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ABSTRACT: This paper presents field observations on the modal properties of a tall building under 

ambient conditions. Acceleration data was collected by a force-balance triaxial accelerometer at one 

corner of the building. It was divided into non-overlapping time windows to investigate the amplitude 

dependence of natural frequencies and damping ratios. Four modes were identified by Bayesian 

Operational Modal Analysis (BAYOMA) where the first two modes are closely-spaced while the others 

are well-separated. The results show that there is an inverse trend between the natural frequencies and 

modal root-mean-square value (RMS) while the damping ratios show a positive correlation with the 

modal RMS. 

 

1. INTRODUCTION 

The characterisation of dynamic properties of 

structures plays an important role in assessing 

their response subjected to dynamic loads 

possibly due to earthquakes, traffic, human 

activities, strong wind, etc. At the design stage, 

the natural frequencies and mode shapes can be 

assessed based on a finite element model 

incorporating structural information. Damping 

characteristics are usually assumed via classical 

damping ratios since there is no widely accepted 

mechanistic model. The finite element model only 

reflects the structures  under idealised conditions. 

The assumed damping ratios could be far from the 

actual value even if the structure behaves as 

classically damped. On the other hand, modal 

properties can be affected by many factors, such 

as vibration amplitude and temperature (Cross et 

al. 2013; Tamura et al. 1996; Zhang et al. 2016). 

Such effects cannot be captured in the computer 

model. In the above context, in-situ vibration 

testing provides an effective means for accessing 

the actual dynamic properties of a constructed 

structure. 

Operational modal analysis (OMA), also 

known as ambient modal identification, aims at 

identifying the natural frequencies, damping 

ratios and mode shapes of a constructed structure 

using the ambient vibration data (Brincker and 

Ventura 2015; Ewins 2000; Au 2017). It can be 

conducted economically without knowing the 

specific information of loading, which is assumed 

to be statistically random. Bayesian approach 

offers a fundamental means for OMA consistent 

with structural dynamics and probability 

modelling assumptions. In addition to the ‘most 

probable value’ which is akin to the ‘best’ or 

‘optimal’ estimate in non-Bayesian methods, it 

also assesses the identification uncertainty via the 

posterior covariance matrix. Mathematical 

formulation in the frequency domain first 

appeared in Yuen and Katafygiotis (2003). Later 

fast algorithms that allow for practical 

applications were developed in different contexts, 

e.g., well-separated modes (Au 2011), closely-

spaced modes (Au 2012a, 2012b).  These are 

collectively referred as Bayesian Operational 

Modal Analysis (BAYOMA). Recent 

applications can be found in Brownjohn et al. 

(2018), Hu et al. (2018),  Lam et al. (2017), Liu et 

al. (2016), etc. 

This paper presents work on field 

observations on the modal properties of a tall 

building identified using ambient acceleration 
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data with Bayesian OMA. The amplitude 

dependence of the natural frequencies and 

damping ratios are investigated. 

2. FIELD BUILDING  

The structure investigated in this work is a tall 

office building. It has eighteen stories with a total 

height of 65 m. The shape of the plan is 

rectangular spanning over a 20 m × 125 m area. In 

order to monitor the ambient vibration of the 

structure, a force-balance triaxial accelerometer 

paired with a 24bit data logger was deployed at 

the southwest corner on the 12/F. The noise level 

of the accelerometer is around 0.1 μg Hz . 

Long term monitoring data was collected at a 

sampling rate of 50 Hz. The study here considers 

data spanning over eight days in winter. It is 

divided into 15-min non-overlapping time 

windows (total 768 sets). The primary interest is 

to investigate how the modal properties vary with 

the amplitude of the vibration. Figure 1 shows the 

acceleration time history of a typical dataset. 

