(Z)-3-((4-Chlorophenyl)amino)-2-phenylacrylonitrile (3ha):19b Light brown solid 

(88 mg, 86%); 1H NMR (300 MHz, DMSO-d6)  = 

9.79 (d, J = 12.6 Hz, 1 H), 8.08 (d, J = 12.8 Hz, 1 H), 

7.53 (d, J = 7.3 Hz, 2 H), 7.43 (d, J = 9.0 Hz, 2 H), 

7.39-7.30 (m, 4 H), 7.18 (t, J = 7.2 Hz, 1 H); 13C NMR (75 MHz, DMSO-d6)  = 

141.9, 140.2, 134.0, 129.0, 128.8, 126.1, 125.7, 123.8, 118.1, 117.9, 83.7; HRMS-

FAB (m/z) [M-H]- calcd for C15H10ClN2, 253.0538; found: 253.0535. 

 

Ethyl (Z)-4-((2-cyano-2-phenylvinyl)amino)benzoate (3ia): Light yellow solid 

(90 mg, 77%); 1H NMR (300 MHz, DMSO-d6)  

= 10.03 (d, J = 12.4 Hz, 1 H), 8.16 (d, J = 12.4 Hz, 

1 H), 7.88 (d, J = 8.9 Hz, 2 H), 7.58-7.48 (m, 4 H), 

7.38 (t, J = 7.7 Hz, 2 H), 7.22 (t, J = 7.2 Hz, 1 H), 4.28 (q, J = 7.1 Hz, 2 H), 1.31 (t, 

J = 7.1 Hz, 3 H); 13C NMR (75 MHz, DMSO-d6)  = 165.4, 145.3, 140.9, 133.7, 

130.6, 128.8, 126.2, 124.1, 123.0, 117.8, 115.6, 85.7, 60.3, 14.2; HRMS-FAB (m/z) 

[M-H]- calcd for C18H15N2O2, 291.1139; found: 291.1139. 

 

(Z)-4-((2-Cyano-2-phenylvinyl)amino)benzonitrile (3ja): Light yellow solid (74 

mg, 76%); 1H NMR (300 MHz, DMSO-d6)  = 10.07 

(d, J = 12.4 Hz, 1 H), 8.18 (d, J = 12.2 Hz, 1 H), 7.74 

(d, J = 8.7 Hz, 2 H), 7.62-7.52 (m, 4 H), 7.39 (t, J = 

7.7 Hz, 2 H), 7.23 (t, J = 7.2 Hz, 1 H); 13C NMR (75 MHz, DMSO-d6)  = 145.1, 
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140.7, 133.6, 133.4, 128.9, 126.4, 124.2, 119.3, 117.6, 116.4, 103.4, 86.5; HRMS-

FAB (m/z) [M-H]- calcd for C16H10N3, 244.0880; found: 244.0879. 

 

(Z)-2-Phenyl-3-(pyridin-3-ylamino)acrylonitrile (3ka): Light yellow solid (40 mg, 

46%); 1H NMR (300 MHz, DMSO-d6)  = 9.79 (br. s., 1 H), 

8.67 (br. s., 1 H), 8.21 (dd, J = 4.7, 1.3 Hz, 1 H), 8.15 (s, 1 

H), 7.80 (dd, J = 7.9, 2.1 Hz, 1 H), 7.54 (d, J = 7.9 Hz, 2 

H), 7.41-7.28 (m, 3 H), 7.20 (t, J = 7.2 Hz, 1 H); 13C NMR (75 MHz, DMSO-d6)  

= 143.2, 141.9, 138.8, 137.8, 133.8, 128.8, 125.9, 123.9, 123.8, 122.9, 118.0, 84.4; 

HRMS-FAB (m/z) [M-H]- calcd for C14H11N3, 220.0880; found: 220.0876. 

 

(Z)-3-((4-Methoxyphenyl)amino)-2-phenylacrylonitrile (3la):19b Light yellow 

solid (82 mg, 82%); 1H NMR (499 MHz, DMSO-

d6)  = 9.56 (br. s., 1 H), 8.00 (s, 1 H), 7.48 (d, J = 

7.8 Hz, 2 H), 7.36-7.29 (m, 4 H), 7.15 (t, J = 7.7 Hz, 

1 H), 6.90 (d, J = 9.3 Hz, 2 H), 3.73 (s, 3 H); 13C NMR (75 MHz, Acetone-d6)  = 

156.7, 143.0, 135.4, 135.3, 129.6, 126.3, 124.4, 118.7, 118.6, 115.5, 83.7, 55.7; 

HRMS-FAB (m/z) [M-H]- calcd for C16H13N2O, 249.1033; found: 249.1029. 

 

 

 



56 

(Z)-3-((2-Bromophenyl)amino)-2-phenylacrylonitrile (3ma): Light green solid 

(83 mg, 69%); 1H NMR (300 MHz, Acetone-d6)  = 8.29 

(d, J = 13.0 Hz, 1 H), 7.72 (d, J = 12.4 Hz, 1 H), 7.63 (td, 

J = 8.5, 1.4 Hz, 2 H), 7.57 (d, J = 8.3 Hz, 2 H), 7.45-7.34 

(m, 3 H), 7.24 (tt, J = 7.5, 1.9 Hz, 1 H), 7.00 (td, J = 7.7, 

1.5 Hz, 1 H); 13C NMR (75 MHz, Acetone-d6)  = 140.8, 138.6, 133.9, 133.8, 130.0, 

129.8, 127.4, 125.0, 124.7, 117.7, 116.8, 112.4, 88.5; HRMS-FAB (m/z) [M-H]- 

calcd for C15H10BrN2, 297.0033; found: 297.0019. 

 

(Z)-3-((2-Methoxyphenyl)amino)-2-phenylacrylonitrile (3na): Light yellow solid 

(91 mg, 90%); 1H NMR (300 MHz, DMSO-d6)  = 8.34 (d, 

J = 13.4 Hz, 1 H), 7.96 (d, J = 13.4 Hz, 1 H), 7.58-7.49 (m, 

3 H), 7.36 (t, J = 7.8 Hz, 2 H), 7.18 (t, J = 7.2 Hz, 1 H), 

7.10-6.92 (m, 3 H), 3.89 (s, 3 H); 13C NMR (75 MHz, 

DMSO-d6)  = 147.6, 141.5, 133.3, 129.0, 128.9, 125.7, 123.5, 123.1, 121.0, 117.9, 

115.2, 111.4, 83.8, 56.0; HRMS-FAB (m/z) [M-H]- calcd for C16H13N2O, 249.1033; 

found: 249.1029. 

 

(Z)-3-(tert-Butylamino)-2-phenylacrylonitrile (3oa): Light yellow solid (58 mg, 

73%); 1H NMR (300 MHz, DMSO-d6)  = 7.65 (d, J = 14.1 

Hz, 1 H), 7.33 (d, J = 7.3 Hz, 2 H), 7.27 (t, J = 8.1 Hz, 2 H), 

7.09-6.98 (m, 2 H), 1.30 (s, 9 H); 13C NMR (75 MHz, DMSO-
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d6)  = 146.4, 135.4, 128.7, 124.1, 122.5, 119.4, 75.9, 52.9, 29.6; HRMS-FAB (m/z) 

[M+Na]+ calcd for C13H16N2Na, 223.1206; found: 223.1210. 

 

(Z)-3-(Cyclohexylamino)-2-phenylacrylonitrile (3pa): White solid (60 mg, 66%); 

1H NMR (300 MHz, Acetone-d6)  = 7.69 (d, J = 13.6 Hz, 

1 H), 7.38-7.19 (m, 4 H), 7.05 (tt, J = 7.2, 1.3 Hz, 1 H), 

6.27 (br. s., 1 H), 3.43-3.27 (m, 1 H), 2.03-1.94 (m, 2 H), 

1.84-1.72 (m, 2 H), 1.68-1.57 (m, 1 H), 1.56-1.39 (m, 2 H), 1.39-1.26 (m, 2 H), 1.25-

1.13 (m, 1 H); 13C NMR (75 MHz, Acetone-d6)  = 149.1, 136.4, 129.5, 125.1, 123.4, 

119.5, 78.2, 58.1, 34.7, 25.9, 25.8; HRMS-FAB (m/z) [M-H]- calcd for C15H17N2, 

225.1397; found: 225.1392. 

 

(Z)-3-(octylamino)-2-phenylacrylonitrile (3qa): White solid (62 mg, 60%); 1H 

NMR (300 MHz, Acetone-d6)  = 7.64 (d, J = 13.6 Hz, 1 

H), 7.33 (d, J = 7.2 Hz, 2 H), 7.26 (t, J = 7.2 Hz, 2 H), 

7.05 (tt, J = 1.0, 7.2 Hz, 1 H), 6.47 (s, 1 H), 3.40 (q, J = 

6.8 Hz, 2 H), 1.65 (quin, J = 7.1 Hz, 2 H), 1.47-1.21 (m, 10 H), 0.98-0.81 (m, 3 H); 

13C NMR (75 MHz, Acetone-d6)  = 150.9, 136.4, 129.6, 125.1, 123.4, 119.6, 78.0, 

49.0, 32.6, 32.1, 30.0, 30.0, 27.2, 23.3, 14.4; HRMS-FAB (m/z) [M+Na]+ calcd for 

C17H24N2Na, 279.1837; found: 279.1831. 
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 (Z)-2-(Naphthalen-2-yl)-3-(p-tolylamino)acrylonitrile (3ab): Light orange solid 

(101 mg, 89%); 1H NMR (499 MHz, DMSO-d6)  

= 9.73 (d, J = 13.2 Hz, 1 H), 8.24 (d, J = 12.7 Hz, 

1 H), 7.91 (s, 1 H), 7.90-7.84 (m, 3 H), 7.79 (dd, J 

= 8.8, 2.0 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.42 (t, J = 7.6 Hz, 1 H), 7.34 (d, J = 

8.3 Hz, 2 H), 7.14 (d, J = 8.3 Hz, 2 H), 2.26 (s, 3 H); 13C NMR (75 MHz, DMSO-

d6)  = 142.7, 138.8, 133.4, 132.0, 131.5, 131.2, 129.7, 128.3, 127.5, 127.3, 126.5, 

125.1, 122.4, 121.0, 118.5, 116.5, 82.2, 20.3; HRMS-FAB (m/z) [M-H]- calcd for 

C20H15N2, 283.1241; found: 283.1241. 

 

(Z)-2-(4-Bromophenyl)-3-(p-tolylamino)acrylonitrile (3ac): Yellow solid (125 

mg, >99%); 1H NMR (499 MHz, DMSO-d6)  = 9.72 

(d, J = 12.7 Hz, 1 H), 8.11 (d, J = 13.2 Hz, 1 H), 7.51 

(d, J = 7.8 Hz, 2 H), 7.46 (d, J = 8.8 Hz, 2 H), 7.29 (d, 

J = 8.3 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 2.25 (s, 3 H); 13C NMR (75 MHz, DMSO-

d6)  = 143.0, 138.6, 133.9, 131.6, 131.5, 129.6, 125.4, 118.1, 117.8, 116.6, 80.8, 

20.3; HRMS-FAB (m/z) [M-H]- calcd for C16H12BrN2, 311.0189; found: 311.0180. 

 

(Z)-2-(4-Chlorophenyl)-3-(p-tolylamino)acrylonitrile (3ad): Light yellow solid 

(95 mg, 88%); 1H NMR (499 MHz, DMSO-d6)  = 9.71 

(d, J = 13.2 Hz, 1 H), 8.10 (d, J = 13.2 Hz, 1 H), 7.52 

(d, J = 8.8 Hz, 2 H), 7.38 (d, J = 8.8 Hz, 2 H), 7.29 (d, 

J = 8.8 Hz, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 2.25 (s, 3 H); 13C NMR (75 MHz, DMSO-
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d6)  = 143.0, 138.6, 133.4, 131.6, 129.6, 129.5, 128.6, 125.0, 118.2, 116.6, 80.8, 

20.3; HRMS-FAB (m/z) [M-H]- calcd for C16H12ClN2, 267.0694; found: 267.0689. 

