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ABSTRACT: The Industrial Center for Geological Disposal, Cigéo project, will consist of creating 

disposal cells, such as tunnels, for high level and intermediate level long-lived radioactive waste. 

Repository cells type will deform under the rock loading. Although this convergence would be low, its 

monitoring is mandatory especially in order to know whether the waste packages could be retrievable 

during secular operating period. The monitoring of the cell shrink shall be made by an optimized 

instrumentation. The approach consists in determining, by numerical simulation of tunnel sections, the 

number of sensors to be put in place, their position and their orientation, taking into account their lifetime 

and precision. A simplified model represents a disposal cell subjected to different loads. This model 

create allows us to a database of the deformations obtained by the virtual sensors according to the soil 

stress applied to the repository cell. An inverse model built with a Bayesian approach will allow 

retrieving the stress of the ground corresponding to a given deformation. The capability of the inverse 

model to detect the loading condition is the criterion to be optimized. The numerical and inverse models 

were developed to compare horizontal pressure using a fitness function to classify individual 

configurations. Genetic Algorithm optimization is then used selection, crossover and mutation to find 

the best sensors’ placement for a given number of sensors. 

 

1. INTRODUCTION 

Structural monitoring requires both high-

performance instrumentation and adaptation to 

civil engineering. It also requires an optimal 

installation of sensors. With the current growth of 

data processing means, it seems advisable to 

consider the sensors placement so that their 

measurements are more adapted to their 

interpretation. This is also requirement given by 

the surveillance program of the Cigéo project 

defined by Andra (French national radioactive 

waste management agency) for the submission of 

licensing application. The objective of the work 
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presented here in is to optimize the placement of 

sensors, which are Vibrating Wire Extensometers, 

also called VWE. These sensors measure local 

strain of concrete cells. Sensors location 

optimization makes it possible to determine the 

convergence of the cell. As a first step, the load of 

the rock is determined from the measurements of 

strains. 

Different horizontal stress σh are considered 

in the range between 12 and 18 MPa and the 

effects on concrete annular deformation of the cell 

is analyzed. The next step consists, using inverse 

model, in determining (with uncertainties on the 

knowledge of the deformations) which loading 

corresponds to them. For this, a numerical 

simulation is carried out in order to know the 

strains of tunnel sections, for given input 

parameters (loading profile, mechanical 

properties of rock and concrete). A scan of input 

parameters allows us to constitute a strain 

database to be used by the inverse model. This 

model uses a Bayesian approach, allowing to find 

the input parameter from strain observation. By 

varying the number of VWE, as well as their 

position, the obtained strains are used to feed the 

database. The ability of the inverse model to 

identify the loading case, depending on the 

number and position of the VWE, is the criterion 

to optimize. The optimal determination of the 

number and positions of these sensors is carried 

out by genetic algorithm. 

The goal of this study is to find the unknown 

parameter on the site: the horizontal stress σh. 

Whatever the horizontal stress, the vertical stress 

σv is constant and equal to 12.7 MPa. The 

considered simplifying assumption, for 

realization of finite element model, makes it 

possible to increase the number of iterations in a 

suitable time. 

The optimization of number and positions of 

VWE uses an irregular fitness function (noise 

measurement sensors and local minimum) 

according to Collette and Siarry (2011). They 

specified that “main resolution methods are 

metaheuristic algorithms”. Hammouche, Diaf, 

and Siarry (2010) compared main techniques of 

these algorithms. The genetic algorithms (GA), 

developed by Goldberg and Holland (1988), and 

the particle swarm (PSO), presented by Kennedy 

and Eberhart (1995), give the best results with 

rapid convergence in few iterations. For 

deployment of wireless sensor networks (WSN), 

Aval and Razak (2012) concluded that GA and 

PSO are the two most used techniques. 

