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ABSTRACT: Modeling the post-disaster performance of interdependent infrastructure systems 

contributes to strategic community resilience planning. The normal operation of the facilities in different 

infrastructure systems are dependent upon each other for product input or information sharing. However, 

when disaster happens, these dependencies would aggravate the initial damage caused by the hazards 

and lead to cascading failures. Thus, incorporating the dependencies among infrastructure facilities in 

modeling the damage and recovery of infrastructure systems under disruptive events is essential to guide 

the strategic pre-disaster risk mitigation and post-disaster recovery planning. The Dynamic Integrated 

Network (DIN) model is proposed in this study to simulate the damage and recovery of infrastructure 

network while considering the facility-level dependencies. The DIN model first assesses the inoperability 

of the network nodes and links over time to simulate the damage and recovery of the dependent civil 

infrastructure facilities, and then assesses the recovery and resilience of the individual infrastructure 

systems and the integrated network utilizing some network performance metrics. The proposed DIN 

model is illustrated with a hypothetical infrastructure network, consisting of interdependent power, water 

and telecommunication systems under a scenario hurricane hazard. The recovery simulation result from 

the proposed model is compared to with no interdependency considered, and with only system-level 

interdependencies considered. This comparative study suggests that the recovery time would be 

underestimated if no interdependency was considered, or be overestimated if only system-level 

interdependencies were considered, both of which would lead to poorly informed decision making. The 

DIN model is then validated through simulating the recovery of the interdependent power, water and 

cellular systems of Galveston City, Texas after Hurricane Ike (2008). The simulated power system 

recovery time is comparable to the actual time, which demonstrates that the proposed DIN model can 

produce comparable results to physical reality. 
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1. INTRODUCTION 

Understanding the post-disaster performance of 

interdependent infrastructure systems contributes 

to strategic community resilience planning. 

Recent natural and manmade disasters such as 

9/11 terrorist attack (2001), Hurricane Sandy 

(2012) and Mexico Earthquake (2017) witnessed 

severe damages to the infrastructure systems, 

which impaired the normal operation of the 

society and caused significant economic losses. 

The interdependencies among civil infrastructure 

systems and facilities would aggravate the initial 

damage caused by the disasters and lead to 

cascading failures. Therefore, modeling the 

damage and recovery of the civil infrastructure 

network with considering these interdependencies 

is essential to support strategic pre-disaster risk 

mitigation and post-disaster recovery planning. 
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Recent catastrophic events led to several 

funded projects on assessing the post-disaster 

performance of interdependent infrastructure 

systems, such as the European project SYNER-G 

(Franchin, 2014), NSF-funded PRAISys project 

(Karamlou & Bocchini, 2016), and NIST-funded 

Center for Community Resilience Planning 

(Ellingwood et al., 2016). The awareness of the 

infrastructure network vulnerability under 

disasters also led to many studies on developing 

methodologies to simulate the damage and 

recovery of interdependent infrastructure systems. 

Some methodologies use mathematical 

formalisms such as hierarchical holographic 

modeling, Input-output models, Markov chains or 

Petri nets (Ezell et al., 2000; Haimes & Jiang, 

2001; Gursesli & Desrochers, 2003). Other 

approaches utilize quantities in graph theory, such 

as the network-based approach or agent-based 

approach (Dueñas-Osorio et al., 2007; Folga et al., 

2009; Santella et al., 2009). In general, the 

existing approaches to model the performance of 

interdependent infrastructure systems under 

disruptive events can be grouped into six types: 

empirical-based, agent-based, system dynamics-

based, economic-based, network-based and others 

(Ouyang, 2014; Hasan & Foliente, 2015). 

The infrastructure interdependency can be 

classified into three levels depending on the 

resolution: system-to-system level, system-to-

facility level and facility-to-facility level. While 

considerable studies exist on modeling the 

performance of interdependent infrastructure 

systems after disruptions, the majority of them 

only consider the system-to-system level 

interdependency. This study proposes the 

Dynamic Integrated Network (DIN) model which 

increases the resolution of the interdependency 

modeling by incorporating the facility-to-facility 

and system-to-facility level interdependencies for 

more refined recovery estimation. 

