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ABSTRACT: Practical structural engineering applications tend to exhibit a certain degree of uncertainty
in their material parameters, loading forces and so forth. As such, the accurate quantification of the
effect of those uncertainties is of capital importance. The standard Monte Carlo method is one of the
most common sampling methods used to compute this effect. In this paper we compare two extensions
of the standard Monte Carlo method: the Multilevel Monte Carlo (MLMC) and the Multilevel
Quasi-Monte Carlo (MLQMC) method. These two methods are tested on a structural engineering
problem: a cantilever steel beam clamped at both sides and loaded in the middle, with an uncertain
Young’s modulus. A Gamma random field is used to model the uncertainty. For the response of the
beam we consider its spatial displacement in the elasto-plastic domain. Our aim is to demonstrate the
effectiveness and versatility of both MLMC and MLQMC by coupling them with this Finite Element
code. We show that MLQMC has a lower computational cost than MLMC for a desired tolerance on the
root mean square error. Furthermore both methods are significantly faster than a standard Monte Carlo
method.

INTRODUCTION

Models of practical structural engineering applica-
tions often exhibit a certain degree of uncertainty.
This uncertainty can be located in the dimension of
the considered model, the magnitude of the load-
ing forces, material parameters and so forth. In
order to address this uncertainty and its propaga-
tion through the model, two main types of methods
exist: non-sampling methods and sampling meth-
ods. The category of non-sampling methods en-

compasses, among others, the Stochastic Galerkin
Finite Element method, see Ghanem and Spanos
(2003). This method, whilst being highly effective,
is also highly intrusive and memory demanding. It
transforms the uncertain coefficient partial differen-
tial equation into a large system of coupled deter-
ministic PDEs by means of a Galerkin projection
technique. Sampling methods, on the other hand,
are generally non intrusive. A well known example
of such a sampling method is the Monte Carlo (MC)
method. A major drawback however, is the slow
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convergence in function of the number of samples.
This can be alleviated by variance reduction tech-
niques, such as Multilevel Monte Carlo, or by im-
proved sampling methods, such as Latin Hypercube
sampling, see Loh (1996), and Quasi-Monte Carlo,
see Caflisch (1998); Niederreiter (2004). Multilevel
Monte Carlo was first proposed by Heinrich (2001)
and successfully applied in a finance context for op-
tion pricing by Giles (2008).

It is in this framework that we present our work.
In work published in conference proceedings by
Blondeel et al. (2018) and subsequently extended
in the paper by Blondeel et al. (2018), we com-
pared standard Monte Carlo with Multilevel Monte
Carlo for a structural engineering application. We
observed a speedup of a factor ten in favor of
Multilevel Monte Carlo. In the present paper we
now combine a non-linear MATLAB Finite Element
solver with a JULIA Multilevel Monte Carlo and
Multilevel Quasi-Monte Carlo implementation by
Robbe et al. (2017, 2018). By doing so, we demon-
strate the performance of both methods and com-
pare them in terms of simulation time. The en-
gineering problem we consider, is a steel beam,
clamped at both sides and loaded in the middle. The
Young’s modulus is considered uncertain and mod-
eled by means of a Gamma random field.

CASE PRESENTATION

This part introduces the beam characteristics, the
uncertainty modeling and the Finite Element solver.

Beam Characteristics
We consider a steel beam clamped on both sides
subjected to a static force applied at the center, see
Figure 1. The beam has the following dimensions
and material parameters: a length of 2.5m, a height
of 0.25m and a thickness of 10−3 m, with a yield
strength of 240MPa, a Poisson ratio of 0.25 and a
Young’s modulus with a mean value of 200GPa.

Uncertainty Modeling
The uncertainty resides in the beam’s Young’s mod-
ulus. In order to model this uncertainty, we opt
for a heterogeneous representation: the uncertainty
will be represented by a spatially varying Gamma
Random Field. This field is constructed by means

Figure 1: Cantilever beam clamped at both sides
loaded in the middle.

of a Karhunen-Loève (KL) expansion, see Loève
(1977), followed by a memoryless transformation,
see Grigoriu (1998).

