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ABSTRACT: Markov Chain Monte Carlo (MCMC) simulation has significant computational burden 
when evaluation of the associated target probability density function (PDF) involves a complex 
numerical model. A novel framework to accelerate MCMC is developed here for such applications. It 
leverages a metamodel approximation of the target PDF to improve computational efficiency, while 
preserves convergence properties to the exact target PDF, avoiding potential accuracy problems 
introduced through the metamodel error. This approach relies on the delayed-rejection (DR) scheme to 
combine rapid exploring global (independent) proposals with robust random walk proposals. A Kriging 
metamodel-based density approximation is chosen as the global proposal to generate candidate samples 
in each MCMC step. For any rejected sample, DR allows an extra random walk, avoiding potential issues 
when Kriging offers a poor approximation (i.e., underestimates) to the actual target PDF and 
guaranteeing convergence. The overall computational efficiency is further improved through adaptive 
Kriging updating during the MCMC sampling phase, by systematically including candidate samples who 
can substantially enhance Kriging’s accuracy into the training database. The computational efficiency 
and robustness of the established algorithm is demonstrated in an analytical benchmark problem and an 
engineering Bayesian inference problem. 

 
1. INTRODUCTION 
Probabilistic analysis of engineering systems 
often entails the simulation of samples from a 
target probability density function (PDF) related 
to the response of the system model, with these 
samples subsequently being used to estimate 
statistics of interest for the system performance. 
To formalize this problem, consider a system with 
uncertain model parameter vector nΘ  θ  
characterized by the probability density function 
p(θ) whose support is denoted by Θ. Let 

( ) zn z θ   represent the response vector for 
the model parameter θ, assumed to be obtained 
through a time-consuming call to a deterministic 
numerical model (also called simulator). We are 
interested in simulating samples from the target 
density defined as follows: 

 
( | ) ( )

( ) = ( | ) ( )
( | ) ( )

Θ

h p
h p

h p d
 


z θ θ

θ z θ θ
z θ θ θ

  (1) 

where   denotes proportionality and 
( | ) : nh   θ z  transforms the numerical 

system response ( )z θ  to the quantity of interest 
(QoI) h(.) for the specific uncertainty 
quantification (UQ) task. For instance, in 
Bayesian inference a common choice is to define 
the response ( )z θ as the log likelihood, i.e., 

( )( ) zh e θθ . The notation ( )h θ will be also used 
interchangeably with ( | )h z θ  for clarity. 

As directly simulating samples from ( ) θ  is 
impractical for applications with black-box 
numerical models, advanced Monte Carlo 
sampling approaches need to be utilized, such as 
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rejection sampling or Markov Chain Monte Carlo 
(MCMC) sampling (Robert and Casella 2013). In 
this work we focus on MCMC techniques, and 
particularly on one of its important classes: the 
Metropolis-Hastings (MH) algorithm (Metropolis 
et al. 1953).  

The underlying foundation in MCMC is that 
trial samples from a different proposal density

( )q θ  are leveraged to draw samples from the 
target density ( ) θ . The choice of the proposal 
distribution critically controls MCMC efficiency, 
generally quantified by the degree of correlation 
between the Markov Chain samples, or, 
equivalently, by the number of effective 
independent samples when Markov Chain is used 
for statistical inference (Brooks et al. 2011). The 
optimal, yet impractical, choice for ( )q θ  is the 
target distribution itself, yielding independent 
identically distributed (i.i.d) samples. In common 
applications random walk proposals (RWs) are 
chosen (Robert and Casella 2013). Though RW 
are easy to implement and robust, their proper 
implementation requires tuning for the correct 
RW step size. Excessively large steps lead to 
frequent rejections and therefore high correlation. 
On the other hand, narrow steps facilitate moves 
only in the vicinity of the current sample and 
explore the support of the target PDF very slowly, 
yielding again high correlation. For many 
challenging target densities (e.g., nonlinear 
support or high skewness), RW can be quite 
inefficient. 

The alternative to RW proposals are 
independent (also frequently referenced as global) 
proposals, which can be potentially highly 
efficient but do face their own challenges with 
respect to algorithmic robustness in guaranteeing 
convergence to the target PDF as well as proper 
selection to achieve high efficiency (Brooks et al. 
2011). This paper investigates an MCMC 
sampling scheme that addresses these challenges 
by combining a surrogate model approximation of 
the target density as the global proposal density 
together with a RW component to improve 
sampling robustness in problematic regions, 
corresponding to regions with lower quality for 

the target density approximation. The formulation 
of the surrogate model based density 
approximation is discussed first (Section 2), 
followed (Section 3) by the new MCMC scheme 
termed Adaptive Kriging Delayed Rejection 
Adaptive Metropolis algorithm (AK-DRAM). 