 

(Z)-2-(2-Fluorophenyl)-3-(p-tolylamino)acrylonitrile (3ae): White solid (86 mg, 

86%); 1H NMR (300 MHz, DMSO-d6)  = 9.74 (d, J = 

13.0 Hz, 1 H), 7.89 (d, J = 13.0 Hz, 1 H), 7.54-7.43 (m, 

1 H), 7.32-7.16 (m, 5 H), 7.11 (d, J = 8.7 Hz, 2 H), 2.24 

(s, 3 H); 13C NMR (75 MHz, DMSO-d6)  = 158.5 (d, J = 245.4 Hz), 145.8 (d, J = 

6.5 Hz), 138.6, 131.7, 129.7, 128.4 (d, J = 2.4 Hz), 127.6 (d, J = 8.1 Hz), 124.8 (d, 

J = 3.2 Hz), 122.4 (d, J = 11.3 Hz), 118.0, 116.5, 115.9 (d, J = 21.8 Hz), 75.8, 20.2; 

HRMS-FAB (m/z) [M-H]- calcd for C16H12FN2, 251.0990; found: 251.0989. 

 

(Z)-2-(Pyridin-2-yl)-3-(p-tolylamino)acrylonitrile (3af): Light yellow solid (77 

mg, 86%); 1H NMR (300 MHz, DMSO-d6) Major 

isomer:  = 12.51 (d, J = 12.6 Hz, 1 H), 8.62 (d, J = 4.1 

Hz, 1 H), 8.28 (d, J = 12.4 Hz, 1 H), 7.87 (td, J = 7.8, 

1.7 Hz, 1 H), 7.39 (d, J = 8.3 Hz, 1 H), 7.30 (d, J = 8.3 Hz, 2 H), 7.22 (t, J = 6.2 Hz, 

1 H), 7.17 (d, J = 8.1 Hz, 2 H), 2.27 (s, 3 H); Minor isomer:  = 10.03 (d, J = 13.6 

Hz, 1 H), 8.57 (d, J = 13.8 Hz, 1 H), 8.45 (d, J = 4.7 Hz, 1 H), 7.73 (td, J = 8.5, 1.9 

Hz, 1 H), 7.43-7.36 (m, 1 H), 7.27-7.07 (m, 5 H), 2.27 (s, 3 H); 13C NMR (75 MHz, 

DMSO-d6)  = 155.0, 147.8, 145.1, 137.6, 137.2, 132.7, 130.0, 120.7, 119.9, 119.3, 

116.4, 79.7, 20.3; HRMS-FAB (m/z) [M+H]+ calcd for C15H14N3, 236.1182; found: 

236.1187. 
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Methyl (Z)-4-(1-cyano-2-(p-tolylamino)vinyl)benzoate (3ag): Light yellow solid 

(98 mg, 83%); 1H NMR (300 MHz, DMSO-d6)  

= 9.92 (d, J = 11.7 Hz, 1 H), 8.27 (d, J = 11.7 Hz, 

1 H), 7.90 (d, J = 8.7 Hz, 2 H), 7.63 (d, J = 8.5 

Hz, 2 H), 7.33 (d, J = 8.7 Hz, 2 H), 7.14 (d, J = 8.3 Hz, 2 H), 3.83 (s, 3 H), 2.26 (s, 

3 H); 13C NMR (75 MHz, DMSO-d6)  = 166.0, 144.2, 139.7, 138.4, 132.1, 129.7, 

129.7, 125.7, 123.0, 118.0, 117.0, 81.0, 51.9, 20.3; HRMS-FAB (m/z) [M-H]- calcd 

for C18H15N2O2, 291.1139; found: 291.1130. 

 

(Z)-2-(4-Methoxyphenyl)-3-(p-tolylamino)acrylonitrile (3ah): Light yellow solid 

(82 mg, 77%); 1H NMR (300 MHz, DMSO-d6)  = 

9.45 (d, J = 12.8 Hz, 1 H), 7.90 (d, J = 12.8 Hz, 1 

H), 7.41 (d, J = 8.9 Hz, 2 H), 7.24 (d, J = 8.5 Hz, 2 

H), 7.10 (d, J = 8.3 Hz, 2 H), 6.93 (d, J = 8.9 Hz, 2 

H), 3.75 (s, 3 H), 2.24 (s, 3 H); 13C NMR (75 MHz, DMSO-d6)  = 157.5, 141.1, 

139.0, 130.9, 129.6, 126.6, 125.0, 118.7, 116.1, 114.3, 82.0, 55.1, 20.2; HRMS-FAB 

(m/z) [M]+ calcd for C17H16N2O, 264.1263; found: 264.1263. 

 

tert-Butyl (Z)-(4-(1-cyano-2-(p-tolylamino)vinyl)phenyl)carbamate (3ai): Light 

yellow solid (78 mg, 56%); 1H NMR (300 MHz, 

DMSO-d6)  = 9.48 (d, J = 12.8 Hz, 1 H), 9.32 (s, 

1 H), 7.92 (d, J = 12.8 Hz, 1 H), 7.43 (d, J = 9.0 

Hz, 2 H), 7.37 (d, J = 9.0 Hz, 2 H), 7.24 (d, J = 
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8.7 Hz, 2 H), 7.10 (d, J = 8.3 Hz, 2 H), 2.25 (s, 3 H), 1.47 (s, 9 H); 13C NMR (75 

MHz, DMSO-d6)  = 152.7, 141.2, 138.9, 137.3, 131.0, 129.6, 127.9, 123.9, 118.5, 

116.2, 82.1, 79.0, 28.1, 20.2; HRMS-FAB (m/z) [M-H]- calcd for C21H22N3O2, 

348.1718; found: 348.1716. 

 

3-Oxo-2-phenylpropanenitrile (4):32 Light yellow solid (18 mg, 63%); 1H NMR 

(300 MHz, DMSO-d6)  = 12.12 (br. s., 1 H), 8.02 (s, 0.6 H), 7.72-

7.63 (m, 1.3 H), 7.46-7.30 (m, 3.1 H), 7.24 (q, J = 7.2 Hz, 1 H); 13C 

NMR (75 MHz, DMSO-d6)  = 159.5, 158.0, 132.2, 131.6, 128.9, 

128.6, 126.8, 126.6, 126.5, 124.1, 120.2, 116.8, 89.8, 89.5. 

 

4-Phenyl-1H-pyrazol-3-amine (5):19a White solid (42 mg, 66%); 1H NMR (300 

MHz, DMSO-d6)  = 11.71 (br. s., 1 H), 7.67 (s, 1 H), 7.51 (d, J = 

7.5 Hz, 2 H), 7.32 (t, J = 7.6 Hz, 2 H), 7.12 (t, J = 7.3 Hz, 1 H), 

4.80 (br. s., 2 H). 
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Chapter 3. Utilization of Methanol as a C1 Building Block 

through Transition Metal Catalysis 

 

3.1 Introduction 

Fossil fuels such as petroleum, coal, and natural gas play vital roles in industry as 

energy sources as well as raw materials. As the global depletion of fossil fuels 

approaches, the search for nontoxic, inexpensive, and renewable feedstocks has 

become a significant issue for green and sustainable chemistry. 

Methanol, which is the simplest alcohol and a commonly used organic solvent, 

is emerging as a potentially renewable resource.1 Methanol is already used not only 

as an energy source in applications such as gasoline blending, propane replacement 

by dimethyl ether (DME) in liquid petroleum gas (LPG), and biodiesel, but also as a 

chemical feedstock for formaldehyde, methanol-to-olefin (MTO) routes, and acetic 

acid.2 The use of methanol as a hydrogen storage medium has also been suggested.3 

Although methanol is currently produced mainly from syngas in industry,4 the 

development of methods to produce methanol via the reduction of carbon dioxide5 

and biomass conversion6 is expected to result in a “methanol economy”.7 Due to the 

increasing applications of methanol, global methanol demand reached 75 million 

metric tons in 2015 and continues to grow.2 

As importance of methanol increases, the direct utilization of methanol has been 

extensively investigated.8 In particular, the dehydrogenative activation of methanol 

has attracted great attention based on its green nature and economic advantages over 
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traditional methods. In this chapter, the concept of alcohol dehydrogenation in 

homogeneous catalytic systems and its development are briefly reviewed. Then, its 

application to methanol is illustrated and discussed; a number of seminal examples 

of methanol dehydrogenation are categorized according to the nucleophile used. The 

utilization of methanol via radical pathways is also discussed. 

 

 

3.2 Dehydrogenative activation of alcohols 

3.2.1 Traditional reactivity of alcohols 

Alcohols are one of the most abundant and fundamental building blocks in organic 

chemistry. They are widely found in nature, and the hydroxyl group can be easily 

introduced synthetically via the oxidation or hydration of substrates. Thus, the 

utilization of alcohols in the synthesis of complex molecules and the transformation 

of the hydroxyl group into other functional groups have been extensively studied. 

Understandably, the traditional reactivity of alcohols originates from the 

electron rich oxygen atom. The alcohol itself or its deprotonated form reacts with an 

electrophile to assemble an ether with a new C–O bond (Scheme 3.1A). When a 

strong acid is treated with an alcohol, the protonated hydroxyl group acts as a leaving 

group, thereby generating an olefin via elimination (Scheme 3.1B). The attack of an 

alcohol on reagents such as phosphorous trihalide (PX3; X = Cl, Br, and I), thionyl 

chloride (SOCl2), and tosyl chloride (TsCl) results in an alkyl (pseudo)halide 

(Scheme 3.1C). When an alcohol instead attacks an oxidant such as chromium(VI) 

trioxide (CrO3), pyridinium chlorochromate (PCC), or Dess-Martin periodinane 
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(DMP), an aldehyde, ketone, or carboxylic acid is generated (Scheme 3.1D). After 

functional group conversion, the resulting olefins, alkyl (pseudo)halides, and 

carbonyl compounds can also take part in the construction of new C–C bonds or C–

heteroatom bonds via additional steps. 

 

 

Scheme 3.1 Traditional reactivity of alcohols 

 

 

These traditional methods are quite efficient, and are extensively utilized in 

contemporary organic synthesis. However, they usually require harsh reaction 

conditions (strong acid or base, high temperature) or a stoichiometric amount of the 

reagents, which results in the generation of large quantities of toxic chemical wastes. 

In recent decades, green chemistry has become an important issue for a sustainable 
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future.9 The term “green chemistry” was defined in a 1988 book by P. T. Anastas 

and J. C. Warner as “the utilization of a set of principles that reduces or eliminates 

the use or generation of hazardous substances in the design, manufacture, and 

application of chemical products.”10 Naturally, the development of catalytic 

reactions for alcohol activation is highly desirable in order to develop atom- and 

step-economic reactions that prevent the generation of equivalents of toxic wastes. 

 

 

3.2.2 Basic concepts and mechanistic aspects of transition-metal-catalyzed 

dehydrogenation 

The transition-metal-catalyzed dehydrogenation of alcohol has been extensively 

studied as a greener approach.11 Owing to energetically uphill character of alcohol 

dehydrogenation,12 sacrificial hydrogen acceptors were required to alleviate the 

thermodynamic demand in early examples of these reactions (Scheme 3.2A). In 1937, 

R. V. Oppenauer first presented this concept using a catalytic amount of aluminum 

tert-butoxide in the presence of acetone; this is the so-called Oppenauer oxidation.13 

Acetone could be replaced by other ketones or the internal carbonyl functional group 

of a reactant.14 Although the resulting 2-propanol has low toxicity, the use of a 

sacrificial hydrogen acceptor still produces a stoichiometric amount of the byproduct. 

In contrast, acceptorless dehydrogenation produces molecular hydrogen as the sole 

byproduct, thereby achieving the maximum theoretical atom-economy (Scheme 

3.2B). Additionally, hydrogen is an environmentally-friendly, efficient, and safe 

energy source. Acceptorless dehydrogenation technology can be further utilized in 



70 

hydrogen gas storage. Despite these benefits, an efficient catalytic system for 

acceptorless dehydrogenation was not developed until the 1960s due to the 

thermodynamic hurdle. The first example was reported by H. B. Charman in 1970.15 

In the presence of rhodium-tin chloride complexes, isopropanol could be oxidized to 

acetone, accompanied by the production of hydrogen gas. 

