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ABSTRACT: A new computational method is proposed for solving the eigenpairs of the structures with 

random parameters based on the basic idea of the homotopy analysis method. For this new method, the 
eigenvalues and eigenvectors of the random structures are expressed as the homotopy-series. Because 
each term in the homotopy expressions includes an approaching function with auxiliary parameter h, the 

convergence domain of the homotopy-series is greatly improved, which makes this new method availab le 
for the large fluctuation of random parameters. In practice, a dimension-reduction strategy is applied to 

the series to reduce the computational effort: the single-variable and double-variable homotopy-ser ies 
are recommended for calculation. Numerical example of a fixed rectangular plate, indicates that the new 
method provides an excellent approximation of the eigenpairs of a closely spaced eigenvalues system. 

 
Algebraic eigenvalue problems are a class of basic 

and significant problems in various fields, such as 
structural dynamics and structural stability. The 
computation of eigenvalues and eigenvectors is 

well comprehended for deterministic problems. In 
many practical cases, however, the physical 
properties of the structural systems are not 

deterministic. Therefore, it is extremely necessary 
to use random variables to more realistica lly 

describe the uncertain characteristics that exist in 
eigenvalue problems in engineering (Liu and 
Belyschko 1986). 

Due to the randomness of the input 
parameters, such as the modulus of elasticity, of a 

physical problem, the desired output or 
eigenvalues will also be random. The methods for 
computing these random outputs are generally 

composed of two categories. The first category 
includes simulation-based methods. Direct 

Monte-Carlo simulation (DMC) is the most 
important and fundamental simulation-based 
method (Székely and Schuëller 2001), but it 

requires considerable computational effort, 
especially for large systems. The second category 

for random analysis, stochastic finite element 

methods (SFEM), primarily involves expansion-
based methods. In this category, the main focus is 
perturbation methods (Kleiber and Hien 1992) 

and spectral methods (Ghanem and Spanos 1991). 
However, the low-order perturbation method only 
gives reasonable results for statistical moments 

when the coefficients of variation of the random 
system parameters are small. In the case of the 

spectral method, the random eigenvalues and 
eigenvectors are approximated by projecting them 
on an orthogonal polynomial basis. The advantage 

of the spectral method over the perturbation 
method is that the accuracy using a given order of 

basis function is considerably better. Although the 
computational effort of the spectral method is 
more expensive than that of the perturbation 

method, it is, in general, considerably less 
expensive than the simulation-based methods. 

Apart from the above two categories of 
stochastic methods, other methods involving 
random eigenvalue problems are provided in the 

literature. One of them is the dimensiona l 
decomposition method introduced by Rahman 
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(2006), which allows lower-variate 
approximations of eigenvalues and lower-

dimensional numerical integration for statistica l 
moments. Another one is stochastic reduced basis 

approximation. Nair and Keane (2003) suggested 
that formulations that use a global set of stochastic 
basis vectors to simultaneously approximate all of 

the desired eigenvalues and eigenvectors may 
lead to more accurate results. In summary, the 

current studies attempt to find an approach that is 
sufficiently efficient and accurate to address the 
eigenvalue problems of large systems with large 

fluctuations of random parameters with Gaussian 
and/or Non-Gaussian distributions. Based on this 

starting point, a new approach is presented in this 
paper for solving the eigenvalue problem of the 
structure with random parameters on the basis of 

the homotopy analysis method, which is proposed 
by  Liao and Sherif (2004). In this approach, an 

infinite multivariate series of the involved random 
variables is proposed to express the random 
eigenvalue or even the random eigenvector. The 

coefficients of the multivariate series are 
determined by means of the homotopy analysis 

method. However, in practice, the single-and 
double-variable approximations are employed to 
simplify the calculation. A numerical example 

indicates that by selecting an optimal auxiliary 
parameter, the suggested approximations can 

produce very accurate results of eigenpairs even 
for closely spaced eigenvalues system. 

1. HOMOTOPY APPROXIMATE OF A 

RANDOM EIGENVALUE 

1.1. Homotopy construction of random 
eigenvalue equations 

The eigenvalue problem of undamped or 

proportionally damped deterministic systems can 
be expressed by Eq. (1), which is referred to as the 
eigenvalue algebraic equation. 

0 KU MU                       (1) 

where   and U  are the eigenvalue and 
corresponding eigenvector of the dynamic system.  
K  and M  are the stiffness and mass matrices, 

respectively. 

If the random field of the modulus of 
elasticity is defined as the Karhunen-Loève 

expansion or composed of some independent 
random variables, the stiffness matrix of the 

structure with random parameters can be written 
as 

0

1

( )
n

i i

i




 K ξ K K                   (2) 

where 
0K  is the deterministic matrix with respect 

to deterministic mean parameters. 
iK  is an N×N-

dimensional matrix. ξ =
1 2{ , , }n    are the 

independent random variables. As a result, the 
eigenvalue and eigenvector are functions of these 

random variables. 
Now, by using the basic conception of HAM, 

the zero-order deformation equation of the 
random eigenvalue, is constructed as 
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where [0,1]p  and 0h  . 0K , 0Μ , 0 and 0U  

are the mean of stiffness, mass, eigenvalues and 

eigenvectors, respectively. Let (1) ( , , )W h pξ  and 

(2) ( , , )h pW ξ  denote the homotopy constructions 

of the eigenvalue and the eigenvector, 

respectively, which are the functions of the 

random variable i , the auxiliary parameter h and 

the embedding parameter p. 