Modeling the damage and recovery of critical 

infrastructure systems with considering different 

levels of interdependencies is essential for 

community resilience planning against 

catastrophic events. However, infrastructure 

damage and recovery are not deterministic 

process due to their inherent uncertainties. It is 

important to reflect these uncertainties and report 

the variations in the infrastructure performance 

estimation to better guide the strategic disaster 

risk management. 

In the following sections, the damage and 

recovery modeling methodologies of the DIN 

model are first introduced. The application of the 

model to a hypothetical infrastructure network 

under hurricane hazard is discussed next. Then, 

model comparison and validation are presented.  

2. DYNAMIC INTEGRATED NETWORK 

MODEL 

The Dynamic Integrated Network (DIN) model is 

developed to simulate the damage and recovery of 

the infrastructure network under disruptive events 

for community resilience planning. The network 

nodes represent critical infrastructure or end-user 

facilities while the links represent the dependency 

relationships between the nodes. The framework 

of the DIN model is shown in Figure 1.  

 
Figure 1: The framework of the DIN model. 

2.1. Damage and Recovery of Network Nodes 

The damage and recovery of network nodes 

(representing facilities) over time are measured 

using inoperability (i.e. the complement of 

operability). The inoperability of a facility is 

defined as the inability of the facility to perform 

its intended functions, which can be calculated as 

the percentage of the unrealized level of output to 

the as-planned level of output of that facility to 

meet its demand (MacKenzie & Barker, 2012). In 

the DIN model, the initial inoperability of a 

facility is assumed to be proportional to the 
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physical damage level determined from 

probability of damage state curves for the 

corresponding facility structural type. The 

conditional cumulative distribution function 

(CDF) of damage states can be obtained for each 

given hazard intensity and each structural type 

(MRl, 2011). These CDFs are used to simulate the 

damage states and estimate the initial 

inoperability of network nodes with considering 

the uncertainties. 

The recovery of the network nodes is 

measured by the propagation of inoperability over 

time, which can be calculated using Eq. (1): 

 ( +1) ( )= ( ) ( )Tq t q t r B A q t q t       (1) 

where
 

( )q t = the inoperability vector at time t; B

= the diagonal recovery coefficient matrix; r = 

the diagonal recovery coefficient ratio matrix; A

= the dependency matrix. 

The recovery coefficient matrix, B , 

represents the recovery rate of infrastructure 

facilities. It can be determined through expert 

estimation or regression analysis based on 

empirical data (MacKenzie & Barker, 2012). 

The facility-to-facility level dependencies 

between network nodes are modeled using the 

dependency matrix, A . Each element in the 

dependency matrix, 
ijA ,  measures the importance 

of node i to the successful recovery of node j 

among all the suppliers of node j during the post-

disaster recovery phase. It can be calculated as the 

product of output matrix, O , and the input matrix, 

I . Each element, ikO , in the output matrix 

represents the importance of the ith node in 

producing the kth PIS. Since each PIS is defined 

for each link and thus has only one supplier node, 

the importance value of the ith node in producing 

the kth PIS is either 0 or 1. Each element, 
kjI , in 

the input matrix measures the relative importance 

of the kth PIS in the successful operation of the jth 

node among all the PISs that the jth node would 

receive during the recovery phase.  

The system-to-facility level dependencies are 

also considered in the DIN model to reflect the 

interaction of the systems with different natures. 

Some infrastructure systems, such as the 

transportation system (refers to the road network 

in this paper) and the natural gas and oil system, 

mainly consist of link components (e.g. roads, 

pipelines). The dependency of the critical 

facilities in the other systems on the link-

dominated systems can be modeled using the 

recovery coefficient ratio matrix, r , which 

quantifies the recovery rate reduction of the 

facilities in the other systems due to the damage 

of the link-dominated systems. Besides, some 

systems, such as food services, agriculture or 

manufacturing, do not have a network topology 

but still contribute to the community resilience. 