Banimelhem, Mowafi, and Aljoby (2013) 

evaluated the performance of GA to reduce or 

eliminate formulated holes after initialed and 

random deployment of stationary nodes. Two 

simulations of target detections led to conclude 

that GA can maximize detection coverage by 

finding the minimum number of additional mobile 

nodes and best positions on the ground. Fontan 

(2011) studied the optimization of sensor 

placement for identification of mechanical 

parameters of structures from in-situ 

measurements. He worked by inverse analysis 

using a PSO metaheuristic chosen for its speed of 

convergence. In 2006, a challenge was organized 

to optimize sensors’ placement for detection of 

contaminants in a water network according to four 

criteria (time of intrusion detection, population 

affected by the intrusion, quantity of 

contaminated water consumed and probability of 

detection). Most of the participants used 

metaheuristic methods such as Krause and al. 

(2008) who implemented a greedy algorithm or 

Guan and al. (2008), Wu and Walski (2006) and 

Preis and Ostfeld (2008) who work by GA.  

In this article, the optimization of VWE 

position, for a given sensor number, is realized by 

Genetic Algorithm (GA). The reasons for this 

choice are that among the metaheuristics, GA and 

PSO algorithms have been preferred to Ant 

Colony Optimization (ACO), Simulated 

Annealing (SA) and Tabu Search (TS) algorithms. 

This is because they have better robustness and 

precision and a fast convergence. Compared to 

PSO method, GA require fewer parameters to 

adjust. They do not have particle indiscriminate 

solutions in case of very “flat” search space and 

they do not require search space. Finally, GA 

methods have an effective exploration of research 
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area and have potential to address large research 

areas as well as a great adaptability. 

2. MODELING DEFORMATIONS 

OBSERVED BY SENSORS 

The finite element model of cell cross-section 

provides a database with known input parameters 

and output values. 

2.1. Numerical model 

The purpose of this model is to create a database 

of strains for all VWE location whatever the stress 

applied to the cell. The cell cross-section takes 

into account only the coating whose thickness is 

30 cm for an extrados diameter of 5m. The 

numerical model is realized under Cast3M with a 

coating which is a 2D. The surrounding soil is 

represented by Winkler resorts, Buco (2007) 

(Figure 1). 

 

 
Figure 1 : Modeling cell cross-section. 

2.2. Model parameters 

To allow for large number of calculations, the 

numerical model is a simplification of reality. The 

input parameters are data available at Andra 

Underground Laboratory Cigéo project site. 

2.2.1. Input parameters 

The concrete Young's modulus is equal to 

39.1MPa and the Poisson's ratio is 0.25. The 

surrounding soil is represented by springs of 

variable rigidity depending of soil Young’s 

modulus which varies between 3 and 9 GPa and 

Poisson's coefficient which is equal to 0.29. 

Depending on the gallery orientation, horizontal 

stress varies between 12 and 18 MPa while the 

vertical stress is constant and equal to 12.7 MPa. 

On one section, the rigidity of each spring is 

variable while the horizontal stress is constant. 

For the database creation, the VWE are set up at 

all the intrados and extrados degrees and the 

horizontal stress varies between 12 and 18 MPa, 

with a step of 1 MPa. 

The rigidity is drawn every 45° and the 

springs’ rigidity between two successive samples 

are calculated by linear interpolation. Due to the 

risks associated with implementation and concrete 

pouring, the uncertainty on the angle θ of the 

VWE position compared to its theoretical 

orthoradial position is maximum ± 20°. This 

uncertainty is considered by a standard normal 

law with ± 20° of sensor orientation error 

corresponding to ± 3 standard deviations. The 

sensor intrinsic error of 1.75%, due to its 

resonance mode is also taken into account, Mei 

(2016). 

2.2.2. Output parameters 

The output parameter of the numerical model is 

the strain distribution for each position of intrados 

and extrados orthoradial sensors. These VWE 

positions are represented by points P1 to P7. 

Letter “e” or “i” represented the position extrados 

or intrados of the orthoradial VWE (Figure 1). 

2.3. Inverse model 

The numerical model allows the database creation 

and the inverse model will determine the only 

really unknown value: σh. This value is found 

thanks to strain observations given by VWE. 

