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ABSTRACT: In the structural reliability analysis, the probabilistic distributions of basic random 

variables may contain uncertainties arising from the imperfect knowledge from which the distributions 

are elicited. It subsequently introduces uncertainty into the calculated failure probability Pf, which may 

affect the decision-making. To reduce the uncertainty of the failure probability estimation, it is desirable 

to collect samples of the basic random variables and use these samples to update the corresponding 

probability distributions. In this work, the relationship between the sample size of the basic random 

variable and variance of the estimated failure probability is derived by using the Bayesian pre-posterior 

analysis, based on which the optimal sample size criterion is established. To make the pre-posterior 

analysis and criterion applicable to a wide range of distributions, continuous random variables are 

discretized at first. The probability mass functions of the discretized random variables are then assigned 

Dirichlet prior distributions. The total probability theorem is employed to express Pf in terms of PMFs 

of the discretized variables and conditional failure probabilities corresponding to given values of 

discretized variables. Then the prior, posterior and pre-posterior analysis of Pf are carried out. The 

optimal sample size criterion to maximize the expected net gain of sampling is developed based on the 

result of the pre-posterior analysis of Pf and quadratic loss function. An example of determining the 

optimal number of burst tests for collecting the samples of model error of the burst capacity model for 

corroded pipelines is used to illustrate the proposed criterion. Moreover, the sensitivity analysis indicates 

that the optimal sample size is insensitive to the discretization of the basic random variables, but sensitive 

to the equivalent sample size of the prior Dirichlet distribution.   

 

1. INTRODUCTION 

The structural reliability analysis of engineering 

structures generally involves estimating the 

failure probability, Pf, as follows: 

𝑃𝑓 = ∫ 𝑓𝐗(𝐱)d𝐱
 

Ω𝑓
  (1)  

where fX(x) denotes the joint probability density 

function (PDF) of a vector of basic random 

variables X such as dimensions of the structural 

members, material properties and magnitudes of 

loads and model errors, and Ωf denotes the failure 

domain that is typically defined through one or 

more so-called limit state functions. Since fX(x) is 

often elicited from imperfect information such as 

expert opinions and databases with limited sample 

sizes, there are uncertainties associated with fX(x). 

The epistemic uncertainties can be taken into 

account in the analysis by considering the 

distribution parameters of basic random variables 

to be uncertain (Der Kiureghian 1989, Hong 

1996). This introduces uncertainty in Pf, which 

may affect the decision making based on Pf. It is 

therefore desirable to gather sufficient samples of 

X to reduce the uncertainties in fX(x). The 

determination of appropriate sample sizes for X is 
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a challenging yet often-encountered task in the 

design and assessment of engineering structures; 

for instance, gathering soil property data in the 

design of foundations (Goldswarthy 2007), proof-

load testing quasi-identical multi-components 

structural systems (Nishijima and Faber 2007; 

Shafieezadeh and Ellingwood 2012), collecting 

corrosion defect data for the integrity 

management of buried oil and gas pipelines 

(Caleyo et al. 2014) and measuring the wall 

thickness of deteriorating piping systems in 

nuclear reactors (Higo and Pandey 2016). Since 

the cost of sampling is in general high, the sample 

size should be determined by balancing between 

the cost and associated benefit. This is known as 

the problem of the sample size determination 

(SSD).  

The Bayesian pre-posterior analysis (Raiffa 

and Schlaifer 1961) is a viable approach to deal 

with SSD. Pham and Turkkan (1992) employed 

the pre-posterior analysis to study SSD for the 

parameter of the binomial distribution. Assuming 

the parameter to have a beta prior distribution and 

exploiting the conjugacy of the beta-binomial 

pair, the authors derived analytical expressions for 

the expectations of the posterior mean and 

variance of the binomial parameter with respect to 

the outcome of sampling with a given sample size. 

