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ABSTRACT: Failures of aboveground storage tanks (ASTs) during past storm surge events have 

highlighted the need to evaluate the reliability of these structures. To assess the reliability of ASTs, an 

adequate estimation of the loads acting on them is first required. Although finite element (FE) models 

are typically used to estimate storm surge loads on ASTs, the computational cost of such numerical 

models can prohibit their use for reliability analysis. This paper explores the use of computationally 

efficient surrogate models to estimate storm surge loads acting on ASTs. First, a FE model is presented 

to compute hydrodynamic pressure distributions on ASTs subjected to storm surge and wave loads. A 

statistical sampling method is then employed to generate samples of ASTs with different geometries and 

load conditions, and FE analyses are performed to obtain training, validation, and testing data. Using the 

data, an Artificial Neural Network (ANN) is developed and results indicate that the trained ANN yields 

accurate estimates of hydrodynamic pressure distributions around ASTs. More importantly, the ANN 

model requires less than 0.5 second to estimate the hydrodynamic pressure distribution compared to more 

than 30 CPU hours needed for the FE model, thereby greatly facilitating future sensitivity, fragility, and 

reliability studies across a broad range of AST and hazard conditions. To further highlight its predictive 

capability, the ANN is also compared to other surrogate models. Finally, a method to propagate the error 

associated with the ANN in fragility or reliability analyses of ASTs is presented. 

1. INTRODUCTION 

Aboveground storage tanks (ASTs) have suffered 

damage resulting in the release of hazardous 

chemicals during almost every major storm in the 

United States (US) (Sengul et al. 2012). During 

Hurricanes Katrina and Rita, 26 million liters of 

oil were spilled due to AST failures (Godoy 

2007). More recently, during Hurricane Harvey, 

the failure of two ASTs caused the release of one 

million liters of gasoline in the Houston area 

(Bernier and Padgett 2018b). ASTs are generally 

constructed from thin steel plates forming a 

vertical cylinder. While this geometry makes 

them economical and able to efficiently withstand 

internal pressure, it also leaves them vulnerable to 

external loads such as wind and storm surge. In 

fact, three failure modes are generally observed 

during storms: (i) wind-induced buckling; (ii) 

surge-induced buckling; and (iii) dislocation from 

the ground due to storm surge (Godoy 2007). 

In order to assess the structural safety or 

reliability of ASTs, and thereby evaluate the risks 

posed by ASTs during storm events, an adequate 

estimation of the loads acting on ASTs is crucial. 

Wind, hydrostatic, and hydrodynamic pressure 

distributions are required to determine the 

buckling strength and assess stability against 

dislocation. While simple models are readily 

available for hydrostatic and wind pressures on 

ASTs (Godoy 2016), less information is available 

regarding the hydrodynamic pressures associated 

with wave loads and current. Existing analytical 

models for hydrodynamic loads, such as the 

Morison equation (Morison et al. 1950), are 

generally restricted to small-scale cylinders and 

linear waves. For large-scale cylinders and 

nonlinear waves, such as ASTs and waves 
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observed during a storm, computational fluid 

dynamics (CFD) analyses are usually employed 

for accurate solutions (Wang and Wu 2010). 

However, such numerical analyses are generally 

computationally expensive, and their use is 

prohibitive for reliability analysis, which typically 

requires a large number of simulations. 

This paper aims to develop a computationally 

efficient surrogate model to estimate 

hydrodynamic pressures acting on ASTs during 

storm surge. For this purpose, this study relies on 

Artificial Neural Networks (ANNs) given their 

powerful predictive capability for highly non-

linear data (Chojaczyk et al. 2015). Also, while 

several studies have employed ANNs to 

accurately and efficiently perform reliability 

analysis (Chojaczyk et al. 2015; Hurtado and 

Alvarez 2001), estimate wind loads (Chen et al. 

2002), or forecast storm and wave conditions (Lee 

2006; Tsai and Tsai 2009), very few studies have 

employed ANNs to evaluate hydrodynamic loads 

on structures. Some studies have used ANNs to 

predict wave forces on simple structures, such as 

breakwater (Mase and Kitano 1999), but no study 

has used ANNs to estimate hydrodynamic 

pressure distributions on more complex 

structures; predicting pressure distributions is 

essential to assess buckling strength. This study is 

one of the first to highlight the capability of ANNs 

to accurately estimate hydrodynamic pressure 

distributions, rather than simply wave forces, on 

large-scale structures. 