The dependency of the facilities in the systems 

which can be modeled as a network on these 

systems are implicitly considered in the DIN 

model. One effect of the damage of these systems 

that do not have network topology is the demand 

change of other systems. If the post-disaster 

demand of a facility i changes from  0ix  to 

 * 0ix , its initial inoperability should be updated 

to Eq. (2): 

  
 

 
 *

*

0
0 1 1 0

0

i

i i

i

x
q q

x
       (2)             

where  0iq  = the initial inoperability of facility 

i based on the pre-disaster demand;  * 0iq = the 

updated initial inoperability of facility i based on 

the post-disaster demand (He & Cha, 2019). 

2.2. Damage and Recovery of Network Links 

Network links provide passages to send products, 

information or services (PISs) from one node to 

another. Since a link has length and can 

experience multiple physical damages along its 

length, the physical damage level of a link is 

modeled using Bernoulli process. A link would be 

damaged if failure occurs at any location of the 

link along its length. The link would not be 

physically recovered until all causes of failures 
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are resolved and the PIS can flow on this link as 

is in the normal state. 

2.3. Damage and Recovery of Individual Systems 

and the Integrated Network 

The damage and recovery of network nodes and 

links change the network topology over time, 

which can be used to measure the operability of 

each infrastructure system and the integrated 

network. Assume that each node or link has a 

threshold operability level below which the 

corresponding facility or line is damaged and 

requires repair. The damaged links or links going 

out of the nonfunctioning nodes are removed from 

the network. A node would be recovered when its 

operability first becomes higher than the threshold 

value. A link would be added back to the network 

when both its tail node and the link itself are 

recovered.  

The network topology can be reflected using 

some network performance metrics, such as 

connectivity, efficiency, accessibility, etc. In this 

study, the values of the parameters at each time 

step are normalized by the value calculated from 

the pre-disaster network and used to describe the 

operability, Qi(t), of the ith infrastructure system at 

time t. Then, the operability of the integrated 

network, Q(t), can be determined by combining 

the operability of individual systems using some 

weighting scheme. A plot of Qi(t) or Q(t) over 

time shows the recovery process (i.e. recovery 

curve) of the ith infrastructure system or the 

integrated network, which can be used to measure 

the vulnerability, recovery time or resilience of 

the system or network (Reed et al., 2009; He & 

Cha, 2018a). An example output of the DIN 

model is shown in Figure 2. 

 
Figure 2: An example output of the DIN model. 

3. MODEL APPLICATION AND 

COMPARISON 

3.1. Model Application 

The DIN model is illustrated with a hypothetical 

interdependent power, water and cellular network 

located in the coastal area in Texas. The critical 

facilities and their dependencies were identified 

based on existing literatures (Germanopoulos, 

1985; Liu et al., 2005; Kwasinski et al., 2009; He 

& Cha, 2018b). Building upon the dependency 

relationships, the hypothetical study region is 

populated with 2 power plants, 2 raw water 

collection points, 2 cellular central offices, 6 end-

user groups, and several critical facilities between 

the source nodes of each system and the end-

users. In total, 67 nodes and 174 links are modeled 

in the integrated network, as is shown in Figure 3. 

 
Figure 3: Critical nodes and links in the hypothetical 

infrastructure network. 

The study region is hit by a Category 2 

hurricane making landfall at (29.333 N, 95.000 

W) with approach angle of -44.64°, as is shown in 

Figure 3. The gradient wind speed at different 

locations of the study region was developed using 

the modified Georgiou’s model (Georgiou et al., 

1983). The maximum wind speed experienced by 

each facility location ranges from 40.48 m/s to 

45.30 m/s. 

The damage and recovery of the 

infrastructure network subjected to the scenario 

hurricane hazard were assessed using the DIN 

model. The input matrix used to calculate the 

dependency matrix was determined by first 

assessing the relative importance of the PISs from 

the modeled systems among all the PISs that a 

node needs during the recovery phase, then 
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equally distributing the relative importance value 

among all the modeled systems, since the node 

could not function properly without any of them. 

