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ABSTRACT: A physical domain-based formulation of parametric reduced-order models based on
dominant normal modes and interface reduction is presented in the context of uncertainty propagation
analysis. Normal and interface modes are approximated in terms of a set of support points in the
uncertain parameter space. Based on these approximate modes, reduced-order matrices can be updated
efficiently during the simulation process associated with the uncertainty analysis. The proposed
approach is applied to a complex nonlinear finite element model under a synthetic ground motion
generated by a realistic source-based model for subduction mega-thrust earthquakes.

1. INTRODUCTION

It is often impractical to carry out a finite ele-
ment analysis of the full structure in cases of com-
plex and large systems. In this framework, the
so-called Craig-Bampton method has been devel-
oped as a practical and efficient tool for model-
ing and analyzing the dynamics of complex struc-
tural systems (Craig (1981)). The basic idea of the
technique is to describe the dynamic behavior of a
structure by a set of normal modes of individual
substructures plus a set of static vectors that ac-
count for the coupling at each interface where the
substructures are connected. In this manner, each
substructure is dynamically reduced by a separate
modal analysis before being assembled at the sys-
tem level. As a result, a reduced-order model of

the entire structure is obtained. In the approach,
the normal modes correspond to the dominant fixed
interface modes while the attachment at the inter-
faces is achieved by a set of interface constraint
modes. Although an important order reduction may
be achieved for the individual substructures there
is no order reduction for the interface. To reduce
the number of interface degrees of freedom, a num-
ber of approaches have been proposed in the lit-
erature. In particular, a method based on charac-
teristic constraint modes has proved to be compu-
tationally quite attractive (Castanier et al. (2001)).
In the context of uncertainty analysis, the construc-
tion of reduced-order models at each sample point,
implies re-computing the fixed-interface and con-
straint normal modes for each substructure as well
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as the interface modes. This procedure can be
computationally very expensive due to the substan-
tial computational overhead that arises at substruc-
ture level (Papadimitriou and Papadioti (2013)). To
cope with this difficulty, an efficient finite element
model parametrization scheme is presented.

2. REDUCED-ORDER MODEL
2.1. Mechanical modeling

A general class of nonlinear structural dynamical
systems can be characterized by a multi-degree-of-
freedom model satisfying the equation of motion

Mẍ(t) + Cẋ(t) + Kx(t) = (1)
fNL(x(t), ẋ(t),y(t)) + f(t)

where x(t) denotes the displacement vector of di-
mension n, fNL(x(t), ẋ(t),y(t)) the vector of non-
linear restoring forces, y(t) the vector of a set of
variables which describes the state of the nonlinear
components, and f(t) the external force vector. The
matrices M, C, and K describe the mass, damping,
and stiffness, respectively. The evolution of the set
of variables y(t) is described by an appropriate non-
linear model which depends on the nature of the
nonlinearity. The equation of motion for the dis-
placement vector x(t) and the equation for the evo-
lution of the set of variables y(t) constitute a system
of coupled non-linear equations.

2.2. Reduced-order matrices based on dominant
normal modes

To define the reduced-order model, the so-called
dominant fixed interface normal modes ΦΦΦs

id and in-
terface constraint modes ΨΨΨs

ib for each substructure
s,s = 1, ...,Ns are considered (Craig (1981)). Based
on these modes, the mass and stiffness matrices
referred to the vector of dominant fixed-interface
modal coordinates of all substructures and to the
vector of physical coordinates at the independent
interfaces take the form (Jensen et al. (2017))

M̂R =

[
[I, ..,I] MibΓ
MT

ibΓ MΓ

]
(2)

K̂R =

[
[ΛΛΛ1

id, ..,ΛΛΛ
Ns
id ] 0

0 KΓ

]

where

MΓ = T̃T
[M̂1

bb, ...,M̂
Ns
bb]T̃ (3)

KΓ = T̃T
[K̂1

bb, ...,K̂
Ns
bb]T̃

MibΓ = [M̂1
ib, ...,M̂

Ns
ib ]T̃

M̂s
ib = ΦΦΦsT

id Ms
iiΨΨΨ

s
ib +ΦΦΦsT

id Ms
ib,s = 1, ...,Ns

K̂s
bb = KsT

ib ΨΨΨs
ib +Ks

bb

M̂s
bb = (ΨΨΨsT

ib Ms
bb +MsT

ib )ΨΨΨ
s
ib +ΨΨΨsT

ib Ms
ib +Ms

bb

and where the subscript T denotes the transpose of
a matrix. The diagonal matrices ΛΛΛs

id,s = 1, ...,Ns
contain the ns

id kept eigenvalues associated with the
fixed-interface normal modes for each substructure
(dominant fixed interface normal modes). Addi-
tional matrices involved in the definition of M̂R and
K̂R include the partition matrices of the mass and
stiffness matrices at substructure level and a trans-
formation matrix T̃. This matrix maps the vector of
physical coordinates at the independent interfaces
to the vector of interface coordinates of all sub-
structures (Jensen et al. (2017)). The dimension of
the matrices M̂R and K̂R is equal to nR ×nR, where
nR = ∑Ns

s=1 ns
id + nΓ, being nΓ the total number of

degrees of freedom at the independent interfaces.

