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ABSTRACT: Visual inspection is one of the main techniques for monitoring the deterioration in networks
of bridges. Visual inspection data commonly display inconsistencies due to the subjective nature of the
evaluation and because different individuals perform the inspections over time. One of the main chal-
lenges when interpreting visual inspections is differentiating between measurement errors and legitimate
changes in a structure’s condition. This study proposes a state-space model for modeling the deteriora-
tion behaviour while accommodating the inspector-induced uncertainty. The proposed framework allows
modeling inspections uncertainty according to the current structure’s state as well as the variability asso-
ciated with each inspector. The predictive capacity of the proposed framework is verified with synthetic
inspection data, where the true deterioration state is known.

1. INTRODUCTION
Visual inspections are considered by many in-
frastructures owners as the default option for a
network-scale monitoring [6, 7, 11]. This type of
inspection has the advantage of providing direct in-
formation about the structure health. These infor-
mation are based on a broad structural evaluation
which does not target a specific type of damage or
a structural component [1].
Although visual inspections is a popular monitoring
approach, along with many advantages, the moni-
toring system suffers from shortages that limit its
efficiency. Visual inspections are performed by dif-
ferent individuals over time, therefore, it is com-
mon to have inconsistencies in the recorded data.
These inconsistencies introduce difficulties in dif-
ferentiating between measurement errors and legit-
imate changes in a structure’s condition. More-
over, the frequency of visual inspections performed
varies among bridges, typically ranging from one
year to over four years.

The uncertainty and insufficiency of monitoring
data for each bridge cause difficulties in develop-
ing accurate structural degradation models. This
study aims at developing a machine learning frame-
work well suited for the network-scale analysis of
transportation infrastructure. The core objective is
to forecast the degradation of different structural el-
ements over time, along with quantifying the speed
and acceleration of this degradation. State-space
models are employed to model the structural degra-
dation of bridges based on visual inspection data.
The proposed state-space model formulation in-
corporates an uncertainty modeling framework tai-
lored for the visual inspection data. This framework
allows modeling inspections uncertainty based on
a current structure’s condition and the inspector’s
variability.

1.1. Context & Notations
The data of a visual inspections system can be cat-
egorized into three levels: the network level, the
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bridge level and the element level. The network
level defines the transportation network regional
properties (i.e. inspection code, country, . . . , etc.).
Following the network level, is the bridge level de-
fined by the set of bridges B = {b1,b2, . . . ,bB}.
This level describes the characteristics of each
bridge b j included in the transportation network
(i.e. geolocations, traffic loads, . . . , etc.). The
last level is the element level defined by the set of
structural elements E = {e j

1,e
j
2, . . . ,e

j
Ej
} ∈ b j ⊂ B.

This level defines the characteristics of the struc-
tural elements within each bridge (i.e. material,
type, . . . , etc.). The deterioration information col-
lected through inspections are added to the hier-
archy at the element level. These information in-
clude the inspection time t, the engineer Ii from the
group of inspectors I = {I1, I2, . . . , II} responsible
for evaluating the bridges in B and the condition of
the structural element ỹ ∈ [l,u], with l representing
the worst possible condition and u representing a
perfect condition. The ∼ in ỹ is utilized to differ-
entiate between observations in the bounded space
[l,u] and unbounded space [−∞,∞] which is further
detailed in section 2.2.2.

2. METHODOLOGY

This section describes the proposed framework for
modeling the deterioration behaviour and quantify-
ing visual inspections uncertainty.

