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ABSTRACT: In conventional structural reliability evaluation, the probability distributions of the basic 

random variables are generally assumed to be known and their distribution parameters are usually 

assumed to be certain. However, since the probability distributions are estimated from statistical data of 

limited sample size, their distribution parameters or types may change as the amount of statistical data 

increases. If the parameter uncertainties are considered in structural reliability evaluation, the 

probability of failure and the corresponding reliability index become random variables, which are 

referred as the conditional failure probability and the corresponding conditional reliability index, 

respectively. Therefore, it is necessary to determine not only the mean but also the quantile or even the 

probability distribution of the conditional failure probability or conditional reliability index. Since the 

the determination of the probability distribution of which is the focus of this study. For this purpose, 

the first four moments (i.e., mean, standard deviation, skewness and kurtosis) of the conditional 

reliability index are firstly computed by a point-estimate method based on bivariate dimension-

reduction integration. The probability distribution of the conditional reliability index is then 

approximated by a four-parameter cubic normal distribution, in which four parameters in the 

probability distribution are directly defined in terms of its first four moments. Finally, an explicit 

formula for the quantile of the conditional failure probability is obtained by using the probability 

distribution of the corresponding conditional reliability index. The efficiency and accuracy of the 

proposed methodology for structural reliability assessment considering the uncertainties of distribution 

parameters are demonstrated through a numerical example, where Monte-Carlo simulations are utilized 

for comparison. 

KEYWORDS: Structural reliability; Parameter uncertainties; Conditional reliability index; Point-

estimate method; Cubic normal distribution 

 

1. INTRODUCTION 

A fundamental problem in structural reliabi-

lity theory is the computation of the multifold 

probability integral 

 ( ) 0
( )f

G
P f d


=  X

X
x x

 
(1) 

where Pf is the probability of failure, X = [X1, 

X2, …, Xn]
T is an n-dimensional vector of random 

variables representing uncertain quantities such 

as applied loads, material properties, geometric 

dimensions, and boundary conditions. fX(x) 

represents the joint probability density function 

(PDF) for X. G(X) is the limit state function and 

failure occurs when G(X) ≤ 0.  

The probability distributions of the basic 

random variables (i.e., the components of X in 

Eq. (1)) are generally assumed to be known and 

their distribution parameters are usually assumed 
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to be certain. However, in practical application, 

one is faced with the problem that distribution 

parameters of some random variables considered 

in a limit state function are also uncertain. The 

effect of uncertainties in the distribution 

parameters of the basic random variables in X 

lead to uncertainty in the calculated failure 

probability and in the associated reliability index. 

Consistent with the Bayesian notion of 

probability, the uncertainty distribution parame-

ters are modeled to be a random vector  thus 

fX(x) becomes a conditional distribution function 

fX (X ) The conditional probability of failure 

is given by (Der Kiureghian 1996) 

 
,

( , ) 0
( ) ( , )f

G
P f d


=  X Θ

X
Θ x x




 
(2) 

where G(X, ) is the performance function, 

fX, (x, ) is the joint PDF of X and  , and the 

conditional failure probability Pf() is a function 

of the distribution parameters .  

It follows that, since the distribution 

parameters  are uncertain, the conditional 

failure probability and the corresponding condi-

tional reliability index are also uncertain. The 

corresponding conditional reliability index () 

can be expressed as 

 
( ) ( )-1 1 fP  =  − Θ Θ

 
(3) 

where -1 denotes the inverse of the standard 

normal cumulative probability function. As 

random variables, Pf() and () have 

probability distribution functions as well as 

statistical moments, such as means, standard 

deviations, skewnesses, and kurtosis. 

For vector X of the random variables in 

Eq. (2), whose joint PDF includes uncertain 

parameters  the overall probability of failure, 

denoted PF, is then defined as the expectation of 

the conditional failure probability Pf() over the 

outcome space of the uncertain parameters 

 which can be formulated as     

 
,

( , ) 0
( , )F

G
P f d d


=  X Θ

X
x x


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(4) 

In most circumstances, the integral in Eq. (4) 

cannot be evaluated because of the difficulty in 

determining the explicit expression of the 

performance function G(X, ) and the joint PDF 

fX, (x, ). This is because   represents the 

distribution parameters of X, but X is a function 

of  . However, the conditional failure probab-

ility of the structural system for given distribu-

tion parameter values  =  can be evaluated 

readily using state-of-the-art techniques such as 

the first- and second-order reliability methods, 

moment methods and simulation methods (Choi 

et al. 2007; Ang and Tang 1984; Zhao and Ono 

2001). Therefore, the overall probability of 

failure incorporating the uncertainties of the 

distribution parameters can be formulated 

generally as 

 
( ) ( )F fP P f d= 
  

 
(5) 

where Pf() is the conditional probability of 

failure for a given  = , and f() is the joint 

PDF of . 

