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ABSTRACT: Optimizing the post-disaster recovery of damaged infrastructure systems is essential to 

alleviate the adverse impacts of natural disasters to community and enhance their disaster resilience. 

Post-disaster infrastructure recovery planning aims at achieving efficient and effective recovery of the 

already damaged infrastructure systems. As a result of infrastructure interdependencies, the complete 

functional restoration of a facility in one infrastructure system relies on not only the physical recovery 

of itself, but also the recovery of the facilities in other systems that it depends on. This study introduces 

the Interdependent Infrastructure Recovery Planning (IIRP) problem, which aims at optimizing the 

assignment and scheduling of the repair teams for an infrastructure system with considering the repair 

plan of the other infrastructure systems during the post-disaster recovery phase. Key characteristics of 

the IIRP problem are identified and a game theory-based IIRP decision framework is presented. Two 

recovery time-based performance metrics, the total facility recovery waiting time and total service 

restoration waiting time are introduced and applied to evaluate the efficiency and effectiveness of the 

post-disaster recovery plan. The IIRP decision framework is illustrated using the interdependent power 

and water systems of the Centerville virtual community subjected to seismic hazard. 

KEYWORDS: decision-making; Dynamic Integrated Network model; game theory; infrastructure 

recovery optimization; interdependency. 

 

1. INTRODUCTION 

Proper functioning of the infrastructure systems in 

a community is essential for the social stability 

and economic prosperity. Natural and manmade 

disasters in recent decade witnessed severe 

damages of the civil infrastructure systems, which 

led to widespread service disruptions to the 

communities during the recovery phase. Due to 

the interdependencies among infrastructure 

systems, the complete recovery of a facility in one 

system depends not only on the physical recovery 

of itself, but also on the recovery of the facilities 

in other systems that it depends on. Therefore, 

considering infrastructure interdependencies in 

post-disaster recovery planning is important to 

achieve a more efficient and effective recovery. 

Numerous studies and projects have been 

performed on developing methodologies to model 

the performance of interdependent infrastructure 

systems after disruptive events. The 

methodologies are generally grouped into five 

types: agent-based method, system dynamics-

based method, network-based method, economic 

theory-based and others (Pederson et al., 2006; 

Ouyang, 2014). Most of the existing 

methodologies are capable of considering the 

physical, and sometimes, cyber interdependencies 

between different infrastructure systems (Rinaldi 

et al., 2001; He & Cha, 2019a). These methods 

have been widely applied to simulate the post-

disaster recovery of various interdependent 

infrastructure systems, including power, water, 

transportation, telecommunication systems, etc. 
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However, unlike these extensive literatures 

on modeling the infrastructure performance after 

disruptive events, only limited studies exist on 

post-disaster recovery optimization decision 

making. Miller-Hooks et al. (2012) developed a 

stochastic model to maximize the transportation 

system resilience by optimizing the post-disaster 

recovery scheduling. Zhang et al. (2017) proposed 

a resilience-based framework to solve the post-

disaster recovery scheduling problem for road-

bridge transportation network. These few existing 

decision frameworks on infrastructure recovery 

schedule optimization tend to only focus on the 

transportation system, while neglecting the 

interdependencies among different infrastructure 

systems during the post-disaster recovery phase. 

Furthermore, performance metric of the 

whole interdependent infrastructure systems that 

can be utilized for supporting the infrastructure 

recovery planning decision making has not been 

established well yet. The existing post-disaster 

infrastructure performance metrics can be 

classified into three categories. Metrics in the first 

category focus on assessing the performance of 

infrastructure systems only at the time when 

hazard occurs, such as reliability, vulnerability, 

robustness, flexibility, survivability, etc. 

(Grubesic & Murray, 2006; Chen et al., 2013; 

Faturechi & Miller-Hooks, 2014). The second 

type measures the infrastructure performance over 

time following a disruptive event and example 

metrics include connectivity, accessibility, flow 

capacity, travel time/distance, water pressure, etc. 

(Guidotti et al., 2016; Zhang et al., 2017; He & 

Cha, 2018a). The third type of the metrics focuses 

on the entire recovery curve and evaluates the 

efficiency (e.g.: recovery time, rapidity) or 

effectiveness (e.g.: resilience, skewness) of the 

overall recovery process (Sharma et al., 2018). 

