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ABSTRACT: In this paper we present a novel algorithm in order to solve multiobjective design
optimization problems of a sandwich plate when the objective functions are not smooth and when
uncertainty is introduced into the material properties. The algorithm is based on the existence of a
common descent vector for each sample of the random objective functions and on an extension of the
stochastic gradient algorithm. It will be shown that a chance constraint optimization problem such as a
RBDO problem can be written as a multiobjective optimization problem. Chance constraint
optimization problems yields optimal designs for a fixed given level of probability for the constraint.
However in real life problem it is not realistic to introduce a given probability because it is not known. It
is more efficient to solve the problem for a whole range of probability in order to obtain an overview of
the probability level appearing in the constraint effect on the solution. We show in this paper how to
transform a chance constraint optimization problem into a multiobjective optimization problem and we

give an illustration on simple examples.

Manufacturers are ever looking for designing
products with better performance, higher reliabil-
ity at lower cost and risk. One way to address these
antagonistic objectives is to use multiobjective op-
timization approaches. But real world problems are
rarely described through a collection of fixed pa-
rameters and uncertainty has to be taken into ac-
count, may it appear in the system description itself
or in the environment and operational conditions.
Indeed the system behavior can be very sensitive
to modifications in some parameters Papadimitriou
et al. (1997); Matthies et al. (1997); Arnaud and
Poirion (2014). This is why uncertainty has to be
introduced in the design process from the start. Op-
timization under uncertainty has known important
advances since the second-half of the 20th century
Dantzig (1955); Bellman and Zadeh (1970) and var-
ious approaches have been proposed including ro-
bust optimization, where only the bounds of the

uncertain parameters are used, and stochastic op-
timization where uncertain parameters are modeled
through random variables with a given distribution
and where the probabilistic information is directly
introduced in the numerical approaches. In that
context the uncertain multi objective problems is
written in terms of the expectation of each objec-
tive. In our paper we shall focus on this last inter-
pretation of the optimization problem.Considering
single objective stochastic optimization problems,
a large variety of numerical approaches Sahinidis
(2004); Roy et al. (2008) can be found in the lit-
erature. Two main distinct approaches exist, one
based on stochastic approximations such as the
Robbins Monro algorithm and the various stochas-
tic gradient approaches Robbins and Monro (1951);
Ermoliev (1983); Ermoliev and Wets (1988), the
second one based on scenario approaches Shapiro
(2003); Nemirovski and Shapiro (2006), the lat-
ter being more frequently applied for chance con-
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strained problems. Again two directions can be
found, a robust approach and a scenario based ap-
proach used to calculate an estimate of the mean
objective function Fliege and Xu (2011); Bonnel
and Collonge (2014); Mattson and Messac (2005).
RBDO and more generally chance constraint prob-
lems are numerically difficult to solve and more-
over their solution is obtained for a single given of
chance level. An interesting situation would be to
construct the solutions for a whole range of prob-
ability levels. Writing the probabilistic constraint
as the expectation of particular random function,
we show that if the original chance constraint prob-
lem is replaced by a stochastic multiobjective op-
timization problems, the Pareto solution set of the
new problem contains the solutions for all levels of
probability.

1. OPTIMIZATION OF UNCERTAIN OB-
JECTIVES

Let (Q,<7,[P) be an abstract probabilistic space,
and W : Q — R? a random vector. We denote u
the distribution of the random variable W and %
its image space W(Q). Let Wy,...,W,,... indepen-
dent copies of the random variable W which will be
used to generate independent random samples with
distribution p. Consider m convex functions f; :
R"x # — R, i = 1,...m depending on uncertain
parameters modeled trough random vector W ().
In this paper we shall consider the following opti-
mization problem :

min {E[f} (x, W (@))], ... E[fn(x, W (@))]} .

xeR”

(1

More precisely we want to construct the associated
Pareto set: multiobjective optimization is based on
the notion of Pareto optimal and weak Pareto op-
timal solutions. Consider m convex functions f; :
R" — R, i=1,...m and the unconstrained optimiza-
tion problem

min { £ (x), ..., fn ()}

x€R?

)

A solution x* of problem (2) is Pareto optimal if
no point x such that f;(x) < fi(x*) Vi=1,...,m and
fi(x) < fj(x*) for an index j € {1,...,m} exists. It
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is weakly Pareto optimal if no point x such that
fi(x) < fi(x*) Vi=1,...,m exists. A complete re-
view on multiobjective optimization can be found
in Miettinen (1998). Before going on with the algo-
rithm description that will be used to solve the pre-
vious problem we shall recall definitions of some
notions appearing in the context of nonsmooth anal-
ysis and multiobjective optimization. Throughout
the paper the standard inner product on R” will be
used and denoted (-, -), the norm being denoted || - ||.

2. COMMON DESCENT DIRECTION

The algorithm presented in the next section is based
on the existence and construction of a descent di-
rection. We first recall its definition.

Definition 1 A vector d is called a descent direc-
tion if Jtg > 0 such that f(x+1td) < f(x) for all
t € 10,10).

