
13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

Risk-Adaptive Learning of Seismic Response using Multi-Fidelity
Analysis

Johannes O. Royset
Professor, Operations Research Dept., Naval Postgraduate School, Monterey, USA

Selim Günay
Project Scientist, Dept. of Civil and Environmental Engineering, Univ. of California,
Berkeley, USA

Khalid M. Mosalam
Taisei Professor and PEER Director, Dept. of Civil and Environmental Engineering,
Univ. of California, Berkeley, USA

ABSTRACT: Performance-based earthquake engineering often requires a large number of sophisticated
nonlinear time-history analyses and is therefore demanding both with regard to computing resources and
technical expertise. We develop a risk-adaptive statistical learning method based on multi-fidelity
analysis that enables engineers to conservatively predict structural response using only low-fidelity
analyses such as Pushover analyses. Using a structural model of a 35-story building in California and a
training data set consisting of nonlinear time-history and pushover analyses for 160 ground motions, we
accurately and conservatively predict maximum story drift ratio, top-story drift ratio, and normalized
base shear under the effect of 40 ground motions not seen during the training.

1. INTRODUCTION

A main hurdle in performance-based earthquake
engineering (PBEE) is the requirement to conduct a
large number of nonlinear time-history (NTH) anal-
yses with sophisticated structural models. In par-
ticular, the number of NTH analyses often becomes
prohibitively large when uncertainty is treated com-
prehensively. These NTH analyses give rise to tech-
nical and computational issues such as lack of con-
vergence, numerical instability, and excessive run
times. An engineer with deep knowledge about
and experience with NTH analysis might overcome
some of these issues through tuning of algorithmic
parameters and other techniques. At the present
time, such skills are sometimes lacking among
practicing engineers. Even if such skills become
widespread, the time required to carry out algorith-
mic tuning and other adjustments adds significantly
to the already long computing times for NTH anal-

ysis, which is often unaffordable for practitioners.
Hence, there is an urgent need to reduce the number
of NTH analyses required for PBEE while main-
taining conservative estimates for design purposes.
In this paper, we examine a risk-adaptive statistical
learning method based on multi-fidelity analysis to
overcome these issues.

In the presence of uncertainty, for example about
structural parameters and ground motion charac-
teristics, structural response is random, but possi-
bly described by its mean response, standard de-
viation, probability of failure, and similar statisti-
cal quantities. We adopt a superquantile risk (s-
risk) to describe the random response, which is
defined as the average of a pre-specified fraction
of the worst responses and thereby adapts to any
level of risk-averseness. Rockafellar and Uryasev
(2000) introduced the concept under the name con-
ditional value-at-risk and it has been utilized widely
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in finance and operations research. Rockafellar
and Royset (2010) adopted the application-neutral
name “superquantile,” brought the concept to re-
liability engineering, and introduced the related
notion of buffered failure probability. Decision-
making theoretical background is surveyed by
Rockafellar and Royset (2015a).

There are two main advantages associated with
s-risk compared to the use of failure probabilities.
First, it accounts for the magnitude of exceedance
and thereby represents more comprehensively the
resilience in a structure. Second, it can be inte-
grated seamlessly with design optimization as laid
out by Rockafellar and Royset (2010).

Still, computing s-risk of a structural response
quantity of interest (QoI) using NTH analyses can
be computationally costly. In this paper, we con-
struct surrogates in terms of estimates from low-
fidelity analyses that conservatively predicts a QoI.
There is a large literature on surrogate models as
laid out for example by Forrester et al. (2008); Fre-
itag et al. (2014); Perdikaris et al. (2015). The dis-
tinguishing features of the present paper are its fo-
cus on estimating s-risk directly from response data
and its leverage of the theoretical results by Rock-
afellar and Royset (2015b) to provide guarantees
that the surrogates are conservative. We demon-
strate the framework by investigating a structural
model of a 35-story building in California under
seismic load with Pushover (PO) analysis provid-
ing low-fidelity estimates.

2. SUPERQUANTILE RISK

Suppose that Y is a random variable describing a
QoI, say maximum story drift ratio. Without loss
of generality, we assume that low values of Y are
preferred to higher values so that overestimation
becomes conservative. If a practical situation de-
mands high values, we simply replace Y by −Y .
S-risk reduces a random variable to a representa-
tive number that can be used in comparison with
requirements and design alternatives. Specifically,
for risk-parameter α ∈ [0,1], the superquantile risk
(s-risk) of Y , denoted by Rα(Y ), is the

average of Y in the worst (1−α)100% outcomes.

