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ABSTRACT: Monte Carlo Simulation (MCS) method is obviously a feasible and easy method for 

structural reliability evaluation, by which the multiple integral is replaced by sampling statistics. 

However, MCS is time-consuming because of its large number of simulations. To reduce the number of 

simulations, a structural reliability method based on dimensionality reduction and dichotomy has been 

presented, in the proposed method the dimensionality reduction technique is employed in grouping 

samples and the dichotomy method is applied to determining the partitioned limit state function (LSF). 

First, samples of direct MCS generated in original space are mapped to the independent standard 

Gaussian space and bi-dimensional space successively. Then the samples are divided into many groups 

according to the value of horizontal axis in the bi-dimensional space. Finally, the critical samples of each 

group are located by dichotomy method, and the partitioned LSF are approximated by the critical samples. 

With this method, the failure samples can be distinguished from whole samples by a relative little number 

of simulations. By several examples, the efficiency and robustness of the proposed algorithm were 

demonstrated, and the optimal number of the samples and the groups were respectively studied. 

 

1. INTRODUCTION 

Reliability analysis has been increasingly applied 

to structural design and structural assessment due 

the uncertainties involved with material, load and 

geometric properties. Reliability analysis aims to 

obtain the probability of failure of an event that is 

defined as Eq.(1)  

 
( ) 0

= ( )f
g X

P f X dX
  (1) 

where fP  is the probability of failure, 

1 2[ , ,..., ]T

nX X X X  represents the vector of random 

variables and ( )f X  stands for the joint probability 

density function(JPDF) of the vector of random 

variables. g( )X  is the response function, by 

which the stochastic domain is divided into safety 

and failure regions, i.e. g( ) 0X   indicates X  is 

located in the failure region. 

However, it is often impossible to determine 

the probability of failure by the calculation of the 

integration of Eq.(1), because of the complicated 

response function and JPDF of random variables 

involved in the multiple integral. Instead, the 

probability of failure is commonly evaluated by 

approximate method or simulation method. First 

Order Reliability Method(FORM) is the most 

widely used reliability calculation method so far. 

FORM is defined in the standard Gaussian space, 

and the LSF is approximated at a reasonable point 

by linear polynomial expansion. Particularly, 

when the design point is selected as the expansion 

point, the reliability calculation in FORM is equal 

to finding the design point lies on the LSF which 

has the minimum distance from the origin of 

standard normal coordinate system, and the 

reliability index   defined by Hasofer-Lind is 

equal to the minimum distance Melchers (1987). 

Unfortunately, the accuracy of the evaluation 

results of FORM is unacceptable in case of limit 

state functions with large nonlinearity 

Valdebenito, Pradlwarter and Schuëller (2010). 

Accordingly, Second Order Reliability 
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Method(SORM) which approximates the 

performance function by a quadratic hypersurface 

was proposed to improve the accuracy of FORM 

Zhao and Ono (1999) Zhao (1999). But the 

accuracy of SORM is still insufficient when the 

performance function is highly nonlinear. 

With the development of computer 

technology, simulation method is no doubt a 

feasible way to conduct reliability analysis. 

Conventional MCS can obtain a high accuracy in 

the evaluation of the probability of failure by 

increasing the number of samples Rubinstein 

(2008) Robert and Casella (2009). In order to 

reduce coefficient of variation of the estimate to 

lower than 0.1, the number of samples needed in 

conventional MCS should be select by Eq.(2). 
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where N  is the number of samples, and ,
ˆ

f FORMP  

is the probability of failure estimated by FORM. 

Obviously, conventional MCS is inefficient in 

large-scale practical engineering problems, 

because it is computationally expensive and time 

consuming to simulate such large-scale practical 

engineering problems for millions of times. 

Additionally, conventional MCS may face “curse 

of dimensionality” problem in high dimensional 

cases, thus the estimated results are difficult to 

converge. 

Many methods have been proposed over the 

past decades, aiming to reduce the number of 

samples of conventional MCS. Above all, 

Importance Sampling is the most widely 

employed method to reduce the number of 

samples in MCS Engelund and Rackwitz (1993) 

Olsson, Sandberg and Dahlblom (2003) Kurtz and 

Song (2013) Papaioannou, Papadimitriou and 

Straub (2016) Shayanfar, Barkhordari, Barkhori 

M, et al (2018). In IS, an optimal importance 

density is selected to make more samples located 

in the failure region, as shown in Eq. (3) 
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where ( )I X  is the indicator function of f , 

( )h X  is the optimal importance density function, 

and f [ ]E   denotes expectation function. But the 

optimal importance density is difficult or 

impractical to determine in many cases, e.g. cases 

with multiple failure regions which are not well 

separated Au and Beck (2001,2003).  