The appropriate sample size can then be 

determined by using one of three criteria: limiting 

the posterior variance and Bayes risk to pre-

determined allowable values, respectively, and 

maximizing the expected net gain of sampling 

(ENGS). Adjock (1992) extended Pham and 

Turkkan’s approach to investigate SSD for 

parameters of the multinomial distribution by 

assuming the prior distribution of the parameters 

to be the Dirichlet distribution and utilizing the 

conjugacy of the Dirichlet-multinomial pair. 

Based on the pre-posterior analysis and value of 

information (VoI) concept, Higo and Pandey 

(2016) derived an analytical expression for the 

optimal number of wall thickness measurements 

for nuclear piping systems by assuming the wall 

thickness to follow a normal distribution. The 

aforementioned studies address SSD for 

parameters of specific distributions; however, 

there is a lack of a general framework that can deal 

with SSD for a wide range of probability 

distributions by considering the impact of 

uncertainties in fX(x) on Pf. 

In this study, a methodology that is based on 

the Bayesian pre-posterior analysis of Pf is 

developed to deal with SSD. The methodology 

starts by discretizing the basic variables for which 

sample sizes need to be determined. The 

probability mass functions (PMFs) of the 

discretized variables are then assigned Dirichlet 

prior distributions. The total probability theorem 

is employed to express Pf in terms of PMFs of the 

discretized variables and conditional failure 

probabilities corresponding to given values of 

discretized variables. This facilitates the pre-

posterior analysis of Pf based on those of the 

discretized variables. The criterion of determining 

optimal sample size based on the result of the pre-

posterior analysis of Pf is then proposed by 

maximizing ENGS. The proposed SSD criterion 

is illustrated through an example involving 

determining the optimal number of burst tests for 

collecting the samples of model error of the burst 

capacity model for corroded pipelines.   

2. FORMULATION      

2.1. Pre-posterior analysis of the PMF 

Let Y denote a discrete random variable with m 

states yi (i = 1, 2, …, m). The PMF of Y is 

represented by an m-dimensional vector WY = 

{WY,1, WY,2, …, WY,m} (∑ 𝑊𝑌,𝑖
𝑚
𝑖=1 = 1). Consider 

that WY is uncertain and hence a random vector. 

The Dirichlet distribution is often assigned as the 

prior distribution of WY in the literature 

(Spiegelhalter et al 1993); that is, WY ~ Dir(αY), 

where “~” denotes the assignment of a probability 

distribution, and αY = {αY,1, αY,2, …, αY,m}is the m-

dimensional parameter vector of the Dirichlet 

distribution. The prior joint PDF of WY, f(wY|αY), 

is given by,  

 𝑓(𝐰𝑌|𝜶𝑌) =
Γ(𝛼𝑌0)

∏ Γ(𝛼𝑌,𝑖)𝑚
𝑖=1

∏ (𝑤𝑌,𝑖)
𝛼𝑌,𝑖−1𝑚

𝑖=1  (0 < 

wY,i < 1 and Y,i > 0; i = 1, 2, …, m)   (2) 
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where wY = {wY,1, wY,2, …, wY,m } is the value of 

WY; (•) is the gamma function, and 𝛼𝑌0 =
∑ 𝛼𝑌,𝑖

𝑚
𝑖=1  is known as the equivalent sample size 

of the Dirichlet distribution (Johnson and Kotz 

1972).  