 
Figure 1 Time history of a typical set of acceleration 

data 

3. BAYESIAN MODAL IDENTIFICATION 

BAYOMA is applied to identify the modal 

properties and quantify the associated  

identification uncertainties. The theory is briefly 

introduced in this section. Let    
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the measured acceleration data at n DOFs 

(degrees of freedom), where N is the number of 

samples per channel. It is modelled as 

 ˆ
j j j x x ε   (1) 

where jx  is the theoretical model acceleration 

that depends on the set of modal parameters θ  ;

jε  is the prediction error accounting for the 

modelling error and instrument noise. The scaled 

one-sided FFT (Fast Fourier Transform) of ˆ
jx at 

frequency /kf k N t   (Hz) is defined as 
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where t  (sec) is the sampling time interval and 
2 1 i ; 1, , qk N  with  int / 2 1qN N   

(int[·] denotes the integer part) being the index 

corresponding to the Nyquist frequency. 

Typically, only the Fk within a selected band 

covering the mode of interest is used for modal 

identification. 

The set of modal parameters to be identified,  

θ , consists of the natural frequencies  
1

m

i i
f


 , 

damping ratios  
1

m

i i



, modal force PSD  (power 

spectral density) matrix
m mR S  , prediction 

error PSD Se and mode shape matrix 

 1 2, , , n m

m R  Φ φ φ φ  , where m is the 

number of modes in the selected band and 

 1, ,i i mφ  is the i-th mode shape confined to 

the measured DOFs. Using Bayes’ theorem, the 

posterior PDF given the measured data is given by 

           
1

k k kp F p F p F p


θ θ θ   (3) 

where   
1

kp F


 is a normalising constant. For 

long data the prior PDF  p θ  is a slowly varying 

function of θ  compared to the likelihood function 

  kp F θ  and thus can be assumed to be a 

uniform distribution. The posterior PDF is then 

proportional to the likelihood function: 

      k kp F p Fθ θ   (4) 

For long data, the FFT vectors  kF follow a 

(circular symmetric) complex Gaussian 
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distribution and are independent at different 

frequencies. Consequently, one has, 

     k k

k

p F p Fθ θ   (5) 

where the product is taken over all the frequencies 

within the selected band; 

   
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and   *

k k kE F F 
 

E θ θ is the theoretical PSD 

matrix for given θ . Suppose that the prediction 

errors at different measured DOFs are i.i.d. 

(independent and identically distributed) with 

PSD Se and that they are also independent of the 

modal force. Then  
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where n

n RI  is the identity matrix; the (i, j)-

entry of  
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and  /ik i kf f  ; fi is the natural frequency of the 

i-th mode; Sij is the cross spectral density between 

the i-th and j-th modal force. 

It is more convenient to work with the 

negative log-likelihood function (NLLF) for 

analysis and computation. Eq. (4) can be rewritten 

as 

        L
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Combining Eq.(5), Eq.(6) and Eq.(9), one can 

obtain 
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where Nf is the number of frequency ordinates 

within the selected band.  

Based on Eq.(10), the most probable value 

(MPV) of the modal parameters can be 

determined by minimising the NLLF function

 L θ . Approximating the NLLF at the MPV by a 

second order Taylor series leads to a Gaussian 

approximation of the posterior PDF. It can be 

shown that the posterior covariance matrix is 

equal to the inverse of the Hessian of the NLLF at 

the MPV. 

In applications, determining the MPV by 

directly minimising the original NLLF function 

Eq.(10) is impractical since  kE θ  is close to 

singular and the computational time increases 

dramatically with the number of measured DOFs. 

Fast algorithms have been developed (Au 2011, 

2012a, 2012b) and they are used in this paper to 

identify the modal parameters.  

4. ANALYSIS RESULTS 

We first present the analysis of a typical time 

window of data (see Figure 1). The same 

procedure is then used for all time windows to 

investigate potential amplitude dependence of the 

modal parameters. Figure 2 shows the root PSD 

of a typical time window of data. The blue, red 

and yellow lines respectively show the measured 

data along the x, y and z direction. Figure 3 shows 

the corresponding singular value spectrum. The 

number of lines significantly above the remaining 

ones indicates the number of modes. Four modes 

are evident in the spectrum below 2.5 Hz. The first 

two modes are closely-spaced while the others are 

well-separated. The prefixes ‘TX’, ‘TY’ and ‘R’ 

in Figure 3 stand for x-, y- and torsional modes of 

the building. The hand-picked initial guesses and 

the frequency bands are respectively shown with 

a circle and the symbol ‘[ - ]’. 