Currently, dehydrogenative alcohol activation can be performed by the 

inexpensive and abundant first-row transition metals manganese, iron, and cobalt,11c-

e as well as by the precious transition metals ruthenium, rhodium, and iridium.11a,11b 

 

 

 

Scheme 3.2 Transition-metal-catalyzed dehydrogenative alcohol activation 

 

 

The Oppenauer oxidation and its reverse reaction, the Meerwein-Ponndorf-

Verley (MPV) reduction, were proposed to involve a six-membered ring transition 

state (Scheme 3.3A).16 However, mechanistic studies suggested that hydridic metal 
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complexes were involved in transition-metal-catalyzed dehydrogenation and its 

reverse reaction, hydrogenation.17 The suggested metal hydride complexes were 

directly isolated, and the effect of the base in promoting the catalysis was observed. 

Mechanisms involving hydridic complexes can be grouped into two main categories: 

1) the monohydride mechanism (Scheme 3.3B; although the inner-sphere 

mechanism is depicted here, an outer-sphere mechanism is also possible) and 2) the 

dihydride mechanism (Scheme 3.3C). 

 

 

Scheme 3.3 Mechanisms of dehydrogenation reactions 

 

Differentiation between the monohydride mechanism and the dihydride 

mechanism can be achieved via the racemization of an α-deuterated chiral alcohol 

(Scheme 3.4).18 Unlike in the monohydride system, which discriminates between the 

the hydride and the proton during the racemization process (Scheme 3.4A), the 
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identities of the hydride and the proton are not retained during the generation of 

dihydride metal complexes in the dihydride system (Scheme 3.4B). Hence, 

deuterium content approximately 50% of the initial value should be observed after 

the full racemization of an α-deuterated chiral alcohol if the dihydride mechanism is 

involved. J.–E. Bäckvall and co-workers carried out racemization reactions of an α-

deuterated phenylethanol using various catalysts (Scheme 3.4C; selected examples 

are shown). As a result, they found that rhodium and iridium catalysts follow the 

monohydride mechanism, while the mechanism of the ruthenium catalysts depends 

on the ligand system of the specific ruthenium complex. 

 

 

 

 

Scheme 3.4 Differentiation between the monohydride mechanism and the dihydride 

mechanism through the racemization of α-deuterated phenylethanol 
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The monohydride mechanism can occur in two ways: 1) via an inner-sphere 

mechanism consisting of sequential alkoxide binding and β-hydride elimination 

(Scheme 3.5A) and 2) via an outer-sphere mechanism with the aid of the ligands 

(Scheme 3.5B).17 The latter was neatly discovered and described by R. Noyori and 

co-workers during their pioneering work in asymmetric hydrogenation (Scheme 

3.5C).19 They found that complexes of the type [(η6-p-cymene)Ru(chiral diamine)] 

are quite efficient for the enantioselective hydrogenation of aryl alkyl ketones with 

(1S,2S)-N-tosyl-1,2-diphenylethylenediamine [(S,S)-Ts-DPEN]. When [(S,S)-Ts-

DPEN] was replaced by ligands bearing NH2 such as 2-aminoethanol, the catalysts 

were still active for hydrogenation and dehydrogenation. However, ruthenium 

complexes derived from N,N-dimethylated diamine were totally inactive for the 

reaction.20 Furthermore, (η6-arene)RuH(diamine) was shown to be active for the 

hydrogenation, even though it has no vacant site for ketone binding. Hence, they 

suggested that the NH bond of the bound diamine ligand forms a hydrogen bond 

with the oxygen atom of ketone in the outer-sphere type six-membered ring 

transition state. Based on this observation, they coined the term “bifunctional 

metal/ligand catalyst”. Today, this is a well-accepted concept, and is also known as 

metal-ligand cooperation (MLC).21 Several representative 

dehydrogenation/hydrogenation catalysts, such as the Milstein catalyst,21a Ru-

MACHO,21b and the Shvo catalyst17,22 are known to operate via MLC (Scheme 3.5D; 

active forms are shown). 
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Scheme 3.5 Classification of the monohydride mechanism and metal-ligand 

cooperation (MLC) 
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3.2.3 Synthetic applications of catalytic alcohol dehydrogenation 

Based on the alcohol dehydrogenation strategy described above, extremely versatile 

reaction methods have been developed by changing the reaction components, i.e., 

the alcohol, catalyst, and coupling partner. However, all of these reactions were 

designed using the combination of hydrogen transfer and acceptorless 

dehydrogenation (Scheme 3.2). Two representative examples are discussed below. 

In 2007, D. Milstein and co-workers reported a groundbreaking work in the 

intermolecular synthesis of an amide from an alcohol and an amine (Scheme 3.6).23 

They utilized 0.1 mol% of a pyridine-based pincer ruthenium catalyst, which follows 

a MLC mechanism involving aromatization-dearomatization of the pyridine ring 

(Scheme 3.5D); no additional base or hydrogen acceptor was required. The 

acceptorless dehydrogenation of the primary alcohol occurs to produce an aldehyde. 

After the formation of a hemiaminal from the aldehyde and amine, additional 

dehydrogenation furnishes the amide. 

 

Scheme 3.6 Catalytic amide synthesis from an alcohol and an amine 
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The α-alkylation of a ketone with an alcohol as the alkylating reagent was 

reported by M. Yus and co-workers in 2006 (Scheme 3.7).24 Although the substrate 

scope was limited to acetophenone and benzylalcohol, a simple ruthenium complex, 

[RuCl2(DMSO)4] was successfully applied in borrowing hydrogen strategy without 

additional ligands. The benzyl alcohol is oxidized to a benzaldehyde, while the 

acetophenone is converted to an enolate under basic conditions. The enone generated 

from the benzaldehyde and the enolate is finally reduced to form an α-alkylated 

ketone. During this process, the hydrogen removed from the benzyl alcohol is 

transferred to the enone by the ruthenium catalyst. 

 

Scheme 3.7 α-Alkylation of a ketone with an alcohol as the alkylating reagent 

 

In addition to the examples described above, there are diverse examples of 

adaptations of transition-metal-catalyzed dehydrogenative alcohol activation:11 the 

synthesis of amides from an alcohol and an azide25 or from an alcohol and a nitrile,26 

lactone synthesis,27 lactam synthesis,28 imide synthesis,29 imine synthesis,30 N-

alkylation of amine,31 C-α-alkylation of ketones,32 and others. 
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3.3 Dehydrogenative activation of methanol 

Although methanol is also an alcohol, only limited examples of its dehydrogenation 

have been reported, in striking contrast to higher alcohols.8,33 This is due to its higher 

thermodynamic requirements for dehydrogenation compared to higher alcohols 

(dehydrogenation of ethanol: ΔH = +68 kJ mol-1 vs ΔH = +84 kJ mol-1 for 

methanol)33a and catalyst deactivation by the carbon monoxide generated from 

methanol dehydrogenation.34 Synthetic applications of the dehydrogenative 

activation of methanol up to the present time are discussed in this section. 

 

 

3.3.1 Methanol utilization with carbon nucleophile 

The construction of C–C bonds is always important issue in organic chemistry. Not 

surprisingly, there are several Nobel Prize winning reactions for the formation of C–

C bonds, such as the Grignard reaction and Suzuki coupling. In particular, C-

methylation is not only helpful for building organic molecules, but is also effective 

in some bioactive molecules owing to the “the magic methyl effect” originating from 

hydrophobic interactions.35 The general reaction pathway for dehydrogenative 

methanol utilization with a carbon nucleophile is outlined in Scheme 3.8. Initially, 

methanol is transformed to formaldehyde via dehydrogenation, followed by the 

addition of a soft carbon nucleophile (stabilized carbanion). The resulting primary 

alcohol usually undergoes dehydration due to the stabilization of the resulting olefin 

intermediate by an electron withdrawing group. Subsequent hydrogenation produces 

the α-methylated product. When the β-position of the primary alcohol intermediate 
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is a quaternary center, dehydration is impossible, and the hydroxymethylated product 

is afforded. If the olefin intermediate from dehydration is captured by another 

nucleophile, the methanol can serve as a methylene group. 

 

 

Scheme 3.8 General reaction pathway of dehydrogenative methanol utilization with 

a carbon nucleophile 

 

Traditionally, the α-methylation of ketones was performed with diazomethane 

or iodomethane, which are explosive or toxic. Hence, the development of 

economical and non-toxic reaction conditions for α-methylation of ketone was 

required. A dehydrogenative approach was first achieved by T. J. Donohoe and co-

workers in 2014 (Scheme 3.9A).33c [Cp*RhCl2]2 was used in the presence of 5 

equivalents of cesium carbonate for the enolization of the ketone. By utilizing an 

oxygen atmosphere as the hydrogen acceptor, the reaction proceeds at a mild 

temperature (65 ºC). 

A year later, the same group found that the olefin intermediate can be captured 

by a second nucleophile under similar reaction conditions (Scheme 3.9B).33d The use 

of an iridium catalyst, [Ir(cod)Cl]2, with a lower catalyst loading and a sterically 
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bulky ligand (Ad2PBu; cataCXium A) enabled the reaction to be stopped at the 

intermediate mixture consisting of olefin and its methoxylated compound. After the 

addition of a metal scavenger resin (SiliaMetS DMT), the intermediate mixture can 

be captured by several nucleophiles, such as nitroalkane and ketone, in the presence 

of a base. Epoxidation with tert-butyl hydroperoxide (t-BuOOH) and benzylation 

with a boron reagent were also reported. 

P. G. Anderson and co-workers found that an iridium complex with an N-

heterocyclic carbene (Ir-NHC) can catalyze the α-methylation of ketone in the 

absence of a hydrogen acceptor.36 The A. M. Seayad group37 and Y. Obora group38 

reported catalytic system using a substoichiometric amount of a base with ruthenium 

and iridium complexes, respectively. Applying a similar strategy using a ketone, C. 

Cai and co-workers developed a [Cp*IrCl2]2 catalyzed 3-methylation of indole with 

methanol.39 

 

 

Scheme 3.9 α-Methylation of a ketone with methanol under an oxygen atmosphere 
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M. Beller and co-workers reported the β-methylation of alcohol with methanol 

(Scheme 3.10).33h Although 2-arylethanol does not contain an acidic C–H bond, the 

aldehyde generated in situ from the alcohol participates in the reaction. The α-

methylated aldehyde is then reduced to a β-methylated alcohol. Interestingly, two 

kinds of ruthenium catalyst, Ru-MACHO and the Shvo catalyst, should be used for 

better activity, even though the reaction proceeds with only one of these catalysts. 

 

 

Scheme 3.10 β-Methylation of an alcohol with methanol 

 

The hydroxymethylation of an aliphatic carbon center via dehydrogenative 

methanol activation had not been reported due to the facile dehydration step (see 

Scheme 3.8). M. J. Krische and co-workers solved this problem through the 

hydrofunctionalization of a 1,1-disubstituted allene (Scheme 3.11).40 At the 

beginning of the reaction, the complex DPPF-I dehydrogenates methanol to form 

formaldehyde and iridium hydride. The subsequent hydrometalation of the allene 

affords the allyl iridium complex. The allyl ligand of the iridium complex attacks 

formaldehyde, and an alcohol with a β-quaternary carbon center, which cannot 
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undergo dehydration, is obtained. They also achieved an enantioselective version of 

this reaction with a 1,1-disubstituted CF3-allene by using an iridium precursor and 

chiral diphosphine ligand.41 

 

Scheme 3.11 Hydroxymethyl group installation of an allene with methanol 

 

 

3.3.2 Methanol utilization with nitrogen nucleophile 

Amines are one of the most easily accessible classes of nucleophiles in organic 

chemistry. Accordingly, many reactions between amines and methanol have been 

developed. They are largely divided into N-methylation and N-formylation reactions 

(Scheme 3.12). First, methanol is transformed into formaldehyde by the 

dehydrogenation catalyst. When the amine attacks the formaldehyde, a hemiaminal 

intermediate is generated. This intermediate is common to both transformations, and 
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can undergo either dehydrogenation or dehydration. If further dehydrogenation is 

facilitated, N-formylation occurs, while dehydrogenation affords the imine, which is 

reduced to the N-methylated product. Depending on the reaction conditions, the N-

formylated product, formamide, can act as an electrophile, whereas the N-methylated 

product can take part in a second N-methylation or N-formylation. 