2.1. State-Space Model
State-space models are well suited for time-series
data and allow estimating the hidden states of the
system from imperfect observations. The hidden
states here refer to the unobservable states of the
system. A State-space model is composed of two
models: an observation model and a transition
model. The formulas describing each model are,

observation model︷ ︸︸ ︷
yt =Cxt +vt ,

observation errors︷ ︸︸ ︷
vt : V ∼N (v;0,Rt) (1)

xt =Axt−1 +wt︸ ︷︷ ︸
transition model

, wt :W ∼N (w;0,Qt)︸ ︷︷ ︸
process errors

, (2)

where yt represents the observations, C is the ob-
servation matrix, xt is the state vector at time t:
xt : X ∼ N (x,µt ,Σt), A is the state transition

matrix, vt , wt are the observation and process er-
rors andRt ,Qt represent the observations and tran-
sition covariance matrices respectively. Different
state-space models algorithms exist in the literature
for different types of problems [3, 4, 5]. In this
study, the estimation for the hidden states is done
through the Kalman Filter (KF) [5] expressed in the
short form as follows,

(µt|t ,Σt|t ,Lt) = Kalman Filter(µt−1|t−1,

Σt−1|t−1,yt ,At ,Qt ,Ct ,Rt),
(3)

whereby Lt represent the log-likelihood for obser-
vation yt and µt|t , Σt|t refer to the posterior ex-
pected value and the posterior covariance at time
t respectively, given observations y1:t . In addition
to KF, Kalman Smoother (KS) [8] is also utilized to
refine the filtered estimates of KF.

2.2. Quantifying Visual Inspections Uncertainty
This section presents the proposed framework for
quantifying the uncertainty of visual inspections.

2.2.1. Inspector-Induced Uncertainty
Visual inspections are performed by different in-
spectors Ii ∈ I = {I1, I2, . . . , II} over time, there-
fore, it is common to observe variability in the
recorded data [9]. This variability is mainly at-
tributed to the subjective nature of the evaluation.
The variability in the observations is commonly
quantified in state-space models through estimating
a single standard deviation parameter σV common
for all observations so that v j

t,k : V ∼ N (v;0,σ2
V ).

However, because each inspector may have a differ-
ent variability, the state-space model is formulated
to account for the inspector-dependent uncertainty.
Each inspector Ii is assigned a standard deviation
parameter σV (Ii) to be estimated from the data.
This allows characterizing inconsistencies that may
exist in a sequence of observations obtained from
different inspectors.

2.2.2. State-Dependant Uncertainty
In addition to estimating the uncertainty σV (Ii) for
each inspector, it is required to take into account
that inspection uncertainty also depends on the ele-
ment’s condition. For example, if the structural ele-
ment e j

k ∈ b j is in a perfect condition (x̃ j
k = u), with

2



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

x̃ j
k representing the true condition of e j

k, then an in-
spector Ii is less likely to misjudge its condition.
Hence, a small uncertainty should be associated
with the observation ỹ j

k for structural element with a
perfect condition. Similarly for structural elements
with a poor condition (x̃ j

k = l). On the other hand,
for structural elements with a partial damage (e.g.
x̃ j

k =
l+u

2 ), the prospect of misjudging the structural
element condition becomes higher. Thus, a higher
uncertainty should be associated with the observa-
tion ỹ j

k in such cases. The aforementioned uncer-
tainty characteristics can be accommodated within
the time-series analysis by applying a non-linear
transformation on the state space. This transfor-
mation is done through a transformation function
that maps each point from the original space to a
point in the transformed space g : X̃→ X. Apply-
ing a proper transformation function in this context
allows the observation and transition uncertainty to
become a function of the structural element’s state
x̃. In addition, a byproduct of space transforma-
tion is that it constraints the state x̃ within the fea-
sible interval of the state [l,u]. To attain both of
the aforementioned properties, a step function with
special characteristics is proposed. These charac-
teristics are: linear middle span with 1 : 1 slope
ratio and non-linear ends with definite and known
first derivative.
The proposed transformation function that is found
to fulfill the desired characteristics is described by,

g(x) =


1

Γ(α)

∫ x
1
α

0 tα−1e−tdt, x > u+l
2 ,

x, x = u+l
2 ,

− 1
Γ(α)

∫ x
1
α

0 tα−1e−tdt, x < u+l
2 .