In the past several decades, many researchers 

focused on the problems of the distribution 

parameters uncertainties and various approxima-

tion methods have been developed for the 

determination the probability of failure consider-

ing the uncertainties of distribution parameters.   

To evaluate the overall probability of failure, 

Hong (1996) proposed an efficient analysis 

procedure by using the point-estimate method to 

obtain the overall probability of failure. Later, 

Der Kiureghian (2008) derived a simple 

approximate formula by using the first-order 

approximation method to compute the mean of 

the conditional reliability index, and then the 

overall probability of failure was obtained. 

However, for the sake of transparency in 

communicating risk, it is necessary to determine 

not only the overall probability of failure but also 

the quantile or even the probability distribution 

of the conditional failure probability or 

conditional reliability index. For this purpose, 

Der Kiureghian (2009) obtained the probability 

distributions of the conditional reliability index 

and the corresponding conditional probability of 

failure for cases in which the explicit PDF of the 

conditional probability could be determined 
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easily. However, in general, the explicit PDF of 

the conditional reliability index cannot be 

obtained in engineering practice. It is in this 

regard that Ang and De Leon (2005) utilized 

Monte Carlo simulation (MCS) to obtain both 

the mean and quantile of the conditional failure 

probability. However, it is time-consuming for 

large-scale structures because many samples are 

required. Recently, Zhao et al. (2018) 

approximate the probability distribution of the 

conditional reliability index by using a three-

parameter square normal distribution with 

explicit expression. However, this distribution 

uses only the first three moments (i.e., mean, 

standard deviation, and skewness) of the 

conditional reliability index to approximate its 

probability distribution, so this distribution is not 

flexible enough to reflect the kurtosis of the 

conditional reliability index. The kurtosis as well 

as the mean value, standard deviation, and 

skewness of the conditional reliability index are 

essential to determine its probability distribution 

(Zhao and Lu 2008), and has impact on 

conducting the accurate analysis of the structural 

reliability. Therefore, a new method with good 

flexibility, accuracy, wide range of applications 

for structural reliability analysis under the 

condition of the probability distribution 

parameter uncertainties of fundamental random 

variables is required. 

In the present paper, an efficient method for 

evaluating the quantile or even the distribution of 

the conditional failure probability or conditional 

reliability index by utilizing a four-parameter 

cubic normal distribution (Zhao and Lu 2008) 

with high robustness for a wide range of 

applications under the condition of uncertainty in 

probability distribution parameters of fundamen-

tal random variables is proposed. 

2. REVIEW POINT-ESTIMATE METHOD 

FOR EVALUATING THE OVERALL 

PROBABILITY OF FAILURE 

It is obvious that the right-hand side of Eq. (5) 

represents the mean of the conditional failure 

probability E[Pf()]. Rewriting Eq. (5) in 

standard normal space 

 

1= [ ( )] [ ( )] ( )F f fP E P P T d−= u
u u u

 
(6) 

where T-1(u) denotes the inverse Rosenblatt 

transformation (Rackwitz and Fiessler 1978) 

and (u) denotes the PDF of standard normal 

variables. 

Practically, the integral in Eq. (6) cannot be 

evaluated analytically because of the high 

dimensionality and the complicated integration. 

In order to avoid this problem, the point-estimate 

method (Zhao and Ono 2000a) is used to solve the 

mean of Pf(), which is one of the moments of 

function Pf(). Using the standard point esti-

mate, the mean of Pf() (i.e., PF) is estimated as 

( ) 1

1

1

= [ ( )] , , , , 
n

F f ci f c ci cn

i

P E P P P T u u u−

=

 =   (7) 

where n is the dimension of random vector ; c 

is a distinct combination of n items from group 

[1, 2, …, m]; m is the number of estimating 

points, ci is the ith item of c; uci is the cith 

estimating point; and Pci is the weight corre-

sponding to uci. 