 

Scheme 3.12 General reaction pathway for dehydrogenative methanol utilization 

with a nitrogen nucleophile 

 

N-formylation is a basic transformation, and is also known to play an important 

role in post-translational regulation steps and protein biosynthesis.42 In traditional 

methods, a stoichiometric amount of the formylating reagent (ethyl formate, formic 

acid, or formamide) is used, which produces the corresponding number of 

equivalents of the byproducts. F. Glorius and co-workers utilized methanol as an N-

formylating reagent for amines (Scheme 3.13A).33f The use of the bis-NHC 

ruthenium complex generated in situ from N,N′-dicyclohexylimidazolium chloride 

(ICy•HCl), potassium tert-butoxide (KOt-Bu), and [Ru(cod)(2-methylallyl)2] as the 

active catalyst was suggested. The use of methanol in solvent quantity was not 
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required, but styrene was required as a hydrogen acceptor, resulting in equivalents 

of ethylbenzene being produced as a byproduct. S. H. Hong and co-worker solved 

this problem by using a mono-NHC ruthenium complex, [RuH2(CO)(PPh3)2(IiPr)] 

(Scheme 3.13B).33m In addition, nitriles can be N-formylated under similar reaction 

conditions after in situ reduction to an amine. 

 

Scheme 3.13 N-formylation of amines and nitriles with methanol 

 

Non-precious transition-metal-catalyzed N-formylation reactions have recently 

been reported. The D. W. C. Milstein group43 and the W. Bernskoetter group44 

developed manganese- and iron-catalyzed N-formylation of amines, respectively. 

The further reaction of in situ produced formamide was explored by the S. H. 

Hong group. They demonstrated the synthesis of urea from an amine and methanol 

(Scheme 3.14).33n The formamide synthesized from the amine and methanol is 

attacked by another molecule of the amine to form the hemiaminal analogue, 

followed by dehydrogenation to give urea. Classical urea synthesis employs toxic 
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reagents such as phosgene or carbon monoxide. Alternatively, an isocyanate 

intermediate can be utilized, but this requires the use of expensive dehydrating 

reagents such as di-tert-butyl azodicarboxylate (DBAD) in stoichiometric amounts, 

limiting the utility of these methods. The developed reaction proceeds with Ru-

MACHO-BH catalyst in the absence of bases or additives, and hydrogen gas is the 

only byproduct. Asymmetric urea can also be synthesized via a one-pot two-step 

strategy. 

 

Scheme 3.14 Urea synthesis from an amine and methanol 

 

In addition to C-methylation, the N-methylation of amines also has great 

biological significance. N-methylation not only plays a crucial role in epigenetics, 

being involved in DNA methylation and protein modification,45 but also results in a 

dramatic change in the biological activity of medicinal compounds.46 The first 

example of the N-methylation of an amine with methanol was reported by R. Grigg 

and co-workers.47 Although only few amines were tested at long reaction times, 

methanol can be used as a methyl source in the presence of the catalyst RhH(PPh3)4. 

A practical homogenous catalytic system was developed by the A. M. Seayad group 

(Scheme 3.15).48 With the aid of the [RuCp*Cl2]2 complex and the diphosphine 

ligand dpePhos, methanol was transformed into a methyl group bonded to a nitrogen 
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atom. It is noteworthy that aryl amines and sulfonamides undergo monomethylation, 

whereas aliphatic amines undergo dimethylation. This trend can be explained by 

their nucleophilicity and sterics. In contrast to secondary aryl amines, secondary 

aliphatic amines are more strongly nucleophilic. Their strong nucleophilicity can 

overcome the steric hindrance to allow the further second methylation reaction. 

 

Scheme 3.15 Monomethylation of aryl amines and dimethylation of aliphatic amines 

with methanol 

 

This trend was repeatedly observed in other catalytic systems.49 Recently, S. H. 

Hong and co-worker accomplished the monomethylation of an aliphatic amine 

through the addition of hydrogen gas and careful adjustment of the reaction 

conditions (Scheme 3.16).50 The additional hydrogen pressure suppressed the 

undesired N-formylation reaction and facilitated the desired N-methylation reaction. 

Further reaction could be prevented by lowering the temperature and modulating the 

reaction time. The developed reaction conditions were applicable to biologically 

relevant compounds. 
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Methanol can serve as a –CH– source when an imine intermediate is captured 

by another nucleophile during the N-methylation mechanism. F. Li and co-workers 

realized this concept with o-aminobenzamides by using the metal-ligand 

bifunctional catalyst [Cp*Ir(2,2′-bpyO)(H2O)] (Scheme 3.17).51 The reaction 

proceeded well regardless of the electronic properties of the starting material, and 

higher alcohols could also be incorporated in the molecule. 

 

Scheme 3.16 Monomethylation of aryl amines and dimethylation of aliphatic amines 

with methanol in the same catalytic system 

 

 

Scheme 3.17 Construction of quinazolinone with methanol as a –CH– source 
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3.4 Methanol utilization via radical pathway 

Dehydrogenative activation essentially allows methanol act as an electrophilic 

carbon source. Hence, its coupling partners are limited to nucleophiles such as 

stabilized carbanions and amines. Open-shell systems have expanded the range of 

coupling partners for methanol. Unfortunately, the bond dissociation energy (BDE) 

of the α-C–H bond of methanol (96 kcal/mol)52 is far higher than those of activated 

C–H bonds, such as the α-C–H bonds of ketones, allylic C–H bonds, acyl C–H bonds, 

and benzyl C–H bonds (~88 kcal/mol).53 Thus, there are only limited examples of 

the utilization of methanol via radical pathways;53-54 more examples can be found for 

higher alcohols,53,54b-d,55 which have a BDE of 92 kcal/mol for the α-C–H bond.53 

In 2008, O. Porta and co-workers developed a radical version of the Mannich 

reaction (Scheme 3.18A).54a Unlike in the typical Mannich reaction, which employs 

a nucleophile, a hydroxymethyl radical is added to the in situ generated iminium 

cation. The tert-butoxy radical, which is produced from a Ti(III) species and tert-

butyl hydroperoxide (TBHP), abstracts the α-C–H bond of methanol to form a 

hydroxymethyl radical. In the decarboxylative alkenylation of methanol reported by 

Z.–Q. Liu and co-workers, the hydroxymethyl radicals undergo addition to a 

copper(II) cinnamate intermediate (Scheme 3.18B).54b After liberating carbon 

dioxide and a copper(I) species, the desired compound is obtained. Y. R. Lee and 

co-workers proposed that formaldehyde might be generated from methanol through 

double oxidation in their oxidative coupling reaction between methanol and 1,4-

dihydroxynaphthalene (Scheme 3.18C).54c These examples successfully utilized 

methanol via a radical pathway, affording products that are difficult to access via 

dehydrogenative activation due to the necessity for an electrophilic coupling partner. 
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However, these methods required a stoichiometric amount of peroxide and a solvent 

amount of methanol. 

 

 

Scheme 3.18 Utilization of methanol via a radical pathway with stoichiometric 

amounts of the oxidants 

 

In 2005, D. W. C. MacMillan and co-workers neatly solved this problem 

through dual catalysis using a photocatalyst and an organocatalyst (Scheme 

3.19A).54d The organocatalyst, ethyl-2-mercaptopropionate, is oxidized by the 

photocatalyst to form a thiyl radical. Polarity-reversal catalysis (PRC) enables facile 

hydrogen abstraction from the α-position of methanol by the thiyl radical.56 The 

resulting hydroxymethyl radical undergoes Minisci-type addition to the pyridinium 
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ion. Through successive deprotonation, spin-center shift (SCS),57 and reduction by 

the photocatalyst, ortho-methylated pyridine derivatives are obtained. In the same 

year, methanol activation was further developed by the addition of quinuclidine as 

an organocatalyst and ammonium phosphate salt (Scheme 3.19B).53 Hydrogen 

bonding between the salt and methanol weakens the α-C–H bond of methanol, 

allowing it to be more easily and selectively activated by the quinuclidine radical 

cation. Using this strategy, lactam was synthesized from methyl acrylate and 

methanol. 

 

Scheme 3.19 Utilization of methanol via a radical pathway through dual catalysis 

with a photocatalyst and organocatalyst 
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3.5 Conclusion 

Over the past decades, the dehydrogenation of alcohols has been extensively studied 

and applied in many synthetic methods. Several mechanistic issues, including 

mono/dihydride species, inner/outer-sphere mechanisms, and metal-ligand 

cooperation, have been addressed and utilized in the catalyst design. The basic 

principles of the dehydrogenative activation of higher alcohols can be adapted well 

to methanol, despite its challenging thermodynamic requirements. 

However, considerable scope still remains for the further use of methanol 

dehydrogenation chemistry in synthetic applications. For example, few selective 

multi-component reactions in the presence of different nucleophiles have been 

studied. The development of efficient, robust, selective, tolerant, and inexpensive 

catalysts and reaction conditions is still highly desirable. 

Approaches involving the generation of open shell intermediates from methanol 

have allowed non-nucleophilic coupling partners to be employed; however, only a 

handful examples have been reported. Thus, the application of radical methods to 

more diverse coupling partners is another remaining challenge. 
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Chapter 4. Ruthenium-Catalyzed Aminomethylation and 

Methylation of Phenol Derivatives Utilizing Methanol as the 

C1 Source* 
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4.1 Introduction 

Since the Fridel-Crafts reactions were discovered,1 a number of phenol 

functionalization methods have been extensively developed. Among those 

transformations, preparation of ortho-aminomethylated phenol structure, which can 

be found in various compounds such as pharmaceuticals2 and ligands for transition 

metals,3 is one of the most important types of phenol functionalization. Classically, 

this structure could be obtained by utilizing Eschenmoser’s salt as a common 

intermediate,4 but unfortunately, stoichiometric amounts of reactive species such as 

pre-generated salt itself, N-oxide, or BrCCl3 are required for the reaction to proceed 

(Scheme 4.1). 

In pursuit of environmentally benign synthesis5 without pre-activation of 

substrates,6 we designed a catalytic ortho-aminomethylation of phenol utilizing 

methanol as the methylation source. Methanol has emerged as a potential renewable 

resource7 as the development of CO2 reduction8 and biomass conversion chemistry.9 

In the utilization of methanol as a C1 source, a commonly used strategy is in situ 

generation of formaldehyde via dehydrogenative activation of methanol. The 

formaldehyde intermediate generated, which acts as an electrophile, can be 

transformed to a hydroxymethyl group through nucleophilic attack.10 Further 

dehydrogenation could afford compounds containing carbonyl groups.11 If 

dehydration is facilitated rather than dehydrogenation, an X=CH2 (X = CR2, NR, 

NR2
+) type intermediate is formed, which could be further converted to a methyl 12 

or methylene group.13  
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Scheme 4.1 Classical and developed synthetic methods for ortho-aminomethylation 

of phenol derivatives 
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In this context, we envisioned that ortho-aminomethylation of phenol can be 

achieved by using methanol and an amine through an activated intermediate such as 

an iminium cation formed by successive dehydrogenation and dehydration 

reactions.14 Formaldehyde generated in situ from methanol can be captured by two 

nucleophiles, phenol and the amine. Reactions between nucleophiles and 

formaldehyde often suffer from unwanted side reactions such as dimerization or 

oligomerization through bridging methylene groups.13b,15 In this case, the desired 3-

component reaction was successfully controlled without significant formation of 

possible side products such as 2,2’-methylenediphenol. Recently developed 

hydroaminomethylation and dehydrogenation sequence can also be considered as a 

possible reaction pathway for this transformation.16  In the case of naphthol, we 

observed methylation instead of aminomethylation. Only a few methods were 

reported for catalytic methylation of naphthol with methanol using heterogeneous 

catalyst under harsh reaction conditions (≥ 200 ºC).17 Plausible intermediates and 

reaction pathways were proposed for each reaction on the basis of the mechanistic 

studies. 
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4.2 Results and discussion 

4.2.1 Optimization for the ortho-aminomethylation of phenol 

We began our study on the ortho-aminomethylation of phenol with in situ generated 

(IiPr)RuH2(CO)(PPh3)2, which was used as a dehydrogenation catalyst in our 

previous report.18 In the initial attempt, 4a was obtained in 8% yield (Table 4.1, entry 

