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ABSTRACT: Reliability-based design optimization (RBDO) is an active field of research that combines
reliability analysis and optimization techniques. The early RBDO techniques were limited in applica-
tions because of the approximation techniques (FORM) used in the reliability part. More sophisticated
techniques that rely on simulations were not of practical interest until the recent introduction of surro-
gate modeling to the field of structural reliability. Many approaches that couple surrogate modeling,
simulation-based reliability analysis and optimization for the solution of RBDO problems have been re-
cently developed. This paper proposes a global and unified framework for surrogate-assisted RBDO that
allows for the solution of various types of RBDO formulations. This framework is built using three dis-
tinct and independent blocks which are coupled non-intrusively. To enhance the overall efficiency, the
surrogate models are built adaptively in a single augmented space prior to starting optimization. The
proposed framework is illustrated using different techniques in each of the three blocks.

1. INTRODUCTION
Reliability-based design optimization (RBDO) is
one of the most widely used approaches for the de-
sign of structures under uncertainties. The problem
basically consists of a combination of optimization
and reliability analysis. A substantial amount of
research has been devoted to developing methods
within the RBDO framework that allows for an effi-
cient solution, i.e. with the smallest number of calls
to the model used in the computation of various de-
signs failure probabilities. Early formulations re-
lied either on analytical approximate solutions or
on the reformulation of the RBDO problem. These
methods have been reviewed in Chateauneuf and
Aoues (2008); Valdebenito and Schuëller (2010)
and classified into two-level, mono-level and decou-
pled approaches. Benchmark studies (e.g. Aoues
and Chateauneuf (2010)) have shown the limitation
of these approaches which, for the most part, boils
down to the use of approximation techniques such

as the first-order reliability method (FORM). A di-
rect consequence is the development of simulation-
based methods which however comes with a large
computational burden. More recently, another line
of research has been drawn on the use of surrogate
models, i.e. cheap and easy-to-evaluate proxies of
the usually expensive original models. These have
facilitated the development of more accurate and
robust solution schemes in RBDO problems. How-
ever, the way in which such metamodels are intro-
duced and the chosen formulations make it difficult
to solve non-intrusively all types of RBDO prob-
lems. In this paper, we propose a unified and global
framework for the solution of RBDO problems.
The interest of this approach can be declined in the
following points. First, it allows to solve all types
of RBDO formulations regardless of the probabilis-
tic input model, i.e. a) whether considering de-
sign variables only or both design and environmen-
tal variables (see below for a detailed definition)
and b) whether the design parameters are deter-
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ministic or also affected by uncertainties. Second,
the framework is made of three independent blocks
(surrogate modeling, structural reliability, and op-
timization) which are coupled non-intrusively. In
the first part of the paper, the RBDO problem is
formulated followed by a brief review and classi-
fication of surrogate-assisted methods. The pro-
posed framework is then presented together with
some numerical considerations for a proper imple-
mentation. Finally, applications are made on two
analytical benchmark examples using three differ-
ent realizations of the framework.

2. FORMULATION OF THE RBDO PROB-
LEM

Various formulations have been proposed over time
for the solution of RBDO problems. The most pop-
ular one consists in minimizing a deterministic cost
c under probabilistic constraints (Dubourg et al.,
2011):

ddd∗ = argmin
ddd∈D

c(ddd) subject to:{
f j (ddd)≤ 0, { j = 1, . . . ,ns} ,
P(gk (XXX (ddd) ,ZZZ)≤ 0)≤ P̄fk , {k = 1, . . . ,nh} ,

(1)

where ddd ∈ D ⊂ RMd denotes the design variables,
f j are a set of soft constraints (e.g. feasible bounds)
and gk are the limit-state functions for which nega-
tive value indicates failure of the system. The latter
depend on random variables which are here clas-
sified into two groups, namely the random design
variables XXX (ddd)∼ fXXX |ddd which account for any vari-
ability that may be encountered in the decision pa-
rameters and the environmental variables ZZZ ∼ fZZZ ,
which describe the random parameters that influ-
ence the limit-state function without being consid-
ered as decision parameters for the optimization
problem. The specificity of RBDO lies in the fact
that the constraints are assessed in terms of failure
probability P(gk (XXX (ddd) ,ZZZ)≤ 0) whose value is ex-
pected to be lower than a predefined threshold P̄fk .

