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ABSTRACT: An extensive research effort is dedicated to Bayesian estimation methods for analyzing the
empirical behaviour of structures. State-of-the-art structural identification methods currently quantify
model uncertainties by estimating hyper-parameters for the prediction-error prior. This paper exposes
that this uncertainty quantification procedure does not fully recognize the epistemic nature of model
prediction errors, because their posterior probability density function (PDF) is not explicitly estimated
and their interaction with model parameters are not considered. This paper presents a Hierarchical Bayes
formulation for estimating the joint posterior PDF of model parameters and prediction errors. This
Hierarchical Bayes approach allows capturing the dependencies between unknown model parameters
and unknown prediction errors; it offers a more accurate picture of the structural behaviour than when
estimating the prior hyper-parameters alone. The application of this method to large-scale structures
requires an adequate model the for the prediction-error prior, which remains a case-specific challenge.

An extensive research effort is dedicated to
Bayesian estimation methods for analyzing the em-
pirical behaviour of structures. One of the goals of
structural identification is to infer model parameters
from on-site observations. Another is to employ
the updated knowledge about parameters to make
better predictions for unobserved quantities. Since
the work of Beck and Katafygiotis (1998) in the
field of structural identification, Bayesian estima-
tion has been increasing in popularity for the tasks
of inferring the properties of structures (Zhang et al.
(2011); Papadimitriou et al. (2001); Au and Zhang
(2016)), and for detecting damages in the con-
text of structural health monitoring (Yuen et al.
(2006); Simoen et al. (2012)). More recently the
focus has shifted to Hierarchical Bayes formula-
tions (Behmanesh et al. (2015); Huang et al. (2017);
Nagel and Sudret (2016)), where Bayesian estima-
tion is employed to identify the joint posterior prob-
ability density function (PDF) for model parame-
ters and for the hyper-parameters of the prediction-
errors prior PDF. A prediction error is defined as

the discrepancy between a model prediction and
the unknown true system’s response. One com-
mon aspect of current Hierarchical Bayes formula-
tions found in the literature is that prediction errors
are quantified through the estimation of the hyper-
parameters of the prediction-error prior PDF. This
approach is limited because prediction errors are
not random; they are unknown deterministic values.

Similar Bayesian estimation approaches were
proposed by Brynjarsdóttir and O’Hagan (2014)
and by Ling et al. (2014), where the posterior PDF
for prediction errors are explicitly estimated. The
field of structural identification can build on these
approaches for improving the way model parame-
ters and prediction errors are estimated. For this
task, two aspects remain to be addressed: (1) the
formalization of the approach in a hierarchical man-
ner and (2) the explicit separation of prediction er-
rors into its prior and posterior estimates.

Authors such as Simoen et al. (2013a,b) and
Goulet et al. (2014) have already demonstrated that
model simplifications introduce dependencies in

1



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

the model prediction errors between different pre-
diction locations. Simoen et al. (2013a) underline
the need to include these dependencies in Bayesian
estimation. Current research in structural identifi-
cation does not fully recognize the epistemic nature
of prediction errors, because its posterior PDF is not
explicitly estimated and its interaction with model
parameters is not considered.

This paper presents a Hierarchical Bayes for-
mulation for estimating the joint posterior PDF of
model parameters and prediction errors. Section
1 introduces the nomenclature for the prior, pos-
terior, hyper-prior, and hyper-posterior employed
in the Hierarchical Bayes formulation. Section 2
describes the common Hierarchical Bayes formula-
tion employed in structural identification. Section
3 presents the new hierarchical formulation pro-
posed in this paper that allows the joint estimation
of model parameters and prediction errors. Finally,
in Section 4, an example illustrates the benefits ob-
tained by estimating the joint posterior of model pa-
rameters and prediction errors.