Subset simulation changes the calculation of 

small probability of failure event into the 

calculation of the product of lager and conditional 

probabilities as follows Wang (2017) 
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Because the required numbers of samples for 

the calculation of the conditional probabilities are 

away far smaller the calculation of small 

probability of failure, the total number of samples 

of subset simulation is smaller than conventional 

MCS. Through the concept of Subset simulation 

is logical, it is difficult to be carried out sometimes 

due to the appropriate proposal density function 

involved. 

Besides, the existing methods to reduce the 

number of samples of MCS include Directional 

Simulation Nie and Ellingwood (2000), Line 

Sampling Pradlwarter, Schuëller and 

Koutsourelakis, et al (2007), Subdomain 

Sampling Methods Juang, Gong and Martin (2017) 

and Hierarchical Failure Clustering Yin and 

Kareem (2016). However, the applicability of 

these method is constrained by some drawbacks 

including the inefficiency in high dimensional 

problems.  

To deal with high dimensional problem, an 

effective algorithm, based on the design point, for 

reducing the dimensionality of a structural 

reliability problem was proposed Hurtado (2012), 

then it was proposed to be useful for reducing the 

number of samples in MCS of the failure 

probability Hurtado, and Alvarez (2013). In this 

paper, dichotomy method which is common used 

to search the zero point of mathematical equations 

is combined with the aforementioned 

dimensionality reduction, and an algorithm 

aiming to save the computational expense of MCS 
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of the failure probability. In the proposed method, 

the dimensionality reduction is employed in 

sample clustering, and the dichotomy method is 

utilized to search the critical samples which can 

distinguish the failure samples from the save 

samples. Section 2 briefly introduces the 

algorithm for reducing the dimensionality of a 

structural reliability problem. In Section 3 is 

devoted to a detailed exposition of the proposed 

method for the calculation of probability of failure 

based on dimensionality reduction and dichotomy. 

Finally, the efficiency and robustness of the 

proposed method is assessed by examples in 

Section 4. 

2. DIMENSIONALITY REDUCTION 

Without loss of generality, consider a bi-

dimensional case, as shown in Figure 1. 
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Figure 1: FORM and the polar features of Gaussian 

samples. 

 

Firstly, the reliability problem is transformed to 

the standard Gaussian space with independent 

variables. This process is easy to achieve with the 

contribution of the appropriate transformations 

such as Nataf or Rosenblatt transformations 

Melchers (1987). Then the design point *u  , the 

Hasofer–Lind reliability index   ,and the 

corresponding failure probability ,
ˆ

f FORMP  are 

determined. The unit vector of the design point is 

defined as  

 

*

*

u
w

u
  (5) 

where   denotes 2-norm. Similarly, any sample 

can define a vector, as shown in Figure 1. The 

distance between the origin and the samples and 

the cosine of the angle between the vector of 

samples and the vector of design point are given 

by 

 1v R u   (6) 

 2 cos cos ( , )v u w    (7) 

By employing the defined variables 1v  and 2v  as 

the value of horizontal axis and vertical axis 

respectively, the samples in d-dimensional 

standard Gaussian space are mapped into a new 

independent bi-dimensional space. Moreover, it is 

proposed that the plot of samples observes a 

standard form in which the failure samples are 

accommodate in its upper-right sector, as show in 

Figure 6. 

3. THE PROPOSED APPROACH 

3.1. A Sample grouping and sorting 

The bi-dimensional case is considered here again 

to introduce the proposed method for sample 

grouping, as shown in Figure 2. Figure 2 displays 

the target LSF and the LSF of FORM and SORM 

in standard Gaussian space. It is observed that 

FORM and SORM may fail to approximate the 

target LSF when a strong roughness exists in the 

target LSF, thus the samples around the 

approximate LSF will be classified falsely. To 

approximate LSF and distinguish the failure and 

save samples with a higher accuracy, 

hyperspheres of different radius R  which is equal 

to 1v  introduced in Section 2 are applied to divide 

the standard Gaussian space into many annular 

regions, namely the region with  radius ranges 

from i-1R  to iR  is defined as thi  group iG . When 

an appropriate number of groups are selected, the 

radius of the same group can be considered 

uniform. Besides, the failure samples in the same 

group often have bigger 2v  than the save samples. 

Consequently, the samples in each group are 
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descending sorted in term of 2v , and they are 

consumed to be classable by a critical sample icrS

which is a failure sample closest to the target LSF. 

In this way, the LSF in each regions of different 

radius are approximated separately.  
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Figure 2: The groups of sample. 