Equivalent formulations such as those based on
the reliability index can be used. In this paper,
we will also consider another formulation where
the probabilistic constraint in Eq. (1) is replaced

by the following quantile constraints (Moustapha
et al., 2016):

Qαk (ddd;gk (XXX (ddd) ,ZZZ))≤ 0, {k = 1, . . . ,nh} , (2)

where αk = P̄fk and

Qαk (ddd;gk (XXX (ddd) ,ZZZ)) =
inf{q ∈ R : P(gk (XXX (ddd) ,ZZZ)≤ q)≥ αk} .

(3)

Various methods have been introduced in the liter-
ature to solve Eq. (1). A thorough review can be
found in Chateauneuf and Aoues (2008); Valdeben-
ito and Schuëller (2010). Most of the existing con-
tributions rely on a reformulation of the problem
and/or on approximation techniques for the reliabil-
ity analysis. Chateauneuf and Aoues (2008) classi-
fied these approaches into three categories, namely
two-level, mono-level and decoupled approaches.
The latter two attempt to tackle an equivalent but
easier-to-solve problem through the introduction of
optimality conditions or upon separating the opti-
mization problem from the reliability analysis. The
double-loop approach however solves directly the
RBDO problem through a nested loop which con-
sists of an outer optimization loop and an inner
reliability analysis. Despite being easy to imple-
ment, such methods have shown to be flawed on
many levels. This is mainly related to the use of ap-
proximation techniques for the reliability analysis,
more specifically the first-order reliability method
(FORM). FORM is indeed known for leading to
spurious results when the limit-state function is
highly non-linear or when there exists more than
one possible most probable failure point. In the
benchmark performed in Aoues and Chateauneuf
(2010), it is shown that most of these methods re-
quire an unaffordably large number of model eval-
uations to converge and lack of robustness as the
solution strongly depends on the optimization start-
ing point and on the degree of non-linearity of the
limit-state surface.

Alternative approaches which rely on direct sim-
ulation rather than approximation techniques for
the reliability analysis have been proposed in the
literature in the last few years. To cope with the
high number of model evaluations that Monte Carlo
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simulation-based methods require, surrogate mod-
eling is often introduced in the framework. This
has been done following different schemes as illus-
trated in Figure 1. The two major distinct groups
consist in either approximating the relationship be-
tween the design and the corresponding failure
probability or approximating directly the limit-state
surface. The latter, which is more efficient, can fur-
ther be declined according to how the metamodel
is built. In this paper, we focus on the most general
approach which consists in building one unique and
global metamodel that will be used for all reliability
analyses throughout the optimization process.

Surrogate-based RBDO

I. Approximate Pf/β II. Approximate g

1. Local approximation 2. Global approximation

a. Trust region b. Global region

Figure 1: Classification of surrogate-assisted RBDO
approaches.

3. PROPOSED FRAMEWORK
As introduced in the previous section, the use
of surrogate models has been a focus of the re-
cent RBDO contributions. Most of the proposed
methods are however problem-dependent or require
specialized developments. For instance, methods
based on score functions to compute the sensitivity
of the reliability index or failure probability require
using Monte Carlo simulation to compute the lat-
ter. Moreover, the way the surrogate model is built
often depends on the probabilistic input model, i.e.
whether there are environmental variables or not or
whether the design variables are deterministic or
considered as means of random variables.

In this work, we propose a generalized non-
intrusive framework for surrogate-assisted RBDO.
The framework is made of three modular and inde-
pendent blocks, namely surrogate modeling, relia-
bility analysis and optimization. Each of them com-
municates with the others in a black-box fashion as
illustrated in Figure 2. This means that the method

chosen in each block can be modified without af-
fecting the remaining ones. This idea is illustrated
in the examples section where three "realizations"
of the frameworks corresponding to different meth-
ods in each block is used.

Surrogate model

Reliability analysis

Optimization

Figure 2: Proposed global and non-intrusive RBDO
framework.

