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ABSTRACT:

A determining factor to the utility of optimization algorithms is their cost. A strategy to contain this cost is
to reduce the dimension of the search space by detecting the most important variables and optimizing over
them only. Recently, sensitivity measures that rely on the Hilbert Schmidt Independence criterion (HSIC)
adapted to optimization variables have been proposed. In this work, the HSIC sensitivities are used within
a new Bayesian global optimization algorithm in order to reduce the dimension of the problem. At each
iteration, the activation of optimization variables is challenged in a deterministic or probabilistic manner.
Several strategies for filling in the variables that are dropped out are proposed. Numerical tests are
carried out at low number of function evaluations that confirm the computational gains brought by the
HSIC variable selection and point to the complementarity of the variable selection and fill-in strategies.

1. INTRODUCTION
We are concerned with the global optimization of a
function f : X → R on X ⊂ RD, where we try to
solve

x∗ = arg min
x∈X

f (x) . (1)

f may be a costly black-box function which neither
has a known closed-form expression, nor accessible
derivatives, and which involves intensive computa-
tions.

We rely on Bayesian Optimization (BO) as a
state-of-the-art approach for expensive problems
Moćkus et al. (1978); Jones et al. (1998); Srinivas
et al. (2009). How the efficiency of BO scales with
dimension is an ongoing research issue, as the num-
ber of points required to achieve a sufficient qual-

ity in surrogate model grows with input dimensions
and global optimization in high-dimensional spaces
is difficult. Different solutions were proposed in the
literature to reduce dimension during optimization
steps. The idea of decomposing an optimization
problem into subproblems of lower dimension is as
old as numerical optimization and can be related,
in convex optimization, to conjugate directions or
block coordinate descent Auslender (1976). Shan
and Wang (2010) propose to reduce the dimension
of the problem at the start of the optimization us-
ing Sobol sensitivity indices, at the risk of miss-
ing important sub-spaces or even the global optima.
In Wang et al. (2013), the Random EMbedding
Bayesian Optimization (REMBO) method projects
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the high dimensional variables onto a low dimen-
sional space by random linear combinations of the
variables. Yet, the effective dimension de must be
specified and this method may not work when de is
underestimated. Li et al. (2018) takes up a popular
idea from the machine learning community called
the Dropout, where the optimization is carried out,
at each iteration, on a randomly selected subset of
the variables. Salem et al. (2018) proposes a dimen-
sion reduction algorithm called “Split and Doubt”
that performs at each iteration a selection of the op-
timized variables based on their correlation length
and sets the other variables to improve the surrogate
model. However the criterion to select the variables
is global and potentially not adapted to optimiza-
tion.

In this paper, we select the significant variables
using sensitivity indices specifically designed for
optimization. They gauge which inputs matter to
reach low objective function values with a kernel-
based dependency measure Spagnol et al. (2018).
We introduce and compare new strategies for drop-
ping out and filling in optimization variables. All
of them are iterative, some are deterministic, others
probabilistic.

2. BAYESIAN OPTIMIZATION

Bayesion optimization is based on a prior distribu-
tion on f which reflects our belief about the be-
haviour of the function, completed by a posterior
distribution on f that accounts for the function ob-
servations. BO uses this posterior to choose where
to sample the following points through the maxi-
mization of an acquisition function. Maximizing
the acquisition function has a low cost in the sense
that it does not involve new calls to f . Classically,
we adopt a Gaussian Process distribution prior Ras-
mussen and Williams (2006) over the function f .
We denote the observations by X =

(
x1, . . . ,xN) ∈

X ⊂ RD and the corresponding evaluation values
by y = (y1, . . . ,yN), with yi = f

(
xi) for 1 ≤ i ≤ N.

The GP is assumed to be centered and we have

Y∼N (0,K)

where K = k(xi,x′j), for 1 ≤ i, j ≤ N, is the covari-
ance matrix that relates one observation to another.

As for the kernel k, popular choices are the squared
exponential kernel and the Matèrn kernel, depend-
ing on our belief of how smooth the objective func-
tion might be.

