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ABSTRACT: Flexibility can be an attractive property to add the infrastructure systems during the design
phase to reduce the impact of uncertainty. The management of this flexibility, however, is a complicated
sequential decision problem that must be solved to extract all the benefits that flexibility may offer. In
this paper, a multistage stochastic model is proposed to simulate the flexibility management process.
The model combines a novel mathematical representation of flexibility with a set of policies and a
scenario-based representation of uncertainty to determine the optimal initial configuration and the
optimal flexibility for the system. The results showed that, under specific conditions, flexibility can be a
desirable property to add to the system. In addition, the model provides valuable insight about the
interaction between system design properties and management policies.

1. INTRODUCTION
Infrastructure systems are susceptible to the effects
of uncertainty due to their long life-cycles, con-
stant exposition to external agents, and fixed na-
ture. When the external conditions change the sys-
tem state may be affected, decreasing the benefits
the system provides. In other cases, the external
changes may offer new opportunities that the sys-
tem is incapable to exploit. To face the negative ef-
fects of uncertainty, designers can add special char-
acteristics to the system such as robustness, redun-
dancy, or flexibility.

Flexibility, understood as the ability of a system
to easily modify some of its operational or design
variables, can be a desirable characteristic to add
during the design phase. According to some au-
thors, flexibility has the potential to decrease the

undesired effects of uncertainty while enabling the
system to benefit from unexpected opportunities
(Ross et al., 2008; Cardin et al., 2015). Other au-
thors suggest that flexibility may enable close to
optimal performance over a range of diverse con-
ditions (Fitzgerald, 2012).

Even though flexibility has been studied ade-
quately to understand the benefits it may offer, the
concept is still far from being completely under-
stood. Specifically, the previously provided def-
inition is not standard, and it was derived from
the works of a segment of researchers. Although
the core elements form the definition seem to be
common in the most recent works, there are still
many interpretations due to the multidisciplinary
nature of the concept (Saleh et al., 2009). In addi-
tion, the lack of consensus in the conceptual def-
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inition has, expectedly, transferred to the mathe-
matical representation. Nearly every author that
has written about the topic has proposed their own
measurement of flexibility, with few similarities be-
tween works. For instance, Swaney and Gross-
mann (1985), and later Pistikopoulos and Mazzuchi
(1990), proposed to measure flexibility in chemical
processes as the maximum fluctuation allowed in
the system’s operational variables that maintain the
operation inside the feasible range. In the context of
transportation, Morlok and Chang (2004) defined
flexibility as the maximum traffic that a network
can mobilize. In a completely different approach,
Olewnik and Lewis (2006) coupled flexibility with
the concept of adaptation effectiveness. The rela-
tionship was established by describing flexibility as
the distance between extreme Pareto points inside
the system’s performance space. These examples
show that even if the word flexibility is ubiquitous,
the interpretation of the concept is far from being
unique.

Despite these limitations, other areas of flexi-
bility research have advanced independently with
promising results. For instance, the problem of
determining the value of adding flexibility has
prompted the development of new methodologies
such as real options analysis (DeNeufville, 2003).
The flexibility valuation problem is closely related
with the flexibility management problem where the
system manager must determine the system’s ele-
ments to change, the timing of the change, and the
magnitude of the change, given a vector of uncer-
tain parameters. This problem is often analyzed as a
sequential decision problem and solved using tech-
niques such as dynamic programming, control the-
ory, and stochastic programming.

Specifically, stochastic programming(SP) is a
modeling framework used to provide an approxi-
mate initial solution to the decision variables. Be-
cause it focuses on finding the initial decision in-
stead of the sequence of future decisions, the SP ap-
proach has been successfully used to determine the
set of policies that control future changes. Cardin
et al. (2017) developed a method to manage flexi-
bility that uses different types of decision rules (lin-
ear, constant, conditional) to help decide the sys-

tem manager when to execute the adaptation op-
tions. The authors proposed a multistage stochas-
tic model to determine the optimal set of decision
rules. Zhao et al. (2018) used a similar approach to
solve a multiple-facility capacity expansion Prob-
lem. Other approaches to determine the optimal
decision rules include the use of techniques such as
Differential evolution (Hu et al., 2018). The previ-
ous approaches are focused on determining the op-
timal set of policies to manage the system; however,
the design flexibility is not considered explicitly.

