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ABSTRACT: Computer simulation is used in all fields of applied science and engineering to represent
complex systems and be able to make predictions about their behaviour. Kriging and polynomial chaos
(PC) expansions are nowadays well-established techniques to surrogate complex models when a large
number of runs is required, which is the case in the context of optimization or uncertainty quantification.
Classically, computer models are deterministic, in the sense that they produce the exact same output
quantities of interest when run twice with the same parameters. In contrast, in this paper, we are interested
in stochastic simulators, for which there are extra internal sources of randomness in the computer code,
so that two runs produce different results. Of interest is the construction of a surrogate that predicts
the response probability density function (PDF) for any input parameter set. We propose a two-step
approach based on a local inference of the response PDF in each point of an experimental design using
generalized lambda distributions, the distribution parameters of which being represented in a second step
by PC expansions. Two versions of the algorithm are proposed and compared on two analytical examples,
which allow to assess their respective accuracy.

1. INTRODUCTION
1.1. Stochastic simulators
Computational codes (a.k.a. simulators) are nowa-
days widely used in the context of design opti-
mization, uncertainty quantification and reliability
analysis. A simulator is called deterministic if re-
peated runs with the same input parameters produce
the same corresponding output quantity of interest
(QoI), e.g. stresses computed from a finite element
model. In contrast, a stochastic simulator provides
different results when run twice with the same in-
put values. In other words, for a given vector of
input parameters, the QoI of a stochastic simulator
is a random variable. The reason for the intrinsic
randomness is that some source of randomness in-
side the model, which can be represented by latent
variables, is not taken explicitly into account as in-
put parameters. Therefore, if all the relevant vari-
ables that uniquely determine the output cannot be
fully specified (e.g. stochastic loads on wind tur-
bines when only knowing some characteristic value

of the wind climate), the model output will be un-
certain.

Due to the random nature of the stochastic sim-
ulator, repeated runs with the same input parame-
ters (so-called replications) are necessary to char-
acterize the distribution of the QoI. However, nu-
merical models can be time-consuming: a single
model evaluation may require hours to even days
of simulation (e.g. complex fluid dynamic codes).
Therefore, it is advantageous to construct surro-
gate models (a.k.a. emulators) based on a set
of model evaluations, called experimental design
(ED). Conventional surrogate modelling methods
such as Gaussian processes (a.k.a Kriging) (Ras-
mussen and Williams, 2006), polynomial chaos ex-
pansions (Ghanem and Spanos, 2003) that have
been developed for deterministic simulators cannot
be directly applied to stochastic codes because of
their random nature.

Two types of approaches can be applied to es-
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timate the conditional probability density distribu-
tion (PDF) of the QoI given the input vector. The
first one is referred to as statistical approach in the
sequel. If the conditional PDF belongs to the ex-
ponential family, generalized linear models (GLM)
can be efficiently applied (McCullagh and Nelder,
1989; Hastie and Tibshirani, 1990). In the case
where the probability distribution is arbitrary and
no prior knowledge of its shape is available, non-
parametric estimators may be considered, notably
kernel density estimators (Fan and Gijbels, 1996;
Hall et al., 2004) and projection estimators (Efro-
movich, 2010). However, nonparametric estima-
tors suffer from the so-called curse of dimension-
ality (Tsybakov, 2009), meaning that the estima-
tion accuracy decreases fast with increasing input
dimension.

The second approach is the replication-based
method. The main idea is to use replications to
characterize the output distribution through a few
hyper-parameters and then treat those as outputs of
a deterministic simulator. So far, nonparametric es-
timators have been used to estimate the distribution
based on replications (Moutoussamy et al., 2015),
and thus many repeated runs are necessary, e.g. 104

replications per ED point are used in Browne et al.
(2016). As we can observe, the existing methods
either assume a specific form of the distribution or
requires a large number of model evaluations. In
order to have a reasonable number of model runs
without losing flexibility, we propose to approxi-
mate the response PDF of the stochastic simulator
by the generalized lambda distribution (GLD).

In this paper, the input parameters of the
computational model are modelled by random
variables gathered into a random vector XXX =
(X1,X2, . . . ,XM)T . The output random variable is
denoted by Y . The lower case xxx = (x1,x2, . . . ,xM)T

refers to one realization of the input variables and
y is the associated QoI upon one model evaluation
with xxx. The joint distribution of XXX is denoted by
fXXX(xxx) and its support is denoted by Dxxx. We as-
sume that input variables are mutually independent.
The stochastic simulator is evaluated over the ex-
perimental design X =

{
xxx(1),xxx(2), . . . ,xxx(N)

}
. The

upper index (i) denotes the ith point of ED. If the

stochastic simulator is repeatedly run R times for
each point of ED xxx(i), the associated output is de-
noted by

{
y(i,1),y(i,2), . . . ,y(i,R)

}
, where the upper

index (i,r) refers to the result of the rth replication
for the ith point of the experimental design. The
goal of the paper is to develop a surrogate model
to predict the response PDF of stochastic simula-
tors based on generalized lambda distributions and
polynomial chaos expansions.