3.2. Critical samples seeking 

By sample grouping and sorting, the problem of 

sample classification is changed into seeking the 

critical samples in each sample group. Dichotomy 

method is employed to located the critical samples. 

Suppose there are Ni  samples in thi  group, 

and they are descending sorted in term of 2v , as 

show in Figure 3. The detailed process of 

dichotomy is as follows: 

1. Set =1a  and =b Ni , then calculate (S )aG  and 

(S )bG ; 

2. Set bottom integral function ( ) 2c a b    , 

then calculate the LSF of (S )cG ; 

3. If (S )=0cG , Sc  is the critical sample, and stop 

the algorithm; 

4. If (S) (S)<0cG G , set ( ) 2b a b  , and if 

(S) (S)>0cG G , set a ( ) 2a b  ;  

5. Repeat steps (2)-(4) until =1b a ; 

6. If (S ) 0bG  , Sb  is the critical sample, or Sa  is 

the critical sample. 

As show in Figure 3, sometimes a zero point 

Sk can be found to be the critical sample. However, 

in most cases, there is no zero point in the sample 

group, and two samples ( 1Sk , 1Sk  or 2Sk , 1Sk ,) 

will be found at the end of the algorithm. 

Therefore, we need to check which one is the 

critical sample. After the critical samples are 

determined, the number of failure samples in each 

group is equal to the order number of the critical 

sample. For example, if Sk is the critical sample, 

there are k  failure samples in thi  group. With 

the dichotomy method, the critical samples of 

each group can be found without evaluating all 

limit state function of the samples, so a lot of 

computational cost can be saved. 
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Figure 3: The critical samples. 

3.3. Calculation of failure probability 

The proposed numerical procedure for the 

structural reliability problem in Eq.(1) is as 

follows: 

1. Determine the design point *u  , the Hasofer–

Lind reliability index   ,and the 

corresponding failure probability ,
ˆ

f FORMP ; 

2. Generate N  samples ordering to the 

distribution of X , where N is determined in 

term of Eq.(2); 

3. Mapping the samples into the bi-dimensional 

space refer to the method introduced in Section 

2; 

4. Divide the samples into m  groups by 1v , as 

described in Section 3.1, and sort the samples 

in each group. Generally, we can determine the 

upper and lower bounds of 1v , then divide the 

region [ , ]low upv v  uniformly by 1v . 
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5. Simulate the first several samples of each 

group (3 samples were selected in this paper). 

If the first several samples of a group are all 

save samples, all the samples in the group will 

be considered as save samples, otherwise, seek 

the critical samples in the group with the 

dichotomy method in Section 3.2, then 

determine the number of failure samples fiN  

in the group. 

6. Finally, the probability of failure can be 

evaluated by 

 
1=

m

fi

i
f

N

P
N



  (8) 

4. VALIDATION OF THE METHOD 

To demonstrate the efficiency and robustness of 

the proposed method for probability analysis, 

several widely used cases and a high dimensional 

nonlinear case are presented. The examples were 

firstly calculated by direct MCS, then the same 

samples were applied again to evaluate the failure 

probability by the proposed method. In order to 

compare the failure samples detected by direct 

MCS and proposed method, the results of two 

methods were both presented in bi-dimensional 

space introduced in Section 2. Additionally, 

failure probability of FORM was also obtained 

when the design point was determined, and it was 

compared with the results of the proposed method. 

4.1. Example 1 

Consider the case defined in Eq.(9) 

 21 2
1 2

( )
g( ) 2.5 0.1( )

2

x x
x x x


     (9) 

where 1x  and 2x  are independent standard 

normal random variables, and the probability 

information are 1 : (0,1)x N  and 2 : (0,1)x N . 

Figure 4 presents the samples simulated by direct 

MCS of 25000 samples, in which the failure 

samples are displayed in red. The number of 

groups was set as 40, and the samples simulated 

by proposed method are shown in Figure 5. It was 

observed that the failure samples of proposed 

method are almost the same as those of direct 

MCS. The results of failure probability can be 

seen in Table 1, which shows that the proposed 

method can save large computational expense 

with a high accuracy. 

 

 

Figure 4: Results of direct MCS. 

 

 

Figure 5: Results of proposed method. 

 
Table 1: Results of Example 1. 