In this paper, a novel approach that combines
a flexibility index and a multistage stochastic pro-
gram is proposed. By taking into account the flex-
ibility designed into the system, the future deci-
sions will be limited by the initial design character-
istics,i.e., the initial design value and the available
flexibility. Under these conditions, the stochastic
program can determine the optimal initial design
characteristics.

2. MANAGING FLEXIBILITY THROUGH
POLICIES

The value provided by the addition of flexibility
to the design highly depends on how the flexibil-
ity is managed across the system’s life-cycle. If the
available flexibility is executed too early or too late,
the system may not receive all the potential bene-
fits. Similarly, this potential loss may happen if the
magnitude of the changes is higher or lower than
needed. These decisions are affected by the un-
certainty surrounding the system. The addition of
flexibility only provides the potential to adapt; the
decisions are the real value driver behind flexibility.

The decisions in flexibility management depend
on a set of policies that inform the system manager
the subsystems that should be modified and the tim-
ing and magnitude of the modifications. The poli-
cies can take different forms such as exact numer-
ical values, conditional thresholds, qualitative de-
scriptors, and functions. Some of the policies may
be arbitrary values while others may be determined
as optimal solutions of a mathematical program. In
a more strict sense, a policy works as a mapping
between states of the world or the system, and de-
cisions made on the system characteristics at every
time instant.
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Determining the optimal decision path given a
policy set is not a trivial problem. It can be for-
mulated as a sequential decision problem and the
methods to solve it are severely limited by the curse
of dimensionality. A typical example of a solu-
tion method is the dynamic programming (DP) ap-
proach, which rapidly explodes when the number
of variables or the number of analysis periods in-
crease. A different method which relies in approxi-
mations is the multistage stochastic programming
(MSP) approach. In this case, the problem may
also become intractable when the model grows in
complexity, but the real value of the method lies
in the focus of the solution. Compared with the
DP approach, the MSP approach focuses on find-
ing a robust initial decision. Even if a MSP model
is capable of finding a decision at every stage for
every possible outcome of the uncertain parameter,
its real strength lies in being capable of finding op-
timal stage zero decisions (policies, initial design,
flexibility) by taking into account all the possible
decisions that can be made in the future.

In the next section a brief discussion on the
Multistage Stochastic Programming theory is pre-
sented.

3. MULTISTAGE STOCHASTIC PRO-
GRAMMING

Multistage stochastic programming (MSP), specif-
ically linear multistage stochastic programming
with recourse, is a modeling framework used to
solve sequential decision problems. The multistage
approach is a generalization of the two stage prob-
lem where a decision is made at the initial stage
-stage zero- without complete knowledge of an un-
certain parameter. At the second stage, the realiza-
tion of the uncertain parameter becomes known and
the decision maker has the option to make a second
decision -the recourse- to adjust the initial decision.
When the approach is extended to the multistage
case every recourse decision will affect the state of
the system at all the subsequent stages. For this
reason, the stage zero decisions and every recourse
decision up to stage T − 1 are calculated based on
the expected value of the system future state, as a
function of the uncertain parameter at each stage.
Formally, a MS program can be formulated as fol-

lows (Birge and Louveaux, 2011):

min
x

c0x0 +Eξ [minc1x1 + . . .

+Eξ [mincT xT ] . . .]

s.t. W 0x0 = b0,

H0x0 +W 1x1 = b1,

. . .

HT−1xT−1 +W T xT = bT ,

xt ≥ 0 t = 2, . . . ,T

(1)

Where xt are the decision variables, c0 are the
known costs, W 0 and b0 are the known matrix and
vector, respectively; ξ represents the random pa-
rameters in W t , Ht , bt and ct , for t = 2, . . . ,T .
The general formulation is divided in two main el-
ements: the known costs for the stage zero, and the
expected costs for all the future stages. The second
element is usually called the value function.