3.1. Implementation of the framework
3.1.1. Surrogate modeling
The basic idea of surrogate modeling is to build
a cheap approximation of an expensive-to-evaluate
function. This is achieved by training a metamodel
over a limited set of data known as the experimen-
tal design. In the proposed framework, a unique
and global surrogate model is built to approximate
the limit-state function. The interest in such an
approach is that the same metamodel can be used
for any reliability analysis regardless of the de-
sign choice. The space in which the metamodel
is built should therefore be large enough and ac-
count for both the design and environmental vari-
ables. This is achieved by using the so-called aug-
mented space. In practice, this consists of a ten-
sor product of uni-dimensional confidence regions
defined on each variable. For the design variable,
such a confidence region can be derived by simply
extending the bounds of the design space so as to
account for possible sample points that correspond
to extreme design variables. Mathematically, this
reads (Moustapha et al., 2016):

x−i = F−1
Xi|d−i

(αdi), x+i = F−1
Xi|d+

i
(1−αdi), (4)

where F−1
Xi|d−i

and F−1
Xi|d+

i
are respectively the inverse

cumulative distribution functions (CDF) associated
to the lower and upper design bounds and αdi de-
notes the confidence level associated to the design
di. When the design variable is deterministic, the
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bounds of the augmented and design spaces sim-
ply coincide. The environmental variables do not
evolve during optimization and a simple approach
would consist in simply setting the correspond-
ing augmented space to the tensor product of the
marginal environmental variables space. However,
we may also construct a marginal confidence region
similar to that of the design space as follows:

z−i = F−1
Zi

(αzi/2), z+i = F−1
Zi

(1−αzi/2), (5)

where F−1
Zi

is the inverse CDF associated to the en-
vironmental variable Zi. Eventually, the augmented
space reads:

W= X×Z. (6)

where X= ∏
Md
i=1
[
x−i ,x

+
i
]

and Z= ∏
Mz
i=1
[
z−i ,z

+
i
]
.

Making such a global surrogate model accurate
enough for all reliability analyses throughout the
optimization process would require an extremely
large number of training points. To overcome the
induced hurdle, one may rely on active learning
schemes that allow one to efficiently build meta-
models by directing the computational resources to
points that contribute to the accurate estimation of
the limit-state surface.

3.1.2. Reliability analysis
In RBDO, one or more reliability analyses are car-
ried out at each iteration of the optimization pro-
cess in order to estimate failure probability corre-
sponding to the current design. As proposed in
this framework, any reliability technique can be
used. As explained earlier approximation-based
approaches may lack of accuracy while the intro-
duction of surrogate modeling allows for the use
of direct simulation-based approaches. Examples
of state-of-the-art simulation approaches include
crude Monte Carlo simulation (MCS) for small
probabilities ( e.g. < 10−2), importance sampling
or subset simulation. These or any more advanced
method can be seamlessly plugged into the pro-
posed framework in a black-box fashion.

3.2. Optimization
In the proposed framework, any general-purpose
optimization algorithm can be used. In general,
optimization algorithms are split into two groups,

namely local and global optimizers. Local op-
timization algorithms rely on local information
about the cost and constraint functions to iteratively
search for better designs. Except for the double-
loop approaches, the approximation-based RBDO
methods often rely on built-in optimization algo-
rithms. In double loop approaches, very often sen-
sitivities of the reliability index are used to com-
pute the gradients. Even though such an approach
may be more efficient, it violates the black-box con-
straint of the proposed framework. For local search,
we rely on the computation of gradients using the
finite-difference method. Here again the cost is
leveraged by the fact that we are using a surro-
gate model that can be evaluated at practically no
cost. Numerical precautions need to be taken for
this scheme to work. More specifically, the con-
straint, i.e. the estimator of the failure probabil-
ity or reliability index, is stochastic in nature when
Monte Carlo simulation is used. For the finite-
difference scheme to make sense, it is necessary,
on the one hand, to control the variance of the fail-
ure probability estimates and on the other hand, to
use concepts such as the so-called common ran-
dom numbers (Spall, 2003). Essentially the latter
means using the same stream of random numbers
to compute failure probabilities for different design
points. Even when using such approaches, the reli-
ability technique itself may lead to slight variation
within infinitesimally close designs. In such case,
one should resort to global optimization algorithms
which do not require any sensitivity information.

4. APPLICATIONS
4.1. Problem set up
To illustrate this framework we consider three
different realizations of the proposed framework
as summarized in Table 1. In this table, SQP
and CMA-ES stand respectively for sequential
quadratic programming and covariance matrix
adaptation - evolution scheme (Arnold and Hansen,
2012). They are respectively local and global opti-
mization algorithms.

4.1.1. Framework #1
In the first framework, Kriging is used as surrogate
model. In short, Kriging is a metamodeling tech-
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Table 1: Three different realizations of the proposed
framework to be used in the application examples.