The prior mean and variance of WY,i (i = 1, 2, 

…, m), 𝜇𝑊𝑌,𝑖

𝜋  and 𝜉𝑊𝑌,𝑖

𝜋 , respectively, are given by,    

𝜇𝑊𝑌,𝑖

𝜋 =
𝛼𝑌,𝑖

𝛼𝑌0
    (3) 

𝜉𝑊𝑌,𝑖

𝜋 =
𝛼𝑌,𝑖(𝛼𝑌0−𝛼𝑌,𝑖)

(𝛼𝑌0)2(𝛼𝑌0+1)
    (4)   

Throughout the paper, the symbols μ• and ξ• are 

used to denote the mean and variance of a random 

variable •, respectively, whereas superscripts  

and p are used to denote prior and posterior 

statistics, respectively. WY,i and WY,j (i, j = 1, 2, …, 

m; i ≠ j) are correlated with the corresponding 

covariance, 𝜔𝑊𝑌,𝑖𝑗

𝜋 , given by   

𝜔𝑊𝑌,𝑖𝑗

𝜋 =
−𝛼𝑌,𝑖𝛼𝑌,𝑗

(𝛼𝑌0)2(𝛼𝑌0+1)
  (i ≠ j) (5) 

Now suppose that a set of samples nY = {nY,1, 

nY,2, …, nY,m} are obtained from the outcome 

space of Y, where nY,i (nY,i ≥ 0; i = 1, 2, …, m) 

represents the number of samples lying in the i-th 

state. These samples can be used to update the 

prior distribution of WY. The likelihood of nY, 

L(wY|nY), is of the multinomial form as follows: 

𝐿(𝐰𝑌|𝐧𝑌) =
𝑛𝑌0!

∏ 𝑛𝑌,𝑖!𝑚
𝑖=1

∏ (𝑤𝑌,𝑖)
𝑛𝑌,𝑖𝑚

𝑖=1  (6) 

where 𝑛𝑌0 = ∑ 𝑛𝑌,𝑖
𝑚
𝑖=1 , i.e. the total number of 

samples. Given the conjugacy between the 

multinomial and Dirichlet distributions, the 

posterior distribution of WY is also the Dirichlet 

distribution with the corresponding PDF, f(wY|αY, 

nY), given by,   

𝑓(𝐰𝑌|𝛂𝑌, 𝐧𝑌) =
Γ(𝛼𝑌0+𝑛𝑌0)

∏ Γ(𝛼𝑌,𝑖+𝑛𝑌,𝑖)𝑚
𝑖=1

∏ (𝑤𝑌,𝑖)
𝛼𝑌,𝑖+𝑛𝑌,𝑖−1𝑚

𝑖=1    (7) 

It follows that the parameter vector of the 

posterior Dirichlet distribution of WY is (αY + nY). 

The posterior mean, variance and covariance of 

WY are then given by, 

𝜇𝑊𝑌,𝑖

𝑝 =
𝛼𝑌,𝑖+𝑛𝑌,𝑖

𝛼𝑌0+𝑛𝑌0
    (8) 

𝜉𝑊𝑌,𝑖

𝑝 =
(𝛼𝑌,𝑖+𝑛𝑌,𝑖)(𝛼𝑌0+𝑛𝑌0−𝛼𝑌,𝑖−𝑛𝑌,𝑖)

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
    (9)   

𝜔𝑊𝑌,𝑖𝑗

𝑝 =
−(𝛼𝑌,𝑖+𝑛𝑌,𝑖)(𝛼𝑌,𝑗+𝑛𝑌,𝑗)

(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+𝑛𝑌0+1)
  (i ≠ j) (10) 

If a decision is made to draw a total of nY0 

samples but the actual sampling process has not 

been carried out, the potential sample count in the 

i-th state (i = 1, 2, …, m) is now uncertain, denoted 

by a random variable NY,i (the total sample count 

nY0 is a constant). The posterior statistics of WY 

then depend on the realization of the random 

vector NY = {NY,1, NY,2, …, NY,m}. This is the pre-

posterior analysis (Raiffa and Schlaifer 1961). 