Before solving the problem described by Eq. 1,
an approximation of the distribution of the uncer-
tain parameters ξ is needed. The approximation is
usually carried out through methods that discretize
the original continuous distribution (e.g. Gauss-
Hermite) (Brandimarte, 2006). The resulting dis-
cretization defines a finite number of future states
at every stage, which can be represented by a sce-
nario tree structure (Figure 1). In this structure ev-
ery node represents a discretization point of the dis-
tribution, while every preceding branch has associ-
ated the probability of that particular value. At the
final stage, there will be as many nodes as scenar-
ios, each one with a specific probability. As ex-
pected, the number of scenario can grow exponen-
tially and the problem may become intractable if
there are many uncertain parameters or if the dis-
cretization is too detailed.

To solve a MS program, different methods can be
used depending on the particular problem structure.
If the multistage program is linear, a deterministic
equivalent linear program can be constructed from
the scenario tree. However, the resulting structure
may be too complex to solve by simply using lin-
ear solvers. In some cases, an approximation to
the value function in the form of outer or inner lin-
earizations may be required. In other cases, con-
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Figure 1: Scenario tree representation for the uncertain
parameter discretization

straint relaxation or solving the dual problem can
increase the efficiency of the solution process. Fi-
nally, Monte-Carlo methods are available to obtain
a representative sample of the uncertain parame-
ter, reducing the problem size (Birge and Louveaux,
2011).

4. MEASURING FLEXIBILITY
The development of a multistage stochastic model
that returns the optimal flexibility that should be
designed into the system requires a numerical rep-
resentation of the attribute. Torres Rincón et al.
(2018) developed a straightforward measure of
flexibility based on four components, as shown in
Eq. 2:

Fi(t) = k
si(t)

ci
(2)

Eq. 2 represents the flexibility of a design or op-
erational variable i that was designed to be able to
change inside the available flexible range si(t). The
unitary cost of executing an adaptation inside the
available flexible range is ci. These two elements
characterize the change process when the system

is designed for flexibility. The parameter k is de-
fined as the ratio cout/xi(0), where the additional
elements cout and xi(0) represent the cost of mod-
ifying the system’s variable Xi outside the design
range si(t), and the initial value of the variable, re-
spectively. The inclusion of these two elements in-
creases or reduces the impact of the flexible prop-
erties si(t) and ci on the overall perception of the
variable flexibility. For instance, a system whose
design variable can be changed 4 units will be con-
sidered more flexible if the initial value of the vari-
able was 10 units, compared with a initial design of
20 units. In the first case, the option to adapt is more
impactful in relation with the initial configuration.

The index presented in this section provides a
straightforward approach to include flexibility into
a multistage stochastic model, which is presented
in the following section.

5. OPTIMAL FLEXIBILITY
The flexibility management problem can be mod-
eled as a sequential decision process under uncer-
tainty, and can be solved using a multistage stochas-
tic program. Because MS programs focus on ob-
taining a robust stage zero solution rather than find-
ing the optimal evolution process, the proposed
model focuses on finding the optimal initial sys-
tem capacity and the optimal flexibility range, by
minimizing the expected costs for all future stages.
The model considers as stage zero costs the cost of
building the initial capacity and the cost of intro-
ducing a certain level of flexibility, which is intro-
duced in the model as the available flexible range.
In addition, the model assigns a decision variable
to the magnitude of the change required for each
stage; this change can happen inside the available
flexible range, or outside if the range is exhausted.
These additional variables are not as important as
the stage zero variables because they are scenario
dependent; i.e., for each possible value of the un-
certain parameter a solution for these variables will
be computed. In contrast, the stage zero variables
solution will be unique for all possible scenarios.