For a strain observation (measured by an 

VWE at a given location), the inverse model 

applies a Bayesian principle to find the probability 

of occurrence of each horizontal stress. The 

inverse model is based on the database created 

using the finite element model. Bayesian 

inference is calculated using the following 

formula as defined by Bayes (1763): 

𝑃(𝜎𝑖|𝑂) =  
𝑃(𝑂|𝜎𝑖)∗𝑃(𝜎𝑖)

∑ 𝑃(𝑂|𝜎𝑗)∗𝑃(𝜎𝑗)7
𝑗=1

   (1) 
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with O the strain observation and σi a soil pressure 

(σi = {12, 13, 14, 15, 16, 17, 18}). The 

denominator serves to normalize the posteriori 

law. 

In the inverse model, the Bayesian approach 

creates a confidence interval around the value of 

observed strain O by a sensor [O (1 - 0.1%); O (1 

+ 0.1%)] and counts the number of stains in this 

interval. Thus, for each realization of strain in the 

database, of each stress σi, the conditional 

probability P(O|σi) amounts to counting the  

occurrence number in the considered interval. For 

P(σi), each pressure value has an equal probability 

(non-informative law), leading to the hypothesis 

P(σi) = 1/7. 

A single strain observation leads to 

overlapped distributions, so the inverse model 

must be able to recover several observations of 

strain O simultaneously. The observation vector is 

therefore passed as input parameter of the inverse 

model by a naive approach whose hypothesis is 

the independence of the observations. According 

to Eq. (1), the naive hypothesis makes it possible 

to write: 

𝑃(𝑂1, … , 𝑂𝑛|𝜎𝑖) = 𝑃(𝑂1|𝜎𝑖) ∗ … ∗ 𝑃(𝑂𝑛|𝜎𝑖)  (2) 

2.4. Results 

Results of the finite element calculations allow us 

to obtain normal laws of local strain at the position 

of the orthoradial VWE (see Figure 2). By varying 

the horizontal stress between 12 and 18 MPa with 

a step of 1 MPa, the numerical model allows us to 

generate a database of strains. 

 

 
Figure 2 : Normal strain laws at the position of the 

VWE P1e and P3e (see Figure 1) on a cell cross-

section for a stress of 18 MPa. 

 

The inverse model is tested on a growing 

number of extrados sensors (see Figure 3) and on 

the influence position of the VWE, for the 

observation of two sensors (see Figure 4). These 

graphics represent the evolution of the inverse 

model for a given number of VWE (Figure 3) or a 

position of two sensors (Figure 4), for each 

horizontal stress. 

Figure 3 shows the influence of the VWE 

number to find σi from O. For 1 mm/m strain, the 

sensor placed at 0° (point P1e in Figure 1) gives a 

pressure of 12 MPa at 45% (light blue curve). 

Point P3e gives a stress of 12 MPa at only 21% 

(orange curve). By combining the information of 

the sensors P1e and P3e, the result is 49% (gray 

curve) for 12 MPa whereas the point P1e alone 

already gave a result of 45%. By adding the 

observation of the sensor located at the second 

kidney (P5e), the stress of 12 MPa is obtained at 

63% (dark blue curve). The addition of a last cross 

vault sensor does not give more information 

(yellow curve). Thus, the increase in the number 

of sensors gives better results but the placement of 

VWE arch (P3e) and cross vault (P7e) does not 

give additional information. 

 

 
Figure 3 : Result of the inverse model to find the 

horizontal stress at the origin of a set of strains, 

according to the number of sensors. 

 

By keeping the position of the four cardinal 

points for the VWE (Figure 4) the combination of 

two-by-two sensors varies the results depending 

on the sensor positions. Arch (P3e) and cross vault 

(P7e) sensors give the greatest dispersion of 

results with only 29 % probability of finding a 
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horizontal stress of 12 MPa for strain observation 

of 1 mm/m (dark blue curve). The combination of 

kidney/cross vault (P1e/P7e) gives 50 % 

probability of having a stress of 12 MPa (gray 

curve). The combination of the two kidneys 

(P1e/P5e) gives the highest average and the 

lowest dispersion with 60 % probability of finding 

12 MPa (orange curve). This graph comforts the 

previous assumption that kidney sensors provide 

more information than arch and cross vault 

sensors. 