If the risk-parameter α = 0, then Rα(Y ) is simply
the expected value E[Y ]. If α = 1, then Rα(Y ) is the
largest possible value of Y . A value of α between
these two extremes provides a middle ground. Fig-
ure 1 illustrates a situation when Y has a triangular
probability density function (pdf). In this case, the
worst (1−α)100% outcomes are those with values
greater than 1−2

√
1−α . The average across these

is Rα(Y ) = 1− (4/3)
√

1−α .

pdf of 𝑌𝑌

−1−2 1𝑅𝑅α(𝑌𝑌)

α

1 − α

Figure 1: S-risk Rα(Y ) is the average of the worst (1−
α)100% outcomes (shaded).

If the random variable Y is normal with mean
µ and standard deviation σ , then Rα(Y ) = µ +
σφ(Φ−1(α))/(1−α), where φ is the standard nor-
mal pdf and Φ is the standard normal cumulative
distribution function. Generally,

Rα(Y ) =
minimum of c+E[max{0,Y − c}]/(1−α)

across all scalars c, which can be taken as the defi-
nition and avoids ambiguities about the meaning of
“average” when there is a probability atom at the
α-quantile of Y . Rockafellar and Royset (2015a)
elaborate on these details.

If Y follows a discrete distribution with realiza-
tions y1 < y2 < ... < ym and corresponding proba-
bilities p1, p2, ..., pm, then

Rα(Y ) =
1

1−α

[(( j

∑
i=1

pi

)
−α

)
y j +

m

∑
i= j+1

piyi

]
when ∑

j−1
i=1 pi < α ≤ ∑

j
i=1 pi. If α > 1− pm, then

Rα(Y ) = ym and R0(Y ) = ∑
m
i=1 piyi. We stress that

the values of Y need to be sorted.
We observe that having Rα(Y ) ≤ r for some

threshold r means that even on average over a set
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of worst outcomes, the value of the QoI will not ex-
ceed r. The specific definition of “worst outcomes”
depends on α . We can also interpret the condition
probabilistically as done by Rockafellar and Roy-
set (2010): Rα(Y ) ≤ r is equivalent to having the
buffered failure probability ≤ 1−α and it implies
that prob(Y > 0)≤ 1−α .

It is clear that the value of α needs to reflect the
concerns of an application. The relation to the fail-
ure probability provides general guidance: If there
is a need for a reliability level corresponding to
a failure probability of 10−3, then α = 1− 10−3

achieves this goal. Since s-risk is continuous in α ,
small changes in α implies small changes in the s-
risk, which partially alleviates the need to select α

“correctly.”

3. RISK-ADAPTIVE ESTIMATION
The formulas for computing Rα(Y ) require the
probability distribution of Y , which is generally
not available for QoIs in structural engineering.
In this section, we build on Rockafellar and Roy-
set (2015b) to construct surrogates that conserva-
tively approximate Rα(Y ). Specifically, given an
n-dimensional random vector X representing n dif-
ferent types of low-fidelity estimates of Y , we seek
a function h :Rn→R such that Rα(Y )≤Rα(h(X)).
In a specific sense, we obtain the lowest such up-
per bound as described by Rockafellar and Royset
(2015b). For simplicity, we let h(x) = c0 + c>x,
i.e., h is affine. The task then reduces to finding
the coefficients c0 and c = (c1,c2, . . . ,cn)

>. Royset
et al. (2017) and Bonfiglio et al. (2018) mirror this
general direction, but concentrate on design opti-
mization in the context of naval architecture.

We compute the coefficients as follows:

Algorithm for Risk-Adaptive Learning

1. Minimize c>E[X]+Rα(Y−c>X)+λ‖c‖1 and
obtain an optimal ĉ.

2. Set ĉ0 = Rα(Y − ĉ>X).

Corollary 4.2 by Rockafellar and Royset (2015b)
establishes that the output (ĉ0, ĉ) of the algorithm
satisfies

Rα(Y )≤ Rα

(
ĉ0 + ĉ>X

)

and thus furnishes a conservative surrogate for the
QoI.

Step 1 of the algorithm requires us to solve a
convex optimization problem in n variables, which
can be achieved quickly using standard tools. Here,
‖c‖1 = ∑

n
j=1 |c j| and λ ≥ 0 is a parameter that can

be used to adjust the sparsity of the resulting surro-
gate. If λ is high, then ĉ tends to have many zero el-
ements. Empirical evidence indicates that a choice
of λ > 0 often improves estimates too.

Step 2 involves computing the s-risk of a random
variable, which is obtained using the formulas of
the previous section. In both steps, we need to know
the joint probability distribution of (X,Y ). Since
the actual distribution may not be known, we use a
training data set consisting of a number of observa-
tions of these random variables. We note that the
size of the optimization problem in Step 1 is inde-
pendent of the amount of training data and thus is
scalable.