The marginal (or compound) distribution of NY is 

the so-called Dirichlet-multinomial distribution 

(Johnson and Kotz 1972). Replacing nY,i and nY,j 

in Eqs. (8) through (10) by random variables NY,i 

and NY,j, one can then evaluate the expectations of 

the posterior mean, variance and covariance of 

WY with respect to the distribution of NY, 

respectively, as follows:  

E𝑁 [𝜇𝑊𝑌,𝑖

𝑝 ] =
𝛼𝑌,𝑖

𝛼𝑌0
   (11)  

E𝑁 [𝜉𝑊𝑌,𝑖

𝑝 ] =
𝛼𝑌0

𝛼𝑌0+𝑛𝑌0
𝜉𝑊𝑌,𝑖

𝜋  (12) 

E𝑁 [𝜔𝑊𝑌,𝑖𝑗

𝑝
] =

𝑛𝑌0𝛼𝑌,𝑖𝛼𝑌,𝑗(𝛼𝑌0+𝑛𝑌0)−𝛼𝑌,𝑖𝛼𝑌,𝑗(𝛼𝑌0)2(𝛼𝑌0+1)−(𝑛𝑌0)2𝛼𝑌,𝑖𝛼𝑌,𝑗(𝛼𝑌0+1)−2𝑛𝑌0𝛼𝑌,𝑖𝛼𝑌,𝑗𝛼𝑌0(𝛼𝑌0+1)

(𝛼𝑌0)2(𝛼𝑌0+𝑛𝑌0)2(𝛼𝑌0+1)(𝛼𝑌0+𝑛𝑌0+1)

  

  (13) 

where EN[•] denotes the expectation with respect 

to NY. Note that the expectation of the posterior 

mean (Eq. (11)) coincides with the prior mean 

(Eq. (3)).    

2.2.  Pre-posterior analysis of the Pf 

Consider that Y is one element in the vector of 

basic random variables X in Eq. (1) and that 

samples of Y are needed to reduce the epistemic 

uncertainty and the corresponding sample size is 

to be determined. To apply the methodology in 

Section 2.1, Y is first discretized into m states, 

where the i-th state is a continuous interval and 
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denoted by (yi, yi+1]. One can rewrite Eq. (1) using 

the total probability theorem as follows: 

𝑃𝑓 = ∑ Pr(Failure|𝑌 ∈ (𝑦𝑖 , 𝑦𝑖+1])𝑊𝑌,𝑖
𝑚
𝑖=1   (14) 

where Pr(Failure|𝑌 ∈ (𝑦𝑖, 𝑦𝑖+1])  is the failure 

probability conditioned on 𝑌 ∈ (𝑦𝑖, 𝑦𝑖+1]; 𝑊𝑌,𝑖 is 

the PMF associated with (yi, yi+1]. For the sake of 

brevity, Pr(Failure|𝑌 ∈ (𝑦𝑖, 𝑦𝑖+1]) is denoted as 

𝑝𝑓,𝑖  henceforth. Given that PMF of Y is 

considered a random, Eq. (14) suggests that Pf is 

also a random variable, for which the prior mean 

value and variance are given by Eqs. (15) and (16) 

respectively, 

𝜇𝑃𝑓

𝜋 = ∑ 𝑝𝑓,𝑖𝜇𝑊𝑖

𝜋𝑚
𝑖=1   (15) 

𝜉𝑃𝑓

𝜋 = ∑ 𝑝𝑓,𝑖
2 𝜉𝑊𝑖

π𝑚
𝑖=1 + ∑ ∑ 𝑝𝑓,𝑖𝑝𝑓,𝑗𝜔𝑊𝑖𝑗

𝜋 
1≤𝑗≤𝑚,𝑗≠𝑖

 
 1≤𝑖≤𝑚  (16) 

where 𝜇𝑊𝑖

𝜋 , 𝜉𝑊𝑖

π
 and 𝜔𝑊𝑖𝑗

𝜋 can be computed by 

Eqs. (3) through (5).    