As all distinct combinations have to be 

considered, mn times of function calls for 

computing Pf() are required. The computations 

involved in Eq. (7), therefore, can be massive 

when n is large. In order to avoid this problem, it 

is necessary to adopt dimension-reduction inte-

gration. Since only the first-order moment (i.e., 

the mean of Pf()) is considered, the univariate 

dimension-reduction method (Xu and Rahman 

2004) is used here. The function Pf() may then 

be approximated by Pf*() as follows 

 

( ) ( )

( ) ( )

1

1

( ) ( )=

1

n

f f f i f f

i

n

f i f

i

P P P P P

P n P



=

=

  − + 

= − −





   



 

(8) 

where 

 
1( ) [ ( )]f i f i f iP P P T −= =Θ U

 
(9) 

and  represents the vector in which all the 

random variables take their mean values; i = 

[1, …, i-1, i, i+1, …, n]
T; Ui = [u, …, ui−, 

ui, ui+, …, un]
T, where uk, k = 1, …, n except i 
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is the kth value of u, which is the vector in u-

space corresponding to .  

Since Pfi is a function of only one standard 

normal random variable ui for specific Pf*(), 

for independent random variables , Pfi can be 

expressed simply as                

 

( )

( )

1 1 1

1

1 1 1

, ,  ,  , ,  ,  

,  ,  ,  , ,  ,  

fi f i i i n

f i i i n

P P

P T u

    

   

− +

−

− +

=  

 =   

 (10) 

Observe that ui (i = 1, …, n) are independent 

and Pfi is a function of only ui; therefore, Pfi, i = 

1, …, n are also independent. Hence, the mean of 

Pf*(), i.e., the mean of the conditional failure 

probability, can be written as 

 1

= [ ( )] [ ( )] ( 1) ( )
fi

n

F f f P f

i

P E P E P n P

=

 = − −  μ (11) 

where 
fiP  is the mean value of Pfi and can be 

point-estimated from 

 ( ) ( )  ( )1 1

1
fi

m

P fi f i k f ik

k

E P E P T P P T u − −

=

   = = =   U (12) 

where ui1, ui2, …, uim are the estimating points of 

random variable ui, and P1, P2, …, Pm are the 

corresponding weights. 

The estimating points uik and their corresp-

onding weights Pk can be readily obtained as 

 

2 , k
ik k k

w
u x P


= =

 

(13) 

where xk and wk are the abscissas and weights for 

Hermite integration with the weight function 

exp(-x2) that can be found in Abramowitz and 

Stegum (1972). 

Specially, for a seven-point estimate (m = 7) 

in standard normal space (Zhao and Ono 2000), 

we have the following  

 ui1= −3.7504397,   P1 = 5.48269×10−4 (14) 

 ui2= −2.3667594,   P2 = 3.07571×10−2 (15) 

 ui3 = −1.1544054,   P3 = 0.2401233 (16) 

 ui4 = 0,     P4 = 0.4571427 (17) 

 ui5= 1.1544054,     P5 = 0.2401233 (18) 

 ui6 = 2.3667594,  P6 = 3.07571×10−2 (19) 

 ui7 = 3.7504397,  P7 = 5.48269×10−4 (20) 

3. METHODS OF MOMENT FOR THE EVA-

LUATION OF QUANTILE OF THE CONDI-

TIONAL FAILURE PROBABILITY 

In order to quantitatively estimate the uncer-

tainty in the failure probability induced by the 

distribution parameter uncertainties, it is often 

necessary to obtain the quantile of the 

conditional failure probability. For this purpose, 

the distributions of the conditional failure 

probability need to be determined. Since 

conditional failure probability is a monotonic 

function of the related reliability index, the 

percentile values of conditional failure proba-

bility or related reliability index can be obtained 

utilizing the distribution of conditional failure 

probability or related reliability index. Since the 

variability of conditional reliability index is 

much smaller than that of conditional failure 

probability, the distribution of conditional 

reliability index, rather than that of conditional 

failure probability, is approximated in this study. 