Take partial derivative of the zero-order 
deformation of Eq. (3) m times with respect to p 
so the mth-order deformation equations of Eq. (1) 

can be attained. Then, letting 1p   will produce 

the infinite series solution of the eigenva lue 

( , )h ξ  in the original Eq. (1), and the series 

solution can be expressed as 
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where   are the deterministic eigenva lue 

coefficients and 
, ( )m k h  (k=1,.., m) are presented 

in Huang, Zhang and Phoon (2018). 

1.2. Two approximations of the infinite 
multivariate series 

To improve the calculation efficiency, two 
approximations of the infinite multivariate series 

are proposed as follows 
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which are named as HSFEM-1 and HSFEM-2, 

respectively. 

2. EXAMPLE 
This example involves the calculation of closely 

spaced eigenvalues of a fixed rectangular plate, as 
shown in Figure 1. For the plate, the width l1=3 m, 

the length l2=3.01 m, the thickness t=0.1 m and 
the Poisson’s ratio v=0.3. The plate is divided into 
three parts, in accordance with the difference of 

the elastic modulus. Figure 1 shows that there are 
three elastic moduli, e1, e2 and e3. It is assumed 

that the three values of elastic modulus are 
independent random variables with Beta 
distributions. Their means are 10×105 kN/m4, 

4×105 kN/m4 and 5×105 kN/m4, respectively, and 
their coefficients of variation are 0.25, 0.25 and 

0.3, respectively. The finite element mesh of the 
plate consists of 144 4-noded thin plate elements  
and 169 nodes. Each node has 3 DOF, includ ing 

one deflection and two rotations. The first three 
eigenvalues of the mean system are 63.86 (rad/s)2, 

230.03 (rad/s)2 and 231.81 (rad/s)2, respectively. 
Clearly, it is ensured that the first eigenvalue is a 
separated eigenvalue, whereas the second and 

third are closely spaced eigenvalues. The random 
eigenvalues and eigenvectors of the plate are 

calculated by HSFEM-1, HSFEM-2 and the direct 
Monte Carlo simulation. Considering that the 

eigenvectors are highly sensitive to the closely 
spaced eigenvalues, for the 2nd eigenvalue and 

eigenvector, the zero-order coefficients of the 
single-variable approximation and the double-
variable approximation are calculated by the 

method presented by Hu (1987). Then, the higher 
order coefficients of the two approximations are 

determined by the proposed method. The direct 
Monte Carlo simulation used 10,000 samples. 
Figures 2 are the probability density functions of 

the second eigenvalues. It is observed from 
Figures 2 that compared with HSFEM-1, 

HSFEM-2 yields significantly improved results 
that are in close agreement with those generated 
by the direct Monte Carlo simulation. 

 

 
Figure 1: A fixed rectangular plate with random 
elastic modulus 

 

 
Figure 2: The PDFs of the 2nd eigenvalue 
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(a) Curve of the mean modal shape 

 
(b) Profiles at x=3, 6 and 9 

Figure 3: The mean of the modal shape of the 2nd 
mode 

 

 
(a) Curve of the mean modal shape 

 
(b) Profiles at x=3, 6 and 9 

Figure 4: The standard variance of the modal shape 
of the 2nd mode 

 
Figures 3~4 show the means and standard 

variances of the modal shape of the second mode. 
The modal shape only considers the deflection of 
each node, and all modal shapes, including sample 

modal shapes calculated by the direct Monte 
Carlo simulation, are normalized. Figures 3 show 

that for the mean of the modal shape of the 2nd 
mode, the results of HSFEM-1, HSFEM-2 and the 
direct Monte Carlo simulation agree with each 

other very well. Alternately, Figures 4 indicates 
that compared with DMC, the standard variances 

of the modal shape of HSFEM-2 improve on those 
of HSFEM-1 and that the accuracy of their results 
is very good. 

3. CONCLUSIONS 
A new approach, the homotopy stochastic finite 

element method, is established to compute the 
eigenpairs of a structure with random parameters 
on the basis of the homotopy analysis method. In 

this method, the random eigenpairs are expressed 
as an infinite multivariate series with respect to 

the involved random variables. Further, two 
approximations, the single-variable and double-
variable approximations, are proposed to simplify 

the calculation.  
Numerical studies indicated that the 

suggested approximations can produce very 
accurate results compared with the direct Monte 
Carlo simulation. In addition, the proposed 
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methods are suitable for solving the closely 
spaced eigenvalue problems. Therefore, the 

proposed approach is a very good alternative 
method for solving random eigenvalue problems. 
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