2. KRIGING-BASED DENSITY 
APPROXIMATION 

For density approximation, we adopt the same 
setup in (Zhang and Taflanidis 2018a), with 
Kriging output corresponding to the response 
vector z and input chosen as the uncertain 
parameter vector θ. For forming the Kriging 
surrogate model, the output },  { ( 1) , ,t

iz t n θ  is 
observed at n distinct locations for the input 

}{ ,  1, ,t t n θ  called training (or support) 
points or experiments. Let 1 ][ Tn Θ θ θ  denote 
the input matrix, 1[   ]Tn

i i iz z Z  the 
corresponding output vector. Based on the 
observations, Kriging approximates the response 
component zi at θ as a Gaussian distribution 
(Sacks 1989): 

  2( | , ) ~ ( ), ( )i i i iz  θ Θ Z θ θ    (2) 

where ( , )a b  stands for Gaussian distribution 
with mean a and variance b, ~ is used herein to 
denote “distributed according to” and ( )i θ  and 

2 ( )i θ  represent, respectively, the predictive 
mean and variance of the surrogate model. For 
simplicity we assume that it is feasible to develop 
a separate surrogate model for each response 
component zi. Thus predictions for z are obtained 
by assembling all individual response component 
approximations, resulting in the predictive mean 

( )μ θ , variance 2 ( )σ θ , vectors as well as the 
distribution ( | , )z θ Θ Z .  

Now, with respect to how to approximate the 
QoI (h), one can simply replace the response with 
its predictive mean, leading to ( ) ( | )h hθ μ θ . 
This however neglects information in the 
predictive variance (Zhang and Taflanidis 2018a). 
A common alternative is to consider the expected 
QoI, especially if this can be expressed in closed 
form with dependence on μ  and σ . This 
ultimately leads to predictive QoI expressed as 
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  2( ) ( | ) ( ); ( ), ( )
nz

h h z z dz    θ θ θ θθ   


  (3) 

representing the expectation under the distribution 
in Eq. (2), with (.; , )a b  corresponding to a 
Gaussian PDF with mean a and variance b. It is 
assumed herein that Eq. (3) has a closed form 
solution for ( )h θ . Details on derivation of this 
solution are discussed in (Zhang and Taflanidis 
2018a).  Finally, utilizing the predictive QoI ( )h θ
, the density approximation can be expressed as: 

 )
( )

( )
( )

( )
( ) = (

( )
Θ
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p
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h d

h 

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θ
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θ θ

 
   (4) 

With respect to quality of approximation 
( ) θ  it should be stressed that the selection of the 

experiments (vector Θ), what is commonly 
referenced to as Design of Experiments (DoE), is 
critical (Sacks 1989). In this work, we adopt an 
iterative and adaptive DoE approach that is 
intended to maximize the computational 
efficiency, namely the AK-SSD (adaptive 
Kriging stochastic sampling and density 
approximation) (Zhang and Taflanidis 2018a), 
though the proposed sampling algorithm is 
compatible with any alternative scheme.  

3. AK-DRAM METHODOLOGY 
3.1. Independent Metropolis-Hastings 
With an approximated density ( ) θ  that is 
expected to be close to the target ( ) θ , it is  
tempting to adopt ( ) θ  as global proposal for 
MH. This leads to the following independent MH: 
given current sample rθ , a trial candidate *θ  is 
drawn from distribution ( ) θ , and accepted 
(setting 1 *r θ θ ) with probability: 

 
*

*

*

( ) ( )
( | ) min 1,

( ) ( )

r
r

r

h h

h h


 
  

 

θ θ
θ θ

θ θ


   (5) 

If rejected, the previous sample is repeated 
(setting 1r r θ θ ). As discussed in the 
introduction, independent MH can yield 
significant computational efficiency gain as long 
as the proposal resembles the target density well, 

with the best case being the proposal density 
equaling the target one.  