The paper is organized as follows. The general-
ized lambda distribution and polynomial chaos ex-
pansions are introduced respectively in Section 2
and Section 3. In Section 4, we present the devel-
oped algorithms, and the performance of the pro-
posed methods are illustrated through examples in
Section 5.

2. GENERALIZED LAMBDA DISTRIBUTION

The generalized lambda distribution (GLD) is a
highly flexible four-parameter continuous probabil-
ity distribution. It is able to approximate most of
the well-known parametric probability distributions
(Karian and Dudewicz, 2000), e.g. normal, uni-
form, Student’s t, exponential, lognormal, Weibull
distribution etc. as illustrated in Figure 1.
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Figure 1: Some parametric PDFs approximated using
the generalized lambda distribution.

Instead of a direct parametrization of the PDF,
the GLD parametrizes the quantile function Q,
which is the inverse of the cumulative distribution
function Q = F−1. Therefore, the range of defi-
nition of Q is [0,1] and Q is non-decreasing. In
this paper, we consider the FMKL family (Freimer
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et al., 1988) defined by:

QFMKL(u) = λ1 +
1
λ2

(
uλ3−1

λ3
− (1−u)λ4−1

λ4

)
.

(1)
Note that parametrizing the quantile function is
equivalent to modelling the inverse probability inte-
gral transform, meaning that the random variable Y
with Q as quantile function and the random variable
Q(U) with U ∼ U (0,1) follow the same distribu-
tion. Therefore, the PDF of GLD can be calculated
through a change of variables. In general, the PDF
cannot be expressed analytically as implied in the
following equations:

fY (y) =
1

Q′ (Q−1(y))
=

λ2

uλ3−1 +(1−u)λ4−1 (2)

u = Q−1(y) (3)

Many estimation methods have been proposed to
fit the GLD to data (Chalabi et al., 2011). Kar-
ian and Dudewicz (2010); Corlu and Meterelliyoz
(2016) compared different methods through ex-
haustive Monte Carlo simulation with various tests.
Unfortunately, none of the existing estimators are
shown to always outperform the others. The per-
formance depends on the shape of the true distri-
bution, the sample size and the goodness-of-fit cri-
terion used for the comparison. In this paper, we
will apply the maximum likelihood estimation (Su,
2007) and the method of moments which relies on
matching the first four standardized moments (Kar-
ian and Dudewicz, 2000). It is worth remarking
here that, because the PDF of GLD is not explicitly
given (see Eq. (2)), the calculation of the likelihood
requires solving the nonlinear equation (3), which
can be time-consuming for large data sets.

3. POLYNOMIAL CHAOS EXPANSIONS

As a popular surrogate modelling method, poly-
nomial chaos expansions (PCE) represent a deter-
ministic function by a series of polynomials in the
input variables that are orthogonal with respect to
the probability distribution of the input. Consider
a scalar-valued deterministic computational model
M (XXX). If M (XXX) has finite variance, it can be de-

composed as

M (XXX) = ∑
ααα∈NM

aαααψααα(XXX) (4)

where ααα = (α1,α2, . . . ,αM) ∈ RM denotes the
multi-index defining the function ψααα(XXX) and aααα is
the associated coefficient. ψααα(XXX) is constructed as
the tensor product of univariate polynomials:

ψααα(XXX) =
M

∏
j=1

φ
( j)
α j (X j) (5)

where φ
( j)
α j is the polynomial of degree α j associ-

ated with the jth component of XXX . By construction,
polynomials

{
φ ( j), j ∈ N

}
are orthogonal with re-

spect to the distribution of X j:

EX j

[
φ
( j)
m (X j) ·φ ( j)

n (X j)
]
= δm,n (6)

with δ being the Kronecker delta. Xiu and Karni-
adakis (2002) listed polynomials that fulfil Eq. (6)
for some distributions, e.g. normal, uniform, ex-
ponential. For arbitrary distributions, orthogonal
polynomials can be obtained through the so-called
Gram–Schmidt procedure.