(4)

This function g(x) is a piecewise step function
that maps x ∈ [−∞,∞], labelled as the transformed
space, to x̃ ∈ [l,u] labelled as the original space.
The transformation function inverse g−1(x̃) is given
by,

g−1(x̃) =


[

1
Γ(α)

∫ x̃
0 tα−1e−tdt

]α

, u+l
2 < x̃≤ u

x̃, x̃ = u+l
2

−
[

1
Γ(α)

∫ x̃
0 tα−1e−tdt

]α

, l ≤ x̃ < u+l
2 .

(5)

The parameter α in both equations 5 & 4 is de-
scribed by: α = 2−n. The role of the parameter
n in the previous equation is to control the smooth-
ness at the transformation function ends. For n = 1,
the transformation function has smooth edges. As
the parameter n value increases, the edges become
sharper. However, for all n, the slope ratio remains
fixed at 1 : 1 for the middle span. This implies that
the transformation is linear for all cases when the
transformed value is near the centre of the feasi-
ble interval [l,u]. Moreover, it is noticed that for
n ≥ 5, the change in the shape of the transforma-
tion function is insignificant. Therefore, the pos-
sible values for the parameter n can be limited to
n = {1,2,3,4,5,6}. Figure 1 presents examples of
applying space transformation on the PDFs of two
Normal distributions (Figure 1a) using Equation 4.
In Figure 1a, the PDF with dashed-line illustrates
how the probability content is adjusted when the ex-
pected value of the state in the transformed space
is near the bounds [l,u] = [25,100]. On the other
hand, when the expected value of the state is closer
to the middle span (continuous-line PDF), the PDF
in the original space (Figure 1b) reflects subtle dif-
ferences from the PDF in the transformed space.
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Figure 1: Examples of State Transformation with the
Proposed Transformation Function.

Identifying the parameter n that best suit the prob-
lem context is done through the parameter estima-
tion framework described in section 2.5.
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2.3. Deterioration Model Constraints
The uncertainty and insufficiency of the inspection
data for each bridge may result in unrealistic trends
in the time-series data of the structural elements.
For example, a set of observations may wrongfully
indicate that an element’s condition is improving
over time without interventions being made on the
structure. In order to prevent such a problem, con-
straints are applied for each time step. The con-
straint ensures that the expected value of the ele-
ment condition between any consecutive time steps
t and t + 1 is not improving. This is achieved
by constraining the expected value of the speed µ̇

along with the 2σ ẋ confidence interval to be non-
positive µ̇ +2σ ẋ ≤ 0. The PDF Truncation method
[10] is employed to handle this constraint in the
state-space model.

2.4. Modeling Structural Degradation
The proposed framework for modeling the degra-
dation process in structural elements is based on
state-space models. The goal of this framework is
to represent the degradation behaviour by a kine-
matic model that includes the element condition x,
degradation speed ẋ and acceleration ẍ as defined
by,xt

ẋt
ẍt


︸︷︷︸
xt

=

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1


︸ ︷︷ ︸

A

·

xt−1
ẋt−1
ẍt−1


︸ ︷︷ ︸

xt−1

+

wt
ẇt
ẅt


︸ ︷︷ ︸
wt

, (6)

where xt and xt−1 are the state vector at time t and
t− 1, A describes the model kinematics for transi-
tioning from xt−1 to xt and wt is the model error
vector. The kinematic model in Equation 6 is em-
ployed within the proposed framework to character-
ize the degradation behaviour in bridges B. There-
fore, for each structural element e j

k ∈ b j, the transi-
tion model that describes the deterioration process
from time (t−1) to time (t) is,

x
j
t,k =Ax

j
t−1,k +wt , (7)

where x j
t,k is the state vector at time t consisting of

the condition x j
t,k, the speed of degradation ẋ j

t,k and

the acceleration ẍ j
t,k. The expected value of each

component in the state vector x j
t,k is represented by

µ
j

t,k for the condition, µ̇
j

t,k for the speed and µ̈
j

t,k
for the acceleration. The matrix A in the tran-
sition model represents the transition matrix and
wt :W ∼ N (w;0,Qt) represents the model error
vector. The observation model for this Kalman Fil-
ter is described by,

y j
t,k =Cx

j
t,k + v j

t,k, (8)

where y j
t,k is the transformed state observation, C

is the observation matrix, x j
t,k is the system state

and v j
t,k : V ∼ N (v;0,σ2

V (Ii)) is the observation er-
ror with σV (Ii) being the standard deviation of the
error associated with the observations of inspector
Ii ∈ I. Figure 2 illustrates the details and the steps
of the proposed degradation modeling framework.