2.3. Reduced-order matrices based on interface
reduction

As previously pointed out, a method based on
characteristic constraint modes is considered for
interface reduction. The approach corresponds
to an eigenvalue problem of the interface con-
straint mode partitions of the reduced-order matri-
ces (Castanier et al. (2001)), that is

KΓϒϒϒI −MΓϒϒϒIΩΩΩI = 0 (4)

The matrix ϒϒϒI contains the selected nI interface
modes and ΩΩΩI is the diagonal matrix that con-
tains the corresponding eigenvalues. The inter-
face modes correspond to the so-called character-
istic constraint modes at the interface level. The
kept set of interface modes is used to represent the
vector of physical coordinates at the independent
interfaces xΓ(t), as xΓ(t) = ϒϒϒIηηη I(t), where ηηη I(t)
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are the interface modal coordinates. Using this rep-
resentation, the corresponding reduced mass ma-
trix M̂RI ∈ RnRI×nRI and reduced stiffness matrix
K̂RI ∈ RnRI×nRI ,nRI = ∑Ns

s=1 ns
ιd + nI are given by

(Jensen et al. (2017))

M̂RI =

[
[I, ...,I] MibΓϒϒϒI

ϒϒϒT
I MT

ibΓ II

]
(5)

K̂RI =

[
[ΛΛΛ1

id, ...,ΛΛΛ
Ns
id ] 0

0 ΩΩΩI

]
The dimension of the reduced order matrices can

be significantly smaller than the dimension of the
unreduced matrices, i.e. nRI ≪ n.

3. PARAMETRIZATION OF REDUCED-
ORDER MODELS

3.1. Parametrization of substructure matrices
In the context of uncertainty propagation analy-

sis, it is assumed that the finite element model is
parametrized by a set of parameters θθθ ∈ Ωθθθ ⊂ Rnθ .
Such parameters are characterized by a joint proba-
bility density function q(θθθ). It is also assumed that
the mass and stiffness matrices of each substructure
allow the expansion

Ms(θθθ) =
Nsg

∑
j=1

M̄s jg j(θθθ) , Ks(θθθ) =
Nsh

∑
j=1

K̄s jh j(θθθ)

(6)
where Nsg and Nsh are the number of parametriza-
tion functions g j(·) and h j(·) related to the sub-
structure s, respectively, and the matrices M̄s j and
K̄s j are independent of the model parameters θθθ . It
is noted that the previous expansions are usually
encountered in structural systems modeled by stan-
dard finite elements, where the model parameters
could be geometric or material properties.

3.2. Parametrization of interface constraint
modes

To approximate the interface constraint modes at
a new sample point θθθ k, generated during the simu-
lation process associated with the uncertainty anal-
ysis, it is assumed that ΨΨΨs

ib(θθθ) have been evaluated
at L support points in the model parameters space,

i.e., θθθ l, l = 1, ...L. In addition, the modes for a nom-
inal point θθθ 0 have also been computed. The nom-
inal point may correspond to the reference model
or it can be chosen as the mean value of the uncer-
tain model parameters. Based on this information,
the interface constraint modes evaluated at θθθ k are
approximated by means of a linear interpolation as
(Goller et al. (2011))

ΨΨΨs
ib(θθθ

k) = (1−
L

∑
l=1

ξ k
l )ΨΨΨ

s
ib(θθθ

0)+
L

∑
l=1

ξ k
l ΨΨΨs

ib(θθθ
l)

(7)
where the coefficient ξ k

l represents the contribu-
tion of the support point θθθ l to the simulation point
θθθ k. To consider only interpolations, the simula-
tion point θθθ k should belong to the nθ -dimensional
convex hull of the support points (Seidel (1997)).
The determination of the interpolation coefficients
is discussed in a subsequent Section.