We consider a Gaussian random field Z (x,ω),
with an exponential covariance kernel

C (x,y) := σ
2 exp

(
−
‖x−y‖p

λ

)
, (1)

where the correlation length λ = 0.3, the standard
deviation σ = 1.0, and the 1-norm, i.e., p = 1 are
selected. The KL expansion can be formulated as

Z(x,ω) = Z(x, .)+
∞

∑
n=1

√
θnξn(ω)bn(x) . (2)

The obtained Gaussian random field, Z(x,ω) with
a mean value of Z(x, .), depends on respectively
the eigenvalues, θn, and the eigenfunctions, bn (x),
of the covariance kernel Eq. (1). ξn (ω) denotes
the i.i.d standard normal random variables. For
a one dimensional domain [0,1], the eigenvalues
and eigenfunctions can be computed analytically
according to

θ
1D
n =

2λ

λ 2w2
n +1

and

b1D
n (x) = An (sin(wnx)+λwn cos(wnx)) ,

(3)

see, e.g., Cliffe et al. (2011). The normalizing con-
stants An are chosen such that ‖bn‖2 = 1. The con-
stants wn represent the real solutions, in increasing
order, of the transcendental equation

tan(w) =
2λw

λ 2w2−1
. (4)

For the two-dimensional case, the eigenvalues and
functions are obtained in a tensorproduct way,

θ
2D
n = θ

1D
in θ

1D
jn and

b2D
n (x) = b1D

in (x1)b1D
jn (x2) with n = (in, jn) .

(5)
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In practice, the infinite sum in Eq. (2) is truncated
to a finite value. Here, we chose to truncate the sum
after 101 terms, effectively capturing 90% of the
variance of the random field.

This obtained Gaussian Random field is then
transformed to a Gamma Random field by means of
a point wise memoryless transformation, see Grigo-
riu (1998). The characteristics of the Gamma distri-
bution are as follows: a shape parameter α = 934.2
and a scale parameter β = 0.214× 109, see Hess
et al. (2002), leading to a mean value of 200GPa
and a standard deviation of 6.543GPa .

Finite Element Modeling
In order to compute the spatial displacement of the
beam in the elasto-plastic region, a MATLAB plane
stress Finite Element code is used. The beam is
discretized by means of an equidistant regular rect-
angular mesh consisting of four node isoparametric
quadrilateral elements. A short overview of the so-
lution method is presented below.

In the elasto-plastic domain, the stress-strain re-
lationship is non-linear. An incremental load ap-
proach is used, in which the plastic region is
governed by the von Mises yield criterion with
isotropic linear hardening. Starting with a force of
0N, this force is increased in steps of 135N until the
total force of 13.5kN is reached. For each of these
force steps, the spatial displacement of the beam
is computed using a return mapping algorithm, see
Perez-Foguet et al. (2001). Details about the imple-
mentation of this algorithm can be found in Chap-
ter 2 §4 and Chapter 7 §3 and §4 of de Borst et al.
(2012) and in the paper by Blondeel et al. (2018).

METHODOLOGY

This section gives a short overview of the Mul-
tilevel Monte Carlo and Multilevel Quasi-Monte
Carlo methods. A more detailed discussion can be
found in Giles (2008); Giles and Waterhouse (2009)

Multilevel Monte Carlo
The Multilevel Monte Carlo (MLMC) method is
an extension of the standard Monte Carlo (MC)
method, which employs a hierarchy of levels in or-
der to achieve a variance reduction. By employing
such a hierarchy and exploiting the telescoping sum

Level 0 Level 1 Level 2

Figure 2: Illustrative example of a hierarchy used in the
MLMC and MLQMC method.

identity given below, see Eq. (7), the cost of the es-
timation is significantly reduced. Here, the levels
are defined as a geometric hierarchy of nested finite
element meshes, see Figure 2. The method relies on
taking many computationally cheap and low resolu-
tion samples on coarser meshes and few computa-
tionally expensive but high resolution samples on
finer meshes.