Framework Metamodel Reliability Optimization
Case #1 Kriging Subset simulation CMA-ES
Case #2 PCE MCS SQP
Case #3 Kriging Quantile MCS Intrusive CMA-ES

Reference Original model MCS Hybrid CMA-ES

nique which considers the model to approximate as
a realization of a Gaussian process, which reads:

M (www) =
p

∑
j=1

β j f j (www)+Z (www) , (7)

where β j and f j are respectively a set of P
weights and basis functions and Z is a zero-mean
stationary Gaussian process with auto-covariance
Cov [Z (www) ,Z (www′)] = σ2R(www,www′,θθθ). The covari-
ance function is defined here by the constant vari-
ance σ2 and the auto-correlation R with parameters
θθθ .

Given an experimental design, the Kriging pre-
dictor is considered to be the mean of a Gaussian
random variable N

(
µĜk

,σ2
Ĝk

)
, where:

µĜk
(www) = fff T (www) β̂ββ + rrrT (www)RRR−1

(
yyy−FFFT

β̂ββ

)
,

σ
2
Ĝk

(www) = σ
2(1− rrrT (www)RRR−1rrr (www)

+uuuT (www)
(
FFFT RRR−1FFF

)−1
uuu(www)).

(8)

In these equations, β̂ββ =
(
FFFT RRR−1FFF

)−1
FFFT RRR−1yyy is

the generalized least-square estimate of the weight
coefficients, rrr (www) is a vector of cross-correlations
between the point www and each point of the train-
ing set, FFF =

[
f j

(
www(i)
)]

1≤i≤N,1≤ j≤P
and uuu(www) =

FFFT RRR−1rrr (www)− fff (www).

The Kriging variance σ2
Ĝk

(www) represents a mea-
sure of epistemic uncertainty of the prediction at
the current point www and is often relied upon when
building learning functions. In this paper, we con-

sider the expected feasibility function which reads:

EF(sss) = µĜk
(sss)
[

2Φ

(
µĜk

(sss)

σĜk
(sss)

)
−Φ

(
−δ

+ (sss)
)

−Φ
(
−δ
− (sss)

)]
−σĜk

(sss)
[

2ϕ

(
µĜk

(sss)

σĜk
(sss)

)

−ϕ
(
−δ

+ (sss)
)
−ϕ

(
−δ
− (sss)

)]
+2σĜk

(sss)
[

Φ
(
−δ
− (sss)

)
−Φ

(
−δ

+ (sss)
)]

,

(9)

where δ− (sss) =
µĜk

(sss)−2σĜk
(sss)

σĜk
(sss) and δ+ (sss) =

µĜk
(sss)+2σĜk

(sss)

σĜk
(sss) .

In practice, a candidate set for enrichment is
sampled uniformly in the augmented space: S =
{sss ∈W, i = 1, . . . ,NC}. The enrichment is then
made iteratively by adding to the current experi-
mental design, the one that maximizes Eq. (9):

sssnext = argmax
sss∈S

EF (sss) . (10)

The enrichment is stopped when the metamodel is
deemed accurate enough. In this work this is con-
trolled by the stability of the surrogate model in ap-
proximating a classifier based on the limit-state sur-
face.

4.1.2. Framework #2
In this framework, polynomial chaos expansions
(PCE) are used as surrogate model. Let us consider
a random vector WWW ∼ fWWW whose components are as-
sumed independent and further assume that the ran-
dom output, Y = gk (WWW ), has a finite variance. The
latter can then be cast as the following polynomial
chaos expansion (Xiu and Karniadakis, 2002):

Y = ∑
ααα∈NM

yαααΨααα (WWW ) , (11)

where yααα is a set of coefficients to calibrate and Ψααα

is a collection of multivariate orthonormal polyno-
mials that are given with respect to the inputs ran-
dom distributions. In the present setting, the inputs
are all sampled uniformly in the augmented space,
which leads to using Legendre polynomials.

In practice, this expansion is truncated into a fi-
nite and limited set of polynomials. The coeffi-
cients are then calibrated using various approaches
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among which regression techniques that are based
on a sampled experimental design. Least-angle re-
gression is considered here (Blatman and Sudret,
2011). Such an algorithm allows one to enforce
sparsity in the PCE representation.

