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ABSTRACT: Empirical model and finite element method are two commonly-used methods for 
prediction of ground deformation induced by excavation. Compared with the former, the finite element 
method can not only predict the deformation of different modes, but also predict the distributed 
deformation of the whole site. However, results of finite element analysis depends on the constitutive 
model used in the analysis. This paper uses an advanced hypoplastic constitutive model and its improved 
edition, which considers the small-strain effect of soil, to represent the soil behavior. Uncertainties are 
unavoidable in excavation engineering, such as those in soil parameters, loads, and models, etc. These 
uncertainties have profound effects on the prediction of deformation induced by excavation obtained 
from the finite element analysis. In order to consider the effect of parameter uncertainty on the prediction 
results, random variables are used to characterize the parameter uncertainty. Direct Monte Carlo 
simulation (MCS) method was used to incorporate the parameter uncertainty into reliability analysis of 
the deformation induced by excavation. The computational costs and convergence issues of finite 
element method in together with advanced constitutive model result in significant computational 
challenges in MCS-based reliability analysis. In order to improve the computing efficiency and 
robustness, artificial neural network (ANN) is adopted as a surrogate model of the finite element method 
to compute the soil deformation for a given set of uncertain parameters. Results show that responses 
predicted by the improved hypoplastic model fit the real response better.

1. INTRODUCTION  
Excavation engineering is very common in urban 
infrastructure construction, such as subway, 
underground pipe network and basements of tall 
buildings. Excessive soil movement caused by 
excavation is likely to have a negative impact on 
surrounding buildings. This requires that the soil 
deformation should be controlled within a certain 
range. According to historical data, many 

literatures have studied the maximum allowable 
ground deformation, and local standards have 
been established worldwide. Therefore, the 
prediction of ground deformation caused by 
excavation, including lateral displacement and 
ground settlement, is a major concern in 
excavation engineering.                                                    

It is common practice to use empirical 
methods or finite element method to predict 
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excavation-induced ground deformation. 
Compared with empirical methods, the finite 
element method may provide more accurate 
predictions by incorporating site-specific 
complex soil behaviors. The accuracy of the 
finite element method depends largely on the 
constitutive model and its associated parameters. 
So far, constitutive models based on different 
theories and hypotheses have been proposed and 
widely used in the field of excavation 
engineering. Ou and Tang (1994) utilized the 
hyperbolic model, proposed by Duncan and 
Chang (1970) to model the soil behavior in a 
deep excavation analysis. Finno and Calvello 
(2005) used Mohr-Coulomb models to describe 
the behavior of sand and fill layer and 
Hardening-Soil (HS) model (Schanz et al. 1999) 
to describe the behavior of clay. Hong et al (2016) 
used a hypoplastic model and its improved 
edition which considers the small strain effect to 
predict the soil deformation in a centrifuge test 
of excavation. Lim and Ou (2017) used Mohr-
Coulomb model, HS model and HS small strain 
model to study the stress paths in deep 
excavations. These studies are all deterministic 
analyses of excavation deformation without 
account for parameter uncertainties. 

Application of advanced constitutive 
models in probabilistic analysis of excavation 
engineering was relatively rare in the literature. 
This paper adopts a Hypoplastic (HP) model 
(von Wolffersdorff, 1996), and its modified 
version that considers the small strain behavior 
of soils (Niemunis and Herle, 1997) in 
probabilistic analysis of ground deformation 
induced by excavation. The paper integrates 
finite element method and direct Monte Carlo 
Simulation to conduct the probabilistic analysis. 
In order to improve the efficiency of probabilistic 
analysis and to avoid numerical problems in 
finite element calculation, artificial neural 
network (ANN) is applied to establish the 
surrogate model of finite element analysis. 

2. HYPOPLASTIC MODELS AND FINITE 
ELEMENT ANALYSIS 

 

2.1 Hypoplastic constitutive models 
Finite element analysis using basic HP model 

(without considering small strain stiffness) and 
the improved HP model (considering small strain 
stiffness) was performed by the Abaqus computer 
software with a user-defined subroutine, which 
was coded in Fortran (Gudehus et al, 2008). 
Because these two constitutive models are well 
developed and documented below, only a brief 
description on them is given below. 