Once WY is updated by a set of samples of Y, 

the posterior statistics of Pf can be obtained as 

follows: 

𝜇𝑃𝑓

𝑝 = ∑ 𝑝𝑓,𝑖𝜇𝑊𝑖

𝑝𝑚
𝑖=1   (17) 

𝜉𝑃𝑓

𝑝
= ∑ 𝑝𝑓,𝑖

2 𝜉𝑊𝑖

𝑝𝑚
𝑖=1 + ∑ ∑ 𝑝𝑓,𝑖𝑝𝑓,𝑗𝜔𝑊𝑖𝑗

𝑝 
1≤𝑗≤𝑚,𝑗≠𝑖

 
1≤𝑖≤𝑚   (18) 

where 𝜇𝑤𝑖

𝑝
, 𝜉𝑊𝑖

𝑝
 and 𝜔𝑊𝑖𝑗

𝑝
can be computed by Eqs. 

(8) through (10).    

Equations (17) to (18) imply that 𝜇𝑃𝑓

𝑝
 and 𝜉𝑃𝑓

𝑝
 

are functions of the number of samples distributed 

in the entire sample space of Y, i.e. [y1, y2], (y2, y3], 

…, (ym, ym+1]. Given a prescribed total sample size 

nY0 of Y, the expectations of the posterior mean 

and variance of Pf with respect to the sampling 

outcome in the entire space of Y are as follows, 

E𝑁 [𝜇𝑃𝑓

𝑝 ] = ∑ 𝑝𝑓,𝑖E𝑁[𝜇𝑊𝑖

𝑝 ]𝑚
𝑖=1  (19) 

E𝑁 [𝜉𝑃𝑓

𝑝
] = ∑ 𝑝𝑓,𝑖

2 E𝑁[𝜉𝑊𝑖

𝑝
]𝑚

𝑖=1 +

∑ ∑ 𝑝𝑓,𝑖𝑝𝑓,𝑗E𝑁 [𝜔𝑊𝑖𝑗

𝑝
] 

1≤𝑗≤𝑚,𝑗≠𝑖
 
1≤𝑖≤𝑚    (20) 

where E𝑁[𝜇𝑊𝑖

𝑝 ] , E𝑁[𝜉𝑊𝑖

𝑝 ]  and E𝑁 [𝜔𝑊𝑖𝑗

𝑝 ]  can be 

computed by Eqs. (11) through (13). 

3. THE CRITERION OF OPTIMAL SAMPLE 

SIZE DETERMINATION 

As described in Section 2.2, Pf is a random 

variable due to the epistemic uncertainty on the 

basic random variable. The decision is made 

based on an estimate of Pf, 𝑝𝑓
𝑒. The loss caused by 

the discrepancy between 𝑝𝑓
𝑒 and Pf is modeled by 

the following quadratic loss function (Morris 

1968), 

𝐿(𝑃𝑓 , 𝑝𝑓
𝑒) = 𝐶(𝑝𝑓

𝑒 − 𝑃𝑓)2 (21) 

where C is the parameter of the quadratic loss 

function. Since generally accepted rules to 

quantify C is scarce in the literature, we determine 

the magnitude of C based on the following simple 

heuristic. Equation (21) suggests that the loss 

increases as the discrepancy between Pf and 𝑝𝑓
𝑒 

increases. The upper bound of (𝑝𝑓
𝑒 − 𝑃𝑓)2 is equal 

to unity, which represents the worst estimation of 

the failure probability and leads to the maximum 

loss. It is reasonable to assume that the cost of 

failure of the structure, CF, is the maximum loss. 

It then follows that C is equal to CF.   