3.1 First four moments of the conditional 

reliability index  

Using the standard point estimate, the first 

four moments of the conditional reliability 

index (), can be estimated as 

   ( ) 1

1

1

= , , , , 
n

ci c ci cn

i

P T u u u  −

=

  
 

(21) 

( ) 
2

2 1

1

1

= , , , , -
n

ci c ci cn

i

P T u u u   −

=

    (22) 

  ( ) 
3

3 1

3 1

1

= , , , , -
n

ci c ci cn

i

P T u u u     −

=

    (23) 

( ) 
4

4 1

4 1

1

= , , , , -
n

ci c ci cn

i

P T u u u     −

=

  
 

(24) 

where  , , , and  are the first four 

moments, i.e., the mean, standard deviation, 

skewness, and kurtosis of (), respectively. 

Similar to the calculation of Eq.(7), the 

calculation involved in Eqs. (21)–(24) requires 

mn times of function calls to determine the 

conditional reliability index (). Therefore, the 

computation becomes excessive when n is large. 

In order to avoid this problem, dimension- 

reduction integration method will be adopted 
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again. Since the first four moments of f() are 

considered, bivariate dimension-reduction (Xu 

and Rahman 2004)  is used here. The function 

 () can then be approximated by *() as 

follows 

    

( ) ( ) ( )* * 1

, 0

1

( 1)( 2)
-( 2)

2

n

i j i

i j i

T

n n
n

  

  

−

 =

  =  

− −
= − + 

Θ Θ U

 (25) 

where 

 
( ) ( )1 1

, , 1, , , , , ,i j i j i j nT u T u   − − =
 

(26) 

 ( )1

1, , , ,i i i nT u   − =    (27) 

 ( )0 1, , , ,i n    =  (28) 

where i,j is a two-dimensional function; i, j = 1, 

2, …, n and i < j; i is a one-dimensional function; 

and 0 is a constant. 

Therefore, using the inverse Rosenblatt trans-

formation (Rackwitz and Fiessler 1978), the kth 

raw moments of  (), k, can be formulated 

approximately as 

 

( )  ( )  ( )  

,

1

0

1

( 1)( 2)
( 2)

2i j i

kkk

k

n
k k k

i j i

E E E T

n n
n



 
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  

  −

 =

   =    =     

− −
 − + 

Θ Θ U

     -

(29) 

where 

 
( )0 1, ..., , ...,

kk

i n    =        (30) 

   ( ) 1

1,..., , ..., ( )
i

k
k

i i n i iT u u du    


−

−
 =     (31) 

 
,

1 1

, 1,..., ( ), ..., ( ),..., ( ) ( )
i j

k
k

i j i j n i j i jT u T u u u du du     
 

− −

− −
 =     (32) 

Using the point-estimate method (Zhao and 

Ono 2000), the one-dimensional integral in 

Eq. (31) can be estimated as follow equation 

 
( ) 1

1

1

, ..., , ...,
i

m k
k

r i r n

r

P T u   −

=

 =      

 
(33) 

Similarly, the two-dimensional integral in 

Eq. (32) can be estimated as 

( ) ( ) , 1 2 1 2

1 2

1 1

, 1

1 1

, ..., , ..., , ...,
i j

m m k
k

r r i j r r n

r r

P P T u T u   − −

= =

 =
     (34) 

The estimating points and the corresponding 

weights can be found in the work of Abramowitz 

and Stegun (1972). For a seven-point estimate (m 

= 7) in standard normal space, these are given by 

Eqs. (14)–(20). 

Finally, the mean, standard deviation, skew-

ness, and kurtosis of the conditional reliability 

index () can be estimated, respectively, as 

follows 

 1  =
 

(35) 

 2

2 1    = −
 
 (36) 

 3 3

3 3 2 1 1( 3 2 ) /          = − +  (37) 

 ( )2 4 4

4 4 3 1 2 1 14 6 3              = − + −  (38) 

3.2 Probability distribution of the conditional 

reliability index 

Since the first four moments of the 

conditional reliability index () are obtained, 

the probability distribution of () can be 

approximated by using a four-parameter 

probability distribution, in which the four 

parameters in the probability distribution are 

directly defined in terms of its first four 

moments.   