Start

b j ∈ B

e j
k ∈ b j

ỹ
j
k

y
j
k = g−1(ỹ

j
k)

End

Kalman SmootherKalman Filter
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Log. Liklihood

µ̇ +2σ ẋ ≤ 0

Yes

µ
j
t|t,k,Σ

j
t|t,k

µ̃
j
t|t,k,Σ̃

j
t|t,k

Figure 2: Framework of Structural Degradation Model

As shown in Figure 2, the framework starts with
the observation ỹ j

t,k ∈ [l,u] representing the condi-

tion of structural element e j
t,k ∈ b j ⊂ B. The ob-

servation ỹ j
t,k is passed in the transformation func-

tion presented in Equation 5 to obtain the trans-
formed state observation y j

t,k ∈ [−∞,∞]. Following
the transformation step, the observations are ready
for the time-series analysis through the Kalman Fil-
ter and Kalman Smoother. For any time-series
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data y j
k , the Kalman Filter starts at time (t =

0) with an initial estimate for the state expected
value vector µ j

0,k and the covariance matrix Σ
j
0,k =

diag
[
σ x

0,k
j,σ ẋ

0,k
j,σ ẍ

0,k
j
]2

. The initial state is prop-
agated in time by using the prediction step and
the update step of the Kalman Filter. After each
update step in the Kalman Filter, the constraint
µ̇

j
t|t,k + 2σ

ẋ, j
t|t,k ≤ 0 is examined. This constraint en-

sures that the model estimate does not indicate that
the structural element is improving over time. If
the aforementioned constraint is violated, the PDF
truncation method is employed to restrain the esti-
mate of the speed ẋ j

t|t,k within the feasible bounds.
Following the filtering step, the Kalman Smoother
is utilized to refine the state estimates of KF and
the initial estimate of the initial state at time t = 0.
Because the number of observations y j

k is limited
per structural element, the refined estimate for the
initial state x j

0,k can be further improved in the pa-
rameter estimation framework described in the next
section. After the smoothing step, the framework
output µ j

t|t,k, Σ
j
t|t,k is back-transformed to the orig-

inal space µ̃ j
t|t,k ∈ [25,100], Σ̃

j
t|t,k for interpreta-

tion and analysis. This back-transformation step is
done through the transformation function described
in Equation 4. The following section describes
the unknown model parameters and the estimation
method.

2.5. Model Parameters & Estimation Framework
The unknown model parameters to be estimated
from the inspection data are: the inspectors stan-
dard deviations σV (Ii), the standard deviation of
the transition model error σW , the transformation
function parameter n and the initial estimate for the
state {µ̇0, µ̈0,σ

x
0 ,σ

ẋ
0 ,σ

ẍ
0} which will be common

for all structural elements e j
k. The parameters are

grouped in the following set:

P =

{
σV (I1),σV (I2), · · · ,σV (II)︸ ︷︷ ︸

Inspector std.

,

Process error std.︷︸︸︷
σW ,

n︸︷︷︸
Transform. Param.

,

Initial state.︷ ︸︸ ︷
µ̇0, µ̈0,σ

x
0 ,σ

ẋ
0 ,σ

ẍ
0

}
.