 

 
Figure 2 Root power spectral density, 15-min data 
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Figure 3 Root singular value, 15-min data 

 

Table 1 summarises the identified modal 

properties. The columns under ‘MPV’ show the 

identified most probable value while the columns 

under ‘c.o.v’ show the coefficient of variation (= 

standard deviation/MPV), which reflects the 

identification precision of the subject parameter 

given the information in the data and interpreted 

consistent with modelling assumptions and 

probability theory. The posterior c.o.v. of natural 

frequencies are all less than 1%, which are much 

lower than those of damping ratios. The latter are 

in the order of a few tens of percent. Generally the 

uncertainty of the damping ratio is the highest 

compared to other modal parameters. The c.o.v. 

of the damping ratio in the third mode is higher 

than those in the other modes. This can be 

reasoned from Figure 3 where the signal-to-noise 

ratio (SNR) of the third mode is much lower than 

those of others. The relationship between 

identification uncertainty and SNR can be 

fundamentally explained based on recent 

discovery on ‘uncertainty laws’. Details are 

referred to Au et. al (2018). 

 
Table 1: Summary of identified modal properties. 

Mode f ζ 

MPV 

(Hz) 

c.o.v. 

(%) 

MPV 

(%) 

c.o.v. 

(%) 

1 0.512 0.33 2.48 14.44 

2 0.574 0.59 5.36 12.33 

3 0.791 0.33 1.89 20.45 

4 1.817 0.15 1.53 11.32 

 

We next investigate the relationship between 

the modal properties and vibration amplitude. 

Based on the identified values of the modal 

parameters from different segments, the modal 

acceleration RMS (root-mean-square) is 

calculated by Eq. (11) as a proxy for quantifying 

the vibration amplitude (Au 2012c).  
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where Sii denotes the modal force PSD of the i-th 

mode . 

Figure 4 shows how the natural frequencies 

and damping ratios vary with the vibration 

amplitude, where the result is plotted with a dot at 

the MPV and an error bar indicating ±1 (posterior) 

standard deviation. The modal RMS ranges from 

micro-g to 100 micro-g. The variability of the 

modal parameters is significantly larger than the 

posterior uncertainty, which suggests that the 

trends are statistically significant. 
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Figure 4 Identified natural frequencies and damping 

ratios vs modal RMS (a) Mode 1, (b) Mode 2, (c) 

Mode 3, (d) Mode 4 

The plots on the left columns in Figure 4 

suggest that the natural frequencies show a 

decreasing trend with the modal RMS, regardless 

of mode. They decrease by around 6%, 10%, 9% 

and 5% for Mode 1 to Mode 4, respectively. From 

the figures on the right columns, it seems that the 

damping ratio of the third mode is insensitive to 

the modal RMS. Nevertheless, it is apparent that 

the values of the first mode and the forth mode 

increase with the modal RMS. For high RMS the 

identified damping ratios of the first mode were in 

excess of 5% which is not typical. Efforts have 

been made to investigate if this is merely due to 

analysis or instrumentation flaws, although no 

peculiarity has been found so far. The identified 

damping ratio of the second mode does not show 

a strong amplitude dependence.  

5. CONCLUSIONS 

This work presents the field observations on the 

modal properties of a tall building identified by 

Bayesian Operational Modal Analysis. Viewing 

amplitude dependence via the most probable 

values together with error bars showing 

identification uncertainty helps one delineate 

potential systematic trend from scattering  due to 

lack of information. As remark, similar negative 

correlation of frequency and positive correlation 

of damping ratios with the modal RMS have been 

observed in many previous studies, e.g., Au et al. 

(2012c), Li et al. (2003) and Satake et al. (2003).  
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