1. NOMENCLATURE FOR THE PRIOR, POS-
TERIOR, HYPER-PRIOR, AND HYPER-
POSTERIOR

The observed data is separated into two parts, the
attributes xi, and the corresponding structural re-
sponse observations yi. For the sake of simplicity,
in this paper, the attributes xi only refer to observa-
tion locations. The joint set of attributes and system
responses is D = {(xi,yi) ,∀i= 1 : D}≡{(Dx,Dy)}.
The variables y = [y1 : yD]ᵀ ∈ RD describe the ob-
served structural responses. These observations are
modelled by the sum of model predictions g(p,x)∈
RD that are a function of attributes x = [x1 : xD]ᵀ ∈
RD and model parameters p = [p1 : pP]ᵀ ∈ RP, pre-
diction errors w(x) = [w(x1) : w(xD)]ᵀ ∈RD that are
also a function of attributes x, and measurement er-
rors v = [v1 : vD]ᵀ ∈ RD. Note that contrarily to
model prediction and prediction errors, measure-
ments errors are assumed to be independent of the
attribute x. The model prediction g(p,x) depends
on the known attributes x describing the prediction
location and unknown model parameters p describ-
ing physical properties of the system. The observed

structural responses are described by the equation

y = g(p,x)+w(x)+v. (1)

All the terms in Equation 1 are considered as deter-
ministic quantities because for a given set of obser-
vations D , quantities x, y, p, w(x), and v are not
varying, yet values for p, w(x), and v remain un-
known.

The role of Bayesian probabilities is to describe
our knowledge of unknown variables using a prob-
ability density function (PDF). Before obtaining ob-
servations D , our knowledge is described by the
prior PDF; after obtaining D , our knowledge is de-
scribed by the posterior PDF. Our prior knowledge
is described by a PDF, which is itself defined by a
set of unknown parameters. For example, the prior
knowledge for model parameters is described by
the random variable P, which is described by the
prior PDF f (p|zp). “|zp” denotes the dependence
on a set of hyper-parameters i.e. parameters of the
prior PDF. Similarly, f (p|D ,zp) describes our pos-
terior knowledge for P conditioned on the set of
observations D and deterministic hyper-parameter
values zp. When hyper-parameters zp are unknown,
the random variable Zp is described by a hyper-
prior f (zp) and a hyper-posterior f (zp|D), i.e. the
prior PDF and posterior PDF of hyper-parameters.
Unlike the parameter values p for which true val-
ues may exist, hyper-parameters zp are parameters
of our prior knowledge for which no true value ex-
ists. When hyper-parameters zp are assumed to
be fixed constants that are not learnt from data,
f (p|zp) = f (p).

The concept of prior, posterior, hyper-prior and
hyper-posterior not only applies to unknown pa-
rameters p, but also for prediction errors w(x), and
measurement errors v. Note that, unlike for hyper-
parameters zp and zw, a true value exists for zv. The
true value for zv typically corresponds to the sta-
tistical precision of the measuring instruments em-
ployed to obtain y.

In practical situations, it is common that uniform
or non-informative prior PDFs are employed Gel-
man et al. (2014). In that case, the prior does not
depend on any hyper-parameters and it removes the
need for a hyper-prior and hyper-posterior. Simi-
larly, if the hyper-parameter values are assumed to
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be known, it removes the need for a hyper-prior and
hyper-posterior. In this paper, we assume that zp are
known constants; It simplifies the notation and al-
lows to focus the attention on model parameters p
and prediction errors w(x).

2. HIERARCHICAL BAYES FOR STRUCTURAL

IDENTIFICATION

The central idea of Hierarchical Bayes is to infer si-
multaneously the joint posterior for model parame-
ters which are included in the likelihood function,
as well as the hyper-parameters for the prior dis-
tributions Murphy (2012). Given the hypothesis
that model (W(x)) and measurement (V) errors are
zero-mean Gaussians,

W(x) ∼ N (w;0,Sw(zw(x)))
V ∼ N (v;0,Sv(zv))

the likelihood of observations y conditioned on at-
tributes x, model parameters p, and model and mea-
surement error hyper-parameters zw(x),zv, is de-
scribed by

f (y|p,zw,zv,x)∼ g(p,x)+W(x)+V
= N (y;g(p,x),Sw(zw(x))+Sv(zv))

(2)

so that the likelihood of the set of observations Dy
is

f (Dy|p,zw,zv,Dx) =
N (Dy;g(p,Dx),Sw(zw(Dx))+Sv(zv)).

