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ABSTRACT: This study aims to establish a framework of dynamic reliability based design optimization 

to minimize the cost of retrofitting of viscous dampers for structures located in the near-fault region. In 

the framework, the cost of dampers is considered as objective function to be minimized, which is taken 

to be proportional to the designed force to sustain, and the locations of dampers are taken as design 

variables. The dynamic reliability of the structure is considered as the performance constraint. Firstly, a 

stochastic model of near-fault ground motions is established, and the corresponding near-fault impulsive 

ground motions are synthesized. Then, the probability density evolution method (PDEM) is employed to 

solve the dynamic reliability of structures by means of equivalent extreme event method. Because the 

design variables, namely, the locations of viscous dampers are integer variables, the computational effort 

will increase with the number of design variables. Accordingly, material interpolation technique in 

topological optimization of continuum is adopted to transform the integer variables into continuous ones. 

Finally, numerical example demonstrate the efficiency of design optimization of inelastic frame with 

viscous dampers in given reliability performance constraint. 
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1. INTRODUCTION 

Near-fault ground motions have different 

characteristics compared to far field ground 

motions, such as rupture directivity effect, fling-

step effect, etc. Both rupture directivity effect and 

fling-step effect may result in distinct velocity 

pulse in the velocity time history (Bray and 

Rodriguez-Marek 2004). Those velocity pulses 

having a larger amplitude and shorter duration 

play extensively an important role on the damages 

of building structures in earthquake events. On the 

other hand, the near-fault ground motions present 

strong randomness. At a specific site, the 

occurrence of velocity pulse is random (Baker, 

2007). Therefore, the reliability of building 

structures subject to near-fault ground motions 

needs to be taken into account for seismic design 

of structures. 

In the near-fault region, the existing 

structures need to be redesigned so as to resist the 

potential near-fault ground motions in the future. 

The retrofitting of energy devices, such as viscous 

dampers, can effectively reduce nonlinear 

responses and damages of the structures 

(Constantinou and Symans, 1992; Lavan and 

Dargush, 2009). However, the cost of retrofitting 

is an important factor considered by engineers. 

Currently, the topic of reliability based 

design optimization (RBDO) has drawn more 

attention (Aoues and Chateauneuf, 2010; Altieri, 

Tubaldi, et al., 2017). RBDO aims to seek for the 

best compromise between cost and safety by 

considering stochastic uncertainties of the system. 

The stochastic uncertainties of the system may 

come from either the structural parameters or the 

excitations acted on the system. In the classical 

framework of RBDO, the stochastic uncertainties 

can be expressed by the reliability or failure 
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probability of the system (Kuschel and Rackwitz, 

2000; Chun, Song, et al., 2019). Generally, there 

are different methods for estimating the reliability 

or failure probability in the time-invariant and 

time-variant system. For the time-invariant 

system, the first-order reliability method (FORM) 

and second-order reliability method (SORM) are 

commonly used for estimating reliability. In the 

time-variant system, the method for assessing 

dynamic reliability based on first-passage failure 

criteria is different from time-invariant one (Chun, 

Song, et al., 2019). However, the method based on 

the level-crossing theory is hardly available for 

complex excitation, such as the near-fault ground 

motion.  

In the past fifteen years, Li and Chen (2005; 

2012; 2016) proposed and developed the 

probability density evolution method (PDEM) for 

stochastic dynamic analysis and dynamic 

reliability analysis of general stochastic system, 

which is suitable for time-invariant system and 

time-invariant system. In addition, PDEM can 

also be uniformly applied for the system with 

stochastic parameters and stochastic excitations. 

This study aims to achieve optimal layout of 

the dampers by considering the constraint of 

dynamic reliability of building structures under 

near-fault ground motions. For this purpose, a 

stochastic model with nine random variables for 

near-fault impulsive ground motion and PDEM is 

employed to assess the dynamic reliability of 

buildings. Then, an optimization scheme is 

established to obtain the optimal layout of viscous 

dampers in potential locations.  