Similarly to the previous case, the PCE model
is built adaptively off-line prior to starting the opti-
mization. For the applications in this paper, we con-
sider a distance-based learning function that com-
bines exploration and exploitation of the augmented
space. More specifically, the next best point is cho-
sen as:

sssnext = arg max
sss∈S ′

min
i=1,...,N

‖sss−www(i)‖, (12)

where S ′ = {sss ∈S : |ĝ(sss)| ≤ q} with q being an
α-quantile of |ĝ(sss)|. In other words, the set of can-
didates is first reduced to the closest points to the
currently estimated limit-state surface. By setting
α = 0.01, the candidate set is reduced to the 1%
closest points to the limit-state surface. Among
these points, the next best point is chosen as the
one that is furthest away from all existing training
points. The process is repeated until convergence is
achieved.

4.1.3. Framework #3
This framework is a slight adaptation of the pro-
posed framework which can be qualified gray-box.
By adding a simple coupling between the optimiza-
tion algorithm and the surrogate model, the effi-
ciency of the RBDO solution can be greatly en-
hanced. In fact, the previous cases focus on accu-
rately defining the limit-state surface in the entire
augmented space. However, this is not necessary
as only a subset of the limit-state surface will be of
interest for optimization, i.e. where the cost func-
tion is improving with respect to the initial design.
To integrate such an information, a two-stage en-
richment scheme was proposed in Moustapha et al.
(2016). The first stage of the enrichment proceeds
as above but stops prematurely before convergence.
This only serves the purpose of grossly identifying
the contours of the limit-state surface. The second
stage of enrichment is coupled to optimization. At
each iteration of the optimization process, the accu-
racy of the estimated failure probability, or in this

case quantile, is assessed. Enrichment is made lo-
cally whenever this estimate is not deemed accu-
rate enough, otherwise the optimization algorithm,
henceforth called intrusive CMA-ES, proceeds to
the next iteration.

In practice, upper and lower bounds of the quan-
tiles estimates (resp. q−α (ddd) and q+α (ddd)) are in-
troduced using the models defined respectively by
µĜk

(www)−1.96σĜk
(www) and µĜk

(www)+1.96σĜk
(www).

Even though those values may not actually bound
the true quantile, they can be used as a measure of
the surrogate model accuracy in estimating the true
quantile. Hence, the following criterion is com-
puted at each iteration:

εq (ddd) =
|q−α (ddd)−q+α (ddd)|

1+ |qα(ddd)|
. (13)

Enrichment is made if εq is larger than a predefined
threshold, herein set to 0.1. This is achieved by
considering the same learning function defined in
Eq. (9) where the set of candidates for enrichment
is taken locally as the samples used to compute the
quantile.

4.2. Examples
4.2.1. Three non-linear constraints
The first example is a two-dimensional problem
with three non-linear limit-state functions widely
used in the literature for RBDO methods bench-
marks. In a deterministic context, it reads:

ddd∗ = arg min
ddd∈[0,10]2

d1 +d2 s.t.:

g1 (ddd) = 1− d2
1d2

20
≥ 0

g2 (ddd) = 1− (d1 +d2−5)2

30
− (d1−d2−12)2

120
≥ 0

g3 (ddd) =
80

1−
(
d2

1 +8d2 +5
) ≥ 0

.

(14)

The equivalent RBDO problem as in Eq. (1) is ob-
tained by considering the design variables random
with the following distribution Xi ∼ N

(
di, 0.32)

and setting the target failure probability (resp. re-
liability index) to P̄f = 1.35 · 10−3 (resp. β̄ = 3).
The solution is carried out starting with an initial
experimental design consisting of 10 points sam-
pled using Latin Hypercube sampling (LHS). The
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analysis is repeated 20 times to account for the sta-
tistical variability in the results. Figure 3 shows the
resulting optimal costs and number of model evalu-
ations using box-plots. The corresponding median
results are gathered in Table 2, together with some
literature benchmark results. The three cases lead
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Figure 3: Results for the highly non-linear limit-sate
functions problems

to accurate results within a reasonable number of
calls to the limit-state functions. In particular, their
efficiency is larger than most of the approximation-
based methods. From these figures, it can be ob-
served that case #3 is more robust and efficient than
cases #1 and #2. This is due to the fact that in
case #3 enrichment is mostly local and follows the
optimization process, therefore the estimated quan-
tiles are extremely accurate in the final solutions.
In contrary, cases #1 and #2 try to approximate
the limit-state surface accurately in the entire aug-
mented space with a convergence criterion that may
not be well calibrated.

