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ABSTRACT: A method for sequentially constructing polynomial chaos expansions, with the aim of
approximating likelihood functions that occur in Bayesian inference problems is presented. The
proposed approach is called piecewise polynomial chaos expansion (P-PCE) and is based on
sequentially constructing PCEs in refined domains on the residuals of previously constructed PCEs. The
obtained local spectral representation allows the computation of posterior expectations by
post-processing the PCE coefficients based on the recently developed concept of spectral likelihood
expansion (SLE). This paper presents a summary of the proposed theory and showcases the solution of
two Bayesian inference problems using the presented approach.

1. INTRODUCTION
In the context of inverse problems, the goal is to
determine which set of input parameters of a given
computational model has produced an observed set
of experimental data. One way of addressing such
problems is the Bayesian inference framework. It
requires a computational model Ỹ = M (XXX) with
uncertain input parameters XXX = (X1, . . . ,XM), Xi ∈
Dxi , that is to be related with a set of observa-
tions yyy = (y(1), . . . ,y(N)). The link between Ỹ and
yyy is made through a so-called likelihood function
L (xxx|yyy). Let π(xxx) be the prior distribution of the
parameter vector XXX , the Bayesian inference prob-
lem is then posed by the following equation:

π(xxx|yyy) = L (xxx|yyy)π(xxx)
π(yyy)

, (1)

where π(xxx|yyy) corresponds to the posterior distribu-
tion of XXX conditioned on yyy. The denominator π(yyy)

is called evidence or marginal likelihood and is a
mere normalizing constant defined by

π(yyy) =
∫
Dxxx

L (xxx|yyy)π(xxx)dxxx, (2)

where Dxxx = Dx1 × . . .×DxM . The posterior prob-
ability density function (PDF), or more frequently
its statistics, constitute the solution of the inverse
problem. The posterior distribution is often used
in subsequent steps to compute expectation val-
ues of so-called quantities of interest h(XXX), where
XXX ∼ π(xxx|yyy). This corresponds to evaluating the fol-
lowing integral:

E [h(XXX)|yyy] =
∫
Dxxx

h(xxx)π(xxx|yyy)dxxx. (3)

In real-world scenarios, it is often neither possi-
ble to find a closed form expression for the pos-
terior distribution π(xxx|yyy) nor to directly compute
E [h(XXX)|yyy], mainly due to two obstacles:
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• the computation of π(yyy) requires the evalua-
tion of the possibly high dimensional integral
in Eq. (2)

• the repeated evaluation of the function L (xxx|yyy)
involves the calculation of the forward model
M (xxx), which is often computationally expen-
sive.

The most common methods to compute the pos-
terior and its characteristics are based on Monte-
Carlo sampling, more specifically the popular fam-
ily of Markov chain Monte Carlo (MCMC) algo-
rithms (Robert and Casella, 2004). The first algo-
rithm of this family was the classical Metropolis al-
gorithm from Metropolis et al. (1953) which has
been significantly enhanced since then (Hastings,
1970; Haario et al., 2001; Goodman and Weare,
2010). The strength of these algorithms is that they
are relatively immune to the curse of dimensional-
ity and avoid evaluating the evidence π(yyy). Their
weakness, however, is that they require a large
amount of potentially expensive forward model
runs that may hinder their usage in real-world ap-
plications.

Recent attempts to apply MCMC algorithms
together with computationally expensive forward
models have focused primarily on replacing the for-
ward model with a computationally cheaper sur-
rogate M̃ (XXX) ≈M (XXX) (Marzouk and Xiu, 2009;
Higdon et al., 2015). Typically, the construction
of such a surrogate relies on the prior parameter
distribution XXX ∼ π(xxx), which guarantees the surro-
gate’s accuracy over the whole prior domain. This
is, however, not always efficient nor accurate as the
support of the posterior distribution is typically a
small subset of the prior’s. This has motivated re-
cent approaches that adaptively refine the surrogate
model in regions of high posterior density (see e.g.
Li and Marzouk (2014)).