In a generic form, the model prediction error co-
variance matrix is parameterized by zw(x) so that

[Sw(zw(x))]i j= sw(xi) · sw(x j) ·ρ(xi,x j), where

zw(xi) = [sw(xi),ρ(xi,x j)]
ᵀ, ∀{i∧ i j : i > j}

where sw(xi) are the prediction errors standard de-
viations for an attribute xi and ρ(xi,x j) the corre-
lation coefficients defined for a pair of attributes
xi,x j. Observation errors are typically indepen-
dent from one to another, so the covariance ma-
trix Sv(zv) = sv · I, which is parametrized by zv =
[sv,1 : sv,D]

ᵀ and is diagonal. Given the hypothesis
that the prior knowledge for parameters p, zw(x)≡
zw, and zv are independent from each other, their
joint posterior PDF is obtained using the Bayes
conditional probability

posterior︷ ︸︸ ︷
f (p,zw,zv|D)=

likelihood︷ ︸︸ ︷
f (Dy|p,zw,zv,Dx) ·

prior︷︸︸︷
f (p) ·

hyper-prior︷ ︸︸ ︷
f (zw) · f (zv)

f (Dy)︸ ︷︷ ︸
normalization cte.

.

(3)
Note that f (p) describes the prior PDF for model

parameters and f (zw) · f (zv), the joint hyper-prior
PDF. f (p,zw,zv|D) is the joint posterior PDF
for the model parameters, the prediction-errors
hyper-parameters and measurements-errors hyper-
parameters.

The main limitation of this Hierarchical Bayes
approach is that it only allows estimating the pos-
terior for model parameters, as well as for hyper-
parameters. Hyper-parameters are parameters of
the prior, consequently, they provide no informa-
tion about the posterior distribution of the actual
prediction errors or measurement errors; it only
provides information about our prior knowledge.
Estimating the posterior PDF for model prediction
errors is essential because there are non-linear de-
pendencies between model parameter values and
prediction errors. If we consider prediction errors
as epistemic uncertainties, we should explicitly es-
timate the posterior PDF for these quantities. The
formulation suited for this task is presented in the
following section.

3. JOINT ESTIMATION OF MODEL PARAME-
TERS AND PREDICTION ERRORS

Let us consider that prediction errors w(x) are un-
known constants, as describes in Section 1. In that
case, we estimate the posterior PDF of w(x) con-
ditioned on data by reformulating the likelihood
defined in the previous section. Here, the likeli-
hood function explicitly includes the prediction er-
rors term w(x) so that

f (y|p,zv,w(x),x)∼ g(p,x)+w(x)+V
= N (y;g(p,x)+w(x),Sv(zv)).

(4)
Notice that contrarily to Equation 2, the likelihood
in Equation 4 now explicitly depends on the pre-
diction errors w(x). Assuming that observation er-
rors follow zero-mean Gaussians, the likelihood of
data Dy conditioned on all parameters and hyper-
parameters is
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f (Dy|p,zv,w(Dx),Dx) =
N (Dy;g(p,Dx)+w(Dx),Sv(zv)).

The formulation for the posterior PDF now has a
prior term for the prediction-errors conditional on
its hyper-parameters so that

posterior︷ ︸︸ ︷
f (p,zw ,zv,w(Dx)|D) =

likelihood︷ ︸︸ ︷
f (Dy |p,zv ,w(Dx),Dx) ·

prior︷ ︸︸ ︷
f (w(Dx)|zw) · f (p) ·

hyper-prior︷ ︸︸ ︷
f (zw) · f (zv)

f (Dy)
(5)

where f (p,zw,zv,w(Dx)|D) is the joint posterior
distribution for the model parameters, the hyper-
parameters, and most importantly prediction errors
w(Dx). This new formulation allows the explicit
quantification of the dependence between model
parameters and model prediction errors at observed
locations. In the case where several sets of model
parameters and prediction errors {p,w(Dx)} can
equally explain the observations, then all these sets
of values will end up having an equal posterior
probability, given that the prior probability of each
set is also equal.

The key aspect for the successful application
of this Hierarchical Bayes formulation is to have
a proper model for the model prediction-errors
prior PDF, f (w(Dx)|zw) ∼W(zw(x)). A conve-
nient choice already employed by many authors,
e.g. Simoen et al. (2013a,b); Behmanesh et al.
(2015); Huang et al. (2017); Papaioannou and
Straub (2017), is to describe the prior for predic-
tion errors using a Gaussian process. Under the as-
sumption that our model is unbiased, i.e. the prior
expected value for prediction errors is 0, this Gaus-
sian process is expressed as

W(zw(x)) ∼ N (w;0,Sw(zw(x))), where

[Sw(zw(x))]i j = sw(xi) · sw(x j) ·ρ(xi,x j, l), and

sw(x) = fct(x,zs),

ρ(xi,x j, l) = exp
(
−1

2
(xi−x j)

2

l2

)
, l ≥ 0,

zw = [zs, l]ᵀ.