Since the algorithm is carried out on a training
data set, and not using the actual distribution, the
resulting surrogate is only guaranteed to be con-
servative with respect to the (empirical) distribu-
tion induced by this training data set. To obtain
robust predictions beyond the training data set (gen-
eralization), we implement a cross-validation ap-
proach. We refer to Meckesheimer et al. (2002);
Goel et al. (2009); Viana et al. (2009); Zhang et al.
(2014); Mehmani et al. (2015) for the use of cross-
validation in surrogate models broadly. We simply
apply the algorithm repeatedly, say m times, using
randomly selected data from the training data set
and obtain a collection of coefficients {ĉi

0, ĉ
i, i =

1, . . . ,m}. Each pair (ĉi
0, ĉ

i) furnishes a prediction.
The variation across the predictions quantifies esti-
mation uncertainty and allows us to give confidence
intervals as described below.

4. NUMERICAL EXAMPLE
To illustrate the framework we consider a case
study from earthquake engineering.

4.1. Structural Model
We study a 35-story building described in Mahin
et al. (2015) under 200 different ground motions
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and record three QoIs: (1) maximum story drift ra-
tio (max story drift / story height), (2) top-story drift
ratio (top-story displacement / building height), and
(3) normalized base shear (base shear / weight).
The building has an approximate height of 490-ft
with a typical story height of 13-ft and plan di-
mensions of 185-ft by 135-ft. The structural sys-
tem of the building is comprised of complete steel
moment-resisting space frames with welded con-
nections. The steel frames primarily consist of
built-up box (single-cell or two-cell) or wide flange
columns welded to beams (either built-up or hot-
rolled sections). A typical 6-in.-thick concrete slab
on metal deck exists at each floor. The founda-
tion of the building consists of a 7-ft thick mat lo-
cated 40-ft below grade and supported by more than
2,500 concrete piles that extending to 60-ft below
the mat. The foundation mat is connected to a 3-ft
thick retaining wall running around the entire foun-
dation. Beam-to-column moment connections in-
corporate typical pre-Northridge details. Column
splices are made of relatively brittle partial joint
penetration welds located about 4 ft. from the lower
floor level. A perspective view of the building is
shown in Figure 2(a).

Multi-fidelity analyses are conducted on the simplified model of a 35-story building described in [1]. The 
building has an approximate height of 490-ft with a typical story height of 13-ft and plan dimensions of 
185-ft by 135-ft. The structural system of the building is comprised of complete steel moment-resisting 
space frames with welded connections. The steel frames primarily consist of built-up box (single-cell or 
two-cell) or wide flange columns welded to beams (either built-up or hot-rolled sections). A typical 6-in.-
thick concrete slab on metal deck exists at each floor. The foundation of the building consists of a 7-ft thick 
mat located 40-ft below grade and supported by more than 2,500 concrete piles that extending to 60-ft 
below the mat. The foundation mat is connected to a 3-ft thick retaining wall running around the entire 
foundation [1]. Beam-to-column moment connections incorporate typical pre-Northridge details. Column 
splices are made of relatively brittle partial joint penetration welds located about 4 ft. from the lower floor 
level [1]. A perspective view of the building is shown in Fig. 1a. 

For the purposes of this study, a simplified model of this 35-story building, Fig. 1b, is developed in 
OpenSees [2] using spring elements that represent the story force-displacement relationships. The material 
Steel01 in OpenSees is used to define these relationships, Fig. 2. The values of the parameters that define 
these force-displacement relations, namely Vy, k and α, are based on the pushover and eigenvalue analyses 
conducted in [1]. The first four mode periods of the building are 4.18 sec, 1.40 sec, 0.84 sec, and 0.60 sec.  

Two types of analysis are performed. Nonlinear time history analysis (NTHA) is conducted as the 
high-fidelity analysis, while pushover analysis per ASCE41-13 [3] is performed as the low-fidelity analysis 
NTHA are conducted on the model using Explicit Newmark integration to avoid convergence problems [4]. 
200 ground motions are selected to match the target spectral acceleration at the first mode period, which is 
determined as 0.26g for the selected location of the building in Northern California.  
 

 

(a) 

 

(b) 

Fig. 1. (a) Perspective view of the 35 story building [5], (b) simplified model used in NTHA 
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Figure 2: (a) Perspective view of the 35-story building;
(b) structural model used in NTH analyses.