The standard MC estimator QMC
L for the expected

value E [PL] of a particular quantity of interest P us-
ing NL samples is

QMC
L =

1
NL

NL

∑
n=1

PL(ω
n) , (6)

where ωn represents the n-th random sample. In
MLMC, the expected value, E [PL], can be rewritten
as

E[PL] = E[P0]+
L

∑
`=1

E[P̀ − P̀ −1] , (7)

which consequently allows us to write the MLMC
estimator as

QMLMC
L =

1
N0

N0

∑
n=1

P0(ω
n)+

L

∑
`=1

{
1
N`

N`

∑
n=1

(P̀ (ωn)− P̀ −1(ω
n))

}
.

(8)

Each term on the right hand side of Eq. (8) is esti-
mated separately by a standard MC estimator with
N` samples. Compactly, the MLMC estimator can
be written as a sum of L+ 1 estimators for the ex-
pected value of the difference on each level, i.e,

QMLMC
L =

L

∑
`=0

Y`,

where Y` =
1
N`

N`

∑
n=1

(P̀ (ωn)− P̀ −1(ω
n)) ,

(9)
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with the condition that P−1 := 0.
The mean square error (MSE) of the MLMC es-

timator is

MSE(QMLMC
L ) := V

[
QMLMC

L

]
+(

E
[
QMLMC

L

]
−E [P]

)2
.

(10)

It encompasses a part belonging to the variance of
the estimator V

[
QMLMC

L
]

and a part belonging to

the squared bias
(
E
[
QMLMC

L
]
−E [P]

)2. The vari-
ance of the estimator, computed as

V[QMLMC
L ] =

L

∑
`=0

V`

N`
, (11)

with V` denoting the variance of the difference P̀ −
P̀ −1, will dictate the number of samples N` needed
on each level ` according to

N` =
2
ε2

√
V`

C`

L

∑
`=0

√
V`C`, (12)

where ε is the desired tolerance and C` denotes
the cost needed to resolve one sample on level
`. This number of samples is the solution of an
optimization problem, see Giles (2008). MLMC
is level-adaptive, in the sense that the decision of
adding additional levels lies with the condition on
the squared bias, written as (E[P̀ −P])2. The bias
can be rewritten as

|E[PL−P]|=

∣∣∣∣∣ ∞

∑
`=L+1

E[P̀ − P̀ −1]

∣∣∣∣∣≈ |E[PL−PL−1]|
2α −1

,

(13)
where α is a simulation parameter that will be de-
fined later on. In order for the MSE to be be-
low a given tolerance ε2, the squared bias and the
variance of the estimator must both be below ε2

2 .
Convergence is reached when |E[PL−PL−1]|/(2α−
1)≤ ε/

√
2 and ∑

L
`=0

V`
N`
≤ ε2

2 .
In the context of this paper we follow the ap-

proach used in the paper by Blondeel et al. (2018).
We fix the maximal level for MLMC and MLQMC.
This level is defined as L = 3. The number of ele-
ments per level is proportional to 40 ·22·`, resulting
in 40 elements on level 0 and 2560 on level 3.
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Figure 3: Example of points sampled for MLMC (left)
and MLQMC (right)

Multilevel Quasi-Monte Carlo
One of the major differences with MLMC is that for
Multilevel Quasi-Monte Carlo (MLQMC), the indi-
vidual sample points are not chosen at random but
according to some deterministic rule, see Figure 3.
For our application in this paper, we use rank-1 lat-
tice rules as in Giles and Waterhouse (2009). These
points have the following representation,

xn = frac
( n

N
z
)
, (14)

where frac(x) = x− bxc,x > 0. Vector z is a s-
dimensional vector of positive integers, and N is the
number of points.