Here the cubic normal distribution (Zhao and 

Lu 2008) based on the four moment standardi-

zation function (Zhao and Lu 2007) is used 

( ) 2 3

1 1 1 2( )s uS u l k u l u k u




 




−
= = = − + + +

Θ
(39) 

where s is the standardized random variable; 

Su(u) denotes the third polynomial of a standard 

normal random variable u; the coefficients l1, k1, 

and k2 are given as 

 
( )3 2

1 2 4 3

2

1
6 8 14 2

6(1 6 ) 36
l l

l



 


 = = − − −

+
， (40a,b) 

 2 2
1 22 2 2 2

1 2 1 2

1 3

(1 ) (1 12 )

l l
k k

l l l l

−
= =

+ − + +
，  (40c,d) 

From Eq. (40b),  should be limited in the 

range of 

 
2

4 4(7 4 ) / 3   +  (41) 
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The CDF of the conditional reliability index 

() corresponding to Eq. (39) can then be 

expressed as 

 ( ) ( )( )F u  = Θ  (42) 

and the PDF of the conditional reliability index 

() is expressed as 

 

( )
( )

( )2

1 1 2

( )
2 3

u
f

k l u k u








=

+ +
Θ  (43) 

where (·) and (·) are the CDF and PDF of a 

standard normal random variable u. 

3.3Quantile of the conditional failure probability 

According to the four moment standar-

dization function (Zhao and Lu 2007), the quantile 

of the conditional reliability index corresponding 

to the confidence level  can then be determined 

by the following equation 

 ( ) ( )s       =  +  (44) 

where  

 ( ) 2 3

1 1 1 2( ) ( ) ( ) ( )s uS u l k u l u k u    = = − + + + (45) 

where s(·) is the standardized random variable 

corresponding to the confidence level ; u(·) is 

the standard normal random variable correspond-

ing to the confidence level ; the coefficients l1, 

k1, and k2 are given by Eqs. (40a)–(40d). 

Therefore, the corresponding failure probabi-

lity of the confidence level 1 −   is given as 

 ( ) ( )1fP   − =  −    (46) 

4. NUMERICAL EXAMPLE 

This example considers a steel rod with a 

circular cross-section, which has been investi-

gated by Lu et al. (2011). The rod fails if the axial 

force exceeds the yield limit of material, and the 

limit state function is expressed simply as 

 

2( , , )
4

g R d P d R P


= −
 

(47) 

where P represents the axial force of the rod; R 

represents the yield limit of material; and d 

represents the diameter of the round rod.  

The axial force of the rod P, yield limit of 

material R and diameter of the round rod d are 

assumed as random variables, the probabilistic 

information of which is listed in Table 1. 

 
Table 1: Probabilistic information about the random 

variables 

Variable Distribution Mean 
Standard 

deviation 

P (kN) Gumbel 79.4 6.20 

R (kN•cm-2) Gumbel 10.5 1.00 

d (cm) Gumbel 5.8 3.00 

 

The reliability analysis for the performance 

function as expressed by Eq. (47) can be readily 

evaluated using state-of-the-art techniques. Here, 

the well-known first-order reliability method 

(FORM) (Hasofer and Lind 1974) is utilized, and 

the reliability index is readily obtained as 1.723, 

with a corresponding failure probability of 

4.242×10−2. In this example, the mean of the 

three random variables, i.e., R d and P are 

assumed to be random variables, and their 

probabilistic information are listed in Table 2. 

Estimating the mean value and quantile of the 

conditional failure probability is described below. 

 
Table 2: Probabilistic information about the 

distribution parameters 

Variable Distribution  Mean 
 Standard   

deviation 

  R Lognormal 10 0.5 

d Gumbel 6 0.8 

P Lognormal 80 1 

 

Form Eq. (5), the overall failure probability 

can be obtained as 

,
( , ) 0

( , ) ( ) ( )F f
G

P f d d P f d


= = X Θ
X

x x
 

    
 
(48)

 

Based on Eq. (8), the conditional failure 

probability Pf() can be expressed as 

 ( )
3

1

( ) ( ) 2f f f i f

i

P P P P

=

 = −    (49) 

where  

 
( )1f f RP P = , ( )2f f dP P = , ( )3=f f PP P 

 
 

Since Pf() is a function of the means of all 

three random variables, the original mean of the 
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three random variables in Table 1 will be 

replaced by means of these parameters as given 

in Table 2, and Pf() can then be easily obtained 

as 0.0349 by using FORM. 