A new approach for Bayesian inference called
spectral likelihood expansion (SLE) was introduced
in Nagel and Sudret (2016). There, the likelihood
function is represented in a polynomial basis or-
thogonal to the prior distribution. This spectral
representation allows the computation of posterior
statistics by mere post-processing of the basis coef-
ficients. While this approach offers appealing ana-

lytical results, it is not practical in real-world appli-
cations as the polynomial degree required to accu-
rately represent the likelihood function is typically
prohibitive.

In this paper the shortcomings of SLE are alle-
viated by representing the likelihood function as a
sum of so-called partial likelihood functions L̃ k

and a residual R:

L (xxx|yyy) =
K

∑
k=1

L̃ k(xxx|yyy)+RK+1(xxx). (4)

The partial likelihood functions have bounded
support Dk

xxx ⊆ Dxxx and can be thought of as patches
that make up the total likelihood approximation.
They are sequentially computed as approximations
of the residual:

L̃ i(xxx|yyy)≈Ri(xxx) = L (xxx|yyy)−
i−1

∑
k=1

L̃ k(xxx|yyy). (5)

where, in the initial step, the residual equals the
original likelihood function R1(xxx) = L (xxx|yyy) on
the whole domain D1

xxx = Dxxx.
In the presented piecewise-PCE (P-PCE) ap-

proach, the approximation from Eq. (5) is carried
out with PCEs, orthogonal to the prior distribution
π(xxx) in subdomains D i

xxx. This preserves the appeal-
ing analytical properties of SLE. This approach can
also be understood as recursive partitioning regres-
sion (Friedman, 1991) with locally orthogonal basis
functions.

After a brief review of PCE in the next section,
Section 3 presents the theoretical background of P-
PCE. In Section 4 an algorithm is introduced to
construct P-PCEs which is used to solve a test prob-
lem in Section 5.

2. POLYNOMIAL CHAOS EXPANSIONS
Polynomial chaos expansion (PCE) is a surrogate
modelling technique that has received widespread
attention (Xiu and Karniadakis, 2002; Soize and
Ghanem, 2004). A brief introduction to the method
is presented next, but providing only the bare essen-
tials required for the proposed approach presented
in Section 3.

Assume a random vector XXX = (X1, . . . ,XM) with
mutually independent components Xi ∼ πi(xi). Its
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joint PDF is then given by:

π(xxx) =
M

∏
i=1

πi(xi). (6)

Any scalar function f (XXX) : RM 7→ R with finite
variance can then be approximated by the truncated
polynomial chaos expansion:

f (XXX)≈ f̃ (XXX) = ∑
ααα∈A

aαααΨααα(XXX), (7)

where Ψααα

def
= ∏

M
i=1 ψ i

αi
(xi) are polynomials orthog-

onal with respect to π(xxx), ααα = (αi, . . . ,αM) ∈A ⊂
NM is an M-tuple specifying the degree of the poly-
nomial basis functions and aααα are the correspond-
ing coefficients.

The univariate polynomials ψ i
αi

are chosen to sat-
isfy:〈

ψ
i
k,ψ

i
l
〉

π

def
=
∫
Dxi

ψ
i
k(xi)ψ

i
l (xi)πi(xi)dxi = δkl, (8)

where δkl = 1 if k = l and 0 otherwise. It follows
that the multivariate polynomials Ψααα are orthonor-
mal w.r.t. the joint distribution π(xxx).

There exist well-known families of polynomial
functions that fulfil the fundamental condition
of Eq. (8) w.r.t. standard parametric distributions
(Askey and Wilson, 1985). However, analytical ex-
pressions for families of polynomials that are or-
thonormal w.r.t. π(xxx) on bounded supports Dk

xxx ⊆
Dxxx, do not exist. In this case, a general recurrence
scheme that allows the construction of polynomials
{ψ i,k

n ,n ∈ N} orthonormal with respect to arbitrary
weight functions πi(xi) on Dk

xi
has to be used (see

Appendix A).
Because πi(xi) on Dk

xi
⊆Dxi does not necessarily

integrate to one, the constant polynomials ψ
i,k
0 6= 1

(see Figure 1).
The PCE coefficients aααα are then computed by

least-square analysis, as detailed in Berveiller et al.
(2006); Blatman and Sudret (2011).