Table 2: Results comparison for the three
non-linear constraints problem.

Method d∗1 d∗2 c(ddd∗) g-calls
Reference 3.45 3.30 6.75 ≈ 106

Case #1 3.45 3.28 6.73 28
Case #2 3.45 3.28 6.73 30
Case #3 3.44 3.29 6.73 19
PMAa 3.43 3.29 6.72 1,551
SORAa 3.44 3.29 6.73 151
Single loopa 3.43 3.29 6.72 19
RDSa 3.44 3.28 6.72 27
Meta-RBDOa 3.46 3.27 6.74 20

a Results gathered from Dubourg (2011).

4.2.2. Bracket structure
This example deals with the bracket structure illus-
trated in Figure 4. The structure consists of two

connected members hinged to a wall to which is
applied a vertical load. The RBDO problem con-
sists in minimizing the weight of the bracket while
ensuring that the constraints are satisfied, namely
the maximum bending stress σb is below the yield
stress σy and the compression force in the oblique
bar FAB is lower than the critical Euler Force Fb.

Figure 4: A sketch of the bracket structure (as illus-
trated in Dubourg (2011))

The RBDO problem therefore reads:

ddd∗ = argmin
ddd∈D

c(ddd) subject to:{
P(g1 (XXX (ddd) ,ZZZ)≤ 0)≤ P̄f1
P(g2 (XXX (ddd) ,ZZZ)≤ 0)≤ P̄f2,

(15)

where P̄f1 = P̄f2 = 0.00227 , c(ddd) =

ρtL
(
4
√

3/9wAB +wCD
)

and the limit-state
functions are given by:

g1 (XXX (ddd) ,ZZZ) = σy−
6MB

wCDt2 ,

g2 (XXX (ddd) ,ZZZ) =
π2EI
L2

AB
− 1

cosθ

(
3P
2

+
3ρgwCDtL

4

)
(16)

with MB = PL/3+ρgwCDtL2/18, I = tw3
AB/12 and

LAB = 2L/3sinθ . The eight random variables are
described in Table 3.

As in the previous case, the solution is repeated
20 times starting with an initial experimental design
of 20 drawn using LHS. Figure 5 shows the result-
ing optimal costs and number of limit-state evalu-
ations. Again the metamodel-based solutions are
better in efficiency than the approximation-based
ones. Cases #1 and #2 require a relatively large
amount of model evaluations to converge and some-
how lack of robustness. This can be explained by
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Table 3: Parameters of the variables defining the
probabilistic model for the bracket structure prob-
lem: ddd = {wAB,wCD, t}T are the design variables and
zzz = {P,E,σy,ρ,L}T are the environmental variables.

Parameter Distribution Mean COV (δ%)
Width of AB (wAB in m) Normal wAB 0.05
Width of CD (wCD in m) Normal wCD 0.05
Thickness (t in m) Normal t 0.05
Applied load (P in kN) Gumbel 100 0.15
Young’s modulus (E in GPa) Gumbel 200 0.08
Yield stress (σy in MPa) Lognormal 225 0.08
Unit mass (ρ in kg/m3) Weibull 7860 0.10
Length (L in m) Normal 5 0.05

the size of the augmented space and the complex-
ity of the limit-state functions. In contrary, the case
#3 due to the two-stage enrichment scheme is ex-
tremely efficient and robust.
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Figure 5: Results for the highly non-linear limit-sate
functions problems

5. CONCLUSIONS
This paper presents a global framework for the
solution of RBDO problems. This framework
is made of three independent and non-intrusive
blocks, namely surrogate modeling, reliability anal-
ysis and optimization. Such a framework solu-
tion unifies various schemes introduced in the lit-
erature that solely focus on solving a specific type
of RBDO problems. Further, the proposed frame-
work is non-intrusive in the sense that one can plug
any method in any of three blocks independently
from the others. Two examples were used to show-
case the application of this framework considering
three different cases. The efficiency of the result-
ing scheme was shown based on comparison with
literature benchmark results. The accuracy and ro-
bustness of the solution strongly relies on the surro-
gate model that is built adaptively in the augmented

space. These results show that a key point is the set-
up of an efficient enrichment scheme and the cali-
bration of the corresponding convergence criterion.
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