For non-polynomial models M , the decomposi-
tion Eq. (4) results in an infinite number of terms.
Therefore, truncation schemes must be applied,
which consists in approximating M (xxx) by a finite
series defined by a finite subset A ⊂ NM. It has
been observed that PCE suffer from the curse of di-
mensionality (Sudret, 2015), due to the exponential
increase of the basis size with increasing input di-
mension or polynomial degree. To overcome this
problem, sparse PC models have been proposed,
which only contain a small number of basis func-
tions. One method for constructing a sparse model
is least angle regression (LAR) (Efron et al., 2004).
This method selects only the most important basis
functions among a candidate set and has shown its
excellent performance (Blatman and Sudret, 2011).

4. TWO-STEP APPROACH AND JOINT MOD-
ELLING

As mentioned in Section 2, we assume that the re-
sponse PDF of the stochastic simulator for a given
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input vector xxx can be approximated by the GLD
with distribution parameters λλλ that are functions of
xxx:

Y (xxx)∼ GLD(λ1(xxx),λ2(xxx),λ3(xxx),λ4(xxx)) (7)

Under appropriate assumptions discussed in Sec-
tion 3, λλλ (XXX) admit PC representations. In
the Freimer-Mudholkar-Kollia-Lin (FMKL) GLD
model, λ2(xxx) should always be positive. As a result,
PCE are built on log(λ2(xxx)), where log denotes the
natural logarithmic function. This leads to:

λk (XXX) = ∑
ααα∈NM

ak,αααψααα(XXX) k = 1,3,4 (8)

λ2 (XXX) = exp

(
∑

ααα∈NM

a2,αααψααα(XXX)

)
(9)

Similar to Moutoussamy et al. (2015); Browne
et al. (2016), one straightforward way to build a sur-
rogate model is the two-step approach presented in
Algorithm 1.

Algorithm 1 Two-step algorithm

1: Estimate the distribution parameters λ̂λλ
(i)

based
on replications

{
y(i,1),y(i,2), . . . ,y(i,R)

}
for each

design point xxx(i)

2: Build a sparse polynomial chaos model for
each component of the distribution parameters
λ̃λλ (xxx) by applying least angle regression to the

data
(

xxx(i), λ̂λλ
(i)
)

The first step of Algorithm 1 provides an esti-

mator λ̂λλ
(i)

of the distribution parameters λλλ

(
xxx(i)
)

.
In this paper, we tested both the method of mo-
ments and the maximum likelihood estimation (the
comparison is presented in Section 5). The second
step considers the obtained data to build 4 surrogate
models of the distribution parameters according to
Eqs. (8)-(9).

In general, the estimator λ̂λλ
(i)

is based on samples
of finite size due to the computational limit. The
generalized lambda distribution is so flexible that
few samples will not guarantee accurate estima-
tions (Corlu and Meterelliyoz, 2016) and none of

the existing estimators have been proved to be un-
biased. Consequently, the two-step algorithm qual-
itatively requires a large number of replications R to
achieve a good estimation (quantitative results will
be shown in Section 5).

This drawback of the approach is due to the use
of two separate steps, i.e. two objective functions
are optimized sequentially while the data are only
used in the first step. Moreover, the distribution pa-
rameters are surrogated independently in the sec-
ond step of Algorithm 1, and thus the interactions
among components of λλλ are ignored. From a sta-
tistical perspective, the true parameters of this GLD
model are the PCE coefficients aaa. The goal is to de-
fine an objective function for optimiting the PCE
coefficients aaa so that all the available data may
be used at once. Similar to the generalized lin-
ear model (McCullagh and Nelder, 1989) where the
maximum likelihood estimator is used to estimate
the model parameters, we propose now a joint mod-
elling framework in Algorithm 2.

Algorithm 2 Joint modelling

1: Apply Algorithm 1 to get λ̃λλ (xxx) with ãaa as coef-
ficients

2: âaa← argminaaa l (aaa) where

l (aaa) := ∑
i,r
− log fY |X

(
y(i,r)

∣∣∣λλλ (xxx(i)
))

(10)

λk (XXX) = ∑
ααα∈Ak

ak,αααψααα(XXX) k = 1,3,4 (11)

λ2 (XXX) = exp

(
∑

ααα∈A2

a2,αααψααα(XXX)

)
(12)

with Ak denoting the sparse space selected by
the least angle regression for λk(xxx) in Algo-
rithm 1