2. STOCHASTIC SYNTHESIS MODEL OF 

NEAR-FAULT GROUND MOTIONS 

2.1. Long-period Velocity Pulse 

A stochastic pulse model with the Gabor wavelet 

established by Yang and Zhou (2015) to fit the 

strongest velocity pulse is utilized in this work, 

and expressed as follows 
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where Tp, Nc, Tpk and φ represent the pulse period, 

number of circles in the pulse, the location and 

phase of the pulse, respectively; σlnPGV is the 

standard deviation of the regression residuals, 

which can be considered as random variable; the 

attenuation of PGV is fitted by using the 

regression formula presented by Bary and 

Rodriguez-Marekis (2004) 

  2 2

1 2 3 4ln + ln( )wPGV c c M c R c       (2) 

where Mw is the moment magnitude; R is the fault 

distance; and c1, c2, c3 and c4 are the regression 

parameters; and σ represents the regression 

residual of Eq. (2), respectively. 

2.2. High-frequency Components 

The residual acceleration time series can be 

generated by extracting the domain pulse and 

differentiating the residual velocity history. In this 

study, a random variable based spectral 

representation method in Liu et al. (2016) is 

employed to simulate the residual stochastic 

nonstationary high-frequency components of 

near-fault ground motion, which is written as 
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where S(t, ωk) is the nonstationary power spectral 

density function of residual acceleration time 

history; Δω=(ωu–ωl)/N denotes the frequency step 

size; ωk=ωl+k(ωu–ωl)/N means the discrete 

frequency; Xk and Yk are the orthogonal random 

variables, which can be defined as a random 

function with one elementary random variable γ 

as follows 
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in which the elementary random variable γ is 

uniformly distributed within [−π, π]. In Eq. (3), a 

modified K-T (Kanai-Tajimi) spectrum with high-

pass filter modulated by a random variable based 

envelope function in Yang and Zhou (2015) is 

used to express the nonstationary spectral 

function, namely 
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where e(t), G(ω) and SK-T(ω) indicate the 

envelope function, Butterworth filter, K-T 

spectrum, respectively. To present the variability 

of envelope function, the following stochastic 

envelope function with three random parameters 

in Yang and Zhou (2015) is also adopted  
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In Eq. (6) the parameter t0 describes the 

initial instant of non-zero ground motion, and the 

envelope parameters τ, α and β are considered as 

random variables. 

As a result, the stochastic velocity time 

history Vs(t) of ground motion scaled by the peak 

of residual velocity history Vres, and the high-

frequency acceleration as(t) of the near-fault 

ground motion can then be obtained by 

differentiating the scaled velocity time series. 

Finally, the acceleration time series with the 

strongest pulse can be generated by the 

superposition of the high-frequency acceleration 

and the low-frequency counterpart ap(t) achieved 

from the velocity pulse function shown in Eq. (1). 

3. OPTIMIZATION SCHEME OF 

INELASTOC STRUCTURE WITH 

VISCOUS DAMPERS 

3.1. Equilibrium equation 

The differential equation of motion of the 

structure subjected to stochastic ground motions 

can be descripted as follows 

f[ ] ( , ) ( , )s d gu t    MX C C X F X Y MI θ   (7) 

where M=diag(m1, m2,…, mn) denotes the mass 

matrix; K indicates initial stiffness matrix; Cs 

means inherent damping of the structure, 

Rayleigh damping, i.e., Cs=aM+bK is adopted in 

this study; Cd denotes the added damping matrix; 