The prediction error standard deviation sw(x) is typ-
ically attribute-dependent, so that it needs to be rep-
resented by a problem-specific function fct(x,zs),
where zs are the function’s parameters. The cor-
relation structure can be represented by a square-
exponential covariance function, parameterized by
the length-scale factor l. l is the hyper-parameter

describing how the correlation decreases as the dis-
tance (xi− x j)

2 increases. Note that this choice for
the correlation structure is not exclusive and many
others can be employed as described by Rasmussen
and Williams (2006). The hyper-parameters in zw
needs to be learnt from data.

In order to shorten the notation, the pos-
terior PDF in Equation 5 is summarized as
f (p,zw,zv,w(Dx)|D) ∼ θ|D . Here, the posterior
PDF for model prediction errors w(Dx) is estimated
only for measured locations Dx. However, in prac-
tical applications, one typically needs to predict the
structure behaviour ui at unobserved locations xi so
that P = {(xi,ui) ,∀i = 1 : P} ≡ {(Px,Pu)}. The
structure behaviour at unobserved locations is ex-
pressed as a random process following

{U|D ,Px}= g(Px,{θ|D})+W(Px,{θ|D})
(6)

where W(·) is a Gaussian process defined for pre-
diction locations Px conditioned on D . The ad-
vantage of modelling the prior PDF of prediction
errors as a zero-mean Gaussian process is that its
conditional distribution is also Gaussian so that

W(Px,{θ|D})∼N (w(Px);MP|D ,SP|D),

MP|D = SPDS−1
DD(w(Dx)|D)

SP|D = SPP −SPDS−1
DDSᵀ

PD
(7)

and where SPP is the covariance matrix for predic-
tion errors at unobserved locations, SDD is the co-
variance matrix for prediction errors at observed lo-
cations, and SPD is the covariance matrix between
prediction errors at observed and unobserved loca-
tions. Specifically, these matrices are defined fol-
lowing

SPP = Sw({Zw|D},Px)

SPD = Sw({Zw|D},{Px,Dx})
SDD = Sw({Zw|D},Dx)+ sv · I

(8)

where the observation uncertainties (sv) are only in-
cluded on the diagonal of the SDD matrix.

In practical applications, the posterior PDF in
Eq.5 as well as the posterior PDF for prediction er-
rors at unobserved locations in Eq.7 are not ana-
lytically tractable. A common solution to this chal-
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lenge is to employ MCMC sampling methods to ap-
proximate the joint posterior Gelman et al. (2014).
In this case, once samples from the posterior PDF
f (θ|D) are obtained, they are employed to generate
realizations of the matrices in Eq.8 for all prediction
locations Px. These matrices are then employed to
generate realizations from posterior PDF for model
prediction errors W(·) in Eq.7, again, for all predic-
tion locations Px.

4. ILLUSTRATIVE EXAMPLE

This Section presents an example illustrating the
potential of the hierarchical approach presented in
this paper, for the field of structural identification.
The structure considered is a cantilever beam. The
real structure is made of an elastic beam connected
to a rotational spring as presented in Figure 4a. In
order to represent practical cases, simulated data is
generated from the beam in Figure 4a, yet, data
is interpreted using the simplified model in Fig-
ure 4b, where the rotational spring is omitted.

(a) Real structural system

(b) Simplified model

Figure 1: (a) presents the real structural system em-
ployed to generate simulated observations at location
x. (b) presents the simplified model where the fixed
end is assumed to be fully rigid. This simplifying as-
sumption is introduced to represent practical situations
where models contains simplifications in comparison
with the system studied.