1). N-methyl-N-benzylformamide (7) was observed as the major byproduct. Various 

dehydrogenation catalysts were then tested (Table 4.1, entries 2–9). The iridium 

complex, which is highly active for the dehydrogenation of alcohols, did not afford 

the desired product,19 while Milstein catalyst14f and Shvo’s catalyst20 did not catalyze 

the reaction at all (Table 4.1, entries 2–4). Ru(acac)3 catalyst with triphos ligand 

system21 gave 49% yield (Table 4.1, entry 8). Among the catalyst tested, Ru-

MACHO-BH exhibited the highest efficiency (Table 4.1, entry 9). When increased 

equivalents of the amine and elevated temperature were used, 78% of 4a could be 

obtained (Table 4.1, entry 10). The developed reaction showed exclusive ortho-

selectivity, no other regioisomer being formed. Other tested solvents did not show 

better reactivity than toluene (Table 4.1, entries 11–14). We also confirmed that the 

reaction was tolerant to moisture (Table 4.1, entry 15). Lowered temperature gave a 

moderate yield of 4a (Table 4.1, entry 16). The reaction under air exhibited lower 

efficiency (Table 4.1, entry 17). 
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Table 4.1 Optimization of the reaction conditions[a]  

 

Entry [M] Base Solvent Yield[b] 

(%) 1 RuH2(CO)(PPh3)3 / IiPr∙HBr 2 NaH Toluene 8 

2 [Cp*IrCl2]2 NaOAc Toluene 0 

3 Milstein catalyst - Toluene 0 

4 Shvo’s catalyst - Toluene 0 

5 [Ru(p-cymene)Cl]2 / 2 dppb KOt-Bu Toluene 5 

6 RuH2(PPh3)4 - Toluene 5 

7 RuHCl(CO)(PPh3)4 KOt-Bu Toluene 10 

8 Ru(acac)3 / 2 triphos - THF 49 

9 Ru-MACHO-BH - Toluene 61 

10[c] Ru-MACHO-BH - Toluene 78 

11[c] Ru-MACHO-BH - THF 65 

12[c] Ru-MACHO-BH - DCE 0 
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13[c] Ru-MACHO-BH - MeCN 0 

14[c] Ru-MACHO-BH - neat 46 

15[c],[d] Ru-MACHO-BH - Toluene 72 

16[e] Ru-MACHO-BH - Toluene 56 

17[c],[f] Ru-MACHO-BH - Toluene 37 

[a] Reaction conditions: 1a (0.50 mmol, 1.0 equiv.), 2 (2.50 mmol, 5.0 equiv.), 3a (0.50 

mmol, 1.0 equiv.), [M] (0.01 mmol per metal center, 2 mol%), base (0.01 mmol, 2 mol%), 

140 °C, 20 h in toluene (1.0 mL, 0.5 M), in a sealed tube. IiPr∙HBr = 1,3-

diisopropylimidazolium bromide. [b] Yields were determined by 1H NMR with CH3NO2 as 

an internal standard. [c] 2.0 equiv. of 3a were used. 150 °C. [d] 1.0 equiv. of H2O was added. 
[e] 2.0 equiv. of 3a were used. 130 °C. [f] Under air. 
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4.2.2 Substrate scope for the ortho-aminomethylation of phenol 

The substrate scope was subsequently explored (Table 4.2). Electron-rich phenols as 

well as a conjugated phenol smoothly participate in the developed reaction (4b–4e). 

The reaction efficiency was not significantly affected by halide substituents on 

phenol (4f–4h). The ortho-aminomethylated product of ortho-substituted phenol 

could also be obtained in a moderate yield (4i). When anisole was employed as a 

substrate, the desired transformation was not observed, indicating that deprotonation 

of the acidic proton by the amine is an important step in the reaction. The reactions 

involving various acyclic secondary amines were also efficient (4j–4l). 

Unfortunately, when the steric hindrance of the amine was increased, the desired 

product was not observed (4m). Diverse cyclic secondary amines were tested from 

5- to 7-membered rings (4n–4t). Regardless of the ring size, good yields of the 

desired products were obtained. When a primary amine was employed, poor 

reactivity was observed (4u). The formation of the imine rather than the iminium 

cation might be the reason for this observation, which could be attributed to the low 

electrophilicity of the former (Scheme 4.5). In low yielding cases such as 4h, 4s, 4u, 

poor conversion of starting materials was observed. 
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Table 4.2 Scope of ortho-aminomethylation reaction[a] 
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[a] Reaction conditions: 1 (0.50 mmol, 1.0 equiv.), 2 (2.50 mmol, 5.0 equiv.), 3 (1.0 mmol, 

2.0 equiv.), Ru-MACHO-BH (0.01 mmol, 2 mol%), 150 °C, 20 h in toluene (1.0 mL, 0.5 

M), in a sealed tube. N. D. = Not determined. Isolated yields reported. [b] 44 h. [c] 15 mol% 

of NaOMe were added. [d] 5 mol% of catalyst was used. [e] 4 equiv. of amine were used. 

 

 

 

 

 

4.2.3 Optimization for the methylation of naphthol 

Interestingly, when similar reaction conditions were applied to 2-naphthol, 1-

methyl-2-naphthol (6a) was obtained almost quantitatively, with the production of 7 

from 3a (Table 4.3, entry 2). The reaction without methanol did not give 6a (Table 

4.3, entry 3). This result implies that methanol, rather than 3a, is the methyl source 

for the product. The yield significantly dropped when a reduced temperature was 

applied (Table 4.3, entry 4). Surprisingly, 3a showed superior efficiency compared 

to other inorganic bases (Table 4.3, entries 5–7). When the more economical 

pyrrolidine was introduced as a base, a quantitative yield was obtained, while the 

tertiary amine showed no reactivity (Table 4.3, entries 8 and 10). Substoichiometric 

amounts of pyrrolidine gave a reasonable, but slightly decreased, yield of the product 

(Table 4.3, entry 11).  
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Table 4.3 Effect of base on methylation of 2-naphthol[a] 

 

Entry Base Yield[b] (%) 

1[c] BnMeNH (3a) 24 

2 BnMeNH (3a) 98 

3[d] BnMeNH (3a) 0 

4[e] BnMeNH (3a) 39 

5 K2CO3 0 

6 KOH 8 

7 NaHCO3 16 

8 DIPEA 0 

9 Hexamethyleneimin

e 

49 

10[f] pyrrolidine >99 

11[g] pyrrolidine 92 

[a] Reaction conditions: 5a (0.50 mmol, 1.0 equiv.), 2 (2.50 mmol, 5.0 equiv.), Ru(acac)3 

(0.01 mmol, 2 mol%), triphos (0.02 mmol, 4 mol%), base (1.00 mmol, 2.0 equiv.), 150 °C, 

20 h in THF (1.0 mL, 0.5 M), in a sealed tube. [b] Yields were determined by 1H NMR with 

CH3NO2 as an internal standard. [c] Ru-MACHO-BH (2 mol%) and toluene (1.0 mL, 0.5 M) 

were used instead of Ru(acac)3, triphos, and THF. [d] 2 was not added. [e] 140 °C. [f] 1.0 

equiv. of amine and 4.0 equiv. of 2 were used. [g] 0.5 equiv. of amine and 4.0 equiv. of 2 

were used. 
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4.2.4 Substrate scope for the methylation of naphthol 

We then investigated the substrate scope for the methylation of 2-naphthol (Table 

4.4). Biaryl substrates with various kinds of substituents gave good yields of the 

desired products (6b–6e). When 1-naphthol was employed with increased amount of 

2, a moderate yield of the dimethylated product was obtained (6f). Compared to the 

previous catalytic methods utilizing methanol for the methylation of naphthols, our 

method operates under relatively milder reaction conditions and showed better 

substrate scope.17 Furthermore, the overall reaction yields were better than methods 

utilizing stoichiometric amount of methyl iodide or diiodomethane.22 

 

Table 4.4 Scope of methylation reaction[a]  

 

[a] Reaction conditions: 5 (0.50 mmol, 1.0 equiv.), 2 (2.00 mmol, 4.0 equiv.), Ru(acac)3 

(0.01 mmol, 2 mol%), triphos (0.02 mmol, 4 mol%), pyrrolidine (0.50 mmol, 1.0 equiv.), 

150 °C, 20 h in THF (1.0 mL, 0.5 M), in a sealed tube. Isolated yields reported. [b] 10.0 

equiv. of 2 were used. 
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4.2.5 Mechanistic studies 

The possible reaction pathways for each reaction were investigated by observing the 

reactivities of phenol and naphthol. First, changes in the levels of each substrate and 

product in the ortho-aminomethylation of phenol over time were measured by 1H 

NMR spectroscopy (Figure 4.1). The production of 4b was observed as 1b and 3a 

were consumed. At the same time, gradual accumulation of formamide 7 was 

observed. 

 

 

 

Figure 4.1 Kinetic profile of ortho-aminomethylation of 1b. Error bars were 

calculated from three repetitions. 
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The reactions between the nucleophiles and 7 were performed to determine if 

formamide 7 acts as an electrophile in the reaction (Tables 4.5 and 4.6). For each 

reaction, the remained amount of 7, and yields of 3a and the desired products were 

measured via 1H NMR spectroscopy. When 1a was employed without base or with 

DIPEA, only marginal conversion of 7 was observed, with a poor yields of 4a (Table 

4.5, entries 1 and 2). When piperidine was added, the ortho-aminomethylated 

product and the formamide of piperidine were obtained in 60% and 27% yields, 

respectively. However, production of 4a was still poor (Table 4.5, entry 3). The 

reactions between 5a and 7 also gave poor yield of 6a without significant conversion 

of 7 (Table 4.6, entry 1). When pyrrolidine was added, the yield of 6a significantly 

increased (Table 4.6, entry 2). These experimental results strongly support our 

hypothesis that free secondary amine, and not formamide, is involved in both 

reactions. 
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Table 4.5 Reaction between phenol and formamide 

 

Entry Amine 7 3a 4a 

1 None 93% 1% 6% 

2 DIPEA 94% 0% 6% 

3 piperidine 84% 4% 3% 

 

 

 

Table 4.6 Reaction between naphthol and formamide 

 

Entry Amine 7 3a 6a 

1 None 100% 0% 20% 

2 pyrrolidine 90% 10% 89% 
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The involvement of formamide was further examined by deuterium labelling 

(Scheme 4.2). When reactions were conducted with deuterated methanol (2-D) in the 

presence of 7, the deuterated products, 8-D and 6a-D, were obtained without 

formation of 8 and 6a. Concurrently, deuterium scrambling on 7 occurred to a 

minimal extent. These results demonstrate that formamide formation is almost 

irreversible under the developed reaction conditions. Based on the control 

experiments and the deuterium labelling study, we concluded that formamide forms 

almost irreversibly and barely participates in both alkylation reactions. 

 

 

 

 

 

 

 

Scheme 4.2 Deuterium labelling study 
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We then hypothesized that formaldehyde or the iminium cation might react with 

nucleophiles in both reactions. If phenol reacts with the iminium cation, the 

aminomethylated product can be formed directly. Hence, in the case of phenol, 

involvement of formaldehyde was considered via control experiments (Scheme 4.3). 

Firstly, we examined the reactivity of 2-hydroxybenzyl alcohol (9) which can be 

formed from formaldehyde and phenol. 9 could be transformed to 4a quantitatively 

under the standard reaction conditions (Scheme 4.3A). Noticeably, a significant 

amount of 4a was still formed in the absence of Ru catalyst and methanol, possibly 

through dehydrative transformation to ortho-quinone methide.23 Accordingly, we 

assumed that both the dehydrogenative pathway via reductive amination24 and the 

dehydrative pathway via ortho-quinone methide23 can significantly contribute to the 

reaction if 9 is generated during the reaction. The dehydrogenative pathway was 

previously reported,24 and the feasibility of the dehydrative pathway was 

investigated by capturing ortho-quinone methide (A) from 9 via the Diels-Alder 

reaction (Scheme 4.3B).25 However, when we started from 1a, attempts to capture A 

with ethyl vinyl ether (Scheme 4.3C) or several nucleophiles, such as imidazole, 2-

phenyl ethanethiol and 2,5-dimethylpyrrole, all failed, contrary to the reaction 

involving naphthol (Scheme 4.4D). In addition, we could not observe 9 and 2-

methylphenol via the spectroscopic analyses done during the reaction. Reaction 

between phenol and formaldehyde also did not give any meaningful product such as 

9. Thus, we concluded that involvement of 9 is not likely in the case of phenol. 
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Scheme 4.3 Possible intermediates in ortho-aminomethylation of phenol 
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In the case of 2-naphthol, it is known that the reaction between formaldehyde 

and 2-naphthol forms 1-hydroxymethyl-2-naphthol (10) in the presence of base.26 

However, transformation of 10 into 6a gave only 38% yield under the standard 

reaction conditions (Scheme 4.4A). In contrast, 11, which can be formed from 

naphthol and iminium cation,27 gave quantitative yield of 6a (Scheme 4.4B). We 

postulated that deaminative pathway occurs via ortho-naphthoquinone methide (B) 

as an intermediate. Indeed, it could be captured by ethyl vinyl ether (Scheme 4.4C).25 

B can also be captured during the reaction (Scheme 4.4D), which further proves that 

B acts as a real intermediate. 
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Scheme 4.4 Possible intermediates in methylation of naphthol 
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Notably, deamination occurred only with 11 and not with 4a, presumably due 

to the stronger basicity of naphtholate as a conjugate base, which in turn results from 

its lower aromaticity. Capturing of ortho-quinone methide (A) from 4a by ethyl vinyl 

ether did not occur. 