Using the Gaussian prior, each new value can be
predicted at any x and the resulting posterior dis-
tribution is also Gaussian Rasmussen and Williams
(2006)

y(x)|y∼N (µ(x|y),σ2(x|y))

where µ(·) and σ(·) are the predictive mean and
variance given by

µ(x) = k(x,X)T K−1y
σ

2(x) = k(x,x)− k(x,X)T K−1k(x,X)

Here, k(x,X) is the vector
(
k(x,x1), . . . ,k(x,xN)

)
.

At each iteration of BO, the two previous quanti-
ties are computed as one uses it to derive the ac-
quisition function, in order to determine where to
sample next points. In our work, we consider the
Expected Improvement acquisition function, whose
closed-form has been derived Moćkus et al. (1978);
Jones et al. (1998)

aEI(x) = E(max(0,y(x)− f (x+)|y)

with x+ = arg minx∈X f (x), the point correspond-
ing to the best objective value found so far. The
next point to be sampled in the optimization pro-
cess is

xN+1 = arg max
x∈X

aEI(x).

The Expected Improvement aims at a trade-off be-
tween exploitation (areas with low predictive mean)
and exploration (areas with high predictive vari-
ance). Many BO methods exist, differing in the
choice of the prior or the acquisition function. For
example, the Upper Confidence Bound is the acqui-
sition function used in Srinivas et al. (2009) and is
defined as aUCB(x) = µ(x)−

√
βσ(x), where

√
β

is the exploitation-exploration trade-off parameter.
Because it is multimodal, the closed-form acquisi-
tion function is typically optimized using a global
optimizer such as DIRECT Jones et al. (1993) or
CMA-ES Hansen and Ostermeier (2001).
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3. DIMENSION REDUCTION AND THE

DROPOUT TECHNIQUE

Motivated by the Dropout algorithm in neural net-
works Srivastava et al. (2014), Li et al. (2018) cope
with the high dimensionality issue in Bayesian Op-
timization by, at each iteration, randomly choos-
ing d ≤ D optimization variables and fixing the
D− d other variables. Let d be the indices of the
d selected dimensions and D\d the left-out ones.
The corresponding variables are xd and xD\d. A
d-dimensional noisy Gaussian Process is used to
model f ([xd,xD\d]), ∀xD\d where the multiplicity
of values for a given xd due to the freedom in
xD\d is considered as noise. By doing so, a pre-
dictive mean µ(xd) and a variance σ(xd) can be
computed and the authors naturally resort to the
d-dimensional UCB acquisition function. Further-
more, they provide three fill-in strategies for the left
out D−d dimensions:

1. Dropout-Random: randomly draw in the do-
main at each iteration, xD\d ∼U (XD\d).

2. Dropout-Copy: use the observations giv-
ing the best function value so far x+,N =
arg minN′≤N f (xN′), xD\d = (x+,N)D\d.

3. Dropout-Mix: use a mixture of both methods
above. For each component independently,
choose a random value with probability p or
copy a component of the best-so-far solution
with probability 1− p. The authors empiri-
cally tune the value of p and choose p = 0.5.

Intuitively, the Dropout-Random is interesting
when away from the global optimum as we do not
have any information about the location of the min-
imum value, hence random guesses are appropri-
ate. The Dropout-Copy should be preferred to a
random choice if the best-so-far point is close to the
true minimum of the function. In Li et al. (2018),
the Dropout-Mix gives the best results as it allows
to avoid staying in a local optimum for too long.
However, the main drawback of the method is the
fully random aspect of the variable dropout as the
authors noted in their conclusion. As an improve-
ment to this random dropout, we propose to base
the choice of the active variables on a preliminary
step of sensitivity analysis.

4. SENSITIVITY ANALYSIS FOR OPTIMIZATION

4.1. HSIC sensitivities

We begin by introducing the Hilbert Schmidt Inde-
pendence Criterion, as proposed by Gretton et al.
(2005) as it is the basis of our sensitivity index. Let
X be any topological space where a Borel measure
can be defined and H a Hilbert space of R-valued
functions on X . Assume that k : X ×X → R is
the unique positive definite kernel associated with
the Reproducing Kernel Hilbert Space (RKHS) H .
Further theory about RKHS can be found in Aron-
szajn (1950). Note that the kernel used here is not
that of the GP model described in Section 2.