3.3. Parametrization of dominant fixed-interface
modes

To approximate the fixed-interface normal
modes, they are first written as in Eq. (7), that is,

Φ̂ΦΦs
id(θθθ

k) = (1−
L

∑
l=1

ξ k
l )ΦΦΦ

s
id(θθθ

0)+
L

∑
l=1

ξ k
l ΦΦΦs

id(θθθ
l)

(8)
where the interpolation coefficients ξ k

l , l = 1, ...,L
are the ones introduced in Eq. (7). Note that in this
case, the dominant fixed-interface modes need to
be computed at the support points θθθ l , l = 1, ...,L
and at the nominal point θθθ 0, i.e. ΦΦΦs

id(θθθ
l), l =

0,1, ...,L. The previous interpolation expression
is not used directly since the approximate domi-
nant fixed-interface normal modes are not calcu-
lated directly from the solution of an eigenvalue
problem. Instead, they are used as a subspace to
span the dominant fixed-interface normal modes.
In other words, the actual approximate eigenvec-
tors ΦΦΦs

id(θθθ
k) are defined as linear combination of

the vectors composing the matrix Φ̂ΦΦs
id(θθθ

k), that is,
ΦΦΦs

id(θθθ
k) = Φ̂ΦΦs

id(θθθ
k)Q(θθθ k), where Q(θθθ k) is an aux-

iliary matrix. It can be shown that Q(θθθ k) can be ob-
tained from the solution of the reduced eigenprob-
lem (Mayorga and Jensen (2018))
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[
Φ̂ΦΦsT

id (θθθ
k)Ks

ii(θθθ
k)Φ̂ΦΦs

id(θθθ
k)

]
Q(θθθ k) = (9)[

Φ̂ΦΦsT

id (θθθ
k)Ms

ii(θθθ
k)Φ̂ΦΦs

id(θθθ
k)

]
Q(θθθ k)ΩΩΩ(θθθ k)

where the matrices inside the brackets are of dimen-
sion ns

id × ns
id . The previous information provides

an approximation for the dominant fixed-interface
normal modes at the sample point θθθ k, and for the
corresponding eigenvalues, i.e., ΛΛΛs

id(θθθ
k) = ΩΩΩ(θθθ k).

3.4. Parametrization of interface modes
The approximation of the interface modes

ϒϒϒI(θθθ k), at a sample point θθθ k, is similar to the
approximation scheme proposed for the fixed-
interface normal modes. In this instance, the in-
terface modes need to be computed at the support
points θθθ l , l = 1, ...,L and at the nominal point θθθ 0,
that is, ϒϒϒI(θθθ l), l = 0,1, ...,L.

3.5. Interpolation coefficients
The scheme suggested by (Goller et al. (2011))

and (Mayorga and Jensen (2018)) is considered in
the present formulation for the purpose of obtaining
the interpolation coefficients. First, the norm of the
difference between the support points θθθ l, l = 1, ...,L
and the simulation point θθθ k is minimized, i.e.

Minl=1,...,L ∥ θθθ l −θθθ k ∥ (10)

If the nearest point to θθθ k is denoted by θθθ q,q ∈
{1, ...,L}, the corresponding interpolation coeffi-
cient ξ k

q is obtained by projecting θθθ k − θθθ 0 onto
θθθ q − θθθ 0. The remaining part of the vector, that
is, the component perpendicular to θθθ q −θθθ 0 is rep-
resented as a linear combination of the remaining
points θθθ l − θθθ 0, l = 1, ...,L, l ̸= q. The coefficients
of the linear combination are obtained by using
the singular value decomposition (SVD) technique.
The above interpolation scheme guarantees that the
approximation is exact at each support point.

3.6. Parametrization of reduced-order matrices
Based on the previous approach and given the

expansion of the substructure matrices Ms(θθθ) and

Ms(θθθ) in (6), together with the approximation of
the interface constraint modes ΨΨΨs

ib(θθθ
k) in (7), the

approximation of the fixed interface normal modes
ΦΦΦs

id(θθθ
k), and the approximation of the interface

modes ϒϒϒI(θθθ k), the reduced order matrices M̂RI and
K̂RI in (5) can be evaluated directly at the sample
point θθθ k. Then, it is seen that the potential time-
consuming step of computing the interface normal
modes and the interface modes for different values
of the model parameters has to be performed only
for the support points. The accuracy of the approx-
imations can be increased by densifying the region
of interest in the model parameter space with addi-
tional support points.