Section 2 of this paper presents the numerical 

model employed to estimate hydrodynamic 

pressures on ASTs subjected to storm surge and 

wave loads. Section 3 then presents the statistical 

sampling approach used to train the ANN 

surrogate model. Section 4 presents the derived 

ANN, its performance on test data, and a 

comparison with other surrogate modeling 

techniques. Finally, Section 5 presents models to 

propagate the error associated with the ANN 

within a fragility or reliability analysis. 

2. FINITE ELEMENT MODEL 

The CFD model employed to estimate 

hydrodynamic pressures on ASTs and develop the 

surrogate model is adopted from Bernier and 

Padgett (2018a) and is presented in Figure 1. The 

model was developed in LS-Dyna (LSTC 2016), a 

commercial finite-element (FE) software, using 

the Arbitrary-Lagrangian Eulerian (ALE) method. 

Both the water and air fluid elements are governed 

by the Navier-Stokes equations, while the water-

air interface is tracked using an ALE formulation. 

Taking advantage of symmetry, only half of the 

domain is modeled. Waves and current are 

generated by prescribing the velocity at the inflow 

boundary and are absorbed at the outflow 

boundary. Slip boundary conditions are employed 

for all other boundaries as well as at the tank shell 

location to simulate a rigid AST behavior. As 

shown in Figure 1, the extent of the domain is a 

function of the diameter (D) of the AST under 

analysis. Additional details on the FE model and 

its validation against experimental results can be 

found in Bernier and Padgett (2018a). 

 

Figure 1. Overview of the CFD model to estimate hydrodynamic pressure on ASTs. 
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The waves and current velocity profiles at the 

inflow boundary are obtained from Fenton’s wave 

theory (Fenton 1988); this theory is accurate for 

the ranges of wave conditions discussed in the 

next section. FE analyses are performed for a 

duration of 200 seconds to generate a sufficient 

number of waves to obtain a steady state solution. 

Depending on the diameter of the AST, which can 

range between 5 and 60 m as detailed in the next 

section, the computational cost of this FE model 

varies between 30 and 90 CPU hours.  

3. EXPERIMENTAL DESIGN 

The computational cost of the above FE model 

highlights the need to develop a more efficient 

surrogate model to enable reliability analyses of 

ASTs during storm events. Developing a 

surrogate model first requires the generation of 

training points to efficiently span the space of 

parameters. In this study, Latin Hypercube 

Sampling (LHS) (Mckay et al. 1979) is employed 

to generate a space-filling experimental design. 

The parameters considered in the design and their 

ranges are presented in Table 1. All parameters 

are assumed to be uniformly distributed as 

recommended when training a surrogate model 

(Hurtado and Alvarez 2001). 

 
Table 1: Parameters in the LHS design. 

Parameter Range Unit 

Diameter (D) 5 – 60 m 

Surge height (S) 1.0 – 7.5 m 

Wave height (Hw) 0.0 – 2.0 m 

Wave period (Tw) 3.5 – 6.0 s 

Current velocity (U) 0.0 – 1.5 m/s 

 

The ranges of surge and wave parameters 

presented in Table 1 are obtained from the 

simulations of historic and synthetic storms in and 

around the Houston Ship Channel (HSC) in 

Texas, the largest petrochemical complex in the 

US with more than 4,600 ASTs. The simulations 

were performed using ADCIRC+ SWAN (Luettich 

and Westerink 2004), by The Computational 

Hydraulics Group at the University of Texas at 

Austin (Dawson 2017), for Hurricane Ike and for 

two synthetic storms which produce 

approximately 100- and 500-year storm surge 

events in the HSC. The range of AST diameters is 

obtained from Bernier et al. (2017). 

A total of 240 samples are generated using 

LHS; 200 samples are used to train the surrogate 

model, 20 to validate the training, and 20 to test 

its performance. When generating the samples, 

the ratios Hw/S and Hw/λw, where λw is the 

wavelength, are limited to 0.65 and 0.14 

respectively to ensure the generation of realistic 

waves (Fenton 1988). For each sample, a finite 

element analysis is performed, and the 

hydrodynamic (i.e., total pressure minus the 

hydrostatic pressure) pressure distribution when a 

wave impacts the tank and the horizontal force is 

maximum is extracted around the AST 

circumference (θ) and along the AST height (h). 

Figure 2 shows an example of hydrodynamic 

pressure distribution for D = 28.4 m, S = 5.8 m; 

Hw = 1.8 m, Tw = 4.6 s, and U = 0.65 m/s.  