Hypoplasticity is a theory that assumes the 
grains of granular materials aggregated to a so-
called “simple granular skeleton” defined by 
some features (e.g., a granular material state 
depend on granular stress and void ratio only, 
grains are permanent, surface effects are absent, 
etc.). Based on the hypoplasticity, the nonlinear 
incremental model— HP model，was developed 
to describe the nonlinear mechanical of granular 
materials (von Wolffersdorff, 1996). Unlike some 
elastoplastic models, yield surfaces or flow rules 
are not needed in HP model.  

According to the HP model, soil state in e-p' 
space is bound by upper limit ei-p' curve and lower 
limit ed-p'curve (ei and ed denotes the maximum 
and minimum void ratio, respectively; p' denotes 
the effective mean normal stress). The critical 
state line, ec-p' curve, lies between these two 
curves (ec denotes the critical state void ratio). The 
relationship between e and p is described below 

0 0 0

exp( ' )ni c d
s

i c d

e e e p h
e e e

      (1) 

where ei0, ec0, and ed0 are the maximum void ratio, 
the critical state void ratio, the minimum void 
ratio at zero pressure; hs and n are parameters that, 
respectively, control the overall slope and 
curvature of the three lines mentioned above. The 
hsn and ec0 can be obtained from the oedometer 
test. Generally, ei0 and ed0 can be determined by 
multiplying ec0 by two different constants. Two 
more parameters andare used to control the 
different aspects of mechanical behavior (e.g., 
shear stiffness and dilatancy) of soils, and they 
can be calibrated from trial and error procedures 
through finite element modeling of drained 
triaxial element tests. In summary, defining the 
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basic HP model needs eight model parameters: 
critical state friction angle chs and n ed0, ec0, 
ei0and 

Compared with the basic HP model, five 
additional model parameters (i.e., mR, mT, R, r, 
and ) are introduced in the improved HP model 
to characterize the strain dependency and path 
dependency of soil stiffness at small strains (e.g., 
Niemunis and Herle, 1997; Hong et al., 2016). 
These five parameters can be obtained from a 
series of triaxial tests with different stress paths. 
Initial shear modulus upon 180º and 90º  strain 
path reversal are controlled by mR and mT, 
respectively. R denotes the elastic range. The 
relationship between the stiffness and strain is 
defined by r and  
 
2.2 Centrifuge test and numerical modeling 

A centrifuge model test simulating the 
excavation was conducted at a centrifugal 
gravitation of 50g (g=9.8m/s2) by Hong et al 
(2016). Depth of the non-propped excavation is 
8m (in prototype), width of the diaphragm wall 
is 600mm (in prototype), and the penetration 
depth of the wall into soils was equal to 0.9 times 
of the final excavation depth. The experimental 
material used in the test is medium-dense 
(Dr=65%) dry Toyoura sand. The excavation 
process is replaced by the expulsion of solution 
of equal density as that of soil. The lateral 
displacement of the wall and ground surface 
settlement of the test were well recorded. The 
excavation process is simulated in Abaqus 
(ABAQUS Inc., 2018).  

Figure. 1 shows the finite-element mesh 
used to model the response of the centrifuge test 
in this study. The left and right vertical 
boundaries were fixed by roller supports, and 
pinned supports were used in the bottom 
boundary condition. The retaining wall was 
modeled as a linear elastic material with Young’s 
modulus, Poisson’s ratio, and unit weight equal 
to 70GPa, 0.2 and 27KN/m3, respectively.  

  
Figure 1: Finite element mesh and boundary 
conditions (after Hong et al, 2016) 

 
Figure 2: Illustration of the convergence issue in 
FEM analysis. 
 