4. EXAMPLE PROBLEM
4.1. Structural model

The three dimensional finite element building
model shown in Figure 1 is considered for analy-
sis. The model consists in a fifty four-story building
model with a total height of 190.0 m. The building
has a reinforced concrete core of shear walls and
a reinforced concrete perimeter moment resisting
frame. The columns of the perimeter have a cir-
cular cross section. The floors and shear walls are
modeled by shell elements of different thicknesses
τ . Additionally, beam and column elements are
used in the finite element model which has 84244
degrees of freedom. Material properties are given
by the Young’s modulus E = 2.77 × 1010 N/m2,
mass density ρ = 2,5×103 kg/m3, and Poisson ra-
tio µ = 0.3. Finally, a 5% of critical damping is
added to the model.

For an improved seismic performance, the struc-
tural system is reinforced with a total of 45 nonlin-
ear vibration control devices. A typical configura-
tion of these devices, at the floors where they are
located, is shown in Fig.2. Each device consists of
brace and plate elements where a series of metal-
lic U-shaped flexural plates (UFP’s) are located be-
tween the plates.

Each UFP exhibits a one-dimensional hysteretic
type of non-linearity modeled by the restoring force
law (Jensen and Sepulveda (2011))

fNL(t) = α ke δ (t)+(1−α) keUy y(t) (11)
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Figure 1: Three dimensional finite element building
model.

Figure 2: Model of vibration control device

where ke is the pre-yield stiffness, Uy is the yield
displacement, α is the factor which defines the ex-
tent to which the restoring force is linear, y(t) is
a dimensionless hysteretic variable, and δ (t) is the
relative displacement between the upper and lower
surfaces of the flexural plates. The hysteretic vari-
able y(t) satisfies the first-order non-linear differen-
tial equation

ẏ(t) = δ̇ (t)
[
β1 − y(t)2[β2 +β3sgn(y(t)δ̇ (t))]

]
(12)

where β1, β2 and β3 are dimensionless quantities

that characterize the properties of the hysteretic be-
havior, sgn(·) is the sign function, and all other
terms have been previously defined. The follow-
ing values for the dissipation model parameters are
used in this case: ke = 2.5× 106 N/m; Uy = 1×
10−3m; α = 0.1; β1 = 1.0; β2 = 0.5; and β3 = 0.5.
The non-linear restoring force of each device acts
between the floors where it is placed along the same
orientation of the device. For illustration purposes,
a typical displacement-restoring force curve of one
of the vibration control devices is shown in Figure
3.

Figure 3: A typical hysteresis loop of the vibration con-
trol devices

4.2. Definition of substructures
The model is subdivided into 81 linear sub-

structures Si, i = 1, ...,81 as shown in Figure 3.
They are composed by three types of substruc-
tures, namely: core of shear walls located be-
tween two floors (Si, i = 1, ...,27); slabs of differ-
ent floors (Si, i = 28, ...,54); and circular columns
of the perimeter frame located between two floors
and the corresponding slab of the intermediate floor
(Si, i = 55, ...,81). In addition, there are 45 nonlin-
ear substructures comprised by the nonlinear vibra-
tion control devices defined in the previous section.
With this subdivision, the total number of internal
degrees of freedom is equal to 60544, while 23700
degrees of freedom are present at the interfaces. A
small number of fixed-interface normal modes are
selected for the model. In particular, a model char-
acterized by only 252 fixed-interface normal modes
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is considered. In addition, 100 interface modes,
which represent about 0.5% of the total number of
interface degrees of freedom, are used in the re-
duced model. Thus, the total number of generalized
coordinates of the reduced-order model represents
a reduction of more than 99% with respect to the
full finite element model.

Figure 4: Substructures of the finite element model.

Validation calculations indicate that the reduced-
order model is able to characterize accurately the
important modes of the full finite element model.

4.3. Uncertainty propagation
The characterization of the system response re-

quires system reanalyses as the finite element
model changes due to variation in the values of the
model parameters. Consequently, the reduced or-
der matrices need to be re-computed for different
values of the model parameters. In the framework
of the present work, the required reanalyses are car-
ried out by the parametrization scheme presented in
Section 3.

It is assumed that the corresponding bending
stiffness coefficient kb and membrane stiffness co-
efficient km of the shell elements that model the core
of shear walls are uncertain. The coefficient kb is
represented by the term τ3E, while km is defined
by the term τE. These coefficients are modeled as

independent, discrete homogeneous isotropic Log-
normal random fields (Chilès and Delfiner (1999)).
Specifically, the random fields are discretized at
six points along the height of the building. Each
random field is characterized in terms of its mean
value µ1, where 1T =< 1,1,1,1,1,1 >, stan-
dard deviation σ , and correlation function R(∆) =
exp(−α∆2), where the variable ∆ represents a dis-
tance, and the parameter α is related to the correla-
tion length of the random field. The corresponding
covariance matrix of each one of the discrete ran-
dom fields is given by ΣΣΣ= σ2R, where R is the cor-
relation matrix with coefficients Ri j = R(∆i j), i, j =
1, ...,6, where ∆i j is the distance between the dif-
ferent points of the discretized random field. For
instance, the discrete Log-normal random field kb
can be expressed as