To judge the quality of the PCE approximation, it
is common practice to use the leave-one-out error as
an approximation of the surrogate’s generalisation
error (Hastie et al., 2001; Arlot and Celisse, 2010).

Figure 1: Marginal PDF π(x) as a standard normal
distribution and associated orthonormal polynomials
with degrees p = 0 to p = 2 on the domains Dx =
[−∞,∞] and Dk

x = [0,4]. Note: the polynomials ψ(x)
are the classical Hermite polynomials.

Given an experimental design X = (xxx(1), . . . ,xxx(N)),
it is defined by:

εLOO =
1
N

N

∑
i=1

(
f (xxx(i))− f̃\i(xxx

(i))
)2

, (9)

where f̃\i is the surrogate of f constructed without
using the i-th component of the experimental de-
sign. It can be estimated efficiently for PCEs as
detailed in Blatman and Sudret (2011).

3. PIECEWISE PCE FOR LIKELIHOOD APPROX-
IMATION

In this section it is assumed, that a P-PCE has been
constructed using the algorithm presented in Sec-
tion 5. This way, the likelihood function in Bayes’
theorem (see Eq. (1)) is expressed as a sum of par-
tial likelihood functions (see Eq. (4)) with negligi-
ble residual R. Each L̃ k(xxx|yyy) is given by a PCE
as:

L̃ k(xxx|yyy) = ∑
ααα∈A k

bk
αααΨ

k
ααα(xxx)111Dk

xxx
(xxx), (10)

where A k is the index set for the k-th PCE. The
indicator function 111Dk

xxx
is given by

111Dk
xxx
(xxx) =

{
1 if xxx ∈Dk

xxx ,

0 if xxx /∈Dk
xxx ,

(11)

and ensures that the PCEs have bounded support in
Dk

xxx .
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Equation (10) constitutes a local spectral repre-
sentation of the partial likelihood function. This
representation can be used to derive analytical ex-
pressions for posterior quantities of interest.

From Eq. (2) and (10) it follows that the evidence
π(yyy) can be expressed as:

π(yyy) =
K

∑
k=1

∑
ααα∈A k

bk
ααα

∫
Dk

xxx

Ψ
k
ααα(xxx)π(xxx)dxxx (12)

=
K

∑
k=1

bk
000

Ψk
000
. (13)

That is, π(yyy) can be obtained by simple post-
processing of the PCEs. Using this result, the
expectation of general quantities of interest h(XXX),
where XXX ∼ π(xxx|yyy), can also be expressed as:

E [h(XXX)|yyy] =
∫
Dxxx

h(xxx)π(xxx|yyy)dxxx (14)

=
1

π(yyy)

K

∑
k=1

∑
ααα∈A k

bk
ααα

∫
Dk

xxx

h(xxx)Ψk
ααα(xxx)π(xxx)dxxx. (15)

By projecting the function h(xxx) on all K bases
individually, i.e. h(xxx) = ∑ααα∈A k ck

αααΨk
ααα for k =

1, . . . ,K, Eq. (14) can be further simplified into

E [h(XXX)|yyy] = 1
π(yyy)

K

∑
k=1

〈
∑

ααα∈A k

ck
αααΨ

k
ααα , ∑

ααα∈A k

bk
αααΨ

k
ααα

〉
π,k

(16)

=
1

π(yyy)

K

∑
k=1

∑
ααα∈A k

ck
αααbk

ααα . (17)

This result can be used to compute general ex-
pectations according to Eq. (3) and simple poste-
rior moments. To calculate the first moment of
the i-th posterior marginal distribution π(xi|yyy), one
chooses h(xi) = xi in Eq. (14), while the posterior
covariance between the i-th and j-th variable can
be computed by setting h(xi,x j) = (xi−E [Xi])(x j−
E
[
X j
]
).