2.3  Convergence issue in finite element analysis 

It is inevitable that the finite element analysis 
of ground deformation may not converge due to 
numerical issues, particularly in simulation-based 
probabilistic analysis where input parameters of 
the finite element model are randomly simulated 
from prescribed distributions of uncertain 
parameters. Take the excavation case adopted in 
this paper as an example. With different values for 
n and , and fixed value for other five parameters, 
a series of finite element analyses are performed. 
As shown in Figure. 2, the points on the horizontal 
axis represent the values of n and , with which 
finite element analyses fail to converge. It is not 
appropriate to directly discard samples that do not 
converge in probabilistic analysis because this 
may change the distribution of input parameters. 
Figure. 2 also shows that the maximum lateral 
displacement has an obvious non-linear trend with 
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the increase of n. If a surrogate model with an 
explicit expression can accurately describe the 
non-linear relationship between model parameters 
and the response predicted by the finite element 
analysis, it can be used to as the surrogate model 
of the finite element model in probabilistic 
analysis. Besides, simulation-based probabilistic 
analysis might require a large number of 
numerical simulations to obtain reliability 
estimates with a reasonable accuracy. Compared 
with using the finite element model, using the 
surrogate model allows improving the efficiency 
of probabilistic analysis. 
 

3. ARTIFICIAL NEURAL NETWORK 
To capture the non-linear relationship 

between input parameters and the response 
obtained from the finite element analysis, 
Artificial Neural Network (ANN) is applied to 
developing the surrogate model of the finite 
element model in this study. The most common 
neural network structure consists of different 
layers, each of which is composed of different 
neurons. Neurons in different layers are connected 
by the directional arc with weights wji (connection 
weights between neuron j and i). The output xi of 
the neurons in the upper layer is multiplied by 
different weights. Then the sum Ij of them and a 
threshold value j is used as input to the neurons 
in the lower layer. The input is processed by the 
neuron with a transfer function f, usually a logistic 
sigmoid function, to get the output yj. The whole 
process can be summarized below (Shahin et al, 
2009) 

1

n

j j ji i
i

I w x


     (2) 

( )j jy f I     (3) 
ANNs have been successfully applied to a 

wide range of problems in geotechnical 
engineering (e.g., Goh and Kulhawy, 2003; Wang 
et al, 2007; Shahin, 2016). As a powerful tool to 
deal with non-linear problems, ANNs can capture 
the underlying relationship between data through 
repeated learning and training from the known 
information. The Back-propagation (BP) neural 

networks is used to establish the surrogate model 
of finite element model in this study. More details 
about ANNs can be referred to Gurney (1997).  

Among the eight model parameters of basic 
HP model, c=31º,five of them were regarded 
as uncertain, and ei0 and ed0 were calculated from 
ec0. Table 1 summarizes the typical range of 
possible values of five uncertain parameters. 
Table 2 summarizes values of the five additional 
parameters of improved HP models, which are 
adopted from Hong et al (2016).  

500 samples were uniformly and randomly 
generated from their respective ranges.350 samples 
Table 1: Range of HP model parameters 

Parameter n  eco hs(GPa) 

Lower limit 0.1 0.1 0.85 1 0 
Upper limit 0.5 0.3 1.05 6 3 

 
Table 2: Values of five additional parameters of the 
improved Hypoplastic model 

Parameter mR mT R r  
Value 8 4 0.00002 0.15 1.0 

 

 
(a) 

 
    (b) 

Figure 3: Comparison of predictions by ANN and 
FEM using basic HP model:(a) Normalized maximum 
lateral displacement. (b)Normalized maximum ground 
surface settlement. 
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were used to train the ANN model. After the 
training was completed, additional 150 samples, 
which were not used in the training process, were 
used to validate the ANN model. The ANN model 
is trained in an iterative manner until the 
validation error is reasonably small, allowing the 
ANN model to fit the finite element model well 
without overfitting. Figure. 3 and Figure. 4 
compare responses, which are normalized by 
excavation depth, computed by basic and 
improved HP model of all the samples with those 
calculated from the ANN model. It is shown that 
results from the finite element analysis and the 
ANN model are in good agreement, which 
validates the surrogate model. 
 