We also define the kernel mean embed-
ding µPX ∈ H of the distribution PX by
µPX := EX [k(X , ·)] =

∫
X k(x, ·)dPX(x), provided

EX [k(X ,X)] < ∞, Smola et al. (2007). Fukumizu
et al. (2007) show that if k is characteristic, i.e. the
mapping from all distributions on X onto their ker-
nel mean embedding is injective, meaning each dis-
tribution has a unique representation in the RKHS,
then all its statistical features are preserved.

Kernel embeddings of probability measures pro-
vide a distance between distributions through the
distance between their embeddings in the Hilbert
space. Such a distance is called the Maximum
Mean Discrepancy (MMD) Gretton et al. (2012),
and its squared form is

γ
2
k (PX ,PY ) = ‖µPX −µPY ‖

2
H

= EXEX ′[k(X ,X ′)]+EYEY ′[k(Y,Y
′)]

−2EXEY [k(X ,Y )]

for X ′ and Y ′ independent copies of X and Y , s.t.
X ,X ′ ∼ PX and Y,Y ′ ∼ PY .

Now, assume a random variable X ∼ PX on X
and a RKHS H : X → R with a kernel k. Sim-
ilarly, let Y ∼ PY be a random variable on Y
and G : Y → R be a RKHS with a kernel l. X
and Y have a joint distribution PXY , whose ker-
nel mean embedding is µPXY = EXY [v((X ,Y ), ·)],
where v is the kernel on the product space X ×Y ,
v((X ,Y ),(X ′,Y ′)) = k(X ,X ′)l(Y,Y ′). The Hilbert-
Schmidt Independence Criterion (HSIC) of X and Y
is the squared MMD γ2

v between PXY and the prod-
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uct of its marginals PXPY

HSIC(X ,Y )H ,G = γ
2
v (PXY ,PXPY )

=‖µPXY −µPXPY ‖
2
H ⊗G

= EX ,YEX ′,Y ′k(X ,X ′)l(Y,Y ′)
+EXEX ′EYEY ′k(X ,X ′)l(Y,Y ′)
−2EX ,YEX ′EY ′k(X ,X ′)l(Y,Y ′)

(2)
The latter is also the squared Hilbert-Schmidt norm
of the cross-covariance operator associated with
PXY between RKHSs Gretton et al. (2005). For
characteristic kernels, HSIC(X ,Y )H ,G is zero if
and only if X and Y are independent.

The HSIC has been applied to the sensitivity
analysis framework several times, see for example
Da Veiga (2015). We use

SHSIC(Xi) = HSIC(Xi,1X∈L ) (3)

with 1X∈L the indicator function and L is defined
as a region of interest, e.g. locations where the ob-
jective function value is below a certain threshold.
Spagnol et al. (2018) shows that this sensitivity in-
dex is proportional to the squared MMD between
the kernel mean embedding of PXi and PXi|X∈L and
it reflects how important a variable is in order to
reach L .

Given (X,Y) = {(x1,y1), . . . ,(xN ,yN)} ∼ PXY ,
an empirical estimator of HSIC can be computed
in O(N2) by replacing the expectation in Eq. (2)
by their corresponding empirical expectations on
(X,Y) Gretton et al. (2005).

4.2. Implementation in an optimization algo-
rithm: metamodels and normalization

The computation of the HSIC sensitivities requires
to define L , which corresponds to the sublevel
of interest, i.e. the level we want to reach. We
set L = {X ∈X , f (X) ≤ qα}, with qα the α%-
quantile. To avoid evaluating f when computing qα

and the HSIC sensitivities, we rely on evaluations
of the predictive mean of surrogate model µ(·) in-
stead of the true function:

ŜHSIC(Xi) = HSIC(Xi,1X∈L̂ ) (4)

with L̂ = {X ∈X ,µ(X)<= q̂α} and q̂α the quan-
tile computed on the predictive mean.

Since the HSIC sensitivities are positive norms,
we apply a simple normalization to the previous in-
dices as

ŜHSIC
n (Xi) = ŜHSIC(Xi)/

D

∑
j=1

ŜHSIC(X j) (5)

This allows us to be able to compare one value of
index with another for varying Xi’s.