(9)

The initial estimate for the expected condition µ
j

0,k
is omitted from the set P , because it is assumed
equal to the first observation µ

j
0,k = y j

1,k in each
time-series. This assumption is reasonable because
the deterioration analysis are rendered with a rel-
atively small time step (∆t = 1 year) and the fact
that the initial estimate of µ

j
0,k is later updated by

the Kalman Smoother. The parameter estimation
framework for the parameters P is based on the
Maximum Likelihood Estimate (MLE) method. The
MLE estimate is obtained through maximizing the
joint prior probability of observations while assum-
ing the observations to be independent. Thus, the
likelihood for a sequence of observations can be ob-
tained through the following product,

p(y1:T|P) =
T

∏
t=1

p(yt |y1:t−1,P). (10)

In order to avoid numerical instabilities, the natu-
ral logarithm is taken for the likelihood estimate.
Hence, Equation 10 becomes the log-likelihood es-
timate described by,

ln p(y1:T|P) =
T

∑
t=1

ln p(yt |y1:t−1,P). (11)

Because the analysis in the proposed framework are
performed on a network scale, the log-likelihood
estimate is taken for the inspection sequences of all
the structural elements e j

k ∀ j,k combined. There-
fore, the network-scale log-likelihood becomes,

ln p(y1:B
1:Tk,1:E j

|P) =
B

∑
j=1

E j

∑
k=1

Tk

∑
t=1

ln p(y j
t,k|y

j
1:t−1,k,P),

(12)
whereby B is the total number of bridges, E j is the
total number of structural elements and Tk is the to-
tal number of observations for the k-th structural
element. The log-likelihood defined in Equation 12
represents the log-likelihood estimate for observa-
tions y j

t,k in the transformed space. Thus, the log-
likelihood estimate is obtained from a Normal PDF.
However, in the original space, the PDF of the state
is not defined by a Normal distribution. This is due
to the non-linearity in the transformation function.
Because the time-series analysis are intended for
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the observations in the original space, it is required
to rely on the log-likelihood estimate L(P) from
the PDF in the original space. This estimate can be
obtained by multiplying the log-likelihood estimate
by the derivative of the transformation function g as
follows,

L(P) =
B

∑
j=1

E j

∑
k=1

Tk

∑
t=1

(
ln p(y j

t,k|y
j
1:t−1,k,P)

×
∣∣∣∣ ∂

∂x
g(x = y j

t,k,n)
∣∣∣∣−1)

.

(13)

The term ∂

∂xg(x,n) represent the first derivative of
the proposed transformation function g(x,n), which
can be described analytically by,

∂

∂x
g(x,n) =

e−x
1
α

αΓ(α)
, α = 2−n. (14)

From Equation 13, in order to identify the set of pa-
rameters P∗ that maximizes the log-likelihood esti-
mate, the following optimization problem is to be
solved,

P∗ = arg max
P

L(P),

subject to: µ̇
j

t|t,k ≤ 0,

1≤ n≤ 6, ∀n ∈ Z
σV (Ii)≥ 0, ∀Ii ∈ I,

σW ≥ 0,

σ
x
0 ,σ

ẋ
0 ,σ

ẍ
0 ≥ 0.

(15)

Solving this optimization problem is possible
through the Newton-Raphson algorithm [2]. Note
that other optimization algorithms remain to be
tested in order to identify the optimization proce-
dure that best suit the problem.

3. DETERIORATION ANALYSES

This section presents the analyses performed using
the proposed framework on inspection data.

3.1. Data Description
The dataset utilized in this study is synthetic data
that is analogous to real inspection dataset obtained
from a network of bridges. The total number of

structural elements e j
k in the synthetic dataset is

E = 19879. The structural elements considered in
this analysis are of an element type beam. The
health condition of the structural elements is repre-
sented by a continuous numerical value within the
range [l,u] = [25,100]. An evaluation of ỹ = 25
refers to the worst possible condition for the struc-
tural element, while ỹ= 100 indicates a perfect con-
dition. The synthetic inspection data is generated
through the observation model with a set of syn-
thetic inspectors I = {I1, I2, . . . , I229} each having
an error standard deviation σV (Ii) ∈ [1,5].
Moreover, in the real dataset, the majority of struc-
tural elements has a time-series with 3 to 5 inspec-
tions y j

k , while very few structural elements have
6 or 8 inspections. Therefore, the number of ob-
servations y j

k in each synthetic time-series is deter-
mined through weighted integer sampling, with the
weights decided according to the real time-series
dataset. This step is done to ensure that the syn-
thetic data is analogous to the main characteristics
in the real inspection data. The synthetic observa-
tions are generated in the transformed space based
on a transformation function with parameter n = 2.
The standard deviation of the model process error
is assumed to be σW = 10−2.