X , X  and X  are the acceleration, velocity and 

displacement vector, respectively; I indicates the 

n×1 unit column vector; ( , )gu tΘ is the acceleration 

of near-fault impulsive ground motion described 

in Section 1; Θ=(Tp, Nc, Tpk, φ, σlnPGV, α, β, τ, γ) 

denotes the random parameters vector of near-

fault ground motion; F(X,Y) indicates inelastic 

stiffness of the structure, which can be expressed 

with modified Bouc-Wen hysteretic model 

 (( ), 1)    KXF X Y KY   (8) 

in which Y=(Y1, Y2, …, Yn)
T denotes the hysteretic 

displacement, where Yi is expressed as the 

following first-order nonlinear differential 

equation with respect to the relative displacement 

between floors ui =xi−xi-1 
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where α, β, γ, A, N, dν, dη, ζs, ψ, dψ, λ, p, q are 

parameters of Bouc-Wen model. 

The considered system is subjected to near-

fault ground motions, and has the deterministic 

initial condition 00
( )

t
t


X X ,

00
( )

t
t


X X .  

3.2. Objective function 

In structural engineering, the energy dissipation 

devices, such as viscous dampers etc., have been 

widely used for reducing inelastic responses and 

damage of structures. Mounts of researches have 

file:///D:/Program%20Files/Youdao/Dict/7.5.0.0/resultui/dict/
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shown that the distribution of damper may 

remarkably affect its efficiency (Constantinou and 

Symans, 1992; Lavan and Dargush, 2009). On the 

other hand, the great number of dampers will 

bring the more cost of retrofitting. Therefore, the 

optimization method plays an important role for 

performance-based design of structures. 

Generally, the cost of a viscous damper can 

be taken as a function of the designed force, the 

stroke, and the damping coefficient. Although the 

damping coefficient has a limited direct effect on 

the cost, it affects the designed force. The cost of 

a damper can be taken to be proportional to its 

designed force. Thus, the cost of retrofitting can 

be presented by multiplying the number of 

dampers of each size group by the cost of a single 

damper of that size group (Lavan and Amir, 2014), 

namely 

 
1

cN

i i

i

J N c


   (10) 

where Nc indicates the number of size groups of 

adopted dampers; Ni means the number of 

dampers of size group i; ci denotes the damping 

coefficient of size group i. 

The existence of damper in certain potential 

location is a discrete variable, which can be taken 

as 0 or 1. Thus, the damping coefficient at a 

certain location j is formulated as follows 

 
,

1
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cN

d j ij i ij d

i

c x c x j N
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In practice, the number of size group of 

adopted dampers is small. For the two size groups, 

the damping coefficient can be alternatively 

rewritten as  

  1 1 2 1 2( ) ( )d diag c c c  c x I x   (12) 

where x1 determines the existence of the damper 

at Nd locations; x2 determines which size group 

damper is selected at these locations. The discrete 

variables form the integer-programming problem, 

which may bring the computational effort.  

Lavan and Amir (2014) proposed a novel 

continuous variables method by introducing the 

material interpolation technique widely applied in 

topology optimization design of structures. The 

discrete variables x1 and x2 are expressed by the 

rational approximation of material properties 

(RAMP) as follows 

 , 1,2; 1,...,
1 (1 )

ij

ij d

ij

x
x i j N

p x


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  (13) 

in which xij’ denotes the continuous variable with 

values between 0 and 1; p presents a penalization 

effect resulting in a preference of 01 for xij. Thus, 

the problem is transformed into a mix-integer 

programming. In order to transform all of the 

design variables into continuous ones, Lavan and 

Amir also presented a continuous approach of 

damping coefficient c1 and c2 by multiplying the 

maximum nominal damping coefficient dc   by 

two continuous variables y1 and y2, i.e., 11 dc c y , 

2 2dc c y , where y1 and y2 lie on the interval [0,1]. 

For convenience, the superscript (’) of 

continuous variables in Eq. (13) is ignored 

hereafter. 

3.3. Constraint function 

The inter-story drift is an important 

performance index of structural damage of the 

structure. The hysteretic energy devices, such as 

viscous dampers, can effectively reduce nonlinear 

responses and damages. In this work, the dynamic 

reliability or failure probability is evaluated based 

on the inter-story drift of the structure.  