5. DROPOUT GUIDED BY HSIC SENSITIVITIES

As an improvement over the random selection of
optimization variables, we guide the selection with
the normalized HSIC sensitivities which are re-
computed at each optimization step. Two strategies
are proposed:
• Probabilistic strategy: d <D inputs are drawn,

each with a probability pi = ŜHSIC
n (Xi). As for

the value of d, we follow the recommendations
of Li et al. (2018) and choose d = 5 as it gives
good results empirically,
• Deterministic strategy: only the variables with

ŜHSIC
n (Xi) ≥ τ are kept, where τ is a thresh-

old of detection. In this paper, τ = 1/D be-
cause it is the normalized sensitivity all vari-
ables would have if they all ranked equal.

Both methods will favor variables with a high sen-
sitivity index, hence those detected as important
to reach locations where the predictive mean of
the Gaussian Process is low, assuming the surro-
gate model is a good representation of the objective
function. The main difference lies in the number
of variables kept as the probabilistic method acti-
vates a constant number of variables, d, whereas
the deterministic approach activates a varying num-
ber of variables. Unlike the deterministic strategy,
the probabilistic method can draw variables with
almost-zero sensitivity indices. Because all groups
of variables have a non-zero probability of becom-
ing active in the long run, the probabilistic strategy,
when coupled with a global optimization algorithm,
is globally convergent. On the contrary, the deter-
ministic approach may fail to accurately converge
to the optimum on functions for which some vari-
ables always have ŜHSIC(Xi) smaller than the selec-
tion threshold τ (e.g., a quadratic function with a
high aspect ratio).
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For the dropped out dimensions, we rely on the
fill-in strategies as introduced in Li et al. (2018)
and recalled in Section 3. We define an additional
method called Dropout-Gauss, which samples val-
ues for the D\d dimensions along a multivariate
normal distribution based on the λ best observation
points, λ = N/2, defined by xD\d ∼ N (µλ ,Cλ ),
where

µλ =
1
λ

λ

∑
i=1

xi:N
D\d ,

Cλ =
1

λ −1

λ

∑
i=1

(xi:N
D\d−µλ )(x

i:N
D\d−µλ )

T .

xi:N
D\d observed points ranked from best to worst. All

the methods are summarized in Algorithm 1.

Algorithm 1 Bayesian optimization with Dropout
guided by HSIC sensitivity indices

Input: {X,y = f (X)}
1: while N < Nmax do
2: Construction of the surrogate model µ(x)

and σ2(x)
3: for i = 1, . . . ,D do
4: Calculate ŜHSIC(Xi) on the predictive

mean µ(x) (Eq. (4))
5: end for
6: dN ← deterministic or probabilistic variable

selection (Sec. 5)
7: xD\dN ← fill-in by Random or Copy or Mix

or Gauss strategies (Sec. 3 and 5)
8: xdN ← arg maxxdN∈X d aEI(xdN |xD\dN )

9: xN+1← xdN ∪ xD\dN

10: yN+1 = f (xN+1)
11: N← N +1
12: end while

6. NUMERICAL TESTS

6.1. Experimental procedure
We test the different versions of our algorithm on a
small benchmark of functions whose main features
are described in Table 1. The function are classical
optimization test cases that we chose for the diverse
difficulties they bring. All the functions are defined

Table 1: Test functions.

Name d D Main features
Branin 2 25 Multiple global minima
Ackley 6 20 Many local minima

Borehole 8 25 Nonlinear, physically based
Rosenbrock 5 20 Unimodal, solution in a curved valley

in Rd and D− d dummy variables are added to in-
crease the dimensionality of the problem to D.

The HSIC indices are computed following
Eq. (4) with α = 10%. Comparisons of the versions
of Algorithm 1 are based on 20 repeated runs for
each function. Each repetition starts with a Latin
Hypercube Sampling optimized with a maximin
criterion. The optimization budget is 50 calls to
the objective function. We compare our algorithms
with the Dropout algorithm of Li et al. (2018) (with
d = 5 like in the probabilistic selection) and an
EGO procedure Jones et al. (1998) where all D vari-
ables are optimized.