For smooth functions it is well known that the op-
posite direction of the gradient is a descent vector.
In the nonsmooth convex or nonconvex context not
all elements of the subdifferential is a descent vec-
tor. There exist several techniques to construct such
a descent vector: proximal bundle methods Kiwiel
(1985); Wilppu et al. (2014); Mikeli et al. (2016),
quasisecant methods Bagirov et al. (2013), or gra-
dient sampling methods Burke et al. (2002, 2005).
Considering now m functions fi,..., f,, we show
that there exists a vector d which is a descent di-
rection for each function. Its construction is based
on properties of the following convex set 6”:

Lemma 1 Let C be the convex hull of either

1. the gradients V fi(x) of the objective functions
when they are differentiable,

2. or the union of the subdifferentials 0 fi(x),
i=1,...,m when they are nondifferentiable but
convex or

3. the union of the Clarke’s subdifferentials
dfi(x), i =1,...,m if they are nonconvex.

Then there exists a vector p* =

Argmin ¢ ||p|| such that

unique

T
VpeC : plp*>p T p*=|p*|*
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The existence of the common direction d and its
construction is given by the next theorem:

Theorem 1 Let C be the convex set defined in
Lemma 1 and p* its minimum norm element. Then
either we have

1. p* =0 and the point x is Pareto stationary or

2. p* # 0 and the vector —p* is a common de-
scent direction for every objective function.

We have now the sufficient materials to present the
SMSGDA (Stochastic Multi Descent Algorithm)
algorithm.

3. THE SMGDA ALGORITHM

As written problem (1) is a deterministic problem
but the objective function expectations are seldom
known. A classical approach, the sample average
approximation (SAA) method, is to replace each
expectancy by an estimator built using independent
samples wy of the random variable W, Bonnel and
Collonge (2014); Fliege and Xu (2011). The algo-
rithm we propose does not need to calculate the ob-
jective function expectancy and is based only on the
construction of a common descent vector. Let m be
given in Q and consider the deterministic multiob-
jective optimization problem:

min {f1 (o, W(@)), 25, W (@), .... fn(x, W (@))]}
3)

Following theorem 1 there exists a descent
vector common to each objective function
fi(x,W(®)),k=1,...,m at point x.

The common descent vector depends on x and @
and therefore will be considered as a random vec-
tor denoted d(®) defined on the probability space
(Q, o, P).

3.1.  The algorithm
We give now the successive steps of the algorithm
that we propose.

1. Choose an initial point xq in the design space,
a number N of iterations and a o-sequence # :

Ztk:oo;Ztlg<oo,

2. at each step k draw a sample w;, of the random
variable Wy(w),
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3. construct the common descent vector d(wy)
using theorem 1 and the gradient sampling ap-
proximation method,

4. update the current point : x; = x|+ d(wy).

The last step of the algorithm defines a se-
quence of random variables on the probability
space (Q, <7, P) through the relation

Xk((l)) :Xk_]((l)) —tkd(Xk_l(a)),Wk(a))) (4)

Theorem 2 (Mercier et al. (2018) ) Under a set of
assumptions,

1. the sequence of random variables X;(®) de-
fined by relation (4) converges in mean square
towards a point X* of the Pareto set:

lim E[||X (@) —X*||*] = 0.
Jm E[||X (o) —X*|[]=0

2. The sequence converges almost surely towards
X*.

¢({oco. imio-x}) -1

4. SOLVING RELIABILITY PROBLEM USING A
STOCHASTIC MULTIOBJECTIVE FORMULA-
TION

Introducing probabilistic constraints is a rather nat-

ural way to take into account the notion of risk in an

optimization process. Let us consider the following
chance constraint problem:

argmin{E[f(x, ¢ (@))] | P[g(x,§ (@)) = 0] = po}.

xeXxad

&)
Here, X2 is a feasible closed convex set of the set
of control variables X, g : X x R — R represents a
physical or structural quantity. In this formulation
failure occurs when g(x,&(w)) becomes positive,
and pg denotes the level of risk one is ready to ac-
cept. Such a problem is rather difficult to solve. The
reason is twofold: first it is very difficult to check
whether a given chance constraint is satisfied at a
given point x or not. Typically Monte-Carlo simula-
tion is the only way to estimate the probability of vi-
olating the constraint, but becomes too costly when
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po approaches unity. The second reason comes
from the fact that the feasible set of problem (5) can
be nonconvex even if the set X2 is convex as well
as function g. Several developments can be found
in the literature in order to overcome those difficul-
ties: transforming the problem into a combinatorial
problem by discretizing the probability distribution
Dentcheva et al. (2000), using convex approxima-
tion Nemirovski and Shapiro (2006) or sample av-
erage approximations Luedtke and Ahmed (2008);
Pagnoncelli and Shapiro (2009).

The general formulation of a reliability based de-
sign optimization (RBDO) problem is the following

{g@{mﬂx’wm)m
sit. P{g(x,W(®)) >0} < a.