The initial inoperability of a node is calculated as 

the expected damage level and varies between 

0.0095 and 0.7050 based on the type and location 

of the corresponding facility. The inoperability is 

updated using Eq. (1) over time to simulate the 

whole recovery process. The recovery 

coefficients for different types of nodes were 

determined using simple linear regression 

analysis with data samples obtained from 

HAZUS®-MH2.2 analysis and ATC-13 report 

(Applied Technology Council, 1985; MRI, 2011; 

He & Cha, 2018a). The recovery times of links 

with different damage levels were determined 

using empirical data from ATC-13 and linear 

interpolation. The threshold inoperability level of 

0.3 was used to determine the nonfunctioning 

network nodes and links, since an inoperability 

above 0.3 is regarded as extensive damage 

requiring major repairs according to ATC-13 

(Applied Technology Council, 1985). The 

network efficiency, E, was used to measure the 

operability of each infrastructure system and the 

integrated network over time, which is defined as 

the average of the reciprocals of the shortest path 

lengths between every two vertices in a graph 

(Dueñas-Osorio et al., 2007). The recovery curves 

for each system and the integrated network 

measured by E is shown in Figure 4.  

 
Figure 4: The recovery curves for each system and 

the integrated network measured by efficiency. 

It can be learned from Figure 4 that the 

vulnerability, recovery time and resilience vary by 

system. The cellular system has the highest 

resilience among all three systems since only 4 out 

of 15 cellular nodes are damaged and could be 

fully recovered after 39 days. Water system has 

the highest vulnerability and lowest resilience 

with 10 out of 18 water system nodes and 51 out 

of 59 water system links damaged. The full 

recovery time for the water system is 57 days. 

Although the vulnerability of the power system is 

not as high as the water system (2 out of 28 power 

nodes and 16 out of 60 power links are damaged), 

the recovery time (67 days) is the longest, which 

drags down the recovery of the integrated 

network. The simulation results can be used to 

support disaster risk management decision 

making. For example, if this community wants to 

achieve faster recovery, more repair crews and 

resources should be allocated to enhance the 

performance of the water and/or power system. 

3.2. Model Comparison 

To highlight the importance of incorporating 

facility-level dependencies in the recovery 

modeling, the recovery estimation from the DIN 

model was compared with that using two other 

types of conventional models, one without 

considering dependencies between different 

systems, and another considering only the system-

to-system level interdependencies. All the 

parameters and assumptions used in section 3.1 

still apply to the analyses in this section. 

For the case where no dependencies between 

systems are considered, a counterpart 

infrastructure network was developed by 

eliminating the inter-system links in Figure 3, as 

is shown in Figure 5. The recovery curves of the 

network with and without considering 

interdependencies between systems measured by 

E are shown in Figure 6. The result shows that the 

recovery time would be underestimated (23 days 

shorter) and the resilience would be overestimated 

if interdependencies between different systems 

are not considered. This trend seems to be 

reasonable since without considering the inter-

system interdependencies, a damaged node is 

assumed to be able to get everything it needs from 

other systems for its operation during the recovery 

process. If the interdependency between the 

systems is taken into account, however, 

insufficient supply of necessary PISs from other 
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systems could slow down the recovery process of 

a damaged node. The underestimation of the 

recovery time and overestimation of the resilience 

may lead to an underestimation of potential losses 

and risks, which will result in poorly-informed 

recovery planning decisions. 

 
Figure 5: The counterpart infrastructure network 

without considering inter-system interdependencies. 

 
Figure 6: The recovery curves of the integrated 

network with and without considering 

interdependencies between systems measured by E. 

In the second case, only the system-to-system 

level interdependencies are considered, just like 

the case in some existing studies (Haimes & Jiang, 

2001; Reed et al., 2009). Figure 7 shows the 

hypothetical infrastructure network modified 

from Figure 3 by combining all the facilities in 

one system as one node. The initial inoperability 

of a system node in Figure 7 was assumed to be 

the maximum initial inoperability of all the nodes 

in the original system. The recovery assessment 

result in Figure 8 indicates that the recovery time 

of the integrated network would be overestimated 

and resilience would be underestimated if only 

system-level interdependencies are considered. 