Important challenges do exist though for 
selecting ( ) θ  as MH proposal density. First the 
generated Markov chain will lose irreducibility, 
leading to biased predictions, if the proposal 
density has narrower support that the target 
density. Furthermore, the performance of 
independent MH, quantified by the correlation 
among chain samples and the convergence rate to 
the stationary distribution, critically depends on 
the supremum of the ratio between the target and 
approximated densities: 

  max ( ) / ( )  
Θ

M  



θ

θ θ   (6) 

with larger values for M adversely impacting 
computational efficiency (Liu 1996). Even when 

( ) θ  provides a good global fit to ( ) θ , the value 
of M  can be still high as bounding the latter 
requires high pointwise approximation accuracy 
through the whole domain. Delayed rejection is 
utilized to address these challenges. 

3.2. Enhancement through delayed rejection 
The independent MH discussed in the previous 
section can be potentially highly efficient but 
lacks robustness in domains where the Kriging-
based approximated density (serving as proposal 
density) does not match well the target density. To 
overcome this drawback, a RW proposal is 
integrated into the sampling scheme using a 
delayed rejection (DR) strategy (Tierney and Mira 
1999). According to the DR scheme if the 
candidate sample *θ  drawn from independent 
proposal *( ) θ  is initially rejected based on 
acceptance ratio *( | )r θ θ  of Eq. (5), instead of 
repeating the current sample, a second-stage RW 
move is proposed from another distribution 

** ~ ( , )rθ θ Σ . To maintain the detailed balance 
conditions, and guarantee MH convergence to 
target PDF, candidate sample is accepted (setting 

**r θ θ ) with probability: 

 
** * **

** *
*

( )[1 ( | )]
( | , ) min 1,

( )[1 ( | )]
r

r r

h

h




 
   

θ θ θ
θ θ θ

θ θ θ
  (7) 
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If rejection still occurs, then the previous chain 
sample is finally repeated, setting 1r r θ θ .As 
DR introduces extra computational burden, as 
multiple acceptance ratios, and therefore 
expensive simulator evaluations, might be needed 
per candidate, it is important to ensure that the DR 
implementation is properly designed to yield 
greater computational efficiency. 

For selecting the covariance matrix Σ for the 
RW proposal, an adaptive approach is adopted 
(Haario et al. 2001). This is accomplished by 
scaling the covariance matrix to mimic the 
optimal RW proposal in (Gelman et al. 1996) 
using the sample history of the Markov chain for 
guidance, leading: 

 
0 0

0

,

ˆ ,
d

r N
s

r N

   

Σ
Σ

Σ
  (8) 

where ds  is the dimensional-adaptive scaling 
constant set as 22.4 /ds n ,  ˆ

Σ   is the empirical 
covariance matrix estimated from the past 
samples in the Markov chain  and 0Σ  is the initial 
covariance matrix, used till the chain is 
sufficiently long (larger than No) to provide 
confidence for relying on the empirical 
covariance matrix. Here 0Σ  is chosen as the 
covariance matrix of the approximated density 

( ) θ . The non-adaption period is selected 
proportional to the number of Kriging 
experiments: N0 = 100n.  

The proposed AK-DRAM algorithm 
ultimately integrates independent MH and RW. It 
inherits the global exploration traits of the 
independent proposal, since that is used in the first 
stage. Simultaneously it also inherits the 
robustness features of the RW second-stage, 
circumventing challenges identified in the 
previous section for independent MH. 
Irreducibility is guaranteed through the second-
stage RW component (Roberts and Rosenthal 
2007) regardless of the support coverage of the 
first-stage proposal density, while convergence to 
stationary distribution ( ) θ follows directly from 
adaptive DR (Haario et al. 2006). The 
computational efficiency is also not critically 

influenced by the supremum constant M due to the 
integration of RW second stage. This efficiency 
can be further improved by an adaptive 
refinement of the surrogate model to promote a 
better match between ( ) θ  and ( ) θ , using 
information from the sampling phase. 

3.3. Adaptive Kriging approximation refinement 
Instead of keeping the Kriging-based density 
approximation fixed after the preliminary 
surrogate model tuning phase [i.e., initial 
formulation of ( ) θ ], information from the 
sampling phase can be used for promoting an 
adaptive refinement, since for any candidate 
sample cθ  (including first stage *θ and second 
stage ones **θ with respect to the DR 
implementation), the response ( )cz θ  evaluated 
through the simulator is available. Such a 
refinement can facilitate a better match between  

( ) θ  and ( ) θ  which can yield substantial 
benefits for the MCMC sampling.  