The costs at any future stages will be the cost of
any executed adaptation inside or outside the flexi-
ble range, the costs of operating the current capac-
ity and the revenue captured due to the current de-
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mand. The restrictions of the model establish that
the current capacity must exceed the current de-
mand by a factor determined by the flexibility pol-
icy; additionally, the changes made inside the flexi-
ble range must be equal or lower than the available
flexible range. The last set of restrictions are the
non-anticipativity constraints required in any MS
program. The following equation describes the pro-
posed model:

min
X, f

C0X0 +C f ( f )+Eξ [minγ(ciX1(ξ 1)

coutY 1(ξ 1)+ copW 1−bξ
1)+ . . .

+Eξ [minγ(ciXT (ξ T )+ coutY T (ξ T )

+ copW T −bξ
T )] . . .]

s.t. W t ≥ Rξ
t t = 1, . . . ,T

t

∑
i=1

X i ≤ Si t = 1, . . . ,T

X s
t = X s∗

t , ∀t,s,s∗ ∈ {s}t

(3)

In Eq. 3, C0 represents the unitary cost of building
the initial system configuration, C f represents the
unitary cost of introducing a f amount of flexibility
into the design, γ is the discount factor, ci is the uni-
tary cost of deploying an adaptation at every stage
t, cout is the unitary cost of modifying the existing
design outside the available flexible range, cop is
the unitary cost of operating the current design, and
b represents the unitary revenue. X t ,Y t , W t and Si
are the decision variables that represent the initial
configuration and the adaptations inside the flexi-
ble range, the adaptations outside the flexible range,
the total capacity, and the available flexible range,
respectively. R is an element of the flexibility policy
that represents a safety ratio between the available
capacity and the current demand. The set {s}t is the
set of all the scenarios that are equal to scenario s
up to stage t.

The novelty of the proposed model is the inclu-
sion of an indicator of flexibility as a decision vari-
able. While the flexibility index proposed in the
previous section is not explicitly used, two com-
ponents of the index, the available flexible range
and the initial capacity, are used as decision vari-
ables. The other two components, namely the uni-

tary cost of a flexible change ci and the unitary cost
of change outside the flexible range c0, become pa-
rameters of the model. In this way, the proposed
measure of flexibility is included in the MS pro-
gram implicitly.

6. NUMERICAL EXAMPLE
6.1. Description
In this section a straightforward example is pre-
sented to illustrate the capabilities of the model.
The MS program was formulated and solved using
the commercial software AIMMS and the commer-
cial solver CPLEX, both under academic licenses.
The system simulated only has one variable of in-
terest (capacity) affected by the uncertainty in one
external parameter (demand). The system initial
design value and the available flexible range for that
design variable are the decisions to optimize. The
costs to minimize depend on the unitary cost and
unitary revenue parameters, listed in Table 1.

One of the most difficult problems when solving
a MS program is the approximation of the uncertain
parameter. If a finely discretization of the distribu-
tion is used, the number of scenarios may render the
problem intractable. Conversely, if the discretiza-
tion is too sparse, the solution may be useless. For
this example, however, a strong approximation had
to be used to reduce the computational times neces-
sary to find a solution. This decision to approximate
is justified because at this stage of the research an-
alyzing the general behavior of the model provides
more insight than a particular result.

For this example the uncertain parameter was
discretized into three cases: low growth, medium
growth, and high growth. For each of the cases
there is a probability associated and a range of val-
ues that the demand may take at each stage, as
shown in Table 2. At the final stage there are 3n

possible scenarios, with n equal to the number of
stages, for the uncertain parameter that must be
evaluated by the program. For this reason, in an
attempt to reduce the number of scenarios, this nu-
merical example considers 8 stages where 1 stage
covers a period of 5 years, modeling a typical sys-
tem’s life-cycle of 40 years. The decision to group
many periods into 1 stage is justified because a typ-
ical infrastructure system is, usually, not expected
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to be subject to changes very frequently.
The model computes the expected costs for each

of the demand scenarios at each stage. As a result,
the optimal initial capacity and the optimal avail-
able flexible range are determined, while a solution
for the adaptation magnitude inside and outside the
flexible range for each demand scenario are also
calculated. The adaptation magnitude variables are
not as important because they are scenario depen-
dent; the main results are the stage zero decisions.
The next section summarizes the results of the nu-
merical computations.