 

 
Figure 2: Hydrodynamic pressure distribution for a 

training sample. Pressure distribution: a) around the 

circumference at the base; b) along the height. 

 

For each sample, the hydrodynamic pressure 

is extracted on a grid of 102 points along the AST 

circumference and 40 points along the AST height 

for a total of 4,080 pressure points per sample. 

816,000 data points in total are used to train the 

surrogate model, while 81,600 data points are 

used to validate or test it. 
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4. SURROGATE MODELING 

The surrogate model is developed with the results 

from the LHS samples. As shown in Eq. (1), the 

surrogate model should estimate the 

hydrodynamic pressure (Pd) at a point (θ, h) on an 

AST with diameter D and as a function of the 

surge and wave parameters (i.e. S, Hw, Tw, and U). 

   Input: , , , , , , Output: w w dD S H T U h P  (1) 

ANN is the surrogate modeling technique 

employed here, as ANNs are capable of 

accurately approximating nonlinear functions 

similar to the one shown in Fig. 2 (Chen et al. 

2002; Tsai and Tsai 2009). 

4.1. Overview of Neural Network 

ANNs are nonlinear computing systems 

composed of interconnected processing units, 

usually called neurons. As shown in Fig. 3, 

neurons are organized into layers, and each 

neuron has weighted connections to the other 

neurons in adjacent layers to create the network.  

 

 
Figure 3: Overview of an Artificial Neural Network. 

 

In the input layer, no operations are 

performed. The input data is simply fed to the first 

hidden layer. Herein, there are seven input 

neurons corresponding to the seven input 

parameters in Eq. (1). The processing of the data 

occurs in the hidden layers. In a hidden layer 

neuron, the data (x) from the previous layer 

neurons are affected by weights (w) and summed 

to obtain the activation value (a) of the neuron as 

shown in Eq. (2) and Figure 3. 

 
1

r

i ii
w x ba

=
= +  (2) 

In this equation, r is the number of neurons in the 

previous layer and b is a bias term. The output y 

of the neuron is then obtained as ( )y f a= , where 

f(∙) is an activation function. While numerous 

activation functions are available, the one adopted 

here is the log-sigmoid function. The outputs of 

all of the neurons of a hidden layer are then fed to 

the next hidden layer, and so on. The number of 

hidden layers and number of neurons per layer 

defines the performance of the ANN as detailed 

below. Lastly, the output layer transforms the data 

from the last hidden layer into the desired 

quantity, which here is Pd. The output neuron is 

similar to a hidden layer neuron and any activation 

function can be used; a linear activation function 

is employed here given its common use for 

regression problems (Hurtado and Alvarez 2001). 

4.2. Network training and architecture 

The training of an ANN consists of first 

initializing the network weights and biases and 

feedforwarding the training data to generate the 

output. In this study, the weights and biases are 

randomly initialized. The output error (i.e., the 

mean squared error (MSE)) is then computed and 

backpropagated in the network to adjust the 

weights and biases using a backpropagation 

algorithm. With the updated weights and biases, 

the procedure is then repeated to minimize the 

error of the surrogate model on Pd. The 

Levenberg-Marquardt backpropagation 

algorithm, available in MATLAB (MathWorks 

2016), is adopted here because of its high 

efficiency for large datasets.  

While the training dataset is used to 

determine the network weight and bias values, the 

validation dataset is used to determine when to 

stop the training and ensure that the ANN does not 

overfit the data; the validation dataset is not used 

to estimate the weights and biases. The test dataset 

is not used during the training phase and is only 

used to evaluate the performance of the ANN once 

it is trained. The errors on both the training and 

validation datasets are monitored at each iteration. 

Both errors are typically expected to decrease; 

however, if the validation error increases for more 

than six consecutive iterations, while the training 
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error continues to decrease, the training is stopped 

to avoid overfitting. The final weights and biases 

correspond to the values when the validation error 

is minimum. 

The architecture of the ANN is defined by 

performing a parameter sweep. ANNs with 1, 2, 

3, and 4 hidden layers as well as 10, 20, 30, and 

40 neurons per layer are trained. Given the 

random nature of the initial weights, training the 

same ANN multiple times will not yield the same 

performance. For each possible architecture, 10 

ANNs are trained and only the one with the best 

performance on the test data is used for 

comparison with the other architectures. The 

training time of the ANNs varies between 0.5 and 

12 CPU hours. Based on the parameter sweep 

results, the network with the best performance has 

three hidden layers with 30 neurons per layer; this 

ANN is retained as the surrogate model to 

estimate hydrodynamic pressures on ASTs. 