kb = exp(µN1+ΦΦΦΛΛΛ1/2y) (13)

where µN1 represents the mean value of the
corresponding underlying Gaussian random field
that characterized the discrete Log-normal random
field, ΦΦΦ and ΛΛΛ correspond to the spectral decom-
position of the covariance matrix of the underly-
ing Gaussian random field ΣΣΣN , and y is a vector
of independent standard normal random variables
(Der Kiureghian (2004)). A similar representation
allows the discrete Log-normal random field km.
The mean values of the random fields are set equal
to µkb = 5.98× 109 N/m2 and µkm = 1.66× 1010

N/m2, respectively, with a coefficient of variation
equal to 15%. A medium correlated random field is
considered by selecting an appropriate value of α .
With respect to Section 3 and based on the previ-
ous characterization of the uncertain parameters, it
is clear that substructures Si, i = 1, ...,27 depend on
the model parameters while the rest of the substruc-
tures are independent of such parameters. Note
that the model parameters correspond to the compo-
nents of the discrete random fields kb and km. The
parametrization functions of the substructure ma-
trices associated with a particular component of the
discrete random field kb or km, say θ j, are given by
h j(θ j) = θ j and g j(θ j) = 1, j = 1, ...,6, where the
model parameter is given by θ j = τ3E or θ j = τE.

For illustration purposes, the structural response
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to be controlled is the displacement at the top of
the building. The model is excited by a ground
acceleration generated by a source-based model
derived in terms of Green’s functions and strong
pulse-motion generation areas (SPGA) (Nozu et al.
(2014)). Such model has reproduced successfully
acceleration and velocity records from mega-thrust
earthquakes. The sampling interval and the dura-
tion of the excitation are taken equal to ∆t = 0.01
s and T = 50 s, respectively. The synthetic ground
acceleration used in the present uncertainty propa-
gation analysis is shown in Fig. 5.

Figure 5: Synthetic ground acceleration sample based
on a source-based model for subduction mega-thrust
earthquakes

Due to page limitations, the description, charac-
terization and implementation of a fully stochastic
excitation model derived from the SPGA method
is not considered in this work. Only the effect of
uncertain structural model parameters is taken into
account for the uncertainty analysis. Information
about the SPGA stochastic excitation model can be
found in (Jerez et al. (2017)).

4.4. Results
The histograms of the displacement at the top

of the building based on 2000 simulations obtained
with the full finite element model and the reduced-
order model are shown in Figs. 6 and 7. The num-
ber of support points in the parameter space used
in the proposed parametrization scheme is equal to
24. The generation of such points is based on the
Latin Hypercube sampling method.
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Figure 6: Histogram of maximum roof displacement.
Full model

Table 1: Statistics of maximum roof displacement. FM:
full finite element model, ROM: reduced-order model

Model Mean [m] Standard deviation [m]
FM 0.265 0.0267

ROM 0.266 0.0269

It is seen that the histograms are very similar.
Some statistics of the histograms are provided in
Table 1. The comparison of the results obtained
with the reduced order model shows an excel-
lent correspondence with the unreduced model. In
terms of computational effort, the execution time
for obtaining the previous results using the reduced-
order model is decreased by a factor of more than 5
with respect to the case when the full finite element
model is used. This significant reduction in com-
putational effort is achieved without compromising
the accuracy of the results.
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Figure 7: Histogram of maximum roof displacement.
Reduced-order model

5. CONCLUSIONS
A parametric substructure approach in the con-

text of uncertainty propagation of stochastic dy-
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namical systems has been presented. The substruc-
tures internal dynamic behavior is described by a
set of dominant fixed interface normal modes. On
the other hand, interface reduction is achieved by
considering a reduced number of interface modes.
In this manner, accurate and highly reduced-order
models of complex finite element models are ob-
tained. The proposed method has been validated in
a complex nonlinear finite element model under a
ground acceleration generated by a realistic source-
based model. Validation calculations show that an
important reduction in computational effort can be
achieved without compromising the accuracy of the
results. Future research efforts involve the consid-
eration of a fully stochastic excitation model in the
context of uncertainty propagation. In this manner,
the effect of uncertain structural model parameters
as well as the stochastic nature of the excitation can
be considered explicitly in the analysis.
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