The straightforward approach for this 
refinement is to augment the current experiment 
set using the information from all new candidate 
samples. However, this unnecessarily increases 
the computational complexity for Kriging 
predictions (which scales cubically with the 
number of experiments n). In addition, the utility 
as potential experiments is not the same for all 
candidate samples, with some of them belonging 
in domains in Θ where the surrogate model 
accuracy is already high.  

Instead, the selection of samples to be 
considered as experiments should be carefully 
made. Particularly, we are more interested into 
preventing under-approximation of target 
densities [ ( ) ( ) θ θ ] rather than over-
approximation [ ( ) ( ) θ θ ], as the former is 
primarily responsible for all independent proposal 
challenges, including under-coverage of support, 
large supremum ratio M and poor mixing. With 
this in mind, we examine the utility of each trial 
sample by quantifying the ratio of the target 
density to its approximation, ( ) ( ) / ( )m  θ θ θ . 
Larger values of m(θ) mean that the trial 
represents severely under-approximated region, 
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and therefore its inclusion into existing 
experiments should be highly favorable for 
improving the density approximation in a 
problematic domain. This inclusion ultimately 
decreases first-stage rejection rates. Exact 
calculation, though, of m(θ) is infeasible since the 
target density and/or its approximation might be 
only known up to a normalization constant. The 
remedy is to consider the ratio of non-normalized 
densities, referenced herein as value of 
information (VoI) for surrogate refinement: 

 ( ) ( ) / ( )m h hθ θ θ   (9) 

which only depends on available information for 
each candidate sample, and is proportional to the 
aforementioned relative utility of each sample 
m(θ). We adaptively choose the threshold for 
determining if a candidate sample should be 
considered as an experiment, by comparing its 
VoI to all existing experiments. The sample is 
added in the database only if it offers relatively 
higher utility (based on VoI) than available 
experiments. For performing this comparison, an 
adjustment is required for the VoI for existing 
experiments, since for them by default 
{ ( ) 1;  1,..., }tm t n θ due to Kriging’s 
interpolation characteristics. Leave-one-out 
(LOO) predictions are used instead, calculating 
the predictive QoI ( )th θ  for each experiment 
using the entire database excluding itself.  Such 
use of LOO statistics is supported by the readily-
available closed-form solutions for the LOO 
Kriging predictive mean and variance (Dubrule 
1983), allowing estimation of the predictive QoI 
without the need to actually reconstruct the 
surrogate model leaving sequentially each 
experiment out. The prediction for the response zi 
for the t-th experiment θt using the entire database 
apart from this experiment remains Gaussian with 
predictive mean ( )t t

i
 θ and variance 2( )t t

i
 θ . 

This ultimately leads to LOO predictive QoI  
( ) ( , | )t t t t th h  θ μ σ θ   and to LOO VoI:  

 ( ) ( ) / ( ); 1,...,t t t t
LOOm h h t n θ θ θ   (10) 

The threshold for whether a candidate sample 
should be included as an experiments can be then 
selected as ζ-quantile (for example, ζ = 80%) of 
the LOO VOI among existing experiments.  

To avoid numerical challenges with large 
datasets, a maximum number of experiments nmax 
should be set, avoiding any further surrogate 
model refinement when n>nmax. This choice also 
has a side benefit of ensuring the overall 
ergodicity for the first-stage proposal density as it 
limits for problematic applications the continuous 
updating of the global proposal density.  

4. ILLUSTRATIVE EXAMPLES 

4.1. Setup 
To explore the benefit from different features of 
AK-DRAM, we compare to benchmark 
approaches: the adaptive Metropolis (AM) 
(Haario et al. 2001), and the delayed rejection 
adaptive Metropolis (DRAM) (Haario et al. 
2006). In addition, a variant of the AK-DRAM is 
examined, denoted by K-DRAM, fixing the 
Kriging model and independent proposal in the 
sampling process. This version is used to examine 
the utility of the adaptive Kriging refinement 
discussed in Section 3.2.  

For performance comparisons we first 
consider statistical efficiencies, which depends 
mainly on the correlations between the Markov 
Chain samples, since high correlation increases 
the estimator variance when these samples are 
used for statistical inference. This variance is 
proportional to the integrated autocorrelation time 
τ (Brooks et al. 2011). Here τ report the maximum 
(worst) integrated τ over all input dimensions. 
Another efficiency measure is the mean squared 
jump distance (d2) between successive 
components of the chain (Gelman et al. 1996). 
Higher efficiency corresponds to lower τ (less 
correlation) and higher 2d  (bigger jumps). Since 
the applications of interest are computationally 
expensive, both τ and 2d  are adjusted per 
simulator evaluation instead of per sample, 
leading to the computational efficiency measures 
τc and 2

cd  (subscript c stands for 
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‘computational’). The total number of simulations 
includes simulations required to obtain the initial 
Kriging experiments ninit (density approximation 
stage) and the simulation for the first-stage 
acceptance check N (this equals the chain length) 
and for the second-stage acceptance check Ndr 
when DR is adopted. 