4.3.  Performance of the Neural Network 

The performance of the ANN on the test data is 

illustrated in Figures 4 and 5. Figure 4 shows the 

correlation between the ANN outputs and the LS-

Dyna results. A very good fit is observed as the 

ANN can predict pressures with a R2 value of 

0.999. Figure 5 provides an example of the ANN 

performance on one of the test samples; the 

properties of the test sample are: D = 36.4 m, S = 

1.5 m; Hw = 0.3 m, Tw = 5.3 s, and U = 0.1 m/s. 

The mean error for nonzero pressure points is 

8.6% for this sample. Error statistics for the whole 

test dataset are presented in Table 2. Overall, 

results in this table highlight the adequate 

accuracy and predictive capability of the ANN to 

estimate hydrodynamic pressures around ASTs. 

 
Table 2: Error statistics for the entire test dataset 

and for nonzero pressure points 

Statistic Error 

Mean value 5.4% 

Median value 2.2% 

25th percentile value 0.8% 

75th percentile value 5.9% 

90th percentile value 14.5% 

95th percentile value 19.8% 

Another important metric to assess the 

performance of the ANN is the computational 

time required to estimate the hydrodynamic 

pressure distribution around an AST. With the 

ANN, approximately 0.3 seconds are required to 

estimate the entire pressure distribution (i.e. 4,080 

pressure points) around an AST, which is 

significantly shorter than the minimum 30 CPU 

hours required for the FE model presented in 

Section 2 and highlights the efficiency of the 

surrogate model. 

 

 
Figure 4: Comparison between target (LS-Dyna) and 

output (ANN) pressure for the test data. 

 
Figure 5: Performance of the ANN on a test sample. 

4.4. Comparison with other surrogate models 

To further demonstrate its performance, the ANN 

model is compared with three other surrogate 

modeling techniques commonly used to 
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approximate nonlinear data or FE models. The 

three techniques are: (i) Multivariate Adaptive 

Regression Splines (MARS) for which the output 

is predicted by a weighted sum of piecewise 

adaptive basis functions; (ii) Radial Basis 

Functions Network (RBFN) which is similar to 

the above ANN, but has a radial basis function as 

the activation function; and (iii) Kriging 

regression, for which the outputs are modeled by 

a Gaussian process with a correlation function.  

Additional details on these surrogate 

modeling methods can be found in Jin et al. 

(2001), Lataniotis et al. (2018), among other 

relevant references. As for the ANN in Section 

4.2, each model is developed by performing a 

parameter sweep and retaining the best 

architecture or combination of parameters. For 

MARS, a maximum of 200 piecewise cubic 

functions are adopted as basis functions. For the 

RBFN, a Gaussian kernel is employed as the 

radial function, and a network with three hidden 

layers and 30 neurons per layer is adopted. Lastly, 

for Kriging, quadratic basis functions and an 

anisotropic Gaussian correlation function are 

adopted. Both the ANN and RBFN were trained 

using the MATLAB Neural Network Toolbox, 

while the MARS model was trained using 

ARESLab (Jekabsons 2016) and the Kriging 

model using UQLab (Lataniotis et al. 2018) 

The comparison between the ANN and the 

three other surrogate modeling techniques is 

detailed in Table 3. This table presents the R2 

values between the predicted outputs and the LS-

Dyna results for the test dataset, the mean error for 

nonzero pressure points in the test dataset, and the 

computational time to estimate the hydrodynamic 

pressure distribution around an AST. The 

comparison indicates that the ANN has the best 

performance in terms of both accuracy and 

computational time. While the Kriging model has 

a similar accuracy, its computational time is two 

orders of magnitude greater than that of the ANN. 

The RBFN model also has a reasonable accuracy, 

but the mean error is slightly larger than the ANN 

and Kriging models. Finally, MARS has a large 

mean error and does not seem to be a suitable 

model. These results highlight the adequacy of 

using an ANN to efficiently estimate pressure 

distributions around ASTs in place of complex 

and expensive FE analyses. 

 
Table 3: Comparison between the surrogate models 

Model R2 Mean error Comp. time  

ANN 0.999 5.4 % 0.3 s 

MARS 0.828 25.5 % 1.2 s 

RBFN 0.998 9.2 % 0.3 s 

Kriging 0.978 6.3 % 489 s 

5. ERROR MODELS FOR RELIABILITY 

ANALYSIS 

Even though the ANN model provides an efficient 

way to estimate hydrodynamic pressures, it is still 

an approximation of the pressures from the FE 

model, and a rigorous reliability or fragility 

analysis should propagate the modeling error 

associated with this surrogate model. While it 

may be possible to derive an error model for Pd 

around ASTs, this study instead derives error 

models for quantities in the limit state functions 

that depend on the ANN. This simpler approach 

does not require modeling the correlation between 

the pressure errors at each point (θ, h) on an AST. 