Since iminium cation is a plausible intermediate in both transformations, 

involvement of ruthenium-catalyst in the reaction between nucleophiles and iminium 

cation such as hydroaminomethylation and dehydrogenation sequence could be 

considered. However, ruthenium-catalyzed hydroaminomethyl-ation reaction occurs 

usually with terminal olefin,16b-e and only a few examples are with internal 

olefins.16f,16g Furthermore, reactivity with aromatic multiple bond have not been 

observed in the previous reports even though the applied reaction temperatures were 

as high (up to 140 ºC) as our reaction conditions.16 Hence, we believe that an enolate-

involved nucleophilic attack operates in our case rather than ruthenium-catalyzed 

sequential reactions. 

On the basis of the experimental results, possible reaction pathways were 

proposed (Scheme 4.5). It is well known that methanol (2) can be dehydrogenated 

by ruthenium catalysts.28 The generated formaldehyde (C) is attacked by 3a to form 

the hemiaminal intermediate (D). Via subsequent dehydration, the iminium cation 

(E) is formed. Formamide 7 is also produced from dehydrogenation of D.11a,11b 

However, formamide does not directly participate in the reaction. In the case of the 

ortho-aminomethylation of phenol, the iminium cation is attacked by the phenolate 

anion ([1a-H]-), generating 4a. In the case of the methylation of 2-naphthol, both 

formaldehyde and the iminium cation react with the 2-naphtholate anion ([5a-H]-). 

However, compound 10, resulting from formaldehyde and [5a-H]- , is not efficiently 
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converted to 6a. On the other hand, compound 11 undergoes reversible deamination 

via an E1cB mechanism and reduction to successfully form 6a.29 In this pathway, 3a 

is liberated and can participate in the generation of 11. The amine acts as a catalyst 

as well as a base in the methylation of naphthol, and this suggestion is consistent 

with the previous experimental results (Table 4.3, entry 11). 

 

 

 

 

 

 

 

4.3 Conclusion 

We developed novel alkylation reactions of phenol derivatives by using methanol as 

the C1 source. Initiated by dehydrogenation of methanol and subsequent 

nucleophilic attack on formaldehyde, methanol could be directly incorporated into 

the organic molecules, phenol and naphthol. The developed reactions could be 

applied to a range of substrates with good yields. Based on our mechanistic studies, 

the iminium cation is proposed to be the key electrophile in both reactions. In the 

case of the methylation of naphthol, an ortho-naphthoquinone methide intermediate 

and the dual role of the amine as a catalyst and a base, were suggested. 
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Scheme 4.5 Plausible mechanism 
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4.4 Experimental section 

4.4.1 General information 

Unless otherwise noted, all reactions were carried out using standard Schlenk 

techniques or in an argon-filled glove box. All anhydrous solvents were purchased 

from commercial suppliers and degassed with dry argon before usage. 1c,30 5b-5e,31 

10,26 and 1127 were prepared by the methods reported in the literature, and all other 

substrates and catalysts were purchased from commercial suppliers and used as 

received without purification. HRMS analyses were performed at the Organic 

Chemistry Research Center of Sogang University. 

 

4.4.2 General procedure for ortho-aminomethylation of phenol 

To an oven-dried 50 mL-screw capped RBF equipped with a stirring bar, Ru-

MACHO-BH (5.9 mg, 0.01 mmol), 1 (0.50 mmol), 2 (101 μL, 2.50 mmol), 3 (1.00 

mmol) and anhydrous toluene (1.0 mL) were added inside a glovebox. The reaction 

tube was then taken out of the box and stirred for 20-44 h at 150 ºC. The resulting 

reaction mixture was cooled to room temperature and concentrated under reduced 

pressure. The crude products were purified via silica gel column chromatography. 

 

4.4.3 General procedure for methylation of naphthol To an oven-dried 50 mL-

screw capped RBF equipped with a stirring bar, Ru(acac)3 (4.0 mg, 0.01 mmol), 

triphos (12.5 mg, 0.02 mmol), 5 (0.50 mmol), 2 (81 μL, 2.00 mmol), pyrrolidine (42 

μL, 0.50 mmol) and anhydrous toluene (1.0 mL) were added inside a glovebox. The 
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reaction tube was then taken out of the box and stirred for 20 h at 150 ºC. The 

resulting reaction mixture was cooled to room temperature and concentrated under 

reduced pressure. The crude products were purified via silica gel column 

chromatography. 

 

4.4.4 General procedure for the capture of ortho-quinone methide (Scheme 4.3B) 

To an oven-dried 50 mL-screw capped RBF equipped with a stirring bar, 9 (62.1 mg, 

0.50 mmol), ethyl vinyl ether (239 μL, 2.50 mmol), pyrrolidine (4.2 μL, 0.05 mmol) 

and anhydrous toluene (1.0 mL) were added inside a glovebox. The reaction tube 

was then taken out of the box and stirred for 20 h at 150 ºC. The resulting reaction 

mixture was cooled to room temperature and concentrated under reduced pressure. 

25 μL of nitromethane was added as an internal standard. The crude mixture was 

analyzed by 1H NMR spectroscopy. Schemes 4.3C, Scheme 4.4B, and Scheme 4.4C 

were conducted analogously to the method described here. 
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4.4.5 Characterization data 

Reactions were performed in 0.50 mmol scale. All compounds were identified by 1H, 

13C NMR. All new compounds were further identified by HR-MS. All reported 

compounds–4l32, 4r33, 4s34, 6a35 and 6f36– were also identified by spectral 

comparison with literature data. 

 

2-((Benzyl(methyl)amino)methyl)phenol (4a): Colourless liquid (80 mg, 70%); 1H 

NMR (300 MHz, CDCl3)  = 11.12 (br. s., 1 H), 7.45-

7.29 (m, 5 H), 7.23 (td, J = 7.3, 0.9 Hz, 1 H), 7.05 (d, J = 

7.0 Hz, 1 H), 6.92 (dd, J = 8.1, 0.8 Hz, 1 H), 6.84 (td, J = 7.3, 1.1 Hz, 1 H), 3.79 (s, 

2 H), 3.63 (s, 2 H), 2.28 (s, 3 H); 13C NMR (75 MHz, CDCl3)  = 157.9, 136.9, 129.4, 

128.8, 128.6, 128.6, 127.7, 121.9, 119.2, 116.1, 61.5, 60.9, 41.3; HRMS-ESI (m/z) 

[M+H]+ calcd for C15H18NO, 228.1383; found: 228.1385. 

 

2-((Benzyl(methyl)amino)methyl)-4-methoxyphenol (4b): Light yellow liquid 

(98 mg, 76%); 1H NMR (300 MHz, CDCl3)  = 10.44 (br. 

s., 1 H), 7.40-7.27 (m, 5 H), 6.87-6.72 (m, 2 H), 6.62 (d, 

J = 2.6 Hz, 1 H), 3.76 (s, 3 H), 3.72 (s, 2 H), 3.60 (s, 2 H), 

2.25 (s, 3 H); 13C NMR (75 MHz, CDCl3)  = 152.5, 151.6, 136.9, 129.4, 128.6, 

127.7, 122.6, 116.4, 114.5, 113.6, 61.4, 61.0, 55.7, 41.3; HRMS-ESI (m/z) [M+H]+ 

calcd for C16H20NO2, 258.1489; found: 258.1488. 

 



122 

tert-Butyl (3-((benzyl(methyl)amino)methyl)-4-hydroxyphenyl)carbamate (4c): 

Beige solid (95 mg, 56%); 1H NMR (300 MHz, CDCl3)  

= 10.30 (br. s., 1 H), 7.38-7.26 (m, 5 H), 7.23 (br. s., 1 H), 

6.99 (dd, J = 8.6, 2.5, 1 H), 6.78 (d, J = 8.7 Hz, 1 H), 6.51 

(s, 1 H), 3.71 (s, 2 H), 3.57 (s, 2 H), 2.21 (s, 3 H), 1.51 (s, 9 H); 13C NMR (75 MHz, 

CDCl3)  = 153.8, 153.4, 136.9, 130.1, 129.4, 128.6, 127.7, 122.2, 120.0, 120.0, 

116.2, 80.1, 61.5, 61.0, 41.2, 28.5; HRMS-ESI (m/z) [M+H]+ calcd for C20H27N2O3, 

343.2016; found: 343.2014. 

 

2-((Benzyl(methyl)amino)methyl)-4-(tert-butyl)phenol (4d): Light yellow liquid 

(99 mg, 70%); 1H NMR (300 MHz, CDCl3)  = 10.65 (br. 

s., 1 H), 7.42-7.29 (m, 5 H), 7.25 (dd, J = 8.5, 2.1 Hz, 1 

H), 7.05 (d, J = 1.9 Hz, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 

3.79 (s, 2 H), 3.64 (s, 2 H), 2.29 (s, 3 H), 1.34 (s, 9 H); 13C NMR (75 MHz, CDCl3) 

 = 155.4, 141.8, 137.1, 129.4, 128.6, 127.7, 125.5, 125.4, 121.1, 115.5, 61.6, 61.4, 

41.4, 34.0, 31.7; HRMS-ESI (m/z) [M+H]+ calcd for C19H26NO, 284.2009; found: 

284.2010. 

 

3-((Benzyl(methyl)amino)methyl)-[1,1'-biphenyl]-4-ol (4e): Yellow liquid (118 

mg, 77%); 1H NMR (499 MHz, CDCl3)  = 11.05 (br. s., 

1 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.51-7.32 (m, 9 H), 7.31 

(d, J = 2.0 Hz, 1 H), 7.01 (d, J = 8.3 Hz, 1 H), 3.86 (s, 2 

H), 3.67 (s, 2 H), 2.32 (s, 3 H); 13C NMR (75 MHz, CDCl3)  = 157.6, 141.0, 136.8, 
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132.3, 129.4, 128.8, 128.7, 127.7, 127.5, 127.3, 126.6, 126.5, 122.1, 116.5, 61.5, 

61.0, 41.3; HRMS-ESI (m/z) [M+H]+ calcd for C21H22NO, 304.1696; found: 

304.1694. 

 

2-((Benzyl(methyl)amino)methyl)-4-fluorophenol (4f): Light yellow liquid (92 

mg, 75%); 1H NMR (499 MHz, CDCl3)  = 10.45 (br. s., 

1 H), 7.39-7.35 (m, 2 H), 7.33-7.29 (m, 3 H), 6.89 (td, J 

= 8.6, 2.9 Hz, 1 H), 6.80 (dd, J = 9.0, 4.6 Hz, 1 H), 6.74 

(dd, J = 8.8, 2.9 Hz, 1 H), 3.71 (s, 2 H), 3.60 (s, 2 H), 2.25 (s, 3 H); 13C NMR (75 

MHz, CDCl3)  = 156.07 (d, J = 236.4 Hz), 153.84 (d, J = 1.8 Hz), 136.68, 129.40, 

128.70, 127.83, 122.82 (d, J = 7.2 Hz), 116.76 (d, J = 7.8 Hz), 115.14 (d, J = 3.6 Hz), 

114.83 (d, J = 3.0 Hz), 61.48, 60.53, 41.30; HRMS-ESI (m/z) [M+H]+ calcd for 

C15H17NO, 246.1289; found: 246.1289. 