The P-PCE representation of the likelihood func-
tion also makes it easy to find analytical expressions
for the marginal posterior distributions. After gath-
ering the parameters that are not to be marginalized

in xxx∗ and the rest in xxx∼∗, the marginal posterior dis-
tribution reads:

π(xxx∗|yyy) =
∫
Dxxx∼∗

π(xxx|yyy)dxxx∼∗ (18)

=
1

π(yyy)

K

∑
k=1

∑
ααα∈A k

bk
ααα

∫
Dk

xxx∼∗

Ψ
k
ααα(xxx)π(xxx)dxxx∼∗.

(19)

Because of the orthogonality in the local bases,
the integral expression on the right-hand side of
Eq. (18) equals zero for all ααα that are non-constant
in at least one marginalizing parameter gathered in
xxx∼∗. For all ααα that are constant in all marginaliz-
ing parameters, the integral expression evaluates to
one over the product of the marginalized constant
polynomials (1/Ψk

000∼∗).
New sets of multi-indices A k

∗ ⊂A k are then de-
fined for each PCE that contains only terms that are
constant in all marginalizing parameters xxx∼∗. Us-
ing these sets, the marginal posterior distribution in
Eq. (18) can be written as

π(xxx∗|yyy) =
1

π(yyy)

K

∑
k=1

∑
ααα∈A k

∗

bk
ααα

Ψk
000∼∗

Ψ
k
ααα(xxx∗)π(xxx∗),

(20)
where Ψk

ααα(xxx∗) is the product of the univariate poly-
nomials in the non marginalized dimensions with
corresponding prior π(xxx∗). These equations reduce
to the ones given in Nagel and Sudret (2016) for the
case of K = 1 and D1

xxx = Dxxx.

4. COMPUTING P-PCE
An algorithm to construct a P-PCE is outlined next.
It consists of sequentially refining PCEs with in-
creasingly smaller support and summing up their
contributions to approximate the total likelihood
function L (xxx|yyy). The procedure can be visualized
by the graph shown in Figure 2. The algorithm at
each refinement level r constructs Nr PCEs using
the residuals of the previous refinement level. In
the r-th refinement level there are Nr = 2Mr subdo-
mains D r,i

xxx . In this section L̃ r,i and Rr,i is used to
refer to the i-th partial likelihood and residual of the
r-th refinement level respectively.

Given: The P-PCE algorithm begins with a
given prior distribution π(xxx), a likelihood function
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L (xxx|yyy) and an integer Nenr., specifying the number
of new samples added in each enrichment step. The
initial refinement level is r = 0 and draw Nenr. sam-
ples X = (xxx(1), . . . ,xxx(Nenr.)) are drawn from a uni-
form distribution π̃(xxx) that has the same support
as π(xxx). In the case of prior distributions with un-
bounded support (e.g. normal distribution) the ini-
tial domain D0,1

xxx (r = 0 and i = Nr = 1) is restricted
to the ε-quantile and the (1− ε)-quantile in each
marginal distribution, for a small number ε . These
samples are then used to evaluate the likelihood
function and the results are stored in L = L (X|yyy).
An orthonormal basis Ψ

0,1
α with respect to π(xxx) is

computed on the domain D0,1
xxx . Then X and L can

be used to approximate the polynomial coefficients:

b0,1
ααα =

〈
Ψ

0,1
ααα ,L (xxx|yyy)

〉
π,0,1

. (21)

In the present implementation the coefficients are
estimated by least squares regression (Berveiller
et al., 2006).

L̃ 0,1(xxx|yyy) = ∑ααα∈A 0,1 b0,1
ααα Ψ

0,1
α (xxx) is obtained as

an initial approximation of the likelihood function.
Until converged: Increase refinement level r =

r+1

1. Subdivide domain: Subdivide each domain
D r−1,i

xxx of the previous refinement level r− 1
into 2M equally sized subdomains. This de-
fines the subdomains D r,i

xxx for i = 1, . . . ,Nr.