Due to the deterministic nature of the MLQMC
points, a shift has to be introduced in order to ob-
tain unbiased estimates of the quantities of interest,
as discussed in section 2.9 of Dick et al. (2013).
Eq. (14) is rewritten as

xn = frac
( n

N
z+∆

)
, (15)

where ∆ is a shift or offset, ∆∈ [0,1]s. In practice, a
number of different random shifts must be chosen,
∆1,∆2, ...,∆R, in order to allow for the computation
of the variance, and hence the accuracy of the ap-
proximation. The MLQMC estimator is then writ-
ten as

QMLQMC
L =

1
R0

R0

∑
i=1

1
N0

N0

∑
n=1

P0(xi,n)+

L

∑
`=1

1
R`

R`

∑
i=1

{
1
N`

N`

∑
n=1

(P̀ (xi,n)− P̀ −1(xi,n))

}
.

(16)

We choose the number of shifts to be constant on
each level, i.e., R` = R, ` = 0,1, . . . ,L. A value
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R = 10 will be chosen in our numerical experi-
ments. Contrary as to MLMC, the number of sam-
ples for MLQMC is not the result of an optimiza-
tion problem, as in Eq. (12). For MLQMC a dou-
bling algorithm is used, see Giles and Waterhouse
(2009). Starting with an initial number of samples,
this doubling algorithm multiplies the number of
samples with a constant factor until the variance of
the estimator is smaller than ε2

2 . In our implemen-
tation this multiplication constant is chosen to be
1.1.

Cost
Having introduced both methods, we now present a
complexity theorem for MLQMC, which, with mi-
nor changes is also applicable for MLMC. This is
done by setting the variable δ to 1. More details
can be found in Teckentrup (2013).

Theorem 1. Given the positive constants

α,β ,γ,c1,c2,c3 such that α ≥ 1
2

min
(
β ,δ−1γ

)
with δ ∈ (1/2,1] and assume that the following
conditions hold:

1. |E[P̀ −P]| ≤ c12−α`,

2. V [Y`]≤ c22−β`N−1/δ

` and

3. C` ≤ c32γ`.

Then, there exists a positive constant c4 such that
for any ε < exp(−1) there exists an L and a se-
quence {N`}L

`=0 for which the multilevel estimator,
QMLQMC

L has an MSE≤ ε2, and

cost(QMLQMC)≤


c4ε
−2δ if δβ > γ,

c4ε
−2δ (log ε)1+δ if δβ = γ,

c4ε
−2δ−(γ−δβ )/α if δβ < γ.

(17)

Following this theorem, the optimal cost of the
MLMC estimator, is proportional to ε−2 when the
variance over the levels decreases faster than the
cost per level increases, i.e., β > γ . Similarly, for
the MLQMC estimator, the optimal cost is propor-
tional to ε−1. Note that this is only true in the limit,
i.e., δ → 1/2.

RESULTS

In this section we will first estimate the param-
eters, α , β and γ from Theorem 1. After this
we will compare simulation run times for succes-
sive refinements on the tolerance. Thirdly, we will
present the number of samples per level for both
methods. Lastly, we will investigate the effect
of the starting mesh on the simulation time. All
the results have been computed on a workstation
with 14 physical (28 logical cores) Intel Xeon E5-
2697 V3, each clocked at 2.6GHz, and a total of
128GB RAM. The samples were computed in par-
allel. With the above mentioned configuration, 28
samples are computed in parallel.

Variances and Expected Values
In this part we estimate and present the values for
the rates α , β and γ in Theorem 1. These rates
have been estimated during the run of the algorithm
for different tolerances on the RMSE. Here, we opt
to list only the rates for the finest tolerance on the
RMSE, which equals ε = 2.5E−6, see Table 1.