In all instances, the ζ-quantile for LOO VoI 
threshold is set to 80%. The max number of 
experiments nmax is set to 1000. Ten independent 
runs of each algorithm are performed. We always 
discard the first 1% samples of each chain as burn-
in period to allow chain reach stationarity. For 
each run, the chains corresponding to the different 
examined approaches are all initialized at the 
same point. To ensure convergence of statistics, 
for each chain a large Markov chain length of N = 
20000 after burn-in is used. 

4.2. Analytical Example 
The analytical example considers the two-
dimensional banana shaped target density:  

 1
2

2 1

0 100 0
( ) ; ,

0.03 3 0 0 1


 

 
      

              
θ   (11) 

Given its mild non-linearity and low 
dimensionality, we obtain 18 space-filling 
experiments for formulating the Kriging surrogate 
model at the density approximation stage.  

Results for the target density and its 
approximation are first presented in Figure 1. 
These results clearly demonstrate that the initial 
approximation [part (b)] encounters significant 
difficulties in the tail regions using space-filling 
experiments (red x) only. The first-stage adaption 
enables an automatic improvement of problematic 
regions, as the new experiments from MCMC 
trials (marked by black +) are concentrated on 
problematic tail regions offering finally a good 
approximation of the target density [part (c)]. 
Conducting refinements in the sampling phase 
without DR [part (d)] fails to provide significant 
improvements as potential experiments in the 
truly problematic tail regions are never identified, 
due to the fact that candidate trials are constrained 

only in the initial approximated density domain 
(no availability of DR step with RW).  

 

 
Figure 1. Contours of the (a) the true target density; 
(b) the approximated density before adaption (only 

with space-filling experiments in red x); (c) the 
approximated density after adaption (refinement 

experiments in black +); (d) the approximated density 
after adaption (refinement experiments in black +) but 

with AK-DRAM relying only on independent MH 
 
Table 1 presents all relevant performance 

statistics. These results show that both variants 
using independent Kriging proposals noticeably 
outperform AM and DRAM under all efficiency 
measures. This is of course anticipated: a good 
independent proposal that can traverse the whole 
domain rapidly should bring distinct benefits. 
AK-DRAM also substantially improves over its 
counterpart without Kriging adaption (K-
DRAM): integrated autocorrelation times are 
reduced by factors of 28 (statistically) and 36 
(computationally), while jump distances 2d  and 

2
cd  are increased by 53% and 64%. Such an 

evident margin confirms the crucial importance of 
the adaptive surrogate model refinement. Despite 
the complexity of the approximated density, as 
evident by both the contours in Figure 1 (heavy 
tail regions) and the challenges encountered by 
the other approaches, AK-DRAM achieves 
almost independent sampling (τ close to 1), 
demonstrating the computational efficiency 
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proposed sampling scheme can offer. The 
comparison between AK-DRAM and K-DRAM 
can be further extended to their average first-stage 
acceptance rates, as higher rates infer a better 
independent proposal. The average acceptance 
rates are 97.5% for AK-DRAM and 82.8% for K-
DRAM, further verifying the benefit from 
adaptively refining the approximated density 
during sampling. AK-DRAM also displays 
superior robustness when comparing the worst-
case performances (shown in parenthesis).  
 
Table 1. For the banana shaped distribution average 

(worst case in parenthesis) performance for all 
approaches. Bold marks the best perfomance. 