For the purposes of this study, we develop in
OpenSees, McKenna (2010), a simplified model of
the building using spring elements that represent
the story force-displacement relationships; see Fig-
ure 2(b). The material Steel01 in OpenSees is used

to define these relationships with parameters given
in Figure 3. The values of the parameters that de-
fine these force-displacement relations, namely Vy,
k, and α , are based on the PO and eigenvalue analy-
ses conducted in Mahin et al. (2015). The first four
mode periods of the building are 4.18 sec, 1.40 sec,
0.84 sec, and 0.60 sec. Two hundred ground mo-
tions are considered that match the target spectral
acceleration at the first mode period for 5% damp-
ing, which is determined as 0.26g for the location
of the building in Northern California. One NTH
and one PO analyses take 55 and 12 seconds on a
single core, respectively. In practice, NTH analysis
would take much longer; the numerical results are
meant to simply illustrate the approach.

The NTH analysis are conducted using Explicit
Newmark integration to avoid convergence prob-
lems as discussed by Liang et al. (2016). The re-
sulting responses are considered “high-fidelity” in
the present study. PO analyses per ASCE41-13
(American Society of Civil Engineers (2014)) fur-
nish “low-fidelity” estimates.

 
Fig. 2. Story force-displacement relationship of the investigated 35-story building 

 
In the Performance-Based Earthquake Engineering (PBEE) methodology of the Pacific 
Earthquake Engineering Research (PEER) Center, structural analysis stage is used to determine 
the probability distribution of engineering demand parameters. Therefore, if the multi-fidelity 
method can predict the probability distributions correctly, resulting loss curves from the multi-
fidelity approach and reference NTHA analyses will be similar to each other. Accordingly, the 
success of the multi-fidelity approach in predicting the probability distributions of interstory drift 
ratio and base shear (representative of accelerations) is very promising for its use in PBEE. 
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Figure 3: Story force-displacement relationship.

4.2. Numerical Results
For each of the 200 ground motions, we carry out
NTH and PO analyses to obtain responses for the
three QoIs. The resulting data set is divided in two
parts. The first part corresponding to 160 ground
motions forms the training data set and the second
part of 40 ground motions forms a test data set on
which we will check the accuracy of the computed
surrogates.

A preliminary examination of the full data set
gives an indication of the difficulty that we face.
Figure 4 shows low- and high-fidelity responses for
QoI 1 (maximum story drift ratio) across the 200
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ground motions. It is immediately clear that a naive
linear least-squares regression model between the
two kinds of responses would not be informative;
knowledge about a low-fidelity response does not
seem to point strongly to a corresponding high-
fidelity response. The situation is similar for QoI
2 (top-story drift ratio), Figure 5, and even worse
for QoI 3 (normalized base shear), Figure 6. De-
spite this situation, we see below that informative
surrogates can be developed.
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Figure 4: QoI 1 across 200 ground motions by low-
fidelity (PO) and high-fidelity (NTH) analyses.
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Figure 5: QoI 2 across 200 ground motions by low-
fidelity (PO) and high-fidelity (NTH) analyses.

We proceed with the procedure of Section 3 with
α = 0.9, i.e., we aim to estimate (conservatively)
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Figure 6: QoI 3 across 200 ground motions by low-
fidelity (PO) and high-fidelity (NTH) analyses.

the average of the worst 10% responses. The regu-
larization parameter λ = 0.00001 is assumed, with
further improvement of the below results being
possible by systematically optimizing this param-
eter. Although the framework permits any num-
ber, we have only one type of low-fidelity analy-
ses. Still, we artificially create a second one by
taking the square of the low-fidelity responses, i.e.,
X = (X ,X2), with X being the random variable cor-
responding to the low-fidelity responses. Thus, we
seek to determine the coefficients c0,c1,c2 in the
model

c0 + c1X + c2X2.

The risk-adaptive learning algorithm is run 20 times
for every QoI, each time using 100 randomly se-
lected data points (with replacement) from the
training data set corresponding to 160 ground mo-
tions. In total, the 20 times 3 runs of the learn-
ing algorithm take less than 30 seconds on a stan-
dard laptop. Figure 7 shows the resulting 20 curves
in the case of QoI, each one furnishes a predic-
tion of high-fidelity response given any value of
the low-fidelity response. Although each one of the
curves are conservative with respect to the under-
lying training data set, as guaranteed by the sup-
porting theory, it may not be conservative with re-
spect to the test data set of responses to 40 ground
motions not used during the training and illustrated
in the figure with “*.” As described in Section
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3, the 20 curves offer the possibility of construct-
ing confidence intervals. To be consistent with the
framework, we construct confidence intervals not
using mean and standard deviations, but rather su-
perquantiles. Specifically, let {ĉi