It has been shown that 𝑝𝑓
𝑒 = 𝜇𝑃

𝜋  is the 

optimal prior estimate in the sense of minimizing 

the expectation of 𝐿(𝑃𝑓 , 𝑝𝑓
𝑒) with respect to the 

distribution of Pf (Morris, 1968), based on which 

the prior expected loss is, 

E𝑃𝑓
[𝐿] = ∫ 𝐶 (𝜇𝑃𝑓

𝜋 − 𝑝𝑓)
2

𝑓𝑃𝑓

𝜋 (𝑝𝑓)d𝑝𝑓 = 𝐶𝜉𝑃𝑓

𝜋   

  

  (22) 

where 𝑓𝑃𝑓

𝜋 (𝑝𝑓) is the prior PDF of Pf. Equation 

(22) is also known as the expected value of perfect 

information (EVPI). Once WY and Pf are updated 

by a set of samples, the posterior expected loss is 

given by, 

E𝑃𝑓
[𝐿|𝐧𝑌] = ∫ 𝐶 (𝜇𝑃𝑓

𝑝 − 𝑝𝑓)
2

𝑓𝑃𝑓

𝑝 (𝑝𝑓)d𝑝𝑓 =

𝐶𝜉𝑃𝑓

𝑝
   (23) 

where 𝑓𝑃𝑓

𝑝 (𝑝𝑓) denotes the posterior PDF of Pf, 

and the result of Eq. (23) is known as the 

conditional value of perfect information (CVPI). 
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It follows that the conditional value of sampling 

information (CVSI) is given by, 

CVSI = E𝑃𝑓
[𝐿] − E𝑃𝑓

[𝐿|𝐧𝑌] = 𝐶𝜉𝑃𝑓

𝜋 − 𝐶𝜉𝑃𝑓

𝑝
 (24) 

Given a prescribed sample sizes nY0 of Y, the 

expectation of CVSI with respect to the sampling 

outcome in the entire space of Y is the expected 

value of sampling information (EVSI) as follows,  

EVSI(𝑛𝑌0) = EVPI − E𝑁 [𝐶𝜉𝑃𝑓

𝑝 ]  (25) 

ENGS can then be calculated by, 

ENGS (𝑛𝑌0) = EVSI(𝑛𝑌0) − 𝑛𝑌0𝐶𝑆  (26) 

where CS is the unit cost of sampling. The value 

of nY0 that maximizes ENGS is the optimal sample 

size, nY0-opt.  

Note that Eqs. (21) through (26) formulate 

EVPI, EVSI and ENGS by considering the 

influence of the epistemic uncertainty on the 

failure probability evaluation of a single structure. 

If the epistemic uncertain influences the failure 

probability evaluation of a group of individual 

structures, the total EVPI (EVSI) is equal to the 

sum of EVPI (EVSI) associated with individual 

structures.  

4. NUMERICAL EXAMPLE 

4.1. General information 

The numerical example considers the 

reliability evaluation of a corroded pipeline. The 

buried pipeline segment has a nominal outside 

diameter Dn = 508 mm, a nominal wall thickness 

wtn = 5.40 mm and a nominal operating pressure 

pn = 5.5 MPa. The pipe is made of API 5L Grade 

X52 steel with the specified minimum yield 

strength (SMYS) of 359 MPa. It is assumed that 

the pipeline segment contains 100 corrosion 

defects that have been detected and sized by a 

recently conducted inline inspection (ILI). For 

simplicity, the ILI-reported defect sizes (depth 

and length) of different defects are assumed to be 

identical. The probability of burst of the pipeline 

at every detected defect is calculated. The burst 

failure at a given corrosion defect is defined by the 

following limit state function, 

𝑔 = 𝑟𝑏 − 𝑝   (27) 

where rb is the remaining burst pressure capacity 

of the pipe at the defect calculated by the B31G 

Modified model (Kiefner and Vieth 1989), 

𝑟𝑏 = 𝜅
2𝑤𝑡(𝜎𝑦+68.95)