Using a seven-point estimate in standard 

normal space as shown in Eqs. (14)–(20), the 

estimating points of Pf1, i.e., Pf(R) in original 

space, can be obtained as follows with the aid of 

an inverse Rosenblatt transformation 

R1 = 8.281, R2= 8.874, R3= 9.428, R4= 9.988 

R5= 10.581, R6= 11.241, R7= 12.046 

In the same way as the procedure to evaluate 

Pf(), we can use FORM to estimate the value of 

Pf(Ri), i = 1, …, 7. Using the point-estimate 

method, the mean of Pf(R) or Pf1,
1fP , is readily 

obtained as 

 
( )

1

2
7

1

3.506 10=
fP k f Rk

k

P P  −

=

=   (50) 

Similarly, the means of Pf(d) or Pf2 and 

Pf(P) or Pf3 are obtained as 
2fP =4.815×10−2 

and 
3fP =3.492×10−2, respectively. 

Therefore, according to Eq. (11), the overall 

probability of failure, is readily estimated as 
3

2

1

= [ ( )] 2 ( ) 4.830 10
fiF f P f

i

P E P P −

=

 − =  μ  

The overall probability of failure is obtained 

as 4.834×10−2 by using MCS with 1,000,000 

samples.  

Based on Eq. (24), the conditional reliability 

index () can be approximated a

( ) ( ) ( )
3

* * 1

, 0

1

i j i

i j i

T     −

 =

  = = − +   Θ Θ U

 

(51) 

where 

( ) ( ) ( )1,2 1,3 2,3, , , , ,R d R P d P           = = =

( ) ( ) ( )1 2 3, ,R d P        = = =  

( )-1

0 1 = 1.812fP  =  − μ  

Utilizing the point-estimate method based on 

bivariate dimension-reduction integration, i.e., 

Eqs. (29)–(38), in which the estimation of the 

reliability indices for determining 
i

k

 and
,i j

k

 in 

Eqs. (33) and (34) is evaluated from Eq. (47) 

using FORM, the first four moments of () are 

easily obtained as,  = 1.850,  = 0.578,  

=2.033, and  =12.262, respectively.  

Substituting the obtained first four moments 

of () into Eq. (43), the PDF of the conditional 

reliability index () is expressed as 

( )
( )

( )2
( )

0.578 0.662 0.437 0.265

u
f

u u



 =

+ +
Θ

 

(52) 

The histogram of the conditional reliability 

index () obtained by using the 1,000,000 

MCS samples are shown in Fig. 1 together with 

the PDF curve (denoted as the thick solid line)  

obtained from the method proposed in this paper 

as shown in Eq. (52)., respectively. It can be seen 

from Fig. 1 that the histogram of the conditional 

reliability index () is well behaved and can be 

approximated well by the PDF of the cubic 

normal distribution determined by using its first 

four moments.  

 
Fig.1: Histogram and PDF curve of the conditional 

reliability index 

The histogram of the conditional failure 

probability Pf() obtained by using the MCS 

with 1,000,000 samples is shown in Fig. 2. It can 

be seen in Fig. 2 that the histogram of Pf() is 

skewed to the right and is truncated when Pf() 

tends to zero, as has been shown in Fig. 2, which 

is difficult to approximate by well-known 

distributions. 

The 90% and 95% confidence levels of Pf() 

are listed in Table 3, obtained from MCS, three-

parameter square normal distribution, and the 

proposed method based on the cubic normal 

distribution, respectively. It also can be seen that 
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the results obtained from the proposed method 

are much more accurate than the results from the 

three-parameter square normal distribution. 
 

Table3: Results of 90% and 95% confidence levels 

for Pf() in Example 1 

Confidence level MCS 
Three-parameter 

distribution 
Present 

90% Pf() 0.100 0.108 0.095 

95% Pf() 0.117 0.109 0.115 

 

From the discussion above, it can be 

concluded that, the results estimated by the 

proposed method are almost the same as those 

obtained by MCS method. 

 
Fig.2: Histogram of the conditional failure 

probability 

5. CONCLUSIONS 

This paper focuses on evaluating the quantile 

or even the distribution of the conditional failure 

probability or conditional reliability index by 

utilizing a four-parameter cubic normal distri-

bution. It can give sufficiently accurate results 

and provided a complete picture of structural 

reliability analysis considering the parameter 

uncertainties. The accuracy of results, obtained 

from the proposed method has been examined by 

comparisons with large sample Monte Carlo 

simulations (MCS). 
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