Besides, the recovery of the network is described 

in a more refined way when the facility-level 

dependency is considered. These trends are 

reasonable since by considering the dependencies 

in facility-level, each system can be partially 

damaged, the nodes in each system can recover at 

different time. However, if we view each system 

as one node, each system at a given time can only 

have the states of damaged or not damaged, which 

simplifies the modeling of the whole recovery 

process and overestimates the overall damage 

severity of each system. This overestimation may 

cause the waste of resources due to the over-

preparation of the recovery tools and materials, 

unnecessary social disruptions due to the expected 

longer recovery time and poorly-informed 

decisions for disaster risk management. 

 
Figure 7: The counterpart infrastructure network 

with considering only system-level interdependencies. 

 
Figure 8: The recovery curves of the integrated 

network with considering system-level or facility-

level dependencies measured by E. 

4. MODEL VALIDATION 

To validate the model with physical reality, the 

DIN model was applied to simulate the recovery 

of interdependent power, water and cellular 

systems in Galveston City, TX after Hurricane Ike 

(2008). In total, there are 353 nodes and 578 links 

in the network, as is shown in Figure 9. Hurricane 

Ike wind speed in different locations of Galveston 

range between 120.84 m/s and 174.60 m/s. The 

range of the flood depth caused by heavy rainfall 

is between 0.14 m to 4.71 m (He & Cha, 2019). 
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In this analysis, two types of system-to-

facility level dependencies were incorporated. 

First, the recovery rates of the damaged facilities 

in power, water and cellular systems were reduced 

because of the transportation system damage. 

Second, it was assumed that the post-disaster 

demand of the facilities reduced to 74.14% of 

their pre-disaster demand, which is proportional 

to the post-Ike population drop of Galveston City. 

 
Figure 9: Critical facilities in power, water and 

cellular systems and road network in Galveston City. 

The uncertainties in some of the modeling 

variables were considered, such as the initial 

damage level and recovery coefficients of 

network nodes, the recovery time of the damaged 

network links and so on. The probabilistic models 

of the random variables considered in this study 

can be found in He & Cha (2019). The Monte 

Carlo Simulation with Latin Hypercube sampling 

was run for 1,000 times until the mean and 

standard deviation of the network recovery time 

converge. The variations of the recovery curve for 

the power system measured by E is shown in 

Figure 10. The information on the variations 

provides whole picture of risk, which could better 

guide the risk-informed community resilience 

decision-making.  

The simulated power system recovery time 

was then compared with the actual time for 

validation purpose. The actual power system 

recovery time for Galveston City after Hurricane 

Ike was 23.17 days (Department of Energy, 

2008), which is within the mean (29.94 days) 

minus/plus one standard deviation (7.76 days) of 

the simulated time. It shows that the proposed 

DIN model can produce comparable result with 

the physical reality. 

 
Figure 10: The variations of the recovery curve for 

the integrated network measured by E. 

5. CONCLUSION 

This paper presents the methodology and 

application of the DIN model in simulating the 

post-disaster damage and recovery of the 

interdependent infrastructure systems. The 

following three features of the DIN model make it 

a superior tool to guide the community resilience 

planning. Firstly, different levels of dependency 

relationships between infrastructure systems 

and/or facilities are incorporated, which makes 

the DIN applicable to model the recovery of 

infrastructure systems with various natures. 

Secondly, uncertainties in the infrastructure 

recovery process are considered probabilistically 

to better support the risk-informed decision 

making. Thirdly, the DIN model could produce 

the recovery estimation for individual facilities, 

systems or the integrated network to support the 

infrastructure resilience planning work at 

different resolutions. The results of the DIN 

model is useful in guiding the strategic 

community resilience planning, such as 

determining the risk mitigation investment 

priorities in the pre-disaster phase, or optimizing 

the recovery scheduling in the post-disaster phase. 

The DIN model is applicable to any infrastructure 

systems under any hazard types. The modeling 

results could be more accurate if more data on the 

infrastructure performance under disasters are 

available in the future. 
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