Even though these existing infrastructure 

performance metrics all have their own merits in 

evaluating the infrastructure system performance 

under disruptive events, most of them emphasize 

on the functionality of the infrastructure systems, 

but fail to consider the service disruptions to the 

community. Besides, some metrics are designed 

to evaluate the functionality of one specific type 

of infrastructure system, which makes them hard 

to be extended to measure the performance of the 

integrated infrastructure network where several 

interdependent infrastructure systems are 

modeled together. 

This paper first introduces the Interdependent 

Infrastructure Recovery Planning (IIRP) problem 

and a game theory-based decision support 

framework which could support strategic post-

disaster recovery planning with considering 

infrastructure interdependencies. Then, two 

recovery time-based performance metrics are 

introduced to evaluate the efficiency and 

effectiveness of the post-disaster recovery plan. 

Finally, the presented IIRP decision framework 

and the performance metrics are illustrated using 

a case study on Centerville virtual community. 

2. INTERDEPENDENT INFRASTRUCTURE 

RECOVERY PLANNING  

2.1. Introduction of the IIRP Problem 

In the post-disaster recovery phase, the main 

objective of the infrastructure owners is to repair 

the damaged infrastructure facilities and restore 

the service to the customers in a timely manner. 

The decisions of the infrastructure owners 

oftentimes can be summarized as determining 

how many repair teams need to be sent to the 

affected region, and which team should repair 

which facility at what time. The IIRP problem is 

introduced to guide infrastructure owners 

determining the optimal assignment and 

scheduling of their repair teams during the post-

disaster recovery phase with considering the 

recovery of its interdependent infrastructure 

systems. Some key characteristics of the IIRP 

problem are defined and summarized in Table 1. 

The proposed IIRP problem is comparable to 

game theory. Game theory deals with the problem 

where multiple decision makers decide 

independently, but contingent upon the actions 

taken by the other decision makers (Myerson, 

2013; Herrmann, 2015). The IIRP problem also 

focuses on multiple decision makers from several 

interdependent infrastructure systems, one 
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infrastructure owner’s decision about the recovery 

strategy would be influenced by the strategies 

implemented on the other systems that his/her 

system depends on. The IIRP decision-making 

process using a game theory-based approach is 

discussed next. 

 
Table 1: Key characteristics of the IIRP problem. 

Decision 

objective 

Repair the damaged infrastructure network 

and restore the service to the end-users as 

efficiently and effectively as possible. 

Decision 

makers 

Infrastructure owners, such as utility 

companies, railroad companies, local 

Department of Transportation, etc. 

Decision 

phase 
Post-disaster recovery phase 

Decision 

constrains 

Limited number of repair crews, available 

resources, policy requirements for system 

performance, etc. 

Decision 

criteria 

Recovery time, service restoration time, 

resilience, skewness, cost, total facility 

recover waiting time, total service 

restoration waiting time, etc. 

2.2. Decision Framework for the IIRP Problem 

A game theory-based decision framework to solve 

the IIRP problem with two decision makers from 

two interdependent infrastructure systems is 

shown in Figure 1. The framework could be easily 

expanded if more infrastructure systems are taken 

into consideration. The decision process for each 

infrastructure system begins by estimating an 

initial number of repair teams assigned. The 

optimal repair sequence to repair all damaged 

facilities in this system given the initial number of 

repair teams (step (1) in Figure 1) is obtained by 

using some optimization techniques, such as 

enumeration, genetic algorithms, linear 

programming and so on. Then, this optimal repair 

sequence is examined with the recovery of its 

interdependent infrastructure systems to 

determine whether its recovery could be further 

improved. If the recovery of this system can be 

further improved, and its current recovery 

performance does not meet the acceptable 

performance level, and there are more repair 

teams available, then another team is added. This 

recovery optimization process for each 

infrastructure system terminates when its 

recovery could not be further improved, or when 

the recovery performance has met the acceptable 

level, or when no more repair teams are available. 

The resulted number of repair teams and the 

corresponding optimal repair sequence form the 

optimal post-disaster recovery strategy for this 

system. This decision framework is especially 

useful for the decision makers from one 

infrastructure system when the recovery plans of 

its interdependent systems are available.  

 
Figure 1: A game theory-based decision framework 

for IIRP problem with two decision-makers. 