The first step of Algorithm 2 is to apply Algo-
rithm 1, which provides a first estimation ãaa of the
PCE coefficients. Because least angle regression is
used in Algorithm 1, the first step of Algorithm 2
also selects the basis functions for each component
of λλλ (xxx). The second step in Algorithm 2 estimates
the coefficients associated with the selected basis
functions through the maximum likelihood estima-
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tion using all the available data.
The details of calculating the likelihood function

with given PCE coefficients aaa for the data point(
xxx(i),y(i,r)

)
are illustrated in Figure 2 and described

here. The preliminary step (referred as step 0 in
Figure 2) evaluates the basis functions ψααα on xxx(i).
Step 1 calculates the associated distribution param-
eters λλλ

(i) = λλλ

(
xxx(i)
)

according to Eqs. (11)-(12)
in which the model parameters aaa are used. The
different basis functions selected for each compo-
nent of λλλ (xxx) make the two layers (layer 1 and
layer 2 in Figure 2) involved in this step not fully
connected. Step 2 solves the nonlinear equation
ui,r = Q−1

(
y(i,r)

)
. According to Eq. (1), the non-

linear equation is explicitly written as

y(i,r) = λ
(i)
1 +

1

λ
(i)
2

u
λ
(i)
3

i,r −1

λ
(i)
3

−
(1−ui,r)

λ
(i)
4 −1

λ
(i)
4

 .

(13)
Step 3 finally computes the negative log-likelihood
via Eq. (2). More precisely, we have

fY |X
(

y(i,r)
∣∣∣λλλ (i)

)
=

λ
(i)
2

u
λ
(i)
3 −1

i,r +(1−ui,r)
λ
(i)
4 −1

. (14)

When minimizing the negative log-likelihood as
a function of aaa, analytical expressions of the deriva-
tives of the negative log-likelihood with respect to
aaa can be derived through implicit differentiation of
Eqs. (1)-(3). The derivation is tedious, and thus
details are omitted here. Since the derivatives are
obtained without additional computational burden
and the problem can be vectorized, derivative-based
optimization methods can be efficiently applied.
Since this is a nonlinear optimization problem, the
initial starting point that may be required by some
optimization algorithms is chosen to be the result
provided by the first step, i.e. ãaa.

5. EXAMPLES

In this section, we investigate the performance of
Algorithms 1 and 2 using two examples. In the
first step of Algorithm 1, we apply both the method
of moments and maximum likelihood estimation

Layer 0 Layer 1

L

Layer 2 Layer 4

Negative log-likelihood

Layer 3

Step 1Step 0 Step 2 Step 3 

Figure 2: Flow chart of the joint models

to get λ̂λλ
(i)

. The associated surrogate models built
from the two-step algorithm are respectively de-
noted by MM and MLE. Similarly, Algorithm 2
provides another two models denoted by joint_MM
and joint_MLE. Since the analytical results are
known for these selected examples, i.e. the exact
expression of the PDF of Y | XXX for any XXX = xxx, the
estimation error is computed as

ε = EXXX
[
dHD

(
fY |XXX(y | XXX), f̂Y |XXX(y | XXX)

)]
(15)

dHD
(

f (y), f̂ (y)
)
=

1
2

∫ (√
f (y)−

√
f̂ (y)

)2

dy

(16)

where dHD is the Hellinger distance between the
true PDF fY |XXX and the predicted PDF f̂Y |XXX . In or-
der to calculate the expectation in Eq. (15), Monte
Carlo simulation is used with 1,000 quasi-random
samples generated by the Sobol’ sequence in the
input space. The Sobol’ sequence sampler is also
used to draw the experimental design (ED). To
study the performance of the proposed methods,
data are generated for various combinations of the
size N of the experimental design and the amount
of replications R per ED point. Each scenario is
run independently 100 times with different ED to
account for statistical uncertainty.

5.1. A one-dimensional example (Example 1)
The first example is defined as follows:

Y = sin
(

2π

3
X +

π

6

)
· (Z1 ·Z2)

cos(X) (17)
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where Z1 ∼ L N (0,0.25) and Z2 ∼ L N (0,0.5)
are lognormal latent variables, while X ∼ U (0,1)
is the single input. The response PDF given X = x
is a lognormal distribution L N (µ(x),σ(x)) with
distribution parameters µ(x) = log

(
sin
(2π

3 x+ π

6

))
and σ(x) = cos(x)

√
0.375.