 

2-((Benzyl(methyl)amino)methyl)-4-chlorophenol (4g): Off-white solid (83 mg, 

64%); 1H NMR (499 MHz, CDCl3)  = 11.09 (br. s., 1 H), 

7.40-7.34 (m, 2 H), 7.34-7.28 (m, 3 H), 7.14 (dd, J = 8.6, 

2.7 Hz, 1 H), 6.99 (d, J = 2.4 Hz, 1 H), 6.80 (d, J = 8.8 

Hz, 1 H), 3.71 (s, 2 H), 3.60 (s, 2 H), 2.25 (s, 3 H); 13C NMR (126 MHz, CDCl3)  

= 156.7, 136.6, 129.4, 128.7, 128.6, 128.3, 127.9, 123.7, 123.4, 117.5, 61.5, 60.5, 

41.3; HRMS-ESI (m/z) [M+H]+ calcd for C15H17ClNO, 262.0993; found: 262.0993. 
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2-((Benzyl(methyl)amino)methyl)-4-bromophenol (4h): White solid (69 mg, 

45%); 1H NMR (499 MHz, CDCl3)  = 11.24 (br. s., 1 

H), 7.38-7.33 (m, 2 H), 7.33-7.24 (m, 4 H), 7.11 (s, 1 H), 

6.74 (d, J = 8.8 Hz, 1 H), 3.71 (s, 2 H), 3.60 (s, 2 H), 2.24 

(s, 3 H); 13C NMR (126 MHz, CDCl3)  = 157.2, 136.6, 131.6, 131.2, 129.5, 128.8, 

127.9, 124.0, 118.1, 110.9, 61.6, 60.5, 41.4; HRMS-ESI (m/z) [M+H]+ calcd for 

C15H17BrNO, 306.0488; found: 306.0489. 

 

2-((Benzyl(methyl)amino)methyl)-6-ethylphenol (4i): Light yellow liquid (64 mg, 

50%); 1H NMR (300 MHz, CDCl3)  = 11.16 (br. s, 

1 H), 7.43-7.29 (m, 5 H), 7.13 (dd, J = 7.3, 1.5 Hz, 1 

H), 6.91 (dd, J = 7.3, 1.5 Hz, 1 H), 6.79 (t, J = 7.3 Hz, 

1 H), 3.79 (s, 2 H), 3.63 (s, 2 H), 2.74 (q, J = 7.4 Hz, 2 H), 2.27 (s, 3 H), 1.30 (t, J = 

7.7 Hz, 3 H); 13C NMR (75 MHz, CDCl3)  = 155.7, 137.1, 131.0, 129.5, 128.7, 

128.3, 127.7, 126.3, 121.4, 118.9, 61.5, 61.2, 41.2, 23.0, 14.3; HRMS-ESI (m/z) 

[M+H]+ calcd for C17H22NO, 256.1696; found: 256.1697. 

 

4-Methoxy-2-(((4-methoxybenzyl)(methyl)amino)methyl)phenol (4j): Light 

yellow liquid (106 mg, 74%); 1H NMR (300 MHz, 

CDCl3)  = 9.53 (br. s., 1 H), 7.25 (d, J = 8.5 Hz, 

2 H), 6.91 (d, J = 8.7 Hz, 2 H), 6.86-6.74 (m, 2 H), 

6.63 (d, J = 2.8 Hz, 1 H), 3.81 (s, 3 H), 3.77 (s, 3 H), 3.72 (s, 2 H), 3.56 (s, 2 H), 2.25 

(s, 3 H); 13C NMR (126 MHz, CDCl3)  = 159.2, 152.6, 151.7, 130.6, 129.0, 122.7, 
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116.5, 114.6, 114.0, 113.6, 60.8, 55.8, 55.3, 41.2; HRMS-ESI (m/z) [M+H]+ calcd 

for C17H22NO3, 288.1594; found: 288.1595. 

 

2-((Ethyl(methyl)amino)methyl)-4-methoxyphenol (4k): Yellow liquid (73 mg, 

75%); 1H NMR (300 MHz, CDCl3)  = 9.63 (br. s., 1 H), 6.78-

6.67 (m, 2 H), 6.54 (d, J = 1.7 Hz, 1 H), 3.73 (s, 3 H), 3.65 (s, 2 

H), 2.53 (q, J = 7.2 Hz, 2 H), 2.27 (s, 3 H), 1.13 (t, J = 7.2 Hz, 

3 H); 13C NMR (75 MHz, CDCl3)  = 152.5, 152.0, 122.8, 116.4, 114.4, 113.4, 61.1, 

55.9, 50.8, 40.9, 12.2; HRMS-ESI (m/z) [M+H]+ calcd for C11H18NO2, 196.1332; 

found: 196.1333. 

 

2-((Diethylamino)methyl)-4-methoxyphenol (4l):32 Brown liquid (43 mg, 41%); 

1H NMR (300 MHz, CDCl3)  = 10.42 (br. s., 1 H), 6.75-6.70 

(m, 2 H), 6.55 (s, 1 H), 3.77-3.65 (m, 5 H), 2.60 (q, J = 7.1 Hz, 

4 H), 1.09 (t, J = 7.1 Hz, 6 H); 13C NMR (75 MHz, CDCl3)  = 

152.5, 152.2, 123.0, 116.4, 114.5, 113.3, 57.2, 55.9, 46.4, 11.3. 

 

4-Methoxy-2-(pyrrolidin-1-ylmethyl)phenol (4n): Dark yellow liquid (81 mg, 

78%); 1H NMR (300 MHz, CDCl3)  = 10.56 (br. s., 1 H), 6.81-

6.66 (m, 2 H), 6.55 (s, 1 H), 3.76 (s, 2 H), 3.72 (s, 3 H), 2.68-

2.53 (m, 4 H), 1.91-1.76 (m, 4 H); 13C NMR (75 MHz, CDCl3) 
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 = 152.3, 151.8, 123.2, 116.2, 113.8, 113.3, 58.9, 55.7, 53.5, 23.7; HRMS-ESI (m/z) 

[M+H]+ calcd for C12H18NO2, 208.1332; found: 208.1333. 

 

2-((3,4-Dihydroisoquinolin-2(1H)-yl)methyl)-4-methoxyphenol (4o): Light 

orange solid (103 mg, 77%); 1H NMR (300 MHz, CDCl3) 

 = 9.98 (br. s., 1 H), 7.25-7.12 (m, 3 H), 7.09-7.00 (m, 1 

H), 6.87-6.77 (m, 2 H), 6.67 (d, J = 1.1 Hz, 1 H), 3.87 (s, 

2 H), 3.83-3.74 (m, 5 H), 2.98 (t, J = 5.6 Hz, 2 H), 2.88 (t, J = 5.4 Hz, 2 H); 13C NMR 

(75 MHz, CDCl3)  = 152.6, 151.7, 133.6, 133.4, 128.7, 126.6, 126.6, 126.0, 122.0, 

116.6, 114.6, 113.7, 61.2, 55.8, 55.4, 50.0, 28.7; HRMS-ESI (m/z) [M+H]+ calcd for 

C17H20NO2, 270.1489; found: 270.1491. 

 

4-Methoxy-2-(thiomorpholinomethyl)phenol (4p): White solid (84 mg, 76%); 1H 

NMR (499 MHz, CDCl3)  = 10.01 (br. s., 1 H), 6.75-6.70 (m, 

2 H), 6.53 (d, J = 2.0 Hz, 1 H), 3.72 (s, 3 H), 3.65 (s, 2 H), 

2.85-2.76 (m, 4 H), 2.72-2.68 (m, 4 H); 13C NMR (75 MHz, 

CDCl3)  = 152.6, 151.3, 121.5, 116.5, 114.7, 113.7, 62.3, 55.7, 54.4, 27.9; HRMS-

ESI (m/z) [M+H]+ calcd for C12H18NO2S, 240.1053; found: 240.1052. 
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4-Methoxy-2-((4-methylpiperazin-1-yl)methyl)phenol (4q): Light yellow liquid 

(88 mg, 74%); 1H NMR (499 MHz, CDCl3)  = 10.23 (br. s., 

1 H), 6.72-6.66 (m, 2 H), 6.52 (d, J = 2.4 Hz, 1 H), 3.69 (s, 3 

H), 3.62 (s, 2 H), 2.53 (br. s., 8 H), 2.26 (s, 3 H); 13C NMR 

(75 MHz, CDCl3)  = 152.5, 151.4, 121.8, 116.4, 114.4, 113.6, 61.4, 55.7, 54.9, 52.4, 

45.8; HRMS-ESI (m/z) [M+H]+ calcd for C13H21N2O2, 237.1598; found: 237.1596. 

 

4-Methoxy-2-(piperidin-1-ylmethyl)phenol (4r):33 Light brown liquid (79 mg, 

71%); 1H NMR (300 MHz, CDCl3)  = 10.05 (br. s., 1 H), 6.77-

6.70 (m, 2 H), 6.55 (s, 1 H), 3.72 (s, 3 H), 3.61 (s, 2 H), 2.67-

2.30 (m, 4 H), 1.71-1.55 (m, 4 H), 1.55-1.30 (m, 2 H). 

 

4-Methoxy-2-(morpholinomethyl)phenol (4s):34 Colourless liquid (47 mg, 42%); 

1H NMR (300 MHz, CDCl3)  = 10.12 (br. s., 1 H), 6.81-6.67 

(m, 2 H), 6.55 (d, J = 1.3 Hz, 1 H), 3.76-3.71 (m, 7 H), 3.65 (s, 

2 H), 2.64-2.46 (m, 4 H); 13C NMR (75 MHz, CDCl3)  = 152.7, 

151.3, 121.4, 116.5, 114.7, 113.9, 66.9, 62.0, 55.8, 53.0. 

 

2-(Azepan-1-ylmethyl)-4-methoxyphenol (4t): Light yellow liquid (78 mg, 66%); 

1H NMR (499 MHz, CDCl3)  = 9.79 (br. s., 1 H), 6.76-6.70 

(m, 2 H), 6.53 (d, J = 2.9 Hz, 1 H), 3.74-3.71 (m, 5 H), 2.69 (t, 

J = 4.9 Hz, 4 H), 1.71-1.66 (m, 4 H), 1.65-1.60 (m, 4 H); 13C 
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NMR (75 MHz, CDCl3)  = 152.4, 152.2, 123.1, 116.4, 114.4, 113.4, 62.2, 55.8, 

55.4, 27.8, 26.7; HRMS-ESI (m/z) [M+H]+ calcd for C14H22NO2, 236.1645; found: 

236.1645. 

 

2-((Benzylamino)methyl)-4-methoxyphenol (4u): Colourless liquid (36 mg, 29%); 

1H NMR (300 MHz, CDCl3)  = 7.41-7.27 (m, 5 H), 6.83-

6.70 (m, 2 H), 6.58 (d, J = 2.8 Hz, 1 H), 6.08 (br. s., 2 H), 

3.97 (s, 2 H), 3.81 (s, 2 H), 3.75 (s, 3 H); 13C NMR (75 

MHz, CDCl3)  = 152.6, 152.0, 138.5, 128.8, 128.5, 127.7, 123.0, 116.9, 114.6, 

113.8, 55.9, 52.7, 52.1; HRMS-ESI (m/z) [M+H]+ calcd for C15H18NO2, 244.1332; 

found: 244.1332. 

 

1-Methylnaphthalen-2-ol (6a):35 Light yellow solid (69 mg, 87%); 1H NMR (499 

MHz, CDCl3)  = 7.98 (d, J = 8.8 Hz, 1 H), 7.83 (d, J = 8.3 Hz, 

1 H), 7.66 (d, J = 8.8 Hz, 1 H), 7.56 (t, J = 8.3 Hz, 1 H), 7.42 (t, 

J = 7.3 Hz, 1 H), 7.09 (d, J = 8.8 Hz, 1 H), 5.28 (br. s., 1 H), 

2.59 (s, 3 H); 13C NMR (126 MHz, CDCl3)  = 150.5, 133.9, 129.3, 128.5, 127.4, 

126.4, 123.2, 117.7, 115.5, 10.6. 
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1-Methyl-6-phenylnaphthalen-2-ol (6b): White solid (89 mg, 75%); 1H NMR (499 

MHz, DMSO-d6)  = 9.57 (s, 1 H), 8.11-8.06 (m, 1 H), 

7.93 (d, J = 8.8 Hz, 1 H), 7.80-7.74 (m, 3 H), 7.71 (d, J 

= 8.8 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.35 (t, J = 6.8 

Hz, 1 H), 7.21 (d, J = 8.8 Hz, 1 H), 2.45 (s, 3 H); 13C NMR (126 MHz, DMSO-d6)  

= 152.5, 140.1, 133.7, 133.0, 128.9, 128.3, 127.2, 127.0, 126.6, 125.7, 124.9, 123.6, 

118.5, 114.6, 10.5; HRMS-ESI (m/z) [M-H]- calcd for C17H13O, 233.0972; found: 

233.0970. 