3. RECOVERY TIME-BASED 

PERFORMANCE METRICS 

Two recovery time-based performance metrics 

are introduced in this study to evaluate the 

efficiency and effectiveness of the post-disaster 

recovery plans. The total facility recovery waiting 

time (TFRWT) is defined as the total recovery 

time of all the damaged infrastructure facilities in 

a network, which represents the efficiency of the 

recovery work. The total service restoration 

waiting time (TSRWT) is defined as the total 

waiting time for all the end-users getting the 

infrastructure service back, and represents the 

effectiveness of the recovery plan. These two 

metrics deviate from the existing infrastructure 

performance metrics in the following aspects: (1) 

they measure the overall performance of the entire 

infrastructure network over the whole post-

disaster recovery phase, which makes them 

suitable for comparing different recovery plans. (2) 

They are not specific to one infrastructure system 
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and are applicable to measure the performance of 

any infrastructures, either separately or as an 

integrated network. (3) TFRWT still focuses on 

the infrastructure systems while TSRWT takes the 

service disruptions to the end-users into 

consideration. (4) They are straightforward and 

easy to be computed. (5) They can be converted 

into other existing infrastructure performance 

metrics, such as resilience (He & Cha, 2019b). 

4. CASE STUDY: CENTERVILLE 

INFRASTRUCTURE RECOVERY 

PLANNING 

The IIRP problem is illustrated with a case study 

on post-disaster recovery planning of the 

interdependent power and water systems in 

Centerville subjected to seismic hazard. The 

proposed decision framework in Figure 1 and 

performance metric TSRWT are used to solve this 

example IIRP problem. 

4.1. Centerville IIRP Problem Definition 

Centerville is a virtual community developed by 

the NIST-Funded Center for Risk-based 

Community Resilience Planning as a testbed 

(Ellingwood et al., 2016). Centerville is located in 

a Midwestern State in the US with size of 

approximately 8 km by 13 km and population of 

about 50,000. A schematic of Centerville’s 

building zones, electric power and potable water 

systems is shown in Figure 2. The 17 end-user 

facilities serve as the demand nodes of power and 

water systems. Some critical facilities in the water 

system also depend on the functioning of power 

system for proper operation. 

 
Figure 2: Critical infrastructure and end-user 

facilities in Centerville. 

Centerville suffers from an earthquake with 

magnitude of 6.5 and epicenter at about 25 km 

southwest of the city. The PGA, PGV and PGD at 

different locations in Centerville were obtained 

from the ground motion prediction equations by 

Fernandez and Rix (2006). The mean PGA, PGV 

and PGD at different locations in Centerville are 

0.2742g, 17.0057 cm/s and 4.3116 cm, 

respectively, with standard deviation of 0.0149g, 

1.5033 cm/s and 0.4261, respectively.  

The expected damage level of the 

infrastructure facilities under scenario seismic 

hazard was calculated from the probability of 

damage state curves in HAZUS-MH and the 

damage level definitions for different damage 

states in ATC-13 (Applied Technology Council, 

1985; FEMA, 2003). According to ATC-13, a 

damage level greater than 0.1 indicates that the 

corresponding facility suffers from significant 

damage that warranting repair. As a result, 8 out 

of 32 power facilities and 5 out of 9 water 

facilities in Centerville suffer different levels of 

damage and require repair after the disaster. 

The Centerville Department of Public Works 

(CDPW) is in charge of the post-disaster recovery 

works of the damaged power and water systems 

in Centerville (Ellingwood et al., 2016). CDPW’s 

overall objective is to repair the damaged facilities 

and restore the utility service to all the end-users 

as fast as possible. It is assumed that 2 power 

repair teams and 1 water repair team in Centerville 

are readily available. Besides, 2 more repair teams 

for each system are located in a city adjacent to 

Centerville and could reach the damaged facility 

sites in Centerville to support the repair work a 

day after, if needed. Asking the outside repair 

teams to aid the recovery for Centerville 

infrastructure systems requires extra cost and 

coordination of CDPW. However, CDPW has the 

policy of restoring the utility service within 2 

weeks (14 days) after a disruption event. Thus, the 

head of the power or water sector in CDPW each 

decides a recovery plan, which could minimize 

the service disruption time while using as less 

outside repair teams as possible but meet the 

policy requirement. As both power and water 
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sectors are within the CDPW, the repair plan of 

one system could be shared with the other sector. 

A summary of this example IIRP problem for 

Centerville is shown in Table 2. 

 
Table 2: Summary of the IIRP problem for 

Centerville case study. 