In the same spirit as in Hansen et al. (2016), the
performance of the optimizers is measured by the
frequency at which the algorithms are successful at
solving tasks of varying difficulties: we set 3 goals
per function (easy, medium and hard to achieve)
and count the number of successes at each iteration
in the repeated trials of each version of the algo-
rithm. Easy, medium and hard goals are defined as
the 90%, 50% and 10% quantiles of the final results
of all algorithms for each function. An example is
given by the horizontal red lines in Figure 1 for the
Borehole function. For consistency in the compar-
isons, all algorithm versions utilize the same surro-
gate model, created with the package DiceKriging
in R with a Matèrn 5/2 kernel and a CMA-ES opti-
mizer Hansen and Ostermeier (2001).

6.2. Discussion
Before any comparison between algorithms perfor-
mance, we test the variable selection and both de-
terministic and probabilistic selections are able to
efficiently pick out determining variables over the
iterations, as can be seen in Figure 2. The dummy
variables are kept at a significantly, yet non null,
rate, which is mostly due to the approximation er-
rors of the surrogate model (µ(x)).

Plots in Figure 3 show the rate of success of each
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Figure 1: Median results of the different algorithms for
the Borehole function. The red lines correspond to the
easy, medium and hard goals (from top to bottom) for
this test case.

algorithm averaged over all functions and all runs
for the easy (A), medium (B) and hard (C) targets
from left to right, respectively. When comparing
all algorithms with EGO (no variable selection), it
is seen that reducing the dimension allows visible
gain for the medium and hard targets.

The fully random Dropout is consistently outper-
formed by the sensitivity guided versions. It con-
firms that better ways to choose the variables to be
optimized over exist.

On the average, the probabilistic selection be-
comes better than the deterministic selection as the
difficulty of the problems increases. This is espe-
cially visible with the deterministic selection and
the Copy fill-in since it is not global: when the
selected variables remain the same along the iter-
ations and the dropped out variables have an im-
pact on the function, this algorithm converges lo-
cally because it is unable to change the dropped out
variables. In our tests, this is only visible with the
hard targets as the medium and easy targets are at-
tained with possible variable selection errors. Thus,
for the easy and medium targets, coupling a deter-
ministic dropout with a Copy fill-in performs well.
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Figure 2: Average cumulative selection for each vari-
able for the Probabilistic and Deterministic strategy
with a Mix fill-in approach for the Rosenbrock function.
The top 5 curves for each subplot correspond to the
first five variables (the non-dummy ones).

The Gaussian method for setting fixed variables
behaves similarly to the Copy method. Despite its
probabilistic formulation, it contributes to a prema-
ture convergence of the non-optimized variables to-
wards the best observations. Therefore, it is appro-
priate for easy tasks and it is better coupled with the
probabilistic dropout.

Finally, the algorithm composed of the proba-
bilistic selection and the Mix fill-in outperforms all
other algorithms for solving the medium and hard
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problems. It is a good compromise between opti-
mization, randomness and taking advantages of the
best-so-far solutions. This shows that variable se-
lection and fill-in strategies should be complemen-
tary.

7. CONCLUSIONS
This paper has studied improvements to the di-
mension reduction techniques that are adapted to
Bayesian Optimization. At each iteration, HSIC
sensitivity measures determine whether a variable
is fixed or optimized. The overall algorithm com-
bines a method to dropout variables and a method
to fix their values. A new dropout in probability
and a new Gaussian sampling for filling in vari-
ables have been described and compared to other
pre-existing methods. Numerical comparisons av-
eraging 4 functions and 3 levels of accuracy have
shown that a good strategy is made of a probabilis-
tic selection of the variables based on their HSIC
sensitivity, coupled with a mixed random-copy of
the best-so-far for filling in dropped out variables.
Clear progress over random selection and fill-in are
observed.

In this work, inputs were selected depending on
their contribution in reaching a 10% quantile of per-
formance on the surrogate model. A perspective is
to consider other performance levels when select-
ing optimization variables, in particular levels go-
ing beyond already achieved performance.
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