0, ĉ
i, i = 1, . . . ,20}

denote the coefficients of the 20 curves in Figure 7
and {x j,y j, j = 1, . . . ,40} be the low- and high-
fidelity responses for QoI 1 in the test data set. The
mean of {ĉi

0 + ĉi
1x j + ĉi

2x2
j , i = 1, . . . ,20}, i.e., the

average of the values of the curves at x j furnishes
the lower end of the confidence interval and the β -
superquantile of {ĉi

0 + ĉi
1x j + ĉi

2x2
j , i = 1, . . . ,20},

i.e., the average of the worst (1− β )% outcomes
gives the upper end of the confidence interval. We
note that this confidence interval does not aim to
estimate y j but rather an upper bound on y j. Using
β = 0.8, Figure 8 illustrates these confidence inter-
vals with black lines for all j = 1, . . . ,40 and also
depicts y j with “*.” The figure shows that for all
the 40 test data points the upper end of the confi-
dence interval is indeed an upper bound on y j. In
39 cases, the lower end is also an upper bound on
y j. The confidence intervals are mostly quite con-
servative, but this is expected in view of the poor
correlation seen in Figure 4.
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Figure 7: Surrogates and test data for QoI 1.

The situation is similar for QoI 2, but sometimes
the level of conservativeness is less than for QoI 1;
see Figures 9 and 10. (The high confidence inter-
val at test data 18 is explained by a somewhat “un-
lucky” draw of training data, but it still furnishes an
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Figure 8: Confidence intervals for QoI 1.

upper bound on y j as desired.
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Figure 9: Surrogates and test data for QoI 2.

In the case of QoI 3, which represents the largest
challenge in view of Figure 6, we see from Fig-
ures 11 and 12 that indeed it becomes especially im-
portant to consider more than one surrogate; some-
times only the upper end of the confidence interval
is an upper bound on y j. There are even two test
data points where y j even exceeds the upper end.
Statistically, this is expected in view of our choice
of β = 0.8, with a higher value making such events
less likely. We still find the confidence intervals
to provide useful estimates of y j even in this dif-
ficulty case of nearly no correlation between high-
and low-fidelity analyses.
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Figure 10: Confidence intervals for QoI 2.
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Figure 11: Surrogates and test data for QoI 3.

An interesting effect is present for all three
QoIs and that is especially prominent in Figure 11:
higher values of the low-fidelity response are pre-
dicted to correspond to lower values of the high-
fidelity response. The curves in Figure 11 have neg-
ative slopes. At first this may appear counter intu-
itive. However, since lower low-fidelity responses
tend to have larger errors than higher low-fidelity
responses, and our predictions need to account for
this uncertainty, risk-adaptive predictions naturally
have this characteristic.

Table 1 aggregates these predictions across the
test data set. The second column provides the
actual s-risk of the QoI, i.e., Rα(Y ), where Y is
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Figure 12: Confidence intervals for QoI 3.

Table 1: Confidence intervals for bound on s-risk.

actual s-risk predicted upper bound
QoI 1 7.59 [9.32, 11.79]
QoI 2 1.02 [1.35, 1.72]
QoI 3 0.147 [0.138, 0.146]

distributed according to the high-fidelity responses
{y j, j = 1, . . . ,40} in the test set. The third column
gives Rβ (Rα(ĉi

0 + ĉi
1x j + ĉi

2x2
j , j = 1, . . . ,40), i =

1, . . . ,20), i.e., first the α-superquantile of {ĉi
0 +

ĉi
1x j + ĉi

2x2
j , j = 1, . . . ,40} is computed for each i

and then the β -superquantile is computed across i.
The lower end of the confidence intervals in the ta-
ble are provided by β = 0 and the upper end by β =
0.8. The table provides an empirical indication that
the guaranteed property Rα(Y )≤ Rα(ĉ0+ ĉ>X) for
the training data generalizes to the test data when
“robustified” by considering 20 surrogates.

5. CONCLUSIONS
The paper establishes that risk-adaptive statis-
tical learning provides a promising approach to
generating conservative estimates of responses
in nonlinear time-history analyses using only
pushover analyses. The approach provides accurate
or conservative estimates of three quantities under
the effect of 40 ground motions not seen during
statistical training. These accomplishments are
especially interesting in view of the fact that no
strong correlation between the analysis types can
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be detected in the training data. We are therefore
hopeful that risk-adaptive statistical learning of the
kind laid out in this paper can offer an efficient and
simple approach to response prediction using only
low-fidelity simulations. This is expected to be of
significant value in rapid assessment on a regional
scale in the aftermath of a major extreme event.
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