Decision 

makers 

(i) Power sector head for the power 

system and (ii) water sector head for the 

water system, both within the CDPW. 

Objective 

for each 

decision 

maker 

Repair the damaged infrastructure 

facilities and restore the utility service to 

all the end-users as fast as possible. 

Tasks for 

each 

decision 

maker 

(i) Determine the number of repair teams 

used; 

(ii) Determine the assignment and 

scheduling of the repair teams to repair 

all the damaged infrastructure facilities. 

Constraints 

for each 

decision 

maker 

(i) Limited number of repair teams: 2 

local + 2 outside power repair teams, and 

1 local + 2 outside water repair teams. 

(ii) Service restoration time for all the 

end-users should be within 14 days. 

Decision 

criterion 
TSRWT 

 

The case study IIRP problem defined in 

Table 2 is solved using the proposed game 

theoretic approach shown in Figure 1. The 

optimal repair sequence under a certain number of 

repair teams (step (1) in Figure 1) is determined 

by first enumerating all possible repair sequences, 

then evaluating the recovery performance under 

each repair sequence using the Dynamic 

Integrated Network (DIN) model (He & Cha, 

2018a, b & 2019a). The DIN model is briefly 

introduced in the next section before presenting 

the post-disaster recovery planning results. 

4.2. Centerville Infrastructure Recovery 

Modeling Using Dynamic Integrated 

Network Model 

A desired model to accomplish the recovery 

modeling task to solve the IIRP problem is one 

that could simulate the recovery of the 

infrastructure network at both the facility and 

system levels, and considers the dependency 

relationships between the facilities within and 

across infrastructure systems. The DIN model 

proposed by He and Cha (2018a, b & 2019a) has 

the above mentioned properties and is adopted to 

model the post-disaster recovery of the damaged 

Centerville facilities in this study. The general 

framework of the DIN model with input and 

example output information are shown in Figure 

3. The DIN models the recovery of different 

power, water and end-user facilities in Centerville 

using a mathematical formula that considers 

different recovery rates of different facilities and 

the dependency relationships between them. In 

this study, it is assumed that the recovery of a 

damaged facility would not start until a repair 

team is available at that site, and the repair team 

cannot move to another damaged facility site until 

the current work is completed. One example 

output of DIN is the recovery schedule of 

damaged facilities over time (output ② in Figure 

3). It shows which facilities are in repair at each 

time step. This output recovery schedule is useful 

to measure the efficiency and effectiveness of the 

post-disaster recovery work. 

 
Figure 3: General framework of the DIN model. 

4.3. Centerville Infrastructure Recovery 

Planning Results 

In the initial step, 2 local power system repair 

teams and 1 local water system repair team are 

considered to repair 8 damaged power facilities 

and 5 damaged water facilities in Centerville. All 

possible repair sequences to repair the damaged 

facilities in each system are enumerated using 

permutation, then the optimal repair sequence for 

each system is determined based on TSRWT. If 

the recovery of an infrastructure system does not 

meet the acceptable performance level (<14 days), 
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one more outside repair team would be assigned 

to assist the recovery. The process would end if 

the acceptable performance level is met, or no 

more repair teams are available. The intermediate 

optimal repair sequences obtained with varying 

number of repair teams used through the 

optimization process are shown in Figure 4.  

It can be learned from Figure 4 that when 

only the local repair teams are used (iteration 1), 

the service restoration time of all end-users is 25 

days, with TSRWT of 395 days for all 17 end-

users under the optimal repair sequence. Since the 

service restoration time of 25 days exceeds the 

acceptable performance level (<14 days), and it is 

the recovery of damaged power facilities that 

drags the recovery process down, one more power 

repair team is added to accelerate the post-disaster 

recovery.  In this scenario (iteration 2), the service 

restoration time reduced to 22 days, with TSRWT 

of 365 days under the optimal repair sequence. 

This time, the water system recovery drags the 

utility service restoration time down, so one more 

water repair team is added (iteration 3). It reduces 

the utility service restoration time for all end-users 

to 17 days with 96 days of decrease in TSRWT, 

which is a significant improvement. However, the 

utility service restoration time still have not met 

the policy requirement of less than 14 days, and 

it’s attributed to the slow recovery of the power 

system, thus one more outside power repair team 

is assigned (iteration 4). In this case, the service 

restoration time finally drops to 13 days with 

TSRWT reduced to 205 days, which meet the 

policy requirement. 