3.2. Model Verification & Analyses with Synthetic
Inspection Data

The main goal of performing analysis with syn-
thetic data is to verify the predictive capacity of the
proposed deterioration model with a datasets that is
analogous to the real dataset. In addition, it is possi-
ble to assess the estimation of the model parameters
since the true parameters are available.
Estimating the model parameters based on the syn-
thetic dataset is done by solving the optimiza-
tion problem defined in Equation 15. Solving this
optimization problem can be achieved iteratively
through a Newton-Raphson gradient optimization
framework. The set of model parameters P∗ esti-
mated from the synthetic inspection data is shown
in Table 1 except for the parameters σV (Ii) which
are shown in Figure 3. From Figure 3, the ini-
tial value for all σV (Ii), represented by the dashed
line, is obtained from an initial Newton-Raphson
optimization step that assumes a single σV for all
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Table 1: Estimated Model Parameters from Synthetic Inspection Data.

σw µ̇0 µ̈0 σ x
0 σ ẋ

0 σ ẍ
0

9.434×10−4 −1.652×10−4 −1.078×10−4 1.878 0.10005 0.07694
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Figure 3: Scatter Plot of Inspectors True σV (Ii) vs.
Estimated σV (Ii) (Transformed Space) with a Dashed
Line Representing the Initial Value at the Start of the
Optimization.

inspectors Ii ∈ I. By considering the alignment
among the true and estimated σV (Ii), the scatter
plot in Figure 3 confirms that the proposed method
is capable of estimating the inspectors uncertainties
from the network-scale deterioration data.
Following the assessment of the estimated model
parameters P∗, the overall performance of the de-
terioration model is examined with a test set of
Et = 3980 structural elements e j

k which amount to
roughly 20% of the synthetic dataset size E. The
deterioration forecast is assessed for a period of 10
years for each structural element e j

k. The yearly
average of the forecast absolute error in the ex-
pected condition µ

j
t|t,k, the expected speed µ̇

j
t|t,k

and the expected acceleration µ̈
j

t|t,k are shown in
Figure 4. From Figure 4, it can be noticed that
the yearly average of the absolute errors in each
category increases monotonically over the forecast
time. Moreover, the bias in the expected condition
of the forecast is examined with scatter plots gener-
ated at different years. The graphs shown in Figure

5 illustrates the true condition x̃ j
t,k versus the model

expected condition µ̃
j

t|t,k generated at forecast years
{1, 5, 10}. It is noticed from Figure 5 that the dete-
rioration model maintain a good predictive capac-
ity up to 5 years of forecast. Thereafter, the pre-
diction error becomes significant as shown in the
scatter plot at year 10.

4. CONCLUSION

In this study, a deterioration model for visual in-
spections of a network of bridges is proposed. This
model enables quantifying the uncertainty of visual
inspection data through estimating the uncertainty
associated with each inspector as well as consider-
ing the inspection uncertainty dependent on the de-
terioration state. The analyses with synthetic data
have demonstrated a promising performance for the
model in estimating the uncertainty associated with
the inspectors. Moreover, the deterioration analyses
with the synthetic data have shown a good predic-
tive capacity for the proposed deterioration model.
Especially for the short term forecast up to 5 years
where the estimated condition and the true condi-
tion have had a high correlation. However, anal-
yses with the long term forecast have shown that
further improvements are required in the frame-
work. Therefore, further assessments to examine
some of the model hypothesis, such as the model
constraints, the initial speed estimate and/or the al-
gorithm utilized in estimating the model parameter
are to be examined in order to improve the model
long-term performance.
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Figure 4: Average Error in Forecast Time for the Expected Condition, Speed and Acceleration.
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Figure 5: Scatter Plot for the Model Estimate of the Condition µ̃
j

t|t,k vs. the True Condition x̃ j
t,k at Years 1, 5 and 10.
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