 

 
Figure 4 : Result of the inverse model to find the 

horizontal stress at the origin of a set of deformations, 

according to the position of sensors. 

3. OPTIMIZATION OF THE NUMBER AND 

POSITION OF SENSORS 

The objective of the optimization is to find the 

best location of VWE allowing to minimize the 

difference between the stress provided by the 

inverse model and the stress in the numerical 

model. 

 

 
Figure 5 : Implementation of the optimization. 

 

From the mechanical model and the inverse 

model, it is possible to compare the two stresses 

and optimize the VWE’s position for a given 

number of sensors. It consists in minimizing 𝑓 =
[𝜎ℎ %(𝛽𝑖) −  𝜎ℎ 𝑑𝑖𝑟]  with 𝜎ℎ %  the horizontal 

stress provided by the inverse model according to 

𝛽𝑖 , the location of each sensor and 𝜎ℎ 𝑑𝑖𝑟  the 

horizontal stress obtained with the numerical 

model that the inverse model should be able to 

find. 

3.1. Fitness function 

In order to select the best individual in the 

population, the objective function is: 

𝑓 = [(1 − 𝛼)
∑ 𝑃%(𝜎ℎ %−𝜎ℎ 𝑑𝑖𝑟)27

1

𝜎ℎ 𝑑𝑖𝑟²
] + 𝛼[𝑆]    (3) 

The first term is the difference to the target 

value 𝜎ℎ 𝑑𝑖𝑟  compared to the results 𝜎ℎ %  of the 

inverse model. The second term is the 

measurement of Shannon's entropy dispersion, 

Shannon (2001) with: 

[𝑆] =  
− ∑ 𝑃%𝑖∗ln (𝑃%𝑖)7

1

−𝑙𝑛
1

7

          (4) 

The coefficient α allows us to put more or less 

weight on one or other of the two parts. P% is the 

occurrence probability of each stress, 𝜎ℎ %  the 

stress of the inverse model and 𝜎ℎ 𝑑𝑖𝑟  the target 

stress that the inverse model should find. 

3.2. Genetic Algorithm 

The GA is applied to optimization of sensors 

placement can be schematized in Figure 6.  

From five individuals with four pairs 

(intrados and extrados) of VWE, drawing angles 

for each individual is done randomly with a 

minimum difference of 10° between two 

consecutive sensors. The first step consists in 

classifying individuals of this population 

according to their quality (result of the inverse 

model and the fitness function). This ranking 

appears by red numbers in quotation marks. P3 

individual is of better quality than P4 individual, 

which itself is of better quality than P2 individual. 

Some of these individuals are selected in order to 

cross them (probability of crossing over Pc) and 
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mutate them (probability of mutation Pm) to 

create new individuals and thus change the 

population. The "P" individuals are the parent 

individuals of the current generation and the "C" 

individuals are the child individuals created by the 

process of crossing over and mutation. New 

individuals are then evaluated (inverse model and 

objective function) and inserted into the current 

population. C + P are sorted according to their 

quality and lower quality individuals are removed 

for the next generation, in order to keep best 

individuals and work with constant population. 

Individuals from this selection step are parents of 

the next generation. 

 

 
Figure 6 : Diagram of GA principle. 

 

Several tests were carried out on GA 

parameters in order to make the optimal choice for 

calculating the final solution. The example (Table 

1) is taken on four pairs of VWE 

intrados/extrados. 

 
Table 1 :  Influence of parameters to be defined. 
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1 50 30 6 0,8 0 102 171 280 1,46 

2 50 30 5 0,8 4 95 171 280 1,49 

3 100 30 5 0,8 0 102 171 280 1,46 

4 100 30 6 0,8 91 171 280 354 1,26 

5 100 50 9 0,8 0 102 171 280 1,46 

6 100 20 5 0,8 4 95 171 280 1,49 

7 100 20 8 0,8 91 171 280 354 1,26 

8 100 20 13 0,9 91 171 280 354 1,26 

9 100 20 7 0,9 91 171 280 354 1,26 

10 50 20 7 0,9 91 171 280 354 1,26 

11 50 20 6 0,9 4 95 171 280 1,49 

12 100 20 7 0,6 91 171 280 354 1,26 

13 100 20 10 0,6 0 102 171 280 1,46 

 

Tests 1 and 2 have the same generation 

number and the same individual number per 

generation. The small population size combined 

with the small generation number prevents the 

sufficient exploration of research space to obtain 

the convergence of f towards the global minimum. 