𝐷
[

1−0.85
𝑑

𝑤𝑡

1−0.85
𝑑

𝑀𝑤𝑡

] (28)  

where d is the actual defect depth; D is the actual 

outside diameter; wt is the actual pipe wall 

thickness; σy is the actual yield strength; κ denotes 

the model error associated with the B31G 

Modified model, and M is Folios bulging factor 

which is a function of D, wt and actual defect 

length l. d and l are normally distributed with the 

mean values equal to the ILI-reported depth and 

length, respectively, and standard deviations 

equal to 0.078wtn and 7.8 mm, respectively (Zhou 

et al. 2016). The probabilistic properties of the 

considered random variables are given by Table 

1.  
Table 1: Probabilistic characteristics of random 

variables for the numerical example 
RV Distribution μ COV  σ 

d Normal 0.4wtn - 0.078wtn 

l Normal 75 mm - 7.8 mm 

D/Dn Deterministic 1.0 - - 

wt/wtn Normal 1.0 0.015 - 

p/pn Gumbel 1.0 0.03 - 

σy/SMYS Lognormal 1.1 0.035 - 

κ Lognormal 1.297 0.258 - 

RV: random variable 

μ: mean value of the random variable 

σ: standard deviation of the random variable 

The distribution of κ given in Table 1 was 

estimated mainly from the data of burst tests on 

pipelines with isolated small defects. However, 

suppose that the majority of the defects 

considered in this example are clustered corrosion 

defects; the probabilistic characterization of κ 

given in Table 1 does not capture entirely the 

uncertainty of the burst model for such defects. 

Therefore, the distribution of κ given in Table 1 is 

considered as a prior distribution containing 

epistemic uncertainty. Given the failure 

probability is highly sensitive to the probabilistic 

property of κ (Zhou 2010), it is desirable to 

perform a number of burst tests on naturally 
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corroded pipelines with clustered defects to 

collect the samples of κ and update the 

distribution of κ. The proposed SSD criterion is 

applied to determine the optimal number of burst 

tests. In practice, the cost of each full-scale burst 

test, CS, is approximately $100,000. Generally, 

the loss caused by a pipeline failure, CF, can be 

extreme, and is assumed to be 500CS in this study. 

Therefore, the relative magnitudes of CF and CS 

are 500 and 1, respectively. 

4.2. The results of SSD 

The prior distribution of κ is discretized into 40 

states and the corresponding PMF are plotted in 

Fig. 1. Then, the PMF is modeled by a prior 

Dirichlet distributions W ~ Dir(α), where α = 

{ακ,1, ακ,2, …, ακ,40}. The equivalent sample size, 

𝛼𝜅0 = ∑ 𝛼𝜅,𝑖
40
𝑖=1 , of the prior Dirichlet distribution 

is assumed to be unity, which is commonly 

assumed in the literature (Zhou et al. 2016). 𝜇𝑃𝑓

𝜋  

and 𝜉𝑃𝑓

𝜋  associated with the failure at each defect 

are calculated to be 0.0068 and 0.0019, 

respectively. 𝑝𝑓,𝑖  in Eqs. (15) and (16) is 

calculated using the simple Monte Carlo (MC) 

simulation with 1,000,000 trials. Note that in the 

MC simulation to calculate 𝑝𝑓,𝑖, κ is sampled from 

the prior lognormal distribution truncated beyond 

the boundaries of the state (κi, κi+1].  

 

 
Fig. 1 Discretization and PMFs of κ 

EVPI is calculated to be 97, which is the 

upper bound of EVSI. According to Eq. (26), the 

EVSI associated with any sample size large than 

97 cannot outweigh the associated sampling cost, 

thus leads to a negative ENGS. Let the sample size 

nκ0 vary from 1 through 100, and the 

corresponding EVSI and ENGS are calculated 

and plotted in Fig. 2. This figure indicates that 

EVSI increases as the sample size increases. 

However, the contribution from a unit sample to 

EVSI decreases as the sample size increases. The 

peak value of ENGS indicates that the optimal 

number of burst tests is 9. 

 
Fig. 2 The results of EVSI and ENGS 

4.3. Sensitivity analysis 

The sensitivity of the SSD result to relevant 

parameters is investigated in this section. First, the 

sensitivity of the optimal sample size to the 

number of discretization states of κ is 

investigated. All else being equal, the distribution 

of κ is discretized into 10, 20, 30, 40 and 50 states, 

respectively, and the corresponding EVSI and 

ENGS are plotted in Figs. 3(a) and 3(b), 

respectively. These figures indicate slight 

differences between EVSI (ENGS) associated 

with different discretization cases where mκ is 

equal to or larger than 30. That is, the 

discretization in Fig. 1 is adequate for the SSD 

problem. Therefore, when the continuous 

distribution is discretized into a fairly large 

number of states, the SSD result is insensitive to 

the number of discretization states. The sufficient 

number of discretization states for different 

problems can be determined by the approach of 

trial-and-error.  
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(a) EVSI 

 

 
(b) ENGS 

Fig. 3 Sensitivity of EVSI and ENGS to mκ 

 

Then, the sensitivity of the optimal sample 

size to the equivalent sample size ακ0 of the prior 

Dirichlet distribution is investigated. All else 

being equal, ακ0 is set to 0.25, 0.5, 1, 2 and 5, 

respectively. The corresponding EVPI equal to 

154, 129, 97, 65 and 32, respectively, indicates 

that EVPI decreases as ακ0 increases. The reason 

is that a larger ακ0 implies less uncertainty on the 

prior Dirichlet distributions as well as Pf. Since 

EVSI and ENGS depend on EVPI as defined by 

Eqs. (25) and (26), EVSI and ENGS depicted by 

Figs. 4(a) and 4(b), respectively, decrease too as 

ακ0 increases. However, the same trend does not 

hold for the optimal sample size. As ακ0 varies 

through 0.25, 0.5, 1, 2 and 5, the optimal sample 

size increases at first, but starts to decrease after 

reaching the greatest value at ακ0 equal to 1 and 2. 

This trend suggests that a relatively small and 

large ακ0 both tend to lead to a smaller optimal 

sample size, which is explained by the trade-off 

between two influencing factors, the magnitude of 

EVSI and sensitivity of EVSI to the sample size. 

Figure. 4(a) indicates that EVSI increases as ακ0 

decreases from 5 to 0.25, which tends to lead to a 

larger optimal sample size according to Eq. (26). 

On the other hand, as ακ0 decreases, the sensitivity 

of EVSI to the sample size increases. When ακ0 is 

small (i.e. less than unity), a relatively small 

sample size already enables EVSI to approach its 

upper bound, which renders the contribution from 

the subsequent samples to EVSI too small to 

outweigh their sampling cost. This trend tends to 

lead to a smaller optimal sample size as ακ0 

decreases. Therefore, as ακ0 decreases, the 

ultimate change of the optimal sample size 

depends on which one of the two influencing 

factors mentioned above dominates.   

 
(a) EVSI 

 
(b) ENGS  

Fig. 4 Sensitivity of EVSI and ENGS to ακ0 

5. CONCLUSIONS 

This paper establishes an SSD methodology for 

collecting samples to reduce the epistemic 

uncertainties in the distributions of basic random 

variables involved in the failure probability 

evaluation. The ENGS maximization approach 
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determines the optimal sample size by balancing 

between the sampling cost and associated benefit. 

The discretization of the continuous variables 

makes the method applicable to a wide range of 

distributions.    

The effectiveness the proposed method is 

demonstrated by a numerical example. The 

following conclusions are drawn from the 

sensitivity analysis. First, the SSD result is 

insensitive to the discretization of the basic 

random variable if the continuous random 

variable is discretized into a reasonably large 

number of states. Second, the SSD result is highly 

sensitive to the equivalent sample size of the prior 

Dirichlet distribution. Relatively small and large 

equivalent sample sizes both lead to a small 

optimal sample size. A further study of eliciting 

the equivalent sample size from the prior 

information is desirable in the future. 
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