It’s noted here that the optimal water system 

repair sequence using 2 repair teams (iteration 3 

and 4) is indeed the “global optimal” solution for 

the water system in this case study IIRP problem, 

since the water service restoration time could not 

be further reduced. The only power transmission 

substation (PS1) directly connected to the only 

power plant (PP1) in Centerville suffers most 

severe damage and takes the longest time to 

recover (12 days). Although the other damaged 

power or water facilities could be physically 

repaired within the 12th day, they have to wait  

 
Figure 4: The intermediate optimal repair sequences 

obtained through the optimization process. 

 

until the recovery of PS1 to restore their services. 

This unique situation highlights the importance of 

considering interdependencies between different 

infrastructure systems when planning the post-

disaster recovery for individual systems. If the 

decision maker from the water system is not 
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informed of the recovery plan of the power system 

on which it depends, he/she would likely add 

another water repair team available to further 

reduce the water system recovery time from 12 

days to 10 days. However, if the decision maker 

from the water system is aware of the fact that the 

power service could not be restored until the 12th 

day, this extra water repair team would not be 

needed since no improvement of the water service 

restoration time (i.e. benefits) could be achieved 

by hiring another repair team (i.e. costs). 

Another insight reveals from this case study 

is that different optimal repair sequences would be 

obtained if different decision criteria are used. 

Figure 5 shows two global optimal repair 

sequences for Centerville power and water 

systems under the repair team constraints in Table 

2 determined by two different decision criteria: 

TSRWT or TFRWT. If the service restoration 

time for the end-users is the primary concern of 

the decision makers, the TSRWT or service 

restoration time for all end-users would be used as 

the decision criterion. The optimal repair 

sequence determined based on lowest TSRWT or 

minimum service restoration time for all end-

users is shown on the left side of Figure 5. Using 

this criterion, the facilities that serve larger 

percentage of the end-users would be repaired 

first, such as PP1, PS1, PS2, WR1 and WR2 in 

this study, even though some of these facilities 

take a much longer time to be repaired (i.e. PS1, 

PS2). On the other hand, if the number of 

damaged facilities been repaired within a certain 

time period is in primary consideration, then 

TFRWT becomes a more suitable decision 

criterion to evaluate the efficiency of the repair 

work. The optimal repair sequence which yields 

the minimum TFRWT under the same constraints 

is shown on the right hand side of Figure 6. In this 

scenario, the facilities that take the shortest time 

to recover would be repaired first, such as PS4, 

PS6, PS7, WP1, WP2 and WP3 in this study. 

Under this scenario, the TFRWT could be reduced 

from 132 days to 91 days, but the TSRWT and 

service restoration time for all end-users both 

increases significantly (i.e. 101 days longer for 

TSRWT and 5 days longer for service restoration 

time of all end-users). This comparison shows that 

different decision criteria would yield different 

optimal post-disaster recovery plans, thus 

highlights the importance of using proper decision 

criterion before planning the post-disaster 

recovery of damaged infrastructure systems. 

 

 
Figure 5: Optimal repair sequences of Centerville 

utility systems determined by TSRWT or TFRWT. 

5. CONCLUSIONS 

A game theory-based IIRP decision framework is 

introduced in this paper, which can support the 

risk-informed decision-making for post-disaster 

recovery planning of interdependent 

infrastructure systems. Solving the IIRP problem 

can assist the decision makers from infrastructure 

systems determining the optimal assignment and 

scheduling of their repair teams during the post-

disaster recovery phase with considering the 

recovery plan of its interdependent infrastructure 

systems. The decision framework is applicable to 

any infrastructure systems under any disruptive 

events. Two recovery time-based infrastructure 

performance metrics are introduced to facilitate 

the comparison of the efficiency and effectiveness 

of different post-disaster recovery plans. The 

proposed decision framework and the recovery 

time-based performance metrics are illustrated by 

optimizing the post-earthquake recovery of power 

and water systems in Centerville. The analysis 

results highlight the importance of considering 

interdependencies between infrastructure systems, 

and using proper decision criteria when planning 

the recovery of individual systems. 

One limitation of the IIRP problem is that the 

size of the problem could become extremely huge 

when many damaged facilities and/or repair teams 
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are considered. Hence, it’s necessary to develop 

more efficient algorithms or use heuristic 

approaches to solve the IIRP problem with good 

enough (approximate) solutions under reasonable 

amount of time. 
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