Methods NS 
Pf 

(×10-3) 

Error 

(%) 

Direct 

MCS 
25000 4.280 —— 

Proposed 

method 
155 4.120 3.7 

FORM —— 6.210 45.1 

4.2. Example 2 

In this section, a high dimensional nonlinear case 

is taken into consider. The response function is 

defined by Eq.(10) 
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(x) 2 3 20i j k

i j k

g x x x
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where 1x  and 2x  are independent standard 

normal random variables, and the probability 

information are : (6,0.6)ix N , : (3,0.3)jx N  and 

: (2,0.2)kx N . Figure 6 presents the samples 

simulated by direct MCS of 70000 samples, 

which are located in a round region because of 

high dimension. Set the number of groups as 60, 

and the samples simulated by proposed method 

can be seen in Figure 7. It was observed that the 

failure samples of proposed method are very 

similar to those of direct MCS. The results of 

failure probability can be seen in Table 2, which 

demonstrate that the proposed method can save 

large computational expense with a high accuracy 

in high dimensional nonlinear problems. 

 

 

Figure 6: Results of direct MCS. 

 

 

Figure 7: Results of proposed method. 

Table 2: Results of Example 2. 

Methods NS  
Pf 

(×10-3) 

Error 

(%) 

Direct 

MCS 
70000  1.286  —— 

Proposed 

method  
326  1.257  2.2  

FORM —— 1.484 15.4 

4.3. The influence of group number and sample 

number on the results 

For the purpose of investigating the influence of 

group number and sample number on the results, 

the Example 1 in Section 4.1 is considered again 

in this section. By sequentially changing the 

sample number and the group number, 

respectively, simulations various sample numbers 

and group numbers were performed, then the 

results of which were compared as follows: 

4.3.1. The influence of sample numbers 

To evaluate the influence of sample numbers on 

results, the number of samples (NS) which ranged 

from 25000 to 45000 with an increment of 5000 

were set, and the group number was set as 60 

uniformly. Table 3 presents the results of 

simulation, including number of simulation of 

direct MCS (NM), number of simulation of 

proposed method (NP), failure probability of 

direct MCS (Pf-M) and failure probability of 

proposed method (Pf-P). 

 
Table 3: Results of various sample numbers. 

NS 

(×103) 
25 30 35 40 45 

NM 

(×103) 
25 30 35 40 45 

NP 208 224 227 240 217 

Pf-M 

(×10-3) 
4.440  4.200  4.200  4.225  4.356  

Pf -P 

(×10-3) 
4.560  4.333  4.200  4.025  4.378  

 

The results are also displayed in Figure 8. It 

shows that the numbers of simulation of direct 

MCS are equal to the sample numbers, while the 
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numbers of simulation of proposed method which 

range around a relative small value are insensitive 

to the sample numbers. That is the reason why the 

proposed method can reduce large computational 

expense. Furthermore, the results of failure 

probability of each method achieve high accuracy 

when the sample numbers are larger than the 

recommended value of Eq.(2). 
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Figure 8: Results of various sample numbers. 

4.3.2. The influence of group numbers 

Set the number of samples as 30000, and change 

the number of groups(NG) from 20 to 100, then 

the influence of group numbers on results was 

investigated. The results of simulation can be seen 

in Table 4, which are also displayed in Figure 9.  

 
Table 4: Results of various group numbers. 

NG 20 40 60 80 100 

NM 

(×104) 
3 3 3 3 3 

NP 92 161 224 264 348 

Pf-M  

(×10-3) 
3.267 3.733 4.200 4.433 4.067 

Pf -P 

(×10-3) 
3.533 3.967 4.333 4.467 4.067 

 

As shown in Figure 9, the number of 

simulations of proposed method increases with 

the increase of the number of groups. But it is 

absolutely a small value compared with the 

number of simulations of direct MCS. In addition, 

the error between the results of two methods 

decrease gradually with the increase of the 

number of groups. As a conclusion, we can 

appropriately increase the number of groups to 

reduce the error of proposed method. 
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Figure 9: Results of various group numbers. 

5. CONCLUSIONS 

A structural reliability method based on 

dimensionality reduction and dichotomy has been 

presented, in which the dimensionality reduction 

technique is employed in grouping sample and the 

dichotomy method is applied to determining the 

partitioned LSF. Firstly, samples of direct MCS 

generated in original space are mapped to the 

independent standard Gaussian space and bi-

dimensional space successively. Then the samples 

are divided into many groups according to the 

value of horizontal axis in the bi-dimensional 

space. Finally, the critical samples of each group 

are located by dichotomy method, and the 

partitioned LSFs are approximated by the critical 

samples. With this method, the failure samples 

can be distinguished from whole samples with a 

relative low computational cost, and the failure 

probability can be evaluated by Monte Carlo 

method. The efficiency and robustness of the 

proposed algorithm in high dimensional nonlinear 

problems are demonstrated by examples. 

According to results, an appropriate large number 

of samples and groups are recommended to 
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improve the accuracy of proposed method at the 

expense of a relatively little computational cost. 
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