Table 1: Model costs

Unitary cost Value

Ci 2.50
C0 3.00
Op 0.10

Revenue 0.20
FlexCost 1.50

Table 2: Uncertain parameter discretization

Case Lower limit Upper limit Probability

Low growth 0.40 0.80 0.30
Medium growth 0.80 1.20 0.40
High growth 1.20 1.60 0.30

6.2. Results and Discussion
Figure 2 shows two instances of demand scenarios
and the response suggested by the model to the sys-
tem design variable. This response is conditioned
by the initial design characteristics (initial value
and available flexible range), the uncertain parame-
ter distribution, and the flexibility policy. Specif-
ically, the policy is determined by two elements,
the inspection frequency (each stage comprises 5
years) and the conditional threshold R, discussed in
Section 5. While the inspection frequency is an in-
trinsic part of the model, the conditional threshold
is introduced as a constraint. In both cases, how-
ever, the values for these elements are defined by
the user.
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Figure 2: Two different realizations for the uncertain
parameter and the system adaptive response

Figure 3 presents the effect of the conditional
threshold on the initial decision variables, X0 and
Si. Increasing the threshold increases the overall
magnitude required for the design variable. This
increment is shared uniformly between X0 and Si
without preference. If the unitary cost c f of in-
troducing flexibility behaved exponentially, or any
non-linear trend, this behavior would not have been
observed.

1.05 1.1 1.15 1.2 1.25 1.3

R

4000

5000

6000

7000

8000

9000

10000

11000

S
y

st
em

 c
ap

ac
it

y

Initial capacity
Available flex.
range.

Figure 3: Effect of the threshold ratio, defined by the
policy, on X0 and Si

Nonetheless, c f still has a remarkable impact on
the results of the model, as shown in Figure 4. This
figure illustrates how the decision variables X0 and
Si are affected by the ratio between the unitary cost
of introducing flexibility c f and the unitary cost of

6



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

building the initial design c0. When the ratio is
small, the model will allocate more space for fu-
ture adaptations. Conversely, when the ratio is high
the model will prefer to invest in a larger initial de-
sign. While these results are expected, it is valuable
that the model is capable of replicating this behav-
ior organically.
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Figure 4: Effect of the cost c f of introducing flexibility
on X0 and Si

Finally, Figure 5 shows the effect that the ra-
tio between the costs cout/ci has on the desirabil-
ity of flexibility represented by the available flexi-
ble range Si. If the system, due to its characteris-
tics, is easy to modify without being designed for
flexibility, or if the added flexibility is not enough
to reduce the cost of flexible adaptations ci, the ra-
tio cout/ci is low and the model recommends not
to introduce flexibility. In contrast, if the cost of
modifying the system without flexibility is high, or
if the added flexibility manages to reduce consider-
ably the adaptation costs, the ratio cout/ci increases,
raising the desirability of flexibility.

7. CONCLUSIONS
Flexibility is property that has the potential to in-
crease infrastructure systems’ performance in the
face of uncertainty. The realization of this poten-
tial highly depends on the management of flexi-
bility. The management process is a complicated
sequential decision problem where many elements
converge. The initial system configuration, the flex-
ibility design measures, the adaptation policy, and
the perception of uncertainty determine the system
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Figure 5: Effect of the costs of adaptation inside and
outside the available flexible range, ci and cout , on the
desired flexible range Si

adaptation trajectory, and the value generated by
flexibility.

As a contribution to improve the understanding
of this problem, a multistage stochastic program
was formulated and solved. The model combined
a novel mathematical representation of flexibility
with a specific flexibility policy that determined
some of the model parameters. While previous
works have focused on determining the optimal set
of policies (Cardin et al., 2017), the proposed model
focused on finding the optimal initial configuration
and the optimal flexibility by considering multiple
evolution trajectories. The model was successful in
simulating the many interactions that exist between
system properties, costs, and policies.

Additional research is necessary to formulate a
more robust model that can consider multiple de-
sign variables. Furthermore, the development of a
model that can determine the optimal sequence of
actions given a flexibility policy would also be of
value to the field.
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