3.4. Optimization problem 

This study focuses on the layout optimization 

design of dampers in building structures. By 

adopting the continuous variable technique 

proposed by Lavan and Amir (2014), the total 

dynamic reliability of structures subjected to 

stochastic near-fault pulse-like ground motions is 

considered as the constraint function to minimize 

the cost of retrofitting of dampers. The 

optimization problem can be formulated as  

file:///D:/Program%20Files/Youdao/Dict/7.5.0.0/resultui/dict/
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where Pf(t) denotes the failure probability, which 

is easily expressed by total the dynamic reliability 

of structures; [Pf] is admissible failure probability. 

In this work, the method of moving 

asymptotes (MMA) is used to solve the 

optimization problem described in Eq. (14). Due 

to the objective function is explicitly expressed by 

design variables, i.e., [x1, x2, y1, y2], the 

calculation of the gradient of the objective 

function is straightforward. However, the 

constraint function is implicit with respect to 

design variables. The calculation of constraint 

function is time-consuming. Thus, the first-order 

derivatives are solved in this work. The 

sensitivities of constraint with respect to design 

variables are evaluated by semi-analytical method. 

4. DYNAMIC RELIABILITY ANALYSIS 

BY USING PDEM 

4.1. Generalized Probability Density Evolution 

Equations 

Based on the principle of probability conservation 

of random event description, Li and Chen (2012) 

derived the uncoupled generalized probability 

density evolution equation, and the one-

dimensional GPDEE is expressed as follows  
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with boundary condition: ( , , ) 0
x

p t


XΘ x   

and initial condition: 

00
( , , ) ( ) ( )

t
p t x x p


 XΘ Θx   , where δ(∙) is the 

Dirac delta function; x0 denotes the initial value of 

the interested physical quantity X(t), which is one 

component of the X0; pΘ(θ) is the joint probability 

density function of random parameters Θ. 

Subsequently, the joint probability density 

function (PDF) of X(t) can be achieved by 

 ( , ) ( , , )dp t p t


 
Θ

X XΘx x     (16) 

where ΩΘ is the distribution domain of Θ. For a 

general structure, the numerical procedure is 

implemented essentially. 

4.2. First-passage Dynamic Reliability Analysis 

Based on the first-passage failure criterion, the 

dynamic reliability of structures is defined as 

  ( ) Pr ( ) ,0s sP t X t       (17) 

where Ωs denotes the safe domain.  

By using PDEM, the dynamic reliability in 

Eq. (17) can be obtained by assuming equivalent 

extreme value distribution method (Li and Chen 

2005). The random process is regarded a series 

system over the time domain. Once the response 

crosses the safety margin in certain moment, that 

is, the maximum of response in whole time 

domain exceeds the threshold, the failure occurs. 

In another word.  Thus, the dynamic reliability can 

be expressed as  

 
1 0
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i m t
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By introducing a virtual time τ, a virtual 

random process can be assumed as follows 

 max( , ) ( )Z X t  Θ   (19) 

where  max
1 0

( ) max max[ ( , ) ]i
i m t

X t X b



   

 Θ , and b 

is the allowable value of inter-story drift, m 

denotes the number of floors of structures. 

Therefore, another probability conservative 

system can be formulated by GPDEE 
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with initial condition 

 
0

( , , ) ( ) ( )p z p
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
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where the derivation of virtual stochastic process 

is expressed as max( , ) ( )Z X t Θ , when τ=1, Z(Θ, 

τ)|τ=1 = Xmax(t). 