 τ τc 2d  dc
2 

AM 63.9 
(74.7) 

63.9 
(74.7) 

0.11 
(0.10) 

0.11 
(0.10) 

DRAM 43.9 
(55.3) 

83.8 
(105) 

0.21 
(0.20) 

0.11 
(0.09) 

K-DRAM 29.5 
(54.9) 

38.9 
(58.9) 

1.83 
(0.86) 

1.68 
(0.52) 

AK-DRAM 1.05 
(1.12) 

1.07 
(1.17) 

2.80 
(2.73) 

2.76 
(2.63) 

 
This example is further leveraged to explore 

the benefits and the necessity of combining 
independent proposals, delayed rejection, and the 
surrogate model adaption strategy. We estimate 
the value of M, representing the supremum ratio 
between target and approximation, for the run 
plotted in Figure 1. This value is found to be 
excessively large (2.7×1010) when ( ) θ is given 
by the surrogate model only based on the initial 
set of experiments [part (b) of Figure 1]. As the 
value of M can be directly compared with τ to 
measure statistical efficiencies, the large 
identified M directly reveals the risk of using only 
independent proposals. Delayed rejection is 
capable of overcoming this challenge, as for K-
DRAM the integrated autocorrelation times 
always stays below 30. The surrogate model 
adaption also helps in further mitigating this risk 
(compare AK-DRAM to K-DRAM). In addition, 
delayed rejection introduces clear benefit for 
producing candidate samples with greater utility 

for the surrogate model refinement, from the 
results of part (d) of Figure 1. Without the second-
stage DR, the independent proposal do not move 
into problematic regions at all. Thus even the 
added experiments cannot improve the density 
approximation quality in the tail regions, contrary 
to the implementation with delayed rejection [part 
(c) of Figure 1]. The overall discussion stresses 
the importance of combining all ingredients of 
AK-DRAM: independent proposal with DR 
utilizing random walks, and adaptive refinement 
of the surrogate model approximation. 

4.3. Engineering example 
This problem considers Bayesian updating for the 
model of eight-story structure. Numerical details 
are included in (Zhang and Taflanidis 2018b). 
Problem pertains to updating stiffness 
characteristics of the finite element structural 
model using modal information (modal 
frequencies and modeshapes) for the first three 
modes.  The dimensionality is nθ=10 with eight 
parameters corresponding to building properties 
and remaining two to the error statistics for 
modeshapes and modal frequencies.  The density 
approximation is established with the AK-SSD 
algorithm using a total of ninit=300 initial 
experiments. 

Results are reported in Table 2 and indicate 
once again that both AK-DRAM and K-DRAM 
yield significant efficiency gain. AK-DRAM is 
about one order of magnitudes more efficient than 
the best non-surrogate alternative in all measures. 
Kriging adaption seems to be very beneficial: AK-
DRAM has significantly smaller integrated 
autocorrelation time (1/6 of K-DRAM) and nearly 
doubled jump distance. This problem creates 
greater challenges for the independent proposal to 
mimic the target one, as both surrogate-based 
approaches have relatively low first-stage 
acceptance rates (around 60% on average for AK-
DRAM and 40% for K-DRAM). Yet the 
efficiency metrics reported in Table 2 for both 
approaches confirm their applicability even under 
imperfect independent proposals.  
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Table 2. For the Bayesian inference example average 
performancea. In parenthesis the worst case is also 

reported. Bold marks the best perfomance. 
 τ τc 2d  2

cd  

AM 50.0 
(70.3) 

50.0 
(70.3) 

1.00 
(0.95) 

1.00 
(0.95) 

DRAM 46.8 
(70.9) 

89.2 
(134.8) 

1.09 
(1.01) 

0.57 
(0.53) 

K-DRAM 14.1 
(32.1) 

22.5 
(51.8) 

7.55 
(7.36) 

4.73 
(4.57) 

AK-DRAM 2.65 
(2.86) 

3.71 
(3.74) 

12.5 
(11.5) 

9.08 
(8.76) 

5. CONCLUSIONS 
A new, computationally efficient MCMC scheme 
was discussed in this paper for generating samples 
from a target density whose evaluation involves a 
complex numerical model. This scheme leverages 
three popular MCMC features: independent 
Metropolis-Hastings (MHs) for rapid global 
exploration, adaptive random walk (RW) MH for 
robustness and delayed rejection (DR) for 
combining these two concepts. The efficiency 
gain is primarily facilitated through adopting a 
Kriging density approximation of the target 
density as global proposal. Challenges associated 
with adopting such a global proposal are 
addressed through DR using an adaptive local RW 
proposal that maintains convergence to the target 
density for the generated chain. The overall 
efficiency is further improved through a 
systematic refinement of the Kriging surrogate 
model and of the corresponding target density 
approximation. The proposed framework was 
applied to both an analytical problem and a 
realistic engineering problem. Both examples 
demonstrated the efficiency gain, robustness and 
convergence of the proposed sampling approach.  
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