As noted earlier, two failure modes are 

possible for ASTs: dislocation or buckling. The 

limit state function for dislocation is (Bernier and 

Padgett 2018b): 

 ( )

( )

2

b

disl b hd

b hd

W F

g W F D M

W F F

−


= − −
 − −

 (3) 

where, W is the AST and internal liquid self-

weight; Fb is the buoyant force from the surge; Fhd 

and Mhd are the horizontal force and overturning 

moment from the hydrodynamic pressures; and φ 

is the friction coefficient at the tank foundation. 

This equation indicates that dislocation can occur 

due to uplift, overturning, or sliding.  

In the case of buckling, the limit state is: 

 1buck crg = −  (4) 

where λcr is the critical load factor obtained from 

a FE buckling analysis. As detailed in Bernier and 
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Padgett (2018a), buckling is assessed by scaling 

the loads acting on the AST by a factor λ, and then 

increasing this factor until the tank shell buckles; 

a λcr value less than one indicates buckling.  

In Eqs. (3) and (4), only three terms depend 

on the ANN: Fhd, Mhd, and λcr. The error models 

are derived by computing these three terms by 

directly using the outputs of the FE analyses for 

the 240 samples generated in Section 2, and then 

evaluating these terms using the ANN surrogate 

model for the same samples. For Fhd and Mhd, the 

errors are also normalized by the FE output given 

the wide scatter of forces and moments. A normal 

distribution is then assumed to model the errors. 

The three error models are presented in Table 4, 

and the error distribution for λcr is shown in Figure 

6. The validity of the normal distributions is 

confirmed using Kolmogorov-Smirnov tests with 

a 5% significance level for Fhd and Mhd, and a 1% 

level for λcr. Moreover, the relatively small 

standard deviations in Table 3 further highlight 

the adequate predictive capability of the ANN. 

Errors associated with the ANN can now be 

propagated in a reliability analysis by multiplying 

Fhd and Mhd in Eq. (3) by 1+Fhd and 1+Mhd 

respectively and by adding λcr to λcr in Eq. (4). 

 
Table 4: Error models for reliability analysis 

Model Unit Distribution 

Fhd % Normal(0.00, 4.24) 

Mhd % Normal(0.00, 6.30) 

λcr - Normal(-0.01, 0.03) 

 

 
Figure 6: Histogram of errors on λcr and normal fit. 

6. CONCLUSIONS 

This study aimed to develop a computationally 

efficient and accurate surrogate model to estimate 

hydrodynamic pressures on ASTs subjected to 

storm surge and wave loads. Using a space-filling 

sampling method, a series of computational fluid 

dynamics FE analyses were performed to 

compute hydrodynamic pressure distributions on 

ASTs. With the results of the FE analyses, an 

ANN was trained to predict the hydrodynamic 

pressure around ASTs as a function of the AST 

geometry and surge and wave conditions. Against 

test data, the derived ANN was shown to have an 

adequate accuracy and predictive capability with 

a mean error of approximately 5% and a 

coefficient of determination of almost 1.0. 

Compared with other surrogate modeling 

techniques commonly used in civil engineering 

and structural response prediction applications, 

the ANN had the best performance in terms of 

both accuracy and computational time. With the 

ANN, less than 0.5 seconds are required to 

estimate the hydrodynamic pressure distribution 

around an AST, compared to at least 30 CPU 

hours using an FE analysis. This study also 

presented simple models to propagate the error 

associated with the ANN in a fragility or 

reliability analysis. The small standard deviation 

of the derived error models further highlighted the 

adequate predictive capability of the ANN to 

estimate hydrodynamic loads on ASTs. 

Overall, this study demonstrated that the 

derived ANN is an efficient surrogate to estimate 

pressure distributions around ASTs in place of 

complex and expensive FE analyses. The ANN 

surrogate model coupled with the error models 

proposed in this paper will now enable and 

facilitate future sensitivity, fragility, and 

reliability studies across a broad range of AST 

geometry and storm surge conditions. Future 

work will also focus on improving the accuracy of 

the ANN in regions of high pressures, which are 

more critical to assess adequately buckling and 

dislocation than regions of low pressures. 
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