2. Loop over subdomains D r,i
xxx : For i= 1, . . . ,Nr

(a) Enrich experimental design: Add Nenr.
new samples to the experimental design
X by sampling from the uniform distri-
bution π̃r,i(x) defined on the subdomain
D r,i

xxx . Evaluate the likelihood at these new
samples and update the residuals vector
R by subtracting all lower level PCEs
from the likelihood evaluations:

R= L (X|yyy)−
r−1

∑
s=0

Nr

∑
j=1

L̃ s, j(X|yyy) (22)

(b) PCE: Construct orthonormal basis
{Ψr,i

ααα : α ∈ A r,i} w.r.t the truncated

Figure 2: Visualization of the subdomains Dk
xxx in a 1D

example created during the P-PCE procedure. Each
node represents one PCE of a partial likelihood.

prior in subdomain D r,i
xxx and compute the

coefficients using the residuals R:

br,i
ααα = 〈Ψr,i

ααα ,R
r,i(xxx)〉π,r,i. (23)

L̃ r,i(xxx|yyy) = ∑ααα∈A r,i br,i
ααα Ψ

r,i
ααα (xxx) is ob-

tained as an approximation to Rr,i(xxx).

(c) Compute residuals and error: Update
the residual R = R−L r,i(X|yyy). Esti-
mate the leave-one-out error of the cur-
rent PCE using R= (rrr(1), . . . ,rrr(N))ᵀ and
X= (xxx(1), . . . ,xxx(N))ᵀ:

ε
r,i
LOO =

1
Nr,i

N

∑
j=1

(
rrr( j)− L̃ r,i

\ j (xxx
( j)|yyy)

)2
,

(24)
where Nr,i is the number of samples in
D r,i

xxx .

3. Check convergence: Average the leave one
out errors from all subdomains of level r to
obtain an estimate of the surrogate model ac-
curacy at the current refinement level:

ε
r
LOO =

1
Nr

Nr

∑
i=1

ε
r,i
LOO. (25)

Terminate the algorithm if a sufficient accu-
racy is reached.
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5. RESULTS

Two case studies are presented that demonstrate the
concepts of P-PCE. In both cases an inference prob-
lem is solved, where both the prior π(xxx) and the
likelihood function L (xxx|yyy) are given by a normal
distribution:

π(xxx) = N (xxx|µµµprior,ΣΣΣprior), (26)

L (xxx|yyy) =
N

∏
i=1

N (yyy(i)|xxx,ΣΣΣ). (27)

The prior parameters µµµprior, ΣΣΣprior and the mea-
surement noise ΣΣΣ of the likelihood function are
known. Then, a set of N synthetic data measure-
ments yyy(i) are generated to complete the inference
problem. The posterior distribution in this case can
be calculated analytically by:

π(xxx|yyy) = N (xxx|µµµpost,ΣΣΣpost) with

ΣΣΣpost =
(

ΣΣΣ
−1
prior +NΣΣΣ

−1
)−1

µµµpost = ΣΣΣpost

(
ΣΣΣ
−1
priorµµµprior +NΣΣΣ

−1ȳyy
)
,

(28)

where ȳyy = 1
N ∑

N
i=1 yyy(i) is the data sample mean. The

analytically available posterior distribution makes
it possible to accurately judge the convergence of
the proposed P-PCE method.

In the presented case studies, the maximum poly-
nomial degree at each refinement level is set to
p = 3 and a standard truncation scheme A k ={

ααα ∈ NM : ||ααα||1 ≤ p
}

is used, with ||ααα||1 =

∑
M
i=1 αi for all K PCEs, where all basis functions

up to a total degree p are included. The experimen-
tal design is enriched with Nenr. = 2 · card(A k) in
each domain. This is in accordance with the rec-
ommendations given in Berveiller et al. (2006).

At every refinement step, the experimental de-
sign is thus enriched with Nenr. samples in every
one of the 2M new subdomains, that is, N grows
according to:

N(r) = Nenr. ·
r

∑
k=0

(
2M)k

. (29)

5.1. 1D conjugate problem
The first problem aims to show how the P-PCE pro-
cedure approximates a given likelihood function. A
1D example with µprior = 2 and σ2

prior = 4 is used
with 10 synthetic measurements yyy sampled from
N (1,σ2) with σ2 = 1.