By solving Eq. (7) and (20), the probability 

density function of virtual stochastic process Z(Θ, 

τ) can be calculated by 

 ( , ) ( , , )dp p 


 
Θ

Z ZΘz z     (22) 

and the reliability of structure can be achieved by 

 
max

( ) ( , )d ( , 1)d
b b

s XP t p t p 
 

    Zx x z z   (23) 

5. NUMERICAL EXAMPLE 

As an example, a 5-story hysteretic frame is 

considered. The mass and stiffness of floors are 

listed in Table 1. The probability distribution of 

random parameters of the stochastic model is 

estimated by the impulsive records in the Chi-Chi 

earthquake event, and is shown in Table 2  

 
Table 1 The mass and stiffness of floors 

Floor 1st  2nd  3th  4th  5th  

Mass mi 

 (105 kg) 
2.6 2.4 2.2 2.0 1.8 

Stiffness ki 

(105 kN/m) 
3.8 3.6 3.4 3.2 3.0 

 
Table 2. The probability distribution of random 

parameters for near-fault pulse-like ground motions. 
Parameter 

type 

Param-

eters 
Distribution Bounds Mean Std. D 

Pulse 

parameters 

Tp Normal [1.5, 15] 6.81 1.62 

Nc Lognormal [0.2, 2] 0.01 0.29 

Tpk 
Normal [19.29, 

54.16] 

22.32 6.41 

φ Normal [0, 2π] 3.06 1.71 

σlnPGV 
Normal [−0.6, 

0.6] 

0.00 0.25 

Envelope 

parameters 

τ Normal [0, 40] 20.43 6.68 

α Lognormal [0.5, 4.5] 0.63 0.41 

β 
Lognormal [0.02, 

0.17] 

−2.56 0.39 

High-

frequency 

parameter 

γ Uniform [0, 2π] 0.00 π2/3 

 

In this example, the maximum nominal 

damping coefficient dc =3000 kN·s/m; initial 

value of design variable x1 = [0.5, 0.5, 0.5, 0.5, 

0.5], x2 = [0.5, 0.5, 0.5, 0.5, 0.5], y1 = 0.9, y2 = 0.1, 

and the initial layout of viscous dampers is 

illustrated in Figure 1(a). The initial penalty p = 1. 

To present original discrete design variables by 

using continuous design variables, the penalty p is 

multiplied by 1.5 for every 10 design iterations. 

The allowable inter-story drift is 0.06 m, and the 

admissible failure probability [Pf] = 0.005 herein. 

 
Table 3 Optimization results 

Floor x1 x2 
Selected damper 

(kN·s/m) 

1st  0.9933≈1 0.9245≈1 2974.55 

2nd 0.9063≈1 0.9999≈1 2974.55 

3th   0.0565≈0 0.7368 0 

4th  0.0036≈0 0.7507 0 

5th  0.0038≈0 0.6517 0 

 

After 180 iterations, the optimization results 

converge, and are presented in Table 3. The values 

of x1 and x2 indicate the existence of dampers. 

When these values are larger than 0.8, the damper 

needs to be added in the corresponding location, 

not vice versa. The damping coefficient of the 

location is achieved by 11 dc c y , 2 2dc c y , in 

which the values of y1 and y2 are 0.1887 and 

0.9915, respectively. As a result, the two dampers 

with damping coefficient c2 need to be installed in 

first two floors, and the optimal layout is 

illustrated in Figure 1(b).  

 

        
(a)                                (b) 

Figure 2. (a) Initial and (b) Optimal layout of dampers. 
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6. CONCLUSIONS 

In this study, an efficient dynamic reliability 

based design optimization framework is 

established to minimize the cost of retrofitting of 

viscous damper for inelastic frame structure. In 

order to consider the potential near-fault ground 

motion, a stochastic model with nine random 

variables is adopted. The probability density 

evolution method (PDEM) with equivalent 

extreme method are employed to evaluate 

dynamic reliability of structure. In the established 

framework, the damping coefficient and the 

layout of dampers are uniformly treated by the 

rational approximation of material properties 

(RAMP) widely applied in topology optimization 

design of structures. Finally, the numerical 

example demonstrates the effectiveness of 

established optimization framework.  
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