This model simplification introduces dependencies
in the model prediction errors. The prior PDF for
prediction errors is defined by the standard devi-
ation function sw(x) = a · x, where a : a > 0 is a
hyper-parameter to be learnt jointly with the cor-
relation length, so that zw = [a, l]ᵀ. The true pa-
rameter values employed for generating simulated

observations are

K = 1.75×1011 N/rad
L = 10m
P = 5kN
I = 6.66×109 mm4

E = 35GPa

Measurement standard deviation is assumed to be
known and is equal to sv = 1 mm. Observation lo-
cations are Dx = {5,10}m and observed displace-
ments are Dy = {−4.44,−11.28}mm. Finally, pre-
dicted displacements are sought for locations Px =
{0,0.2, · · · ,10}m. The prior engineering knowl-
edge for the model parameter and hyper-parameters
are described by Gaussian PDFs truncated at 0 in
order to respect the constrains on the physically
possible values for E, a and l. The choice of Gaus-
sian priors for E, a and l is made in order to facil-
itate the estimation of the proposal PDF using the
Laplace approximation (Murphy (2012)). Table 1
summarizes the prior knowledge PDFs.

Table 1: Prior PDFs for parameters and hyper-
parameters.

Description Prior/Hyper-prior
E Young’s modulus N (E;30,152)
a Pred. error prior scale N (a;10−4,10−3)
l Correlation length N (l;5,50)

w(x) Prediction errors N (w;0,Sw(a, l))

This illustrative example compares the re-
sults obtained using (1) the current Hierarchical
Bayesian (Current HB) approach presented in Sec-
tion 2 and using (2) the approach presented in
Section 3 which estimates the joint posterior for
model parameters, prediction errors and hyper-
parameters (New HB). Both approaches employ
the same prior structure except that the Current
HB approach estimates f (p,zw,zv|D) whereas the
New HB approach proposed in this paper estimates
f (p,zw,zv,w(Dx)|D). Displacement predictions
{U|D ,Px} for unobserved locations Px, are com-
puted following Equation 6. For the New HB ap-
proach, prediction errors

W(Px,{θ|D})∼N (w(Px);MP|D ,SP|D) (9)
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correspond to the posterior prediction errors de-
scribed in Equation 7. For the Current HB ap-
proach, because the posterior PDF for prediction
errors is not explicitly estimated, prediction errors
are computed from the prior PDF so that

W(Px,{θ|D})∼N (w(Px);0,SPP) (10)

where the covariance matrix SPP is estimated us-
ing the posterior PDF of hyper-parameters {Zw|D}.

Joint samples θi|D , ∀i = 1 : N from the joint pos-
terior PDF are taken using the Metropolis-Hasting
algorithm where the proposal PDF is a multivari-
ate Gaussian for which the covariance matrix is
estimated using the Laplace approximation as de-
scribed in Murphy (2012). Three parallel chains,
containing a total of N = 105 joint samples are
taken. For each chain, the first 15 000 samples
are discarded as burn-in samples; The Metropolis-
Hasting acceptance rate is approximately 0.25 and
the Estimated Potential Scale Reduction (EPSR)
(i.e. chain stationarity metric), is below 1.005
for all parameters and hyper-parameters (Murphy
(2012)). Both the acceptance rate and EPSR are
within target ranges for ensuring the sampling ef-
ficiency and chains stationarity (Murphy (2012);
Gelman et al. (2014)).

Figure 2 and 3 describe the posterior PDFs com-
puted using Current HB and New HB methods re-
spectively. Histograms located on the matrices di-
agonal describe the marginal posterior probability
for each parameter or hyper-parameter. For the pa-
rameter E and prediction errors w1,w2, the solid
dot represents the true value. Note that a true
value does not exist for the prediction error hyper-
parameters a and l. The scatter plots above the
diagonal represent the pairwise posterior samples.
Note that only a random set of 2 000 joint samples
is presented.

For both methods, the marginal posterior for pa-
rameters E and hyper-parameters {a, l} are identi-
cal within the range of sampling variability. How-
ever, the New HB method provides additional in-
formation compared with the Current HB; it allows
to explicitly estimate the posterior distribution for
prediction errors. In Figure 3, scatter plots for E–
w1 and E–w2 display the non-linear dependence be-
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Figure 2: Posterior PDF representation for the Cur-
rent Hierarchical Bayes approach (Current HB). His-
tograms on the diagonal represent the marginal pos-
terior probabilities for each parameter. Each scatter
plot above the diagonal represents the pairwise rep-
resentation of MCMC samples. Here only a random
set of 2 000 joint samples is presented. In the case of
parameters E, the solid dot represents the true value.

tween model prediction errors and the Elastic mod-
ulus. Here, large (small) values for E leads to stiffer
(softer)-than-reality models which need to be com-
pensated by negative (positive) prediction error val-
ues. Also, the length-scale factor l has in most cases
a value much greater than the length of the beam.
It indicates that model prediction errors are almost
linearly correlated. This is in agreement with the
almost linear correlation observed between model
prediction errors w1–w2.