P{g(x,W(®)) > 0} represents the probability of
failure of the design x, W(®) is a random vari-
able modeling the uncertainties and « represents
the threshold of failure probability authorized. In
most cases, o is a very small positive num-

ber. Let us remark that P{g(x,W(w)) > 0} =

Ellz, (3(x,W(0)))] < E[G(x,W ()], where I,

denotes the indicator function of Ry : Ig, (x) =1
when x is positive and is equal to O otherwise. We
replace the RBDO problem (6) by the following
stochastic multiobjective optimization problem

min {E[f(x,W())], E[G(x,W (®))]}.

It is clear from the definition of the Pareto front that
for a given value of ¢, the point (X, @), where X,
is a solution of the RBDO problem for the given
threshold, lies on the Pareto front of the problem
(7). Therefore solving problem (7), one obtains di-
rectly the set of solutions of the RBDO problem
(6) for all values of probability of failure o € [0, 1].
However the SMGDA algorithm cannot be used di-
rectly to solve this last problem since the second ob-
jective function is not locally Lipschitz. We use the
mollifier introduce in (Andrieu et al., 2011) in or-
der to render this objective smooth. More precisely
we introduce a smooth non-negative even function
hy(x) = Lh(x/r) such that it reaches its maximum

7
()

(6)

(7)

forx =0 and
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We have then:

1 [t 72—y
r ~ h
r+(2) r o ( p

)dy,
which yields the following expression :

l/*""h(g(x,W(w))—y) ay.
rJo r

This approximation can be differentiate with re-
spect to x and it can be checked that :

I+ (g(x, W(®))) =

VIZ (g(xW())) =
Ly (smtio)

(S exw (@),

5. ILLUSTRATION

The above development is applied to a simple ex-
ample used as a reference test cas in several publi-
cations Moustapha et al. (2016). The problem is to
minimize the cross-sectional area b X h of a rect-
angular column submitted to a compression load
F while avoiding buckling, which occurs when the
compression load is higher than the critical Euler

force. Failure will occur when:

2 3
n“Ebh

- >0 8
1212 — 7 ®)

where E is the Young’s modulus of the column ma-
terial and L its length. In their paper the authors
considered the parameters £ and L uncertain and
modeled as lognormally distributed random vari-
ables. The critical Euler force is also considered
uncertain through the appearance of a multiplica-
tive lognormally distributed random variable k in
its expression. The RBDO problem is then written

Argmin, ,b X h 9)
under the constraints
2E 3
h—b<0 and P[F—NOTE@DIT g
12L(w)?
(10)

The chosen parameters for the distributions are
recalled in table 1. The value of the compres-
sion force is chosen as F = 1.4622 x 10® N. With



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13

Table 1: Probabilistic model for the column problem

parameter distribution mean :i covariance : &
k lognormal 0.6 10
E (MPA)  lognormal 10* 5
L (mm) lognormal 3 1

these specific probability distributions it is shown in
Moustapha et al. (2016) that an analytic solution of
the RBDO problem (9) and (10) exists and is given
by:

b'=h' =
: (11)

i
12F
<7r2 exp(ly+Ap 24+~ 1 () /CF+(F+407 ) ’

where { =+/In(1 +82)and A =1In(u)—1/2¢%, u
and O being the mean and covariance of the lognor-
mal random variables, and ® the cumulative distri-
bution function of the standard normal distribution.

We consider now the stochastic multiobjective
optimization problem

min {b x h, E[G(b,h,W(@))]} : h—b <0, (12)

where W(w) = (k(0),E(w),L(w)) and
G(b,h, W (@) = T (F — LedTELO)PIE)

The SMGDA algorithm is used in order to con-
struct the Pareto front. At the same time the
analytic solutions (h*,b*) of the RBDO problem
(9) are constructed for a set of values of o from
which the analytic Pareto front (b* x h*, @) is ob-
tained. In their paper Moustapha et al. (2016) used
an adaptative Kriging surrogate model in order to
solve the RBDO problem for the specific values
o = .05. Figure 1 shows the comparison of the
two Pareto fronts, the solution found by Moustapha
et al. (2016) being represented by a green triangle.
Almost every solution proposed by SMGDA stick to
the analytic Pareto front, and thus can be consider
as good. During the optimization process SMGDA
does not require the costly calculation of the failure
probability and is still able to converge, even for
very small values.
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Figure 1: Pareto front of the reliability problem

6. CONCLUSION

Based on a new algorithm we have proposed to re-
place the study of a RBDO problem by a stochas-
tic multiobjective optimization problem where the
probabilistic constraint becomes a new objective.
In this way we obtain the solutions of the original
RBDO problem for all probability (or failure) lev-
els, allowing to evaluate the impact of this level on
the design parameter solutions. The SMGDA algo-
rithm used is completely parallelizable and the nu-
merical problem of evaluating the probability con-
straint is decoupled from the optimization proce-
dure. It becomes a postprocessing procedure where
any adequate method can be used.
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