 

6-(4-Fluorophenyl)-1-methylnaphthalen-2-ol (6c): White solid (91 mg, 72%); 1H 

NMR (499 MHz, DMSO-d6)  = 9.58 (s, 1 H), 8.04 

(d, J = 2.0 Hz, 1 H), 7.91 (d, J = 8.8 Hz, 1 H), 7.81-

7.75 (m, 2 H), 7.72 (dd, J = 8.8, 2.0 Hz, 1 H), 7.69 

(d, J = 8.8 Hz, 1 H), 7.32-7.26 (m, 2 H), 7.21 (d, J = 8.8 Hz, 1 H), 2.44 (s, 3 H); 13C 

NMR (126 MHz, DMSO-d6)  = 161.65 (d, J = 244.1 Hz), 152.48, 137.05 (d, J = 

2.9 Hz), 132.95, 132.72, 128.44 (d, J = 7.6 Hz), 128.23, 127.19, 125.60, 124.83, 

123.62, 118.54, 115.68 (d, J = 21.0 Hz), 114.56, 10.44; HRMS-ESI (m/z) [M-H]- 

calcd for C17H12FO, 251.0878; found: 251.0876. 

 

1-Methyl-6-(p-tolyl)naphthalen-2-ol (6d): White solid (86 mg, 70%); 1H NMR 

(499 MHz, DMSO-d6)  = 9.54 (s, 1 H), 8.04 (d, 

J = 1.5 Hz, 1 H), 7.90 (d, J = 8.8 Hz, 1 H), 7.74 

(dd, J = 8.8, 2.0 Hz, 1 H), 7.69 (d, J = 8.8 Hz, 1 
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H), 7.65 (d, J = 7.8 Hz, 2 H), 7.27 (d, J = 8.3 Hz, 2 H), 7.20 (d, J = 8.8 Hz, 1 H), 

2.44 (s, 3 H), 2.35 (s, 3 H); 13C NMR (126 MHz, DMSO-d6)  = 152.3, 137.2, 136.2, 

133.6, 132.9, 129.5, 128.3, 127.1, 126.4, 125.2, 124.8, 123.5, 118.4, 114.5, 20.7, 

10.4; HRMS-ESI (m/z) [M-H]- calcd for C18H15O, 247.1128; found: 247.1131. 

 

6-(4-Methoxyphenyl)-1-methylnaphthalen-2-ol (6e): White solid (69 mg, 52%); 

1H NMR (499 MHz, DMSO-d6)  = 9.51 (s, 1 

H), 8.00 (d, J = 2.0 Hz, 1 H), 7.89 (d, J = 8.8 

Hz, 1 H), 7.74-7.65 (m, 4 H), 7.19 (d, J = 8.8 

Hz, 1 H), 7.03 (d, J = 8.8 Hz, 2 H), 3.80 (s, 3 H), 2.43 (s, 3 H); 13C NMR (126 MHz, 

DMSO-d6)  = 158.6, 152.2, 133.4, 132.6, 132.5, 128.3, 127.6, 127.0, 124.8, 123.5, 

118.4, 114.5, 114.4, 55.1, 10.4; HRMS-ESI (m/z) [M-H]- calcd for C18H15O2, 

263.1078; found: 263.1078. 

 

2,4-Dimethylnaphthalen-1-ol (6f):36 White solid (35 mg, 41%); 1H NMR (499 

MHz, CDCl3)  = 8.24-8.19 (m, 1 H), 7.99-7.94 (m, 1 H), 7.57-

7.51 (m, 2 H), 7.12 (s, 1 H), 5.06 (br. s., 1 H), 2.64 (s, 3 H), 

2.40 (s, 3 H); 13C NMR (126 MHz, CDCl3)  = 147.0, 132.2, 

129.6, 126.3, 125.3, 125.1, 124.7, 124.3, 121.5, 116.0, 18.8, 15.6.  
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Appendix – NMR spectra 

Chapter 2 

1H NMR (3aa) (DMSO-d6) 

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5

Chemical Shift (ppm)

3
.0

0

1
.8

9

1
.1

5

1
.9

5

2
.1

0

2
.0

0

1
.0

0

0
.9

6

2
.2

5

7
.1

0
7

.1
2

7
.1

6
7

.2
7

7
.3

0
7

.3
2

7
.3

5
7

.3
7

7
.5

0
7

.5
2

8
.0

7

9
.6

2
9

.6
6

 

13C NMR (3aa) (DMSO-d6) 

216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8

Chemical Shift (ppm)

2
0

.3
0

8
2

.0
5

1
1

6
.4

5
1

1
8

.5
0

1
2

3
.5

5
1

2
5

.4
0

1
2

8
.8

2
1

2
9

.6
8

1
3

1
.4

1
1

3
4

.3
6

1
3

8
.8

2
1

4
2

.3
7

 



137 

1H NMR (3ba) (DMSO-d6) 
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1H NMR (3ca) (Acetone-d6) 
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1H NMR (3da) (DMSO-d6) 
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1H NMR (3ea) (DMSO-d6) 
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1H NMR (3fa) (DMSO-d6) 
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1H NMR (3ga) (DMSO-d6) 
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1H NMR (3ha) (DMSO-d6) 
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1H NMR (3ia) (DMSO-d6) 
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1H NMR (3ja) (DMSO-d6) 
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1H NMR (3ka) (DMSO-d6) 
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1H NMR (3la) (DMSO-d6) 
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1H NMR (3ma) (Acetone-d6) 
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1H NMR (3na) (DMSO-d6) 
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13C NMR (3na) (DMSO-d6) 
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1H NMR (3oa) (DMSO-d6) 
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13C NMR (3oa) (DMSO-d6) 
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1H NMR (3pa) (Acetone-d6) 
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13C NMR (3pa) (Acetone-d6) 

216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8

Chemical Shift (ppm)

2
5

.8
3

3
4

.7
3

5
8

.1
4

7
8

.1
8

1
1

9
.4

8

1
2

3
.4

4
1

2
5

.1
2

1
2

9
.5

0

1
3

6
.3

9

1
4

9
.1

3

 



152 

1H NMR (3qa) (Acetone-d6) 
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13C NMR (3qa) (Acetone-d6) 
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1H NMR (3ab) (DMSO-d6) 
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13C NMR (3ab) (DMSO-d6) 
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1H NMR (3ac) (DMSO-d6) 
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13C NMR (3ac) (DMSO-d6) 
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1H NMR (3ad) (DMSO-d6) 
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13C NMR (3ad) (DMSO-d6) 
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1H NMR (3ae) (DMSO-d6) 
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13C NMR (3ae) (DMSO-d6) 
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1H NMR (3af) (DMSO-d6) 
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13C NMR (3af) (DMSO-d6) 
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1H NMR (3ag) (DMSO-d6) 
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13C NMR (3ag) (DMSO-d6) 
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1H NMR (3ah) (DMSO-d6) 
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13C NMR (3ah) (DMSO-d6) 
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1H NMR (3ai) (DMSO-d6) 
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13C NMR (3ai) (DMSO-d6) 
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1H NMR (4) (DMSO-d6) 
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1H NMR (5) (DMSO-d6) 
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Chapter 4 
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1H NMR (4b) (CDCl3) 
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13C NMR (4b) (CDCl3) 
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1H NMR (4c) (CDCl3) 
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13C NMR (4c) (CDCl3) 
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1H NMR (4d) (CDCl3) 
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13C NMR (4d) (CDCl3) 
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1H NMR (4e) (CDCl3) 
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13C NMR (4e) (CDCl3) 
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1H NMR (4f) (CDCl3) 
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1H NMR (4g) (CDCl3) 
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13C NMR (4g) (CDCl3) 
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1H NMR (4h) (CDCl3) 
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1H NMR (4i) (CDCl3) 
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1H NMR (4j) (CDCl3) 
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1H NMR (4k) (CDCl3) 
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1H NMR (4l) (CDCl3) 
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1H NMR (4n) (CDCl3) 
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13C NMR (4n) (CDCl3) 
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1H NMR (4o) (CDCl3) 
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1H NMR (4p) (CDCl3) 
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1H NMR (4t) (CDCl3) 
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13C NMR (6a) (CDCl3) 

216 208 200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8

Chemical Shift (ppm)

1
0

.5
6

1
1

5
.5

0
1

1
7

.6
9

1
2

3
.2

5
1

2
6

.4
1

1
2

7
.4

5
1

2
8

.5
5

1
2

9
.3

1
1

3
3

.9
4

1
5

0
.4

7

 



184 

1H NMR (6b) (DMSO-d6) 
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1H NMR (6c) (DMSO-d6) 
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1H NMR (6d) (DMSO-d6) 
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13C NMR (6d) (DMSO-d6) 
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1H NMR (6e) (DMSO-d6) 
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1H NMR (6f) (CDCl3) 
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국문초록 

 

아이소사이아나이드 활성화 및 

메탄올 탈수소화를 통한 이민의 촉매 반응 개발 

 

이민은 탄소 원자와 질소 원자 사이에 이중 결합을 가지고 있는 구조로

써 유기화학의 기초적인 작용기이다. 이민이 내재하고 있는 친전자적 특

성을 활용한 반응성이 폭넓게 연구되었으며, 특히 다양한 탄소-탄소 결

합 생성 반응이 개발되었다. 전이금속 촉매의 발전은 이민의 활용도를 

더욱 높였다. 이 논문에서는 두 가지 서로 다른 전략을 활용한 이민의 

촉매 반응에 대해 기술한다. 

파트 1은 아이소사이아나이드 화학과 이를 활용한 N-아릴/알킬-β

-엔아미노나이트릴 합성법에 대해 소개한다. 1장에서는 아이소사이아나

이드의 역사 및 특성, 물리적 성질에 대해 설명하며, 아이소사이아나이

드의 활성화 전략을 대표적인 예시와 함께 개괄한다. 2장에서는 전이금

속 촉매의 아이소사이아나이드의 이동 삽입을 적용하여 N-아릴/알킬-

β-엔아미노나이트릴의 합성법을 개발한 사례를 소개한다. 아이소사이

아나이드를 질소 재료로 사용하여 폭넓은 기질에서 다양한 작용기로부터 
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방해를 받지 않고 반응이 수행될 수 있었다. 이민과 유사한 구조를 가지

는 이미도일 구리 중간체가 반응에 참여한다. 

파트 2는 메탄올을 C1 재료로 활용한 합성 사례와 메탄올을 이용한 

페놀 유도체의 (아미노)메틸화반응을 서술한다. 일산화탄소는 독성과 가

연성을 가졌음에도 불구하고 산업 원자재 합성에서 핵심적인 역할을 한

다. 최근 메탄올은 안전성과 잠재적 재생가능성으로 인해 대안적인 C1 

재료로 큰 주목을 받고 있다. 3장에서는 전이금속 촉매를 활용한 알코올

의 탈수소화 방법과 함께 메탄올이 분자량이 큰 알코올들과 가지는 차이

점에 대해 논의한다. 그 후, 탈수소화 방법을 통한 메탄올의 활용 예시

들을 소개한다. 4장은 메탄올과 아민을 이용하여 페놀 유도체에 아미노

메틸화 및 메틸화를 수행한 연구를 소개한다. 메탄올은 루테늄 핀서 촉

매에 의해 탈수소화되며, 그로부터 생성된 포름알데하이드는 아민과의 

축합반응을 통해 이민을 생성한다. 기질에 따른 반응성의 차이에 대해 

면밀한 연구를 수행하였다. 

 

 

주요어: 이민, 아이소사이아나이드, 구리, 엔아미노나이트릴, 메탄올, 

탈수소화, 루테늄, 아미노메틸화, 메틸화, 페놀 

학번: 2014-21251 
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