Using the results in this table, it is possible to es-
timate the asymptotic cost of the estimators using
the different regimes from Eq. (17). Since β > γ ,
we expect an optimal cost proportional to ε−2 for
MLMC and at most ε−1 for MLQMC. This is in-
deed what we observe in Figure 5.

Table 1: Parameters for the MLMC and MLQMC algo-
rithm.

RMSE [/] α β γ

2.5E-6 1.04 1.95 0.89

Figure 4 shows the behavior of the expected
value and the variance of the quantity of interest
P̀ and of the difference P̀ − P̀ −1 for the MLQMC
simulation when the tolerance equals 2.5E−6. Re-
sults for MLMC are identical. The rate α can be
read of as the slope of the dashed lines of the left
figure, while the rate β can be read of as the slope
of the dashed lines of the right figure. The rate γ

is defined by the efficiency of the solver. With our
MATLAB FEM code, we obtain γ = 0.89.

Recalling Eq. (7), it becomes apparent that these
differences, written as E[P̀ − P̀ −1], tend to zero for
increasing level `. This term thus essentially acts as
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a correction term for the expected value on level
zero, E [P0]. Because E [P̀ ] is an approximation
of the real quantity E [P] and because for increas-
ing level E[P̀ ]→ E[P], then V [P̀ − P̀ −1] tends to
zero. The implication of this is that the number
of samples N` will be a decreasing function of `.
Most samples will thus be taken on the coarse mesh,
where samples are cheap, and a decreasing number
of more expensive samples will be taken on finer
meshes.
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level `

lo
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[·
])

P̀
P̀ − P̀ −1

Figure 4: Expected value of P̀ and the difference P̀ −
P̀ −1 for all levels (left), and variance of P̀ and the
difference P̀ − P̀ −1 for all levels (right) for MLQMC
for a tolerance of 2.5E-6.

Runtime Comparison
Figure 5 compares the actual simulation runtime
needed to reach a given tolerance for MLMC and
MLQMC. As can be seen, the cost order for MLMC
is roughly proportional to ε−2, while for MLQMC
it tends to ε−1. These are indeed the cost orders we
expected for the rates we obtained.
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Figure 5: Total simulation run time in function of
RMSE for MLMC −� and for MLQMC − H.

Numerical values corresponding to the runtimes
in Figure 5 are shown in Table 2.

As can be observed from the values in Table 2
and Figure 5, the simulation time for MLMC and

Table 2: Actual simulation time in seconds for MLMC
and MLQMC.

RMSE [/]
Time [sec]

MLMC MLQMC

4.2E-5 1.65E+3 1.56E+3
2.8E-5 1.67E+3 1.70E+3
1.9E-5 2.43E+3 1.92E+3
1.2E-5 3.58E+3 2.30E+3
8.4E-6 6.79E+3 6.15E+3
5.6E-6 1.52E+4 7.47E+3
3.7E-6 4.12E+4 1.61E+4
2.5E-6 1.19E+5 2.23E+4

MLQMC is more or less equal up until a tolerance
of 1.9E-5. At that time the speedup in favor of
MLQMC become apparent. For finer tolerances,
the speedup will be more apparent. This effect is
linked to the sample size needed. For MLQMC,
there exists a non-negligible startup time. The time
needed for one MLQMC sample is tenfold that of
one MLMC sample. This is due to the fact that ten
shifts are taken for one MLQMC sample. Once we
reach these fine tolerances, we observe a speedup
of a factor five or more.

Sample sizes
The sample sizes for different tolerances on the
RMSE are shown in Figure 6 for MLMC and in Fig-
ure 7 for MLQMC. As can be observed, the number
of samples per level is decreasing with increasing
level. This matches our earlier observation. Ta-
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Figure 6: Total number of samples N` taken on each
level for MLMC.

ble 3 shows the values from Figure 6 and Figure 7.
The number of samples listed for MLMC are the ac-
tual samples taken, while for MLQMC these num-
bers include the multiplication with the number of
shifts.
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Figure 7: Total number of samples N` taken on each
level for MLQMC.