 
      (a) 

 
       (b) 

Figure 4: Comparison of predictions by ANN and 
FEM using improved HP model:(a)Normalised 
maximum lateral displacement. (b)Normlised 
maximum ground surface settlement. 
 

4. PROBABILISTIC ANALYSIS OF 
GROUND DEFORMATION INDUCED BY 
EXCAVATION  

 
      This section combines direct Monte Carlo 
simulation (MCS) with the ANN model to 

perform the probabilistic analysis of ground 
deformation induced by the excavation. Table 3 
summarizes probability distributions of uncertain 
parameters involved in the analysis. Assume that 
the n  hs, and  follow the normal distribution. 
Their mean values were consistent with the values 
of these parameters calibrated by Herle and 
Gudehus (1999), and their coefficient of variation 
(COV) is assumed to be 0.1. The ec0 is assumed to 
follow the uniform distribution with the range 
shown in Table 1.  
 
Table 3: Probability distributions of hypoplastic model 
parameters. 

Parameter Distribution Mean COV
n Normal 0.27 0.1
 Normal 0.18 0.1

hs (GPa) Normal 2.6 0.1
 Normal 1.1 0.1

eco Uniform   
 

A MCS run with 200,000 samples is 
performed to carry out the probabilistic analysis 
based on the ANN models trained based on finite 
element analysis using basic and improved HP 
models in the previous section. The maximum 
lateral wall displacement and ground surface 
settlement are two responses in excavation 
analysis of the most concern. The probability 
distributions of these two responses are 
investigated. The confidence intervals of the 
displacement curve are also evaluated. In addition, 
this section also compares results obtained from 
MCS analyses based on the basic and improved 
HP models. 

The serviceability limit state requires that 
both the maximum wall displacement and the 
ground surface settlement induced by excavation 
do not exceed their respective threshold values for 
judging unsatisfactory performances. The 
serviceability failure is then defined if the 
responses exceed the threshold values. The 
probability of serviceability failure is calculated 
using the samples generated by MCS.  

Figure. 5(a) shows the variation of the failure 
probability based on the MCS analysis with basic 
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and improved HP model as a function of the 
threshold value of lateral wall displacement. It is 
shown that the probability of failure decreases 
with the increase of the threshold value (or 
limiting value), and its values calculated from the 
ANN model based on the basic HP model are 
always larger than those computed using the ANN 
model based on improved HP model for a given 
threshold value. This means that the failure 
probability of maximum lateral wall displacement 
predicted by basic HP model is more conservative 
than that predicted by improved HP model in this 
example. Figure. 5(b) shows the variation of the 
failure probability based on the MCS analysis 
with basic and improved HP model as a function 
of the threshold value of ground surface 
settlement. As the threshold value of ground 
surface settlement is smaller than 1.2% of the 
excavation depth, the probability of failure of the 
maximum ground surface settlement predicted 
by basic HP model is more conservative than 
that predicted by improved HP model. As the 
threshold value is greater than 1.2%, using 

 
(a) 

 
(b) 

Figure 5: Failure probability curves computed using 
basic and improved HP models: (a) normalized 
maximum lateral wall displacement; (b) normalized 
maximum ground surface settlement. 

improved HP model is more conservative in this 
example. 