Following the procedure described in Section 4,
Nenr. = 2 · card(A ) = 8 samples are drawn in the
initial domain Dxxx = [−4.18,8.18] that corresponds
to the 10−3 and 1−10−3 quantiles of the prior dis-
tribution.

The convergence behaviour of the P-PCE proce-
dure is shown in Figure 3 and the estimated poste-
rior marginals can be seen in Figure 4. After the
5-th refinement step, the relative error of both mo-
ments falls below 0.1%, at a total cost of N = 256
model evaluations.

Figure 3: 1D example – Relative error convergence of
the mean and variance of X |yyy and the behaviour of the
average leave-one-out error defined in Eq. (25).

5.2. 2D conjugate problem
In the second problem the shortcomings of the cur-
rent implementation of P-PCE are presented by set-
ting the dimensionality of the problem to M = 2
and investigating an example with µµµprior = (2,2)ᵀ

and ΣΣΣprior = diag(4,4). A set of 10 synthetic mea-
surements yyy is drawn from N ((1,2)ᵀ,ΣΣΣ) with ΣΣΣ =
diag(4,1).

The same procedure as before is followed, but
this time starting with Nenr. = 2 · card(A k) = 20
samples in the initial domain. At every refinement
step, the experimental design is enriched with 20
samples in every subdomain.

The convergence behaviour is visualized in Fig-
ure 5 and the approximated posterior marginals af-
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(a) Refinement step 1

(b) Refinement step 5

Figure 4: 1D example – Analytical prior and posterior
distributions and the P-PCE posterior approximation
after 1 and 5 refinement steps.

Figure 5: 2D example – Relative error convergence of
the mean and variance of Xi|yyy and the behaviour of the
average leave-one-out error defined in Eq. (25).

ter the 1-st and 5-th refinement step are shown in
Figure 6. The number of model evaluations at the
5-th refinement step, where all moment errors fall
below 1%, is N(5) = 6820.

6. CONCLUSIONS

The presented approach for constructing piece-
wise PCEs to approximate likelihood functions has
very promising properties. It was shown that, us-
ing the sequential polynomial approximation from
Eq. (10), all posterior moments and quantities of in-
terest can be calculated by mere post-processing of
the underlying PCE coefficients. Furthermore the
approach of summing up individual PCEs allows

(a) Refinement step 1

(b) Refinement step 5

Figure 6: 2D example – Analytical prior and posterior
distributions and the P-PCE posterior approximation
after 1 and 5 refinement steps.

to drop the requirement of a globally positive PCE
from standard SLE (Nagel and Sudret, 2016), be-
cause the individual summands can be negative as
long as they sum up to a positive value.

The bottleneck of the current procedure is the
construction of the P-PCE detailed in Section 4.
Notice that 2Mr new PCEs have to be computed at
each refinement level. Consequently, in moderate
to high dimensions, the required number of samples
grows exponentially, rendering the approach com-
putationally infeasible.

Nonetheless, the analytically available posterior
quantities of interest and likelihood approximation
make the proposed framework appealing. Future
research will focus on facilitating the construction
of P-PCE by means of adaptive construction of the
subdomains, as well as sparse polynomial chaos ex-
pansions in each subdomain coupled with adaptive
sampling.

7



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

A. STIELTJES PROCEDURE
For details refer to Gautschi (2004). To construct a
series of univariate orthonormal polynomials with
respect to a weight function π(x) on a domain D
the following recurrence relation can be used for
p ∈ N0:

√
βp+1ψp+1(x) = (x−αp)ψp(x)−

√
βpψp−1(x).

(30)
The initial polynomials are given by ψ−1 = 0 and

ψ0 = 1/
√∫

D π(x)dx. The coefficients can be cal-
culated through the Christoffel-Darboux formulae

αp =

〈
xψp,ψp

〉
π〈

ψp,ψp
〉

π

, βp =

〈
ψp,ψp

〉
π〈

ψp−1,ψp−1
〉

π

,

(31)
with the inner product 〈x1,x2〉π =

∫
D x1x2π(x)dx.
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