One realization of the case with 40 ED points and
20 replications and the predicted PDF of the four
surrogate models for x = 0.5 are shown in Figure 3.
It can be observed that in this case the two models
MM and MLE built using Algorithm 1 cannot cap-
ture the shape of the true distribution. In contrast,
the two joint models joint_MM and joint_MLE give
quite similar PDFs that have the right shape.
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(b) PDF prediction for x = 0.5

Figure 3: Example 1, 40 ED points and 20 replications

Figures 4 to 6 show quantitative comparisons of
the convergence behaviour of the four models. We
observe that the two joint models generally outper-
form the models built from the two-step approach,
especially when only a few replications are avail-
able.

In the case with only 20 replications (Figure 4),
the convergence behaviour of MM and MLE shows
a weak dependence on the ED size. This is be-
cause in the first step of Algorithm 1, estimators

λ̂λλ
(i)

from both the method of moments and the max-
imum likelihood estimation might be biased. Then
regression used in the second step is not able to dis-
tinguish the bias from the true value. Moreover,
a few replications lead to high variance of the es-
timators, which together with the bias explain the
nonconvergent behaviour of MM and MLE. When
increasing the number of replications, the bias be-
comes less significant with respect to the true value
and the variance decreases. Therefore, in Figure 6
the error decreases with increasing size of ED for
MM and MLE.

In contrast, joint_MLE shows a clear conver-
gence behaviour even with small amount of replica-
tions. This is because all the available data are used
to estimate the model parameters, which reduce the
bias and variance. Joint_MM appears to provide
less accurate PDF estimation than joint_MLE but it
still performs better than both MM and MLE. In this
example, using maximum likelihood estimation to

obtain λ̂λλ
(i)

provides more accurate results in both
Algorithms 1 and 2.
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Figure 4: Example 1, 20 replications
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Figure 5: Example 1, 40 replications
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MM joint_MM MLE joint_MLE
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Figure 6: Example 1, 80 replications

5.2. A five-dimensional example (Example 2)

The second example is defined as follows:

Y (XXX ,Z) =µ(XXX)+σ(XXX) ·Z (18)

µ(xxx) =3−
5

∑
j=1

jx j +
1
5

5

∑
j=1

jx3
j+

1
15

log

(
1+

5

∑
j=1

j(x2
j + x4

j)

)
+

x1 · x2− x5 · x3 + x2 · x4 (19)

σ(xxx) =exp

(
1
4

5

∑
j=1

x j

)
(20)

where Z ∼N (0,1) is the latent variable that rep-
resents the source of randomness and X j ∼U (0,1)
are input parameters. Given XXX = xxx, Y (xxx) is a Gaus-
sian random variable with mean µ(xxx) and standard
deviation σ(xxx).

Similar to the previous example, it is observed
from Figures 7 to 9 that the two joint models show
better performance than those built by Algorithm 1.
Both MM and MLE converge rather slowly with re-
spect to the ED size in the case of small amount of
replications (Figure 7). In contrast, the two joint
models are less sensitive to the number of replica-
tions. Unlike the first example, the parametric esti-

mation methods employed to get λ̂λλ
(i)

do not affect
the behaviour of Algorithms 1 and 2.

In this section, only the error measure based on
the Hellinger distance is reported for convergence
studies. Nevertheless, quantitative comparisons of
the other quantities such as mean and 95% quantile
show similar convergence behaviour.
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Figure 7: Example 2, 25 replications
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Figure 8: Example 2, 50 replications
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Figure 9: Example 2, 100 replications

6. CONCLUSIONS
The aim of this paper was to build efficient and ac-
curate surrogate models for stochastic simulators
with a relatively small number of model evalua-
tions. Generalized lambda distributions are used to
flexibly approximate the output PDF, and the dis-
tribution parameters are represented by polynomial
chaos expansions. To construct surrogate models
in a non-intrusive manner, we first proposed a two-
step algorithm which consists of solving two con-
secutive problems and which allows the use of PCE
in the standard regression way.

Due to the nature of Algorithm 1, it is ob-
served that this approach is sensitive to the num-
ber of replications. In order to build accurate sur-
rogate models even when not many replications are
available, we proposed in a second part the joint
modelling framework Algorithm 2. The latter has
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shown to have better performance according to the
analytical examples described in Section 5.

More tests should be be considered in future re-
search to study the applicability of the methods to
data gathered from real problems, e.g. wind tur-
bine simulation. Besides, in the framework of joint
modelling, the main role played by replications is
to select the basis functions of λλλ (xxx) and to find
initial starting points for optimization. Therefore,
replications are not indispensable in the joint mod-
elling framework if the basis functions of each dis-
tribution parameter are known or preselected. In
the future research, we plan to improve the joint
modelling framework by using advanced statistical
methods to avoid the need of replications, and thus
to reduce the total number of the model evaluations.
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