Table 3: Number of samples for MLMC and MLQMC.

RMSE [/]

MLMC MLQMC

level level

0 1 2 3 0 1 2 3
4.2E-5 40 40 40 2 50 40 40 20
2.8E-5 48 40 40 2 170 40 40 20
1.9E-5 104 40 40 4 330 50 40 20
1.2E-5 222 61 40 6 510 90 40 20
8.4E-6 1674 152 60 13 1150 460 90 30
5.6E-6 5790 434 138 40 1400 410 150 30
3.7E-6 15025 1295 339 113 2280 700 330 80
2.5E-6 43312 3726 649 192 3050 850 410 130

Influence of the starting level

In this section we investigate the influence of the
starting level on the total runtime of both methods.
We chose as a starting level `= 1 instead of `= 0 as
was the case in the previous sections. This implies
that a finer starting mesh is used, see Figure 2.

In Figure 8, the total simulation time with a start-
ing level ` = 0, is compared to that of a starting
level ` = 1. As can be observed, the choice of the
starting mesh influences whether MLQMC is faster
than MLMC for a given tolerance. This effect can
be understood by investigating the number of sam-
ples per level. These values are shown in Table 4.
The number of samples per level for MLQMC is
larger than for MLMC for coarser tolerances. For
finer tolerance the number of samples of MLMC
surpasses the number of samples for MLQMC. It
is important to note that if a finer starting mesh is
used, ` = 1, the MLQMC speed gain will only be-
come apparent for finer tolerances than in the case
of `= 0.
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Figure 8: Total simulation run time in function of
RMSE for MLMC −� and for MLQMC − Hfor a start-
ing level ` = 0 and for MLMC −−� and for MLQMC −− H

for a starting level `= 1.

Table 4: Number of samples for MLMC and MLQMC
for a finer starting mesh than the results reported in
Table 3.

RMSE [/]

MLMC MLQMC

level level

0 1 2 3 0 1 2 3
4.2E-5 - 40 40 40 - 70 40 40
2.8E-5 - 40 40 40 - 100 40 40
1.9E-5 - 81 40 40 - 510 50 40
1.2E-5 - 189 40 40 - 570 110 40
8.4E-6 - 411 58 40 - 1150 270 50
5.6E-6 - 1432 136 40 - 1150 300 30
3.7E-6 - 6383 276 103 - 2510 570 130
2.5E-6 - 11312 647 220 - 4490 570 170

Comparing the values from Table 3 with the ones
from Table 4, it is clear that the number of samples
for MLMC on level ` = 0 is a factor four to five
larger than for MLMC on level ` = 1. While for
MLQMC the number is roughly the same.

CONCLUSION

In this work, we have successfully demonstrated
that the Multilevel Monte Carlo and the Multilevel
Quasi-Monte Carlo implementation can be coupled
with a non-linear Finite Element solver for a struc-
tural engineering problem subject to uncertainty of
the material properties. This proves the versatility
of these two methods. To the best of our knowl-
edge, this is the first time the MLQMC method has
been successfully applied for problems in structural
engineering. We also investigated the runtime in
function of the desired tolerance on the RMSE. We
found that for fine tolerances, the MLQMC method
offers a significant speedup. For coarser tolerances,
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the difference between the two approaches is less
outspoken. This is due to the start-up cost (the
so called "warm-up" samples), which is similar for
both methods. We also notice that the choice of the
starting mesh has an important effect on whether
MLQMC outperforms MLMC or not for a given
tolerance. Further paths of research will consist of
comparing MLMC and MLQMC with Multi-index
Monte Carlo and Multi-index Quasi-Monte Carlo,
see Robbe et al. (2017).
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