Figure 4a and 4b present the true, observed and
predicted beam deflexion obtained with Current HB
and New HB respectively. The solid line repre-
sents the true deflexion and the dashed line the ex-
pected value of the predicted deflexion. Crosses
represent the observed values and the coloured re-
gions represent the ±2 standard deviation intervals
for the prior and posterior prediction errors respec-
tively. The posterior prediction error obtained with
the New HB method is significantly smaller than
the one obtained with the Current HB method. This
is caused by the dependency between prediction er-
rors and model parameters observed in Figure 3,
where the effect of parameter values on displace-
ments are compensated by prediction errors. The
Current HB method overestimate the prediction er-
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Figure 3: Posterior PDF representation for the Hi-
erarchical Bayes approach proposed in this paper
(New HB). Histograms on the diagonal represent the
marginal posterior probabilities for each parameter.
Each scatter plot above the diagonal represents the
pairwise representation of MCMC samples. Here only
a random set of 2 000 joint samples is presented. In the
case of parameters E, w1 and w2, the solid dot repre-
sents the true value.

ror because it only considers its prior PDF. It shows
that the Current HB method can lead to an impor-
tant overestimation of prediction errors because it
does not explicitly consider the joint posterior dis-
tribution of model parameters and prediction errors.

For the existing HB method, MCMC sampling
takes approximately five minutes, for the new HB
method, it takes three times as much because
tuning the proposal parameters according to the
method presented by Murphy (2012) takes several
steps. For more complex problems involving hun-
dreds of parameters, more advanced sampling ap-
proaches such as Hamiltonian Monte-Carlo (Neal
et al. (2011)) must be employed.

5. DISCUSSION
The Hierarchical Bayes approach presented in this
paper allows estimating the joint posterior proba-

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

position [m]

de
fle
xi
on

[m
m
]

E[U |D]± 2σ[U |D]
E[U |D]
True deflexion
Observations

(a) Current Hierarchical Bayes (HB) method
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Figure 4: True, observed and predicted beam deflexion.
The dashed line represents the true beam deflexion and
the solid line represents the expected beam deflexion
conditional on observations depicted by crosses. The
coloured region represents the ±2σ confidence interval
for the predicted displacement estimated.

bility for model prediction errors as well as model
parameters. It enables taking advantage of the de-
pendencies between prediction errors and parame-
ter values in order to obtain more precise predic-
tions for unobserved locations. The main limitation
of any Hierarchical Bayes approach is that the qual-
ity of the results directly depends on the choice for
the prior PDF for the prediction errors. For simple
applications similar to the toy problem in this paper,
this task is easy. However, in applications relevant
for real life applications, identifying a good defini-
tion the for the prior prediction-error structure is a
difficult challenge which, for the moment, needs to
be addressed case by case and for which no gen-
erally applicable solution exists. Moreover, in this
paper, the prior knowledge for prediction errors is
described by a Gaussian process. The only limita-
tion if one want to employ any other probability dis-
tributions, is in Equation 7, which would not have
a closed form solution anymore. The solution is to
infer prediction errors at locations of interests using
a sampling approach in the same way it is currently
done for the prediction errors at observed locations.

A second limitation of the explicit estimation
of prediction errors in a Hierarchical Bayes ap-
proach is that the number of parameters to be es-
timated increases linearly with the number of ob-
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servations. This aspect is a key computational
challenge because sampling in high dimensions is
a difficult task. The explicit extension to non-
gaussian cases and large number of observations re-
main open questions.

6. CONCLUSION

The current approach of employing a Hierarchical
Bayes approach to estimate model parameters and
hyper-parameters does not fully account for predic-
tion errors. Taking account of prediction errors re-
quires estimating the joint PDF for model parame-
ters, hyper-parameters, and model prediction errors
themselves. It allows capturing the dependencies
between epistemic uncertainties related to model
parameters and prediction errors. This approach
better represent the epistemic nature of model pre-
diction errors, which like model parameters are un-
known constants. The real-life application of any
Hierarchical Bayes method requires a good defi-
nition the for the prior prediction-error structure
which remains a case-specific challenge for which
no generally applicable solution exists for the mo-
ment.
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