Figure. 6 shows the two responses estimated 
from 200,000 MCS samples. It is observed that 
the maximum lateral displacement and ground 
surface settlement obtained from basic and 
improved HP model-based ANNs are positively 
correlated. That means that a larger maximum 
lateral wall displacement generally corresponds to 
a lager maximum ground surface settlement. The 
same observations were also reported in the 
literature based on observational data obtained in 
real excavation cases (e.g., Luo et al, 2018). It can 
also be found that the maximum ground surface 
settlement estimated using basic HP model is 
smaller than the maximum lateral wall 
displacement. In contrast, the two responses in 
one simulation using the improved HP model are 
close to each other. It is apparent that the 
responses estimated based on two models deviate 
from each other. The measurement value obtained 
from the centrifuge test is more consistent with 
responses estimated from the improved HP model. 
This suggests that it is possible to predict both 
responses more accurately based on improved HP 
model. Based on the basic HP model, it difficult  
to, simultaneously, predict the maximum lateral 
wall displacement and ground surface settlement 
accurately. When parameters of the basic HP 
model are adjusted or back analyzed to estimate 
the prediction of ground deformation induced by 
the excavation, it is difficult to identify a set of 
parameters of the basic HP model that can provide 
consistent estimates of both maximum lateral wall 

  
Figure 6: Sample estimates of ground deformation 
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displacement and ground surface settlement in 
this example. From this point of view, improved 
HP model outperform the basic one.  

Figure. 7(a) shows the 95% confidence 
interval of the prediction of the lateral wall 
displacement profile at different depth based on 
two constitutive models. It can be observed that 
the confidence interval of improved HP model is 
on the left side of the interval of basic HP model. 
This means that the predictions based on 
improved HP model of the wall displacement at 
different depths are smaller than those obtained 
from the basic HP model. It is shown that the 
entire displacement curve is enveloped in the 
confidence interval of improved HP model. This 
suggests the performance of improved HP model 
is better than the basic HP model in terms of the 
prediction of the lateral wall displacement at 
different depth.  

Figure. 7(b) shows the 95% confidence 
interval of prediction of the ground surface 
settlement at different distance behind the wall 
based on two constitutive models. Except for 
some overlap near the wall, it shows that the 
confidence interval of improved HP model 
generally plots above the confidence interval of 
basic HP model. This means that the prediction of 
ground surface settlement based on basic HP 
model is more conservative than that based on 
improved HP model. This is consistent with the 
observation obtained from Figure. 6. The ground 
surface settlement decreases with the increase of 
distance behind the wall, while the curve 
predicted by 

 

 
 

(a) (b) 
Figure 7: 95% confidence interval of the overall 
responses computed by ANN using basic and improved 

HP model: (a) lateral wall displacement computed 
with basic HP model; (b) lateral wall displacement 
computed with improved HP model; 
basic HP model is flatter. Similar to Figure. 7(a), 
it can be seen that the measured profile of the 
ground surface settlement obtained from the 
centrifuge test is more consistent with the 
confidence interval of the ground surface 
settlement profile estimated from the improved 
HP model than that estimated from the basic HP 
model. This, again, suggests the performance of 
improved HP model is better than the basic one in 
terms of the prediction of the ground surface 
settlement at different distances behind the wall.  

5. SUMMARY AND CONCLUSIONS 
This paper integrates the direct Monte Carlo 

simulation (MCS) method and finite element 
method to conduct the reliability analysis of 
ground deformation induced by excavation 
(including lateral wall displacement and ground 
surface settlement) using the hypoplastic model 
and its modified edition that considers the strain 
dependency and path dependency of soil stiffness 
at small strains. Artificial Neural Network (ANN) 
were used to establish the surrogate model of 
finite element model. Based on the results, the 
following conclusions can be drawn: 
(1) Probabilistic analysis results based on finite 

element analyses depend on the constitutive 
model. In this study, the ground deformation 
induced by excavation estimated using the 
basic HP model is more conservative than that 
based on the improved HP model.  

(2) Results show that ANN is able to capture the 
underlying nonlinear relationship between the 
input parameters and output of the finite 
element model using hypoplastic model. 
ANNs is a powerful tool in the finite element 
model-based probabilistic analysis. It not only 
helps overcome the numerical convergence 
issue, but also improve the computational 
efficiency of probabilistic analysis. 

(3) It was also found that the measurements of 
ground deformation induced by excavation in 
the centrifuge test are more consistent with 
those estimated from the ANN based on the 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 8

improved HP model than those estimated 
from the ANN based on the basic HP model. 
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