Tests 3 and 4 retain the generation number and 

double the individual number. The two results are 

different but f gives a much lower result. Keeping 

the population size at 100 and changing the 

generation number to 50, the test 5 does not give 

the optimal result already encountered in test 4 

despite a population convergence from the 9th 

generation. Tests 6 and 7 give results for 20 

generations since the other simulation tests 

converged in less than 10 generations. Increasing 

the crossover probability, Pc, to 0.9 allows a 

maximum brewing. The purpose to find a 
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compromise between convergence and brewing 

because a too important admixture can prevent the 

convergence toward a solution. By keeping the 

generation number at 20 (the whole population 

converges in less than 10 generations), tests 8 to 

11 show the influence of population size. Only 

100 individuals give twice the best result of the 

fitness function ever met. Tests 12 and 13 show 

the influence of brewing with a probability of 

crossing over Pc equal to 0.6. The calculation time 

is not very variable, so GA parameters chosen are: 

 Population size : 100 

 Number of generations : 20 

 Crossover probability : Pc = 0.9 

 Mutation probability : Pm = 0.3 

3.3. Results 

The results presented here show the influence of 

the dispersion (α = 0, α = 0.25, α = 0.5 and α = 1) 

on the value of the fitness function, on the VWE 

position and the results of the inverse model. 

3.3.1. Influence of α value on the VWE number 

Figure 7 shows the evolution of the results of the 

fitness function for 2 to 10 intrados and extrados 

of VWE as a function of the coefficient α. When 

α = 0, only the difference to the target value is 

taken into account and when α = 1, only the 

measurement of the Shannon entropy dispersion 

is taken into account. The fitness function gives a 

results f > 0.001 from 4 VWE whereas for α = 0.25 

f = 0.09, for α = 0.5 f = 0.21 and for α = 1 f = 0.41. 

It is necessary to wait for 5 or 6 VWE to find a 

fitness function with a weak result when α ≠ 0. 

 

 
Figure 7 : Results of the fitness function according to 

the number of VWE for various α values. 

3.3.2. Influence of α weighting on the VWE’s 

position 

In the example of 4 pairs of sensors, the results, as 

a function of α, are presented in Table 2. The 

measurement of the dispersion influences the 

optimization of the VWE’s position. 

 
Table 2 : VWE positon and fitness function results 

according to α. 

α 
VWE 

f 
1 2 3 4 

0 22 53 205 352 0.001 

0.25 159 178 204 355 0.087 

0.5 33 159 178 204 0.209 

1 33 159 178 204 0.411 

3.3.3. Influence of α weighting on the results of 

the inverse model 

Comparing the results of the inverse model, the 

best individual selected by optimization for α = 0 

and α = 0.5 gives the graphs presented in Figure 8 

and Figure 9. 

 

 
Figure 8 : Inverse model for α = 0. 

 

 
Figure 9 : Inverse model for α = 0.5. 
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When the fitness function only takes into 

account the difference regarding the target value 

(Figure 8), the inverse model finds the loading 

applied on the cells in more than 95 % of the 

cases. By adding the measure of the dispersion 

(Figure 9), the inverse model does not give good 

results and even goes so far as to error (for σh dir = 

17 and 18 MPa, orange and dark blue curves). 

Taking into account the dispersion decreases the 

efficiency of the inverse model. 

4. CONCLUSION 

The finite element model allows the construction 

of a database exploitable by the inverse model. 

This one serves to find the horizontal stress 

producing deformation of the cell. The 

optimization of the number and the position of 

VWE is done by GA for 2 to 10 couples of 

sensors. The results showed that the dispersion 

plays a significant role on the number and the 

position VWE as well as on the results of the 

inverse model. 

Further research will focus on modifying the 

methodology for optimizing